New! View global litigation for patent families

CN105473218A - Epicatalytic thermal diode - Google Patents

Epicatalytic thermal diode Download PDF

Info

Publication number
CN105473218A
CN105473218A CN 201480038411 CN201480038411A CN105473218A CN 105473218 A CN105473218 A CN 105473218A CN 201480038411 CN201480038411 CN 201480038411 CN 201480038411 A CN201480038411 A CN 201480038411A CN 105473218 A CN105473218 A CN 105473218A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
surface
gas
etd
surfaces
thermal
Prior art date
Application number
CN 201480038411
Other languages
Chinese (zh)
Inventor
D·P·希恩
Original Assignee
典范能源研究公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24JPRODUCING OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24J1/00Apparatus or devices using heat produced by exothermal chemical reactions other than by combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F23/00Features relating to the use of intermediate heat-exchange materials, e.g. selection of compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS, COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J15/00Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor
    • B01J15/005Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates

Abstract

An Epicatalytic Thermal Diode (ETD) includes one or more ETD cells. Each cell comprises first and second surfaces with a cavity between them, which contains a gas that is epicatalytically active with respect to the pair of surfaces. The surfaces chemically interact with the gas such that the gas dissociates at a faster rate proximate to the first surface than it does proximate to the second surface. Thus, a steady-state temperature differential between the first surface and the second surface is created and maintained. In various applications, multiple ETD cells are connected in series and/or parallel.

Description

表面催化热二极管 Catalytic thermal diode surface

[0001] 相关申请的交叉引用 CROSS [0001] REFERENCE TO RELATED APPLICATIONS

[0002] 本申请要求于2013年5月29日递交、题为"Epicatalytic Thermal Diode"的美国临时专利申请号61/828,419的权益;于2013年5月29日递交、题为%?"3七317衍(:1116^^1 Diode"的美国临时专利申请号61/828,421的权益;以及于2014年5月28日递交、题为"Epicatalytic Thermal Diode"的美国专利申请号14/289,322的权益,所有这些都通过引用而使其整体并入本文。 [0002] This application claims the May 29, 2013 submission, the benefit of US Provisional Patent Application No. 61 entitled "Epicatalytic Thermal Diode" of / 828,419; and on May 29, 2013 filed entitled% "3 And? 317 Yan (: 1116 ^^ 1 Diode "the benefit of US provisional Patent application No. 61 / 828,421; and on May 28, 2014 filed entitled" US Patent Epicatalytic Thermal Diode "application interests No. 14 / 289,322, and All this and it is incorporated herein by reference.

技术领域 FIELD

[0003] 本文描述的主题通常涉及管理热流,尤其涉及一种产生及维持稳态温差的设备。 [0003] The subject matter described herein relates generally to heat management, particularly to a temperature difference generating device and maintain homeostasis.

背景技术 Background technique

[0004] 热量通常从热流到冷,缓和温度梯度以使得孤立的系统最终达到由单一均匀温度特征化的热力学平衡。 [0004] Typically the heat to the cold heat, so that the relaxation temperature gradient system ultimately isolated from a single thermodynamic equilibrium of the homogeneous temperature profile. 当前,为了使设备产生及维持温度梯度必须做功。 Currently, in order to make the device to generate and sustain a temperature gradient must work. 维持温度梯度在诸如制热、制冷、环境控制、发电以及机械运动之类的广阔范围的技术领域上有实用价值。 Maintaining the temperature gradient, such as practical value in the heating, cooling, environmental control, power generation, and a wide range of technical field such mechanical movement.

[0005] 做功以维持温度梯度的现有设备还生成废热。 [0005] work to maintain the temperature gradient existing equipment also generates waste heat. 一些设备试图使用该废热(例如,由车辆发动机生成的废热可以在冬季月份期间被导向车辆的内部以供热)但这样的系统通常效率低且不能解决诸如通过燃烧化石燃料(例如,汽油、煤、油等)提供功的最初要求。 Some devices attempt to use the waste heat (e.g. waste heat generated by the vehicle engine may be directed to the interior of the vehicle during the winter months to heat) but the low efficiency, and such systems typically can not be resolved, such as by combustion of fossil fuels (e.g., gasoline, coal , oil, etc.) to provide initial power requirements.

发明内容 SUMMARY

[0006] 以上及其它问题通过表面催化热二极管(ETD)和对应的方法而解决。 [0006] The above and other problems solved by a method corresponding surface of the catalytic thermal diode (ETD). ETD自然地i) 产生及维持ETD的两个单独表面之间的温差;并且ii)在温度梯度的方向上(即,上)跨过ETD。 Naturally ETD i) generating a temperature difference between the two separate and maintain ETD surfaces; and ii) the temperature gradient in the direction of (i.e., upper) across the ETD. 在一个方面介导有效率的稳态热流,ETD的结构热机械及化学地优化温度梯度和热流的产生和维持两者。 In one aspect mediated efficient steady state heat flow, ETD thermomechanical and chemical structure optimized temperature gradient and heat flow and maintain both.

[0007] 在各种实施例中,ETD设备包括串联和/或并联连接的一个或多个ETD单元。 [0007] In various embodiments, the device includes a series ETD and / or one or more cells connected in parallel ETD. 在特定实施例中,相邻的ETD单元共用一个或多个部件以用于增加操作效率和/或减小生产成本。 In a particular embodiment, the adjacent ETD units share one or more components for increasing the operational efficiency and / or reduce production costs.

[0008] 在一个方面,ETD单元包括第一表面和第二表面,在它们之间具有被配置成保持气体的腔体。 [0008] In one aspect, ETD unit comprising a first surface and a second surface, between which is configured to maintain a gas having a cavity. 当气体存在于腔体中时,表面与气体相互化学作用,使得气体接近于第一表面以比接近于第二表面更快的速率离解。 When gas is present in the cavity, the surface chemical interaction with the gas, so that in order to dissociate close to the second surface than the velocity of the gas faster close to the first surface. 因而,比起在接近于第二表面处,更大量的热量在接近于第一表面处被吸收或释放(取决于离解反应是否各自是吸热或放热的)。 Accordingly, at the second surface than close, a larger amount of heat is absorbed or released at a first surface close to (depending on whether each dissociation reaction is endothermic or exothermic). 因此,第一表面与第二表面之间的稳态温差被产生及维持。 Thus, the steady state temperature difference between the first and second surfaces are generated and maintained.

[0009] 在另一方面,ETD单元进一步包括第一热传递表面和第二热传递表面,该第一热传递表面和第二热传递表面相应地被连接到第一表面和第二表面且基本上平行。 [0009] In another aspect, ETD unit further comprises a first heat transfer surface and a second heat transfer surface of the first heat transfer surface and a second heat transfer surface is respectively connected to the first and second surfaces and substantially parallel. 热传递表面被连接到对应的表面与腔体相对的一侧。 Heat transfer surfaces are connected to the corresponding surface of the opposite side of the cavity. 热传递表面被配置成将热量向对应的表面引导和/或从对应的表面引导热量。 Heat transfer surface is configured to transfer heat to the corresponding guide surface and / or the direct heat from the corresponding surface.

附图说明 BRIEF DESCRIPTION

[0010] 图1A是示出根据一个实施例的导致两个表面之间的温差的表面催化反应的简图。 [0010] FIG 1A is a diagram showing a catalytic reaction results in a surface temperature difference between the two surfaces, according to one embodiment.

[0011] 图1Β是根据一个实施例的在其中图1Α的反应可能发生的单个ETD单元的侧视图。 [0011] FIG 1Β ETD is a side view of a single unit according to FIG 1Α reaction in which an embodiment may occur.

[0012] 图2是根据一个实施例的包括平行的多个ETD单元的系统配置的等距示图。 [0012] FIG. 2 is an isometric illustration of a system configuration comprises a plurality of parallel ETD unit according to an embodiment.

[0013]图3是根据一个实施例的串联地组合三层的ETD单元的系统配置的侧视图表示。 [0013] FIG. 3 is a system of a series combination of a three-layer embodiment of the ETD side view showing the configuration of the unit.

[0014] 图4是示出根据一个实施例的用于测试材料和气体的组合以确定它们在ETD单元中使用的适用性的装置的简图。 [0014] FIG. 4 is a diagram showing the composition of the gas and for testing materials to determine a schematic view of embodiment apparatus of the suitability thereof for use in the ETD unit.

[0015] 图5是示出根据一个实施例的确定特定气体-表面组合在ETD单元中使用的适用性的示例性方法的流程图。 [0015] FIG. 5 is a diagram illustrating a specific gas is determined in accordance with an embodiment of the - flowchart of an exemplary method applicability for use in combination surface ETD unit.

[0016] 图6是示出根据一个实施例的用于确定特定气体-表面组合在ETD单元中使用的适用性的可替代方法的流程图。 [0016] FIG. 6 is a diagram illustrating a specific embodiment for determining the gas - a flowchart of an alternative method may be used in combination applicability surface unit of ETD.

具体实施方式 detailed description

[0017] 附图和以下说明书仅以示例的方式描述了特定实施方式。 [0017] The drawings and the following description is described by way of example only specific embodiments. 本领域技术人员将易于从以下说明书中认识到可以采用本文所示的结构和方法的可替代实施例而不偏离本文描述的原理。 Those skilled in the art will readily recognize from the following description may be employed to the structures and methods illustrated herein may be alternative embodiments without departing from the principles described herein. 现在将对多个实施例进行参照,其示例在所附附图中图示。 A plurality of embodiments will now reference, examples of which are illustrated in the accompanying drawings. 应当注意,只要可行, 可以在附图中使用相似或相同的附图标记,并且可以指示相似或相同的功能。 It is noted that wherever practicable, may use the same or similar reference numerals in the figures and may indicate similar or like functionality.

[0018] 过程概述 [0018] Process Overview

[0019] ETD的实施例利用包括(至少)两个空间上分离的表面的过程,该两个表面相对于气体是化学活性的,该气体经受通用的离解反应ΑΒ<-Α+Β。 [0019] Example embodiment using ETD comprises (at least) two separate processes on the surface of the space, the two surfaces are chemically active relative to the gas, which is subjected to a common gas dissociation reaction ΑΒ <-Α + Β. 图1Α图示了使用两个平行表面120和140的该过程的实施例。 FIG 1Α illustrates an embodiment using two parallel surfaces 120 and 140 of the process. 该两个(或更多)表面120和140展示了传统非均相催化剂的大多特性,但偏离催化的一个标准原则。 The two (or more) surface 120 and 140 show the characteristics of most of the traditional heterogeneous catalysts, but a standard deviation from the principles of catalysis. 不像不偏移气相平衡的常规催化剂,由于表面效应相对于表面之间的腔体130中的气体的总体特性的支配地位,表面120和140改变气相平衡。 Unlike the conventional catalyst does not shift the balance of the gas phase, since the surface of the dominant effect with respect to the overall characteristics of a gas cavity between the surfaces 130, 120 and the surface 140 changes gas phase equilibrium. 因而,表面120和140在本文中被称为"表面催化剂(epicatalyst)"并且基于这样的表面的过程被称为"表面催化(epicatalysis)"和/或"表面催化过程(epicatalytic process)''。 Thus, surface 120 and 140 is referred to as "surface of the catalyst (epicatalyst)" herein and based on the process of such surfaces is called "catalytic surface (epicatalysis)" and / or "surface catalytic processes (epicatalytic process) ''.

[0020] 第一表面140与第二表面120相比倾向于离解(dissociation)半反应(意为AB-A+ B)。 [0020] The first surface 140 and the second inclined surface 120 as compared to (Dissociation) dissociation half-reactions (meaning AB-A + B). 相反地,第二表面120相对于第一表面140比较倾向于复合(recombination)半反应(意为A+B-AB)。 Conversely, the second surface 120 with respect to the first surface 140 tend compound (recombination) Half-reaction (meaning A + B-AB). 因而,当气体二聚体接近于第一表面140时,在二聚体与第一表面140之间的相互作用导致其离解速率高于接近于第二表面120的对应的离解速率。 Thus, when the gas close to the first surface 140 a dimer, the dimer and the interaction between the first surface 140 leads to dissociation rate is higher than the corresponding dissociation rate close to the second surface 120. 本文中使用术语接近是相对于气体和表面的从而意为气体的单体和/或二聚体在表面的10埃以内,包括在表面上。 The term is used herein, with respect to the gas near the surface and thus gas is intended to monomers and / or dimers within 10 angstroms of the surface, including the surface.

[0021] 腔体130包含气体,其可以在腔体内自由移动。 [0021] The chamber 130 contains a gas, which can move freely within the cavity. 因而,从第一表面140向第二表面120存在比在相反方向上流过腔体130的更大通量的A和B种类的气体。 Accordingly, the presence ratio of flows in opposite directions A and B types of gas flux larger cavity 130 to the second surface 120 from the first surface 140. 相反地,从第二表面120向第一表面140存在比在相反方向上流过腔体130的更大通量的AB种类的气体。 Conversely, the presence of the second surface 120 to first surface 140 flows in the opposite direction than the AB type flux 130 larger gas cavities. 因此,在腔体130中存在化学循环,其中AB种类125的气体的净流动在一个方向,并且A和B种类135的气体的净流动在另一方向。 Thus, presence of a chemical in the cavity 130 of the loop, where the net flow of gas species AB 125 in one direction, and A and B types of net flow of the gas 135 in the other direction. 在两个表面120和140之间的气体的该流动承载净热能和化学能,导致在两个表面之间的稳态温差。 The net chemical energy and heat carrier in the flow of gas between the two surfaces 120 and 140, resulting in a steady state temperature difference between the two surfaces.

[0022] 在一个实施例中,离解反应是吸热的,并且复合反应是放热的。 [0022] In one embodiment, the dissociation reaction is endothermic, the reaction is exothermic and the composite. 其结果是,有利于离解的表面140自然地冷却并维持比相对有利于复合的表面120更低的温度。 As a result, the surface 140 is conducive to the dissociated naturally cooled and maintained at a temperature lower than the surface 120 of the opposing conducive to complex. 如果过量的热量被提供到较冷的表面140,热量通过空间130被热对流及化学平流输送到另一表面120,从而在表面之间产生在ETD热梯度上向上的净热流。 If excessive heat is supplied to the surface of the cooler 140, heat is conveyed through the thermal convection space 130 to the other surface of stratospheric chemistry and 120, resulting in a net heat flow upward in the thermal gradient between the surface of the ETD. 随后热量可以经由标准热传递机构(即, 对流、传导、辐射)从较暖的表面120收获。 Then heat may transfer heat via the standard mechanism (i.e., convection, conduction, radiation) were harvested from the warmer surface 120. 净结果构成了有利于在一个方向上而不是在另一个方向上的热传递的热二极管,因而使得热量的净传递能够抵抗温度梯度。 The net result constitutes favor one direction rather than in the thermal diode heat transfer in the other direction, so that the net transfer of heat resistant to a temperature gradient. 尽管离解反应是吸热的特定实施例在以下被描述,应当注意的是,在一些实施例中,离解反应是放热的。 Although the dissociation reaction are described in the following embodiment, it should be noted that, in some embodiments, the dissociation reaction is exothermic and endothermic specific embodiments. 在这样的实施例中,有利于离解140的表面将比有利于复合的表面更暖。 In such an embodiment, the solution from the surface 140 is conducive to the surface than conducive to complex warmer.

[0023] ETD单元的结构 [0023] ETD structural unit

[0024]图1B是图示了根据一个实施例的ETD单元100的一半结构的切除侧视图。 [0024] FIG. 1B is a side view illustrating a configuration of ETD half cut unit 100 of one embodiment. 多个ETD 单元100可以以各种方式被组合以达到期望的效果,这些结合的一些示例在以下参照图2和图3进行更为详细的讨论。 ETD plurality of unit 100 may be combined in various ways to achieve the desired effect, some examples of which will be discussed in conjunction with in more detail below with reference to FIGS. 2 and 3. 在所示的实施例中,ETD单元100包括第一表面140和第二表面120,每个被对应的热传递表面110支撑并且彼此基本上平行地对准。 In the embodiment illustrated, ETD unit 100 includes a first surface 140 and second surface 120, each corresponding to the heat transfer surface of the support 110 and is aligned substantially parallel to one another. 表面120和140之间的分隔由多个分隔件160维持,其中两个分隔件在此被示出。 Separation between the surfaces 120 and 140 160 maintained by a plurality of partition members, wherein the two partition member is shown here. 因而,腔体130形成在表面120和140之间,腔体130包含气体。 Accordingly, the cavity 130 is formed between the surface 120 and 140, the chamber 130 comprises a gas. 在其它实施例中,维持两个或更多表面之间的基本上恒定的间隔的其它几何形状被用于ETD单元100,诸如嵌套圆柱体、嵌套球体、螺旋体等。 In other embodiments, two or more to maintain a substantially constant spacing between other geometries for the surface of ETD unit 100, such as a nested cylinders, spheres nested, spiral like. 在一些实施例中,表面120和140中的一者或两者也用作对应的热传递表面110。 In some embodiments, the surfaces 120 and 140 is also used as one or both of the corresponding heat transfer surface 110. 在又一实施例中,表面120和140并不被布置为具有基本上恒定的间隔,例如,相对于彼此以45度的角度,或者使得一个表面相对于另一个表面大致弯曲。 In yet another embodiment, the surfaces 120 and 140 are not arranged to have a substantially constant interval, e.g., with respect to each other at an angle of 45 degrees or so relative to the other surface of a generally curved surface.

[0025] 对于公开的装置有用的气体是作为二聚体AB存在的那些气体,但也作为独立的单体A和B存在。 [0025] For the disclosed apparatus is useful as the gas present in those gases dimers AB, but also as an independent monomers A and B present. 进而,对于公开的装置有用的气体是基于它们与特定表面120和140的相互作用而被选择的。 Furthermore, the disclosed apparatus is useful for gas based on their interaction with specific surface 120 and 140 is selected. 如以上所公开的,对于特定表面120和140有用的气体是比起在两个表面中的第二表面处而言倾向于在两个表面中的第一表面处离解并且比起在两个表面中的第一表面处而言倾向于在两个表面中的第二表面处复合的气体。 As disclosed above, for a particular surface 120 and 140 are compared in terms of useful gas at a second surface of the two surfaces inclined to the first surface of the two surfaces and dissociated than the two surfaces For the first surface of the second surface of the two inclined surfaces of the composite gas. 在一个实施例中,气体基于以下而被选择:独立的单体A和B的稳定性,在二聚体AB中的组分之间键合的强度,以及在ETD 设备的操作温度处(例如,在或接近室温处)气体的蒸汽压。 In one embodiment, the gas is selected based on the following: stability independent of monomers A and B, AB dimer strength between the bonded components, at the operating temperature and ETD device (e.g. , at or near room temperature) vapor pressure of the gas.

[0026] 在一些实施例中,气体被选择为使得在气体处于ETD的操作温度时气体的蒸汽压对于操作化学循环是充分的。 [0026] In some embodiments, the gas is selected such that the vapor pressure of the gas in the gas at the operating temperature of the ETD for chemical recycling operation is sufficient. 换言之,遍及腔体130中必须有足够的处于汽相的气体以用于离解/复合循环,因此温差得以维持。 In other words, across the cavity 130 must have sufficient gas in the vapor phase for dissociation / combined cycle, thus the temperature difference is maintained. 因而,具有相对低的分子量(例如,小于约200amu)的气体可以在一些实施例中被使用以旨在用于室温下的操作。 Thus, having a relatively low molecular weight (e.g., less than about 200 AMU) gas may be used in some embodiments, it is intended to operate for at room temperature. 这样的气体具有可与环境热能相比的净分子间力和能量,因此,可察觉量的离解在环境条件下发生。 Such a gas has a net inter-molecular forces compared with the thermal environment and energy, and therefore, an appreciable amount of dissociation occurs under ambient conditions. 通常,具有更高分子量的气体,显著比例的分子趋向于在室温液化或固化,致使腔体130不包含足够量的处于汽相的气体以用于维持反应循环。 Typically, the gas having a higher molecular weight, a significant proportion of molecules tends to be liquefied or solidified at room temperature, so that the cavity 130 does not contain a sufficient amount of gas in the vapor phase for maintaining the reaction cycle.

[0027] 在一些实施例中,针对所选气体的独立的单体的稳定性和二聚体的键合的强度为使得当ETD设备出于操作温度时由于表面120和140所致的表面效应相对于气相平衡特性处于支配地位。 [0027] In some embodiments, for strength and stability independent dimer monomer gas selected such that when bonded ETD device for an operating temperature due to surface effects caused by surface 120 and 140 with respect to the gas phase equilibrium properties dominate. 在这些实施例中,二聚体AB被相对弱的键所键合,使得二聚体可以在或接近室温处热离解,导致在任何给定时间处可察觉量的气体(例如10 % )以离解的种类存在。 In these embodiments, the relatively weak bond AB dimers are bonded, so that heat can be close to dimer dissociation in a room or, at any given time results in an appreciable amount at a gas (e.g. 10%) to there is the kind of dissociation. 在各种实施例中,具有氢键(HyB)、卤键(HaB)和范德华键(vdWB)的气体二聚体被使用。 In various embodiments, having a hydrogen (Hyb), halogen bond (HAB) and van der Waals bonds (vdWB) dimer gas is used. 在各种实施例中,两个同二聚体(单体A和B相同的气体)和异二聚体(单体A和B不同的气体)被使用。 In various embodiments, two homodimer (monomers A and B the same gas) and heterodimers (monomers A and B of different gas) are used.

[0028] 氢键的二聚体是包括利用一个或多个氢键连接的两个单体的分子。 [0028] The dimer is hydrogen include molecular hydrogen bonding with one or more of the two monomers. 离解和复合速率在接近于表面附近变化(因而可以被用于表面催化过程中)的氢键二聚体包括但不限于: 低分子量的羧酸,醇,醛,酮,醚,酯,酰基卤,酰胺,和胺。 Dissociation and recombination rate in close vicinity of the surface changes (and thus may be used to surface catalytic processes) hydrogen bonds dimers include, without limitation: low molecular weight carboxylic acids, alcohols, aldehydes, ketones, ethers, esters, acid halides , amides, and amines. 通常,与被附接到带负电的元素的氢原子协同工作的、由F、0、N,有时S所选的孤对电子将导致在接近合适的表面附近时展现表面催化特性的二聚体。 Typically, the work is attached to negatively charged hydrogen atom collaborative element by F, 0, N, S and sometimes lone pair of electrons will cause the selected surface exhibit catalytic properties in the near vicinity of the surface of a suitable dimer . 本领域技术人员将认识到,在各种应用中,基于以上考虑,实施例可以采用以下作为气体:甲酸,乙酸,甲醇,乙醇,甲醛,氨,二甲基酮,甲胺,二甲胺,二甲醚, 水,乙酰胺,甲硫,氰,氰化氢,氟化氢,硫化氢,氰甲烷,甲酰胺,氨基甲亚胺,氯化氢,氰乙烷,一氧化碳,二氧化碳,二氧化硫和氮氧化物,以及这些分子的单体的异二聚体组合。 Those skilled in the art will recognize that, in various applications, based on the above considerations, the following embodiments may be employed as the gas: formic acid, acetic acid, methanol, ethanol, formaldehyde, ammonia, dimethyl ketone, methylamine, dimethylamine, dimethyl ether, water, acetamide, sulfide, cyanide, hydrogen cyanide, hydrogen fluoride, hydrogen sulfide, methane, cyano, carboxamide, carbamoyl imine, hydrogen, cyano ethane, carbon monoxide, carbon dioxide, sulfur dioxide and nitrogen oxides, heterodimeric molecules, and combinations of these monomers.

[0029] 卤键的二聚体是包括利用一个或多个卤键连接的两个单体的分子。 [0029] dimer molecules comprising halogen bond with one or more halogen bonds two monomers. 通常,包含氟、 氯、溴或碘的低分子量齒键分子展现了表面催化特性。 Typically, comprising fluorine, chlorine, bromine or iodine bond of the low molecular weight molecules exhibit a tooth surface catalytic properties. 本领域技术人员将认识到,在各种应用中,基于以上考虑,实施例可以采用以下作为气体:单卤甲烷,二卤甲烷,三卤甲烷,四卤甲烷,卤代乙烷,和以上氢化物质的卤化形式,以及这些分子的单体的异二聚体组合。 Those skilled in the art will recognize that, in various applications, based on the above considerations, the following embodiments may be employed as the gas: single trihalomethanes, methylene halide, trihalomethane, tetrahalomethane, halogenated ethane, and one or more hydrogenated in the form of halogenated materials, and combinations of these heterodimeric molecules monomers.

[0030] 范德华键的二聚体是包括利用一个或多个范德华键连接的两个单体的分子。 [0030] van der Waals bonds are dimer molecules comprising using one or more Van der Waals bonds of the two monomers. 不像以上的HyB和HaB二聚体,许多类型的范德华键二聚体展现了显著在室温以下的可察觉量的离解。 Unlike the above HyB and HaB dimers, dimers many types of Van der Waals bonds exhibit significant dissociation of an appreciable amount of below room temperature. 本领域技术人员将认识到的是,在各种应用中,基于以上认识,实施例可以采用以下作为气体:稀有气体二聚体(例如,氩气,氣气),甲烧,乙烧,丙烷,和氮气。 Those skilled in the art will recognize that, in various applications, based on the above understanding, the following embodiment may be employed as the gas: noble gas dimers (e.g., argon gas gas), A burning, burning B, propane , and nitrogen.

[0031] 在各种实施例中,取决于特定的环境、应用、以及表面材料的选择,除了以上所列的那些之外的气体被使用。 [0031] In various embodiments, depending on the particular environment, application, and selecting a material surface, in addition to a gas other than those listed above are used. 例如,一些共价键合的气体(如二硼烷和四氧化二氮)具有足够弱的键以用于气体的显著比例在室温或接近室温处时处于离解的状态。 For example, some gas covalently bonded (e.g., diborane and nitrogen tetroxide) having a sufficiently weak bond to a significant proportion of a gas is dissociated state when at or near room temperature. 尽管气体在本文中出于方便而描述为二聚体,应当注意的是,在一些实施例中,气体是三聚体或更高次分子, 包括由以上所述的一个或多个键类型结合的多个单体。 Although the gas used herein for convenience described as a dimer, it should be noted that, in some embodiments, the gas is trimer or higher order molecules, including binding of one or more of the above-described key type the more monomers.

[0032] 在一些实施例中,当选择用于腔体130的气体时,附加的因素被列入考虑,包括气体的化学性质、气体的可用性/价格、气体的毒性等。 [0032] In some embodiments, when selecting a gas chamber body 130, additional factors are taken into consideration, including the chemical nature of the gas, the availability of gas / price, and other toxic gases.

[0033] 热传递表面110向表面120和140给出机械稳定性和支撑。 [0033] The heat transfer surfaces 110 are given to the mechanical stability and the support surfaces 120 and 140. 热传递表面110对于气体也是不可渗透的,并且组成保持气体的密封容器的一部分。 Heat transfer surfaces 110 are impermeable to gases, and forms part of a sealed container holding gas. 在一些实施例中,表面120和140 中的一者或两者也用作对应的热传递表面110。 In some embodiments, the surfaces 120 and 140 is also used as one or both of the corresponding heat transfer surface 110. 在典型的应用中,ETD系统包含多个ETD单元100,其中各个单元贯穿多个连接的腔体130而共用气体。 In a typical application, the system comprising a plurality of ETD ETD 100 units, wherein each unit is connected through a plurality of cavities 130 and common gas. 一个这样的系统在以下参照图2以进一步的细节描述。 2 One such system is described in further detail below with reference to FIG.

[0034] 在各种实施例中,热传输表面110的外表面包括表面特征(例如,鳍、粗糙部等)以便于经由传导和对流增加热传递。 [0034] In various embodiments, the outer surface of the heat transfer surface 110 includes surface features (e.g., fins, roughness, etc.) in order to increase the transfer via conduction and convection heat. 附加地,在一些实施例中,外表面被涂覆(例如涂黑)以便于使得经由辐射的热传递最大化。 Additionally, in some embodiments, the outer surface is coated (e.g., black) such that in order to maximize the transfer of radiation heat through. 例如,外表面可以包括一个或多个阳极氧化铝、炭黑、碳纳米管林等以便于提供到单元100中或到单元100之外的有效的辐射热传递。 For example, the outer surface may include one or more of anodized aluminum, carbon black, carbon nanotube forests, etc. in order to provide to 100 units or the active unit 100 other than the radiation heat transfer.

[0035]在一些实施例中,热传递表面110是导热的(例如,具有高导热率并且物理上很薄) 且机械上强的。 [0035] In some embodiments, the heat transfer surface 110 is a thermally conductive (e.g., having a high thermal conductivity and physically thin) and mechanically strong. 具有这些特性的材料的示例包括聚酯薄膜、芳纶、芳族聚酰胺、金属箱等。 Examples of materials having such properties include polyester films, aramid, aramid, metal boxes. 导热允许热量易于通过第一热传递表面110A进入ETD单元100,并且在第二热传递表面110B处从ETD单元收获。 Thermal conductivity allowing heat through the first heat transfer surface easily enter ETD unit 100 110A, and 110B of the transfer surface from the harvesting unit in the second heat ETD. 机械上强允许热传递表面110提供表面120和140的良好机械支撑,因而确保ETD单元100的功能性几何形状在应力下基本上得以维持。 Mechanically strong to allow heat transfer surfaces to provide good mechanical support surfaces 110 and 120 140, thus ensuring ETD functional unit 100 is maintained at substantially the geometry of the stress. 热传递表面110可以由具有期望特性的相同或不同的材料构造,取决于特定实施例。 Heat transfer surfaces 110 may be constructed of a material having the same or different desirable properties, depending on the particular embodiment. 例如,用于每个热传递表面110的材料可以被选择为确保与对应的表面材料有效的结合。 For example, each of the heat transfer surface of the material 110 may be selected to ensure that the surface material corresponding to an effective combination.

[0036]在一个实施例中,热传递表面110宏观上是柔性的,并且在较短的长度尺度上是机械上强的。 [0036] In one embodiment, the heat transfer surface 110 is flexible macroscopic, mechanically strong and is over a shorter length scale. 因此,一片ETD单元可以被操纵以形成圆柱体、螺旋体、卷绕体和其它这样的结构,如针对特定应用所期望的。 Thus, an ETD unit may be manipulated to form a cylinder, spiral, wound body, and other such structures, as desired for a particular application.

[0037] 在另一实施例中,热传递表面在向内的表面(例如镜面的)上具有低辐射率以减小由更暖的表面120回辐射加热更冷的表面140。 [0037] In another embodiment, the heat transfer surface of the inwardly facing surface (e.g. mirror) having a low emissivity to reduce the upper surface 140 of the surface 120 back to the warmer heat radiation cooler. 在另一实施例中,在热传递表面110与表面120和140的辐射率(和吸收率)之间的关系被优化以进一步减小仅由反射实现的回辐射加热的量。 In another embodiment, the heat transfer relationship between the radiation rate (and rate of absorption) surface 110 and the surface 120 and 140 is optimized to further reduce the amount of radiant heat back realized only by reflection.

[0038] 用于表面120和140的材料的选择至少部分基于腔体130中的具体气体,并且特别地基于通过具体气体接近对表面所选的材料附近的离解/复合反应速率怎样被改变。 The choice of material [0038] 120 and 140, a surface at least partially based on the particular gas chamber 130, and in particular based on the proximity of the dissociated material near the surface of the selected particular by a gas / reaction rate of the composite is changed how. 如以上参照图1A所述的,有利于气体的离解的材料被选择用于第一表面140。 As described above with reference to FIG. 1A, facilitate gas dissociation material is selected for the first surface 140. 相反地,(相对而言)有利于气体的复合的材料被选择用于第二表面120。 Conversely, the (relatively) conducive to complex material gas is selected for the second surface 120. 在一些实施例中,表面120和140中的一者或两者的几何形状被定制为增大在气体与表面之间相互作用的数量,因此增大对应的离解或复合速率。 In some embodiments, the surfaces 120 and 140 in one or both of the geometry is tailored to increase the number of interactions between the gas and the surface, thus increasing the rate of complex dissociation or corresponding. 例如,表面120或140可以是波纹的、凹槽的、粗糙的、树枝状的,或被配置(例如,涂有碳纳米管林)为增大可用于气体表面相互作用的表面积。 For example, surface 120 or 140 may be corrugated, grooves, rough, dendritic, or configured (e.g., coated with a forest of carbon nanotubes) to increase the surface area available for the gas-surface interaction. 在一个这样的实施例中,该对表面120和140的几何形状被定制为使得在离解表面处离解的进入的二聚体的比例与在复合表面处复合的单体对的比例大致相等。 In one case, which is tailored to the geometry of the surfaces 120 and 140 so that such embodiment is substantially equal to the ratio of the proportion of dimers of the solution from the surface into the dissociated complexed composite with the surface of the monomer pair.

[0039]在使用HyB和/或HaB气体的实施例中,用于离解表面140的材料与用于吸引的气体的单体竞争,因而减小接近于离解表面附近复合的单体的数量并因此增大总离解速率。 Quantity [0039] In embodiments using HyB and / or HaB gas, the surface material 140 for dissociating monomers compete for suction gas, thereby reducing surface recombination close off the monomer solution and thus The total increase in dissociation rate. 然而,如果离解表面140与单体过于强烈地相互作用,它们可能粘到表面。 However, if too strongly dissociated surface 140 interacts with the monomer, they may stick to the surface. 如果这发生,单体变得不可用于在化学循环中参与,其可能防止稳态温差的建立。 If this occurs, the monomers become unavailable for participating in the chemical cycle, it is possible to prevent the establishment of a steady state temperature difference. 因而,用于离解表面140的材料应当是相对于使用的特定二聚体具有可察觉的离解去吸附活性的材料,意味着入射到表面上的二聚体的可察觉部分离解并且产生的单体的可察觉部分离开接近于表面的区域。 Thus, the material solution for ex surface 140 should be relative to a particular use of the dimer dissociation of having appreciable activity to adsorbent material, means monomers perceptible incident on the surface portion of dimer dissociation and the generated perceptible portion away from a region close to the surface. 理想地,入射到离解表面140上的所有二聚体经受离解去吸附。 Ideally, all of the dimer is incident from the upper surface 140 of the solution is subjected to adsorption dissociation. 然而,使用的系统通常具有小于100%的离解去吸附率(入射的二聚体离解发生并且产生的单体离开接近于离解表面140 附近的区域的百分比)。 However, the system typically have (monomer-dimer dissociation incident occurred and the resulting percentage is close to leaving the solution from the region near the surface 140) is less than 100% of the adsorption rate to dissociation. 在一个实施例中,离解去吸附率介于0.01%与90%之间。 In one embodiment, the desorption rate of dissociation between 0.01% and 90%. 在另一实施例中,离解去吸附率介于〇. 1 %与90%之间。 In another embodiment, the desorption rate of dissociation between 1 billion and 90%. 在又一实施例中,离解去吸附率介于0.1 %与50%之间。 In yet another embodiment, the desorption rate of dissociation between 0.1% and 50%. 在进一步的实施例中,离解去吸附率介于0.1 %与10%之间。 In a further embodiment, the desorption rate of dissociation between 0.1% and 10%. 在其它实施例中,其它的离解去吸附率发生,取决于使用的具体气体和材料以及ETD操作温度和压力。 In other embodiments, other adsorption rate of dissociation to occur, particularly gas and ETD materials and operating temperature and pressure being used.

[0040]展现该特性的示例材料类包括(但不限于):金属,陶瓷,金属氧化物,氮化物和卤化物,以及官能化的有机聚合物和其它展现官能化的表面的高分子质量的分子。 [0040] Examples of the material of the class exhibit characteristics include (but are not limited to): metals, ceramics, metal oxides, nitrides, and halides of functionalized organic polymers and other functionalized surfaces exhibit molecular mass molecular. 本领域技术人员将认识到的是,在各种应用中,基于以上考虑,实施例可以采用以下作为离解表面140:贵金属(例如,金,银),过渡金属(例如,铁,镍,铜),难恪金属(例如,妈,铼,钼),氧化铝(Al 2〇3),氧化镁(MgO),二氧化钛(Ti02),二氧化硅,硝化纤维素,芳族聚酰胺,尼龙,人造丝, 或聚甲基丙烯酸甲酯(PMMA)。 Those skilled in the art will recognize that, in various applications, based on the above considerations, embodiments may take the dissociation of surface 140: a noble metal (e.g., gold, silver), transition metals (e.g., iron, nickel, copper) , Ke hard metal (e.g., mom, rhenium, molybdenum), alumina (Al 2〇3), magnesium oxide (MgO), titania (titania and), silica, nitrocellulose, aramid, nylon, rayon silk, or polymethyl methacrylate (PMMA).

[0041 ]在vdWB气体被使用的实施例中,离解表面140也与气体相互作用,使得气体在接近于离解表面附近以比其在接近于复合表面120附近更大的速率离解。 [0041] In an embodiment vdWB gas is used, the dissociation surface 140 also interacts with the gas, so that close off the gas in solution than the solution from the surface to close at a greater rate in the vicinity of the surface of the composite 120. 本领域技术人员将认识到的是,在各种应用中,基于以上认识,实施例可以采用以下作为气体:表面氯化聚乙烯, 表面的氯化聚丙烯,或特氟隆。 Those skilled in the art will recognize that, in various applications, based on the above understanding, the following embodiment may be employed as the gas: surface chlorinated polyethylene, chlorinated polypropylene surfaces, or Teflon.

[0042]在一些实施例中使用vdWB、HaB或HyB的被用作离解表面140的另一类材料是掺杂的半导体。 [0042] In use vdWB some embodiments, HaB HyB or another material is used as the surface 140 is dissociated doped semiconductor. 通过利用负电荷或正电荷种类掺杂半导体,创建了与构成双聚体的单体强烈相互作用的位置,增大了吸收速率,因而增大了去吸附的速率。 Doped semiconductor by using negative or positive charge type, is created with the monomer constituting the position dimer strong interaction, the absorption rate is increased, thus increasing the rate of desorption. 这样的掺杂的半导体的示例包括掺杂有一个或多个以下项的硅和锗:氯,氟,氮,氧,钡和铯。 Examples of such doped semiconductor comprises silicon and germanium doped with one or more of the following items: chlorine, fluorine, nitrogen, oxygen, barium and cesium.

[0043] 在各种实施例中,取决于具体的环境、应用、以及气体的选择,除了以上所列的那些之外的材料被用于离解表面140。 [0043] In various embodiments, depending on the specific environment, applications, and selecting a gas, Materials other than those listed above are used dissociated surface 140.

[0044] 复合表面120有助于单体复合回到双聚体,因而,被选择用于复合表面的材料与单体以有利于复合的方式相互作用,例如,通过影响单体的电荷的分布。 [0044] The monomer complex composite surface 120 helps to return to dimers, therefore, be selected with the monomer used in the composite material surface to facilitate interaction complex manner, e.g., by the influence of charge distribution of the monomers . 在一些实施例中,复合表面120轻度结合单体,例如通过弱的HyB、HaB或VdWB。 In some embodiments, the composite 120 surface binding monomers mild, e.g., by weak HyB, HaB or VdWB. 因此,在气体单体与复合表面120 之间的相互作用相对于在单体之间键合的形成并不具有支配地位,从而产生了双聚体。 Thus, the interaction between the complex and the monomer gas with respect to the surface 120 of the bond formed between the monomers is not a dominant, resulting in a dimer. 与离解表面140类似的是,在理想系统中,入射到复合表面120上的100%的单体结合以产生双聚体,其随后离开接近于复核表面附近的区域。 And dissociation surface 140 Similarly, in the ideal system, is incident to 100% of the monomer on the surface combined to produce the composite 120 dimer, which then leaves the region near the surface close review. 然而,使用的系统通常具有小于100%的复合去吸附率(入射的单体复合发生并且产生的双聚体离开接近于复合表面120附近的区域的百分比)。 However, the system generally have less than 100% of a composite desorption ratio (monomer complex generated incident the occurrence and dimer leaving the vicinity of the percentage of the area close to the surface of the composite 120). 在一个实施例中,复合去吸附率介于0.01 %与90 %之间。 In one embodiment, the composite desorption rate between 0.01% and 90%. 在另一实施例中,复合去吸附率介于〇. 1 %与90%之间。 Embodiment, the composite desorption ratio between square 1 and 90% in another embodiment. 在又一实施例中,复合去吸附率介于0.1 %与50%之间。 In yet another embodiment, the composite desorption rate between 0.1% and 50%. 在进一步的实施例中,复合去吸附率介于0.1 %与10%之间。 In a further embodiment, the composite desorption rate between 0.1% and 10%. 在其它实施例中,其它的复合去吸附率发生,取决于使用的具体气体和材料以及ETD操作温度和压力。 In other embodiments, other composite adsorption rate to occur, depending on the particular materials and ETD gas and operating temperature and pressure used.

[0045] 展现这些特性的材料的通常类别包括(但不限于):非极性的,有机的表面,诸如高分子量的烃,有机硅烷,氯聚合物和未官能化的聚合物。 [0045] The properties of these materials show categories generally include (but are not limited to): non-polar, organic surfaces, such as high molecular weight hydrocarbons, organosilanes, chlorine polymers and unfunctionalized polymers. 本领域技术人员将认识到的是,在各种应用中,基于以上认识,实施例可以采用以下作为复合表面120:聚乙烯,聚丙烯,石蜡, 天然橡胶,或聚醚。 Those skilled in the art will recognize that, in various applications, based on the above understanding, the following embodiment may be employed as a composite surface 120: polyethylene, polypropylene, paraffin, natural rubber, or polyether.

[0046] 此外,许多含氟聚合物展现了用于作为复合表面120的合适特性,包括从以下项制作的均聚物和共聚物:乙烯,丙烯,氟乙烯,偏二氟乙烯,四氟乙烯,六氟丙烯,全氟丙基乙烯醚,全氟甲基乙烯基,和三氟氯乙烯。 [0046] In addition, many fluoropolymers exhibit suitable properties for a composite surface 120, including the following items prepared from homopolymers and copolymers of: ethylene, propylene, vinyl fluoride, vinylidene fluoride, tetrafluoroethylene , hexafluoropropylene, perfluoropropyl vinyl ether, perfluoromethyl vinyl, and chlorotrifluoroethylene. 本领域技术人员将认识到的是,在各种应用中,基于以上认识,实施例可以采用以下作为复合表面120:聚氟乙烯,聚偏二氟乙烯,聚四氟乙烯,全氟烷氧基聚合物,聚乙烯氯三氟乙烯,氟橡胶,全氟聚醚,或全氟磺酸。 Those skilled in the art will recognize that, in various applications, based on the above understanding, the following embodiment may be employed as a composite surface 120: polyvinyl fluoride, polyvinylidene fluoride, polytetrafluoroethylene, perfluoroalkoxy polymers, polyethylene chlorotrifluoroethylene, fluororubber, perfluoropolyether, or a perfluorosulfonic acid. 进而,石墨烯和其同素异形体(例如,石墨,碳纳米管)也展现这些特性并且可以被用于复合表面120,并结合适当的气体一起使用。 Further, graphene and its allotropes (e.g., graphite, carbon nanotubes) also exhibit these properties and may be used for the composite surface 120, and used in conjunction with suitable gas.

[0047]在一些实施例中使用vdWB、HaB或HyB的被用作复合表面120的另一类材料是掺杂的半导体。 [0047] Using vdWB, HaB HyB or in some embodiments, another material is used as composite surface 120 is doped semiconductor. 通过利用负电荷或正电荷种类掺杂半导体,以鼓励复合的方式与单体相互作用的位置被创建。 By using negative or positive charge type doped semiconductor, a composite manner to encourage interaction with the monomer position is created. 这样的掺杂的半导体的示例包括掺杂有一个或多个以下项的硅和锗:氯, 氟,氮,氧,钡和铯。 Examples of such doped semiconductor comprises silicon and germanium doped with one or more of the following items: chlorine, fluorine, nitrogen, oxygen, barium and cesium.

[0048] 在各种实施例中,取决于具体的环境、应用、以及气体的选择,除了以上所列的那些之外的材料被用于复合表面120。 [0048] In various embodiments, depending on the specific environment, applications, and selecting a gas, Materials other than those listed above are used for the composite surface 120.

[0049] 在一个实施例中,在表面120和140之间的分离小于针对气相离解-复合反应(ABhA+B )的碰撞或反映的平均自由路径(或是其等级)。 [0049] In one embodiment, the separation between the surfaces 120 and 140 is less than for the gas dissociation - Reaction collision complex (ABhA + B) or the mean free path of the reflected (or its level). 例如,针对大约0.01至10大气的气压,可以使用在约10-0.01微米范围内的对应的分离。 For example, for from about 0.01 to 10 atmospheric pressure, may be used within about a corresponding separation 10-0.01 microns. 在其它实施例中,低至0.001且高至40大气的气压被使用,对应于约100至0.0025微米范围内的分离。 In other embodiments, and as low as 0.001 to 40 atmospheric pressure is used, corresponding to the separation in about 100 to 0.0025 microns.

[0050] 此外,表面120和140具有高导热率并且是物理上薄的(例如,1至10nm)以便于辅助热量传递进出ETD单元100。 [0050] Further, surface 120, and 140 having high thermal conductivity and a thin (e.g., 1 to 10nm) to pass out of the physical unit 100 to the auxiliary heat ETD. 在一些实施例中,表面120和140具有高表面面积(例如,粗糙或树枝状的)以最大化每单元面积的化学反应,并且是光学上薄的(例如,小于红外波长)以使得热传递表面110的光学特征支配在ETD单元100的内部的辐射传递。 In some embodiments, surfaces 120 and 140 having a high surface area (e.g., rough or dendritic) to maximize the chemical reaction per unit area, and is optically thin (e.g., less than infrared wavelengths) so that the heat transfer the optical characteristics of the surface 110 inside the dominant radiative transfer unit 100 in the ETD.

[0051]多个分隔件160维持活性表面120和140之间的期望分隔。 [0051] The plurality of spacers 160 to maintain a desired separation between the active surfaces 120 and 140. 分隔件160的材料和结构被选择为保持经由分隔件的跨腔体130的热传递的量尽可能地低。 The partition member 160 and the structural material is selected to be kept as low as possible the amount of heat transfer through the chamber across the partition member 130. 在图1B中所示的实施例中,这通过使用分隔件160而被完成,该分隔件160是具有圆角尖端的薄柱,从而与热传递表面110接触的面积得以最小化。 In the embodiment shown in FIG. 1B embodiment, this is accomplished by using the partition member 160, the partition member 160 having a rounded tip is a thin column, whereby the area of ​​the contact surface 110 and the heat transfer is minimized. 在其它实施例中,不同形状的分隔件160被使用,诸如球形微粒。 In other embodiments, different shapes of the partition member 160 is used, such as spherical particles. 尽管在所不的实施例中分隔件160抵靠热传递表面110,在其它实施例中分隔件抵靠表面120和140和/或被嵌入表面120和140 (例如在图3中所示的)。 Although in the embodiments are not embodiments of the partition member 160 abuts against the heat transfer surface 110, the partition member in other embodiments, the abutment surface 120 and 140 and / or embedded in the surface 120 and 140 (e.g., shown in FIG. 3) .

[0052]分隔件160在机械上足够强并且被适当地间隔开以在ETD单元100被施加应力时维持表面120和140之间的分隔处于接近期望的值。 [0052] In the partition member 160 and are mechanically strong enough to maintain a properly spaced ETD unit 100 when stress is applied between the surface 120 and the partition 140 is closer to the desired value. 间隔件160也具有用来最小化从较冷表面120到较暖表面140的热回传导的导热率。 The spacer 160 also to minimize the surface 120 to cool the warmer heat conductive back surface 140 of the thermal conductivity. 此外,间隔件160具有低辐射率(例如,类似镜面) 以便于不吸收内部辐射。 Further, the spacer member 160 having a low emissivity (e.g., mirror-like) so as not to absorb internal radiation.

[0053]在一个示例性实施例中,在腔体130中的气体是乙酸,离解表面140是聚甲基丙烯酸甲酯,并且复合组合表面120是聚乙烯。 [0053] In one exemplary embodiment, the gas in the cavity 130 is the acid dissociation surface 140 is a polymethyl methacrylate, a combination of surface 120 and the composite is a polyethylene. 在另一示例性实施例中,气体是甲酰胺,离解表面140是部分表面的氯化聚乙烯,以及复合表面120是聚丙烯。 In another exemplary embodiment, the gas is formamide, dissociated surface 140 is a portion of the surface of the chlorinated polyethylene, a polypropylene and a composite surface 120. 在进一步的示例性实施例中,气体是氨,离解表面140是氧化铝陶瓷,并且复合表面120是聚苯乙烯。 In a further exemplary embodiment, the gas is ammonia dissociation is alumina ceramic surface 140, surface 120 and the composite is polystyrene. 在又一示例性实施例中,气体是甲酸,离解表面140是聚甲基丙烯酸甲酯,并且复合表面120是聚乙烯。 In yet another exemplary embodiment, the gas is formic acid dissociation surface 140 is polymethyl methacrylate, the surface 120 and the composite polyethylene.

[0054]确定气体-表面的组合 [0054] The determination of the gas - a combination of surface

[0055]图4图示了根据一个实施例的用于测试材料和气体的组合以确定它们在ETD单元中使用的适用性的装置400。 [0055] FIG. 4 illustrates a combination of test material and for one embodiment of the gas to determine the suitability thereof for use in the apparatus 400 ETD unit. 装置400包括在真空容器410内部的黑体圆柱体420。 The apparatus 400 includes a blackbody cylinder 410 inside the vacuum vessel 420. 在一个实施例中,真空容器410的主体是具有大约30厘米(cm)的直径以及大约40cm的长度的不锈钢圆柱体,并且黑体圆柱体420是由钨或铼箱(具有大约26微米的厚度)构建的、具有大约0.64cm的直径以及大约10cm的长度的圆柱体。 In one embodiment, the body having a vacuum container 410 is about 30 centimeters (cm) in diameter and a length of about 40cm stainless steel cylinder, and the cylinder 420 is a black body of tungsten or rhenium tank (having a thickness of about 26 microns) construction, having a cylinder diameter of about 0.64cm and a length of about 10cm. 真空容器被扩散栗至大约10- 6托的基准压力。 Li is diffused into the vacuum vessel about 10-6 torr reference pressure. 黑体圆柱体420的内部524(例如,中间2.5cm的部分)被一对氧化铝盘封闭。 Blackbody inner cylinder 524 (e.g., 2.5cm intermediate portion) 420 is closed by a plate alumina.

[0056]在图4中所示的实施例中,圆柱体电极442 (例如,钽电极)被附着到黑体圆柱体420 的每一端的内部表面。 [0056] In the embodiment illustrated in FIG. 4, the cylindrical electrode 442 (e.g., tantalum, electrode) is attached to an inner surface of each end of the cylindrical body 420 of the black body. 电极442经由一对电线445被附着到可变电源440。 Electrode 442 via a pair of wires 445 is attached to the variable power supply 440. 通过使用可变电源440向黑体圆柱体420施加电流,黑体圆柱体和其内容物可以被欧姆加热。 By using the variable power supply 440 is applied to the cylinder 420 current bold, bold cylinder and its contents may be heated ohms. 黑体圆柱体420和其内容物的均衡温度(没有任何表面催化效应)因而可以通过可变电源440供应的变化功率而被控制。 Blackbody temperature equalization cylinder 420 and its contents (without any catalytic effect of the surface) may thus be controlled by the variable power supply 440 changes power. 在装置400被设计为被用来找到室温表面催化组合的其它实施例中,可变电源440、电线445和电极442中的一些或全部被省略。 Other embodiments of the apparatus 400 is designed to be used to find the surface temperature of the catalytic composition, the variable power supply 440, some of the 442 or 445 are omitted, and all of the electrode wires. 在又一实施例中,用于冷却黑体圆柱体420 的机构被提供以使能测试材料的低温表面催化特性。 In yet another embodiment, the means for cooling the cylinder blackbody 420 is provided to the low-temperature catalytic properties of the surface energy of the test material.

[0057] 一对热电偶430被定位在黑体圆柱体420以内并且通过氧化铝盘422中的孔被馈送,使得每个热电偶430的中心部分被定位在内部425以内。 [0057] First thermocouple 430 is positioned within the cylinder 420 and the black body is fed through a hole in the aluminum plate 422, 430 so that the central portion of each thermocouple is positioned within the interior 425. 第一热电偶430A被涂有是倾向于对特定气体离解半反应的候选的材料,并且第二热电偶430B被涂有是倾向于对相同气体复合半反应(相对于第一材料)的候选的材料。 First thermocouple 430A is coated with a material tends to dissociation half reaction for a particular candidate gas, the second thermocouple and 430B are coated with a half-reactions tend compound (relative to the first material) of the same candidate gas material. 每个热电偶经由电线435被连接到对应的热电偶计450。 Each thermocouple is connected to a corresponding electric wire 435 via a thermocouple meter 450. 因而,被连接到第一热电偶的热电偶计450A监视第一热电偶的温度,并且第二热电偶计450B监视第二热电偶的温度。 Accordingly, a first thermocouple is connected to the pyrometer temperature monitor 450A of the first thermocouple and a second thermocouple gauge to monitor the temperature of the second thermocouple 450B. 例如,热电偶计450可能是在将每秒一次地监视及记录热电偶的温度的数据记录器上的一对通道。 For example, the pyrometer 450 may be once per second on the monitor and record the temperature of the thermocouple data logger of a pair of channels.

[0058]在黑体腔体420以内,热电偶430经受四个热传递渠道:1)沿着电线435的热传递, 2)黑体辐射,3)通过腔体中存在的气体的热对流,以及4)气体离解/复合反应(即,表面催化效应)。 [0058] Within the blackbody cavity 420, a thermocouple 430 is subjected to heat transfer four channels: 1) heat transfer along the wire 435, 2) blackbody radiation, 3) present in the cavity by thermal convection of the gas, and 4 ) dissociated gas / reaction compound (i.e., surface catalytic effect). 因而,为了确定热电偶之间感测到的温差是否是由(至少部分由)表面催化所导致, 系统应当针对任何由其它三个渠道导致的差而被测试。 Accordingly, in order to determine the sensed temperature difference between the thermocouple is made whether or not (at least partially) caused by the catalytic surface, the system should be tested for any difference caused by the other three channels.

[0059] 图5图示了根据一个实施例的确定特定气体-表面组合在ETD单元中使用的适用性的示例性方法500。 [0059] FIG. 5 illustrates a determination of a particular embodiment of a gas - Applicability of an exemplary method for use in combination surface ETD unit 500. 在以下的段落中,方法500从使用图4中所示的装置400来执行该方法的方面进行描述。 In the following paragraphs, the method 500 will be described using the apparatus shown in FIG. 4 the implementation of the method 400 from. 然而,在其它实施例中可使用不同的测试装置。 However, in other embodiments may use different testing devices. 在各种实施例中,方法500的步骤中的一些以不同顺序和/或并行地执行。 In various embodiments, the steps of the method of some 500 different order and / or performed in parallel. 方法500的一些实施例包括附加的和/或不同的步骤。 Some embodiments of the method 500 includes additional and / or different steps.

[0060] 在510,该对热电偶430被放置在黑体圆柱体420以内。 [0060] At 510, the thermocouple 430 is disposed within the cylinder 420 in bold. 如上参照图4进行描述的,第一热电偶430A被涂有第一候选材料并且第二热电偶430B被涂有第二候选材料。 Described above with reference to FIG. 4, the first thermocouple 430A is coated with a first material and a second candidate 430B is coated with a second thermocouple material candidate.

[0061 ]在520,真空容器410被疏散(例如到10-6托的压力)并且该对热电偶430的温度被监控直到达到平衡。 [0061] At 520, the vacuum chamber 410 is evacuated (e.g. to 10-6 Torr) and was monitored until the equilibrium temperature of the thermocouple 430. 例如,温度可以被监控,直到在一设定时间段(例如一分钟)都没有观测到大于阈值(例如0.1%)的变化。 For example, the temperature may be monitored until (e.g., one minute) were not observed variation is greater than a threshold value (e.g., 0.1%) in a set period of time. 如果材料-气体组合用于在不是室温的目标操作温度被测试,功率被提供至可变电源440以便于欧姆加热该系统。 If the material - the gas composition is not intended to be tested at room target operating temperature, power is supplied to the variable power supply 440 to heat the system in ohms. 因为热电偶430被定位在真空的黑体腔体中,温度中的任何变化必定是由于沿着电线435的热传递或者是由于黑体辐射,或是由于两者。 Because the thermocouple 430 is positioned in a vacuum blackbody cavity, any change in temperature must be due to the heat transferred along the wires 435 or due to blackbody radiation, or due to both. 理论和实验确定在这些条件下在该对热电偶430之间没有温差被观察到。 Theoretical and experimentally determined under these conditions were not observed temperature difference between the thermocouple 430.

[0062]在530,表面催化惰性气体(意味着在目标温度处处于平衡时不经受显著量的离解和复合反应的气体)被输入到真空容器410中。 [0062] In 530, the surface of catalytically inert gas (at a target temperature of the means is not subjected to a significant amount of dissociation equilibrium of the reaction and compound gas) is input into the vacuum chamber 410. 惰性气体优选是具有与待被测试的候选表面催化气体相似特性的气体以便于最小化非表面催化效应是任何感测到的温差的原因的可能性。 An inert gas is preferably a gas with a catalytic gas candidate surface to be tested for similar properties to minimize the possibility of non-surface catalytic effect for any reason the sensed temperature difference. 例如,如果被测试的候选表面催化气体是氢,那么氦在方法500的该阶段可被使用。 For example, if the candidate is tested surface catalytic gas is hydrogen, the helium can be used at this stage of method 500. 假设惰性气体在候选材料存在的情况下并不展现表面催化特性,与步骤520比较被感测到的热电偶430的温度中的任何变化将是由于在黑体圆柱体420中存在的惰性气体(及任何其它示踪气体)的热对流所造成的。 Suppose the inert gas does not exhibit the catalytic properties of the surface in the presence of the candidate material, and step 520 is sensed any change in comparison to the measured temperature of the thermocouple 430 will be due to the presence of an inert gas blackbody cylinder 420 (and any other tracer gas) caused by thermal convection. 理论和实验确定在这些条件下在该对热电偶430之间没有温差被观察到。 Theoretical and experimentally determined under these conditions were not observed temperature difference between the thermocouple 430.

[0063]在540,在真空容器410中的惰性气体被候选表面催化气体所取代。 [0063] At 540, an inert gas in the vacuum container 410 is replaced by the candidate surface of the catalytic gas. 如果候选表面催化气体优选在相对于第二热电偶430Β更接近于第一热电偶430Α附近(或反之亦然)离解, 将导致稳态温差,如前所述。 If the surface of the catalytic gas is preferably in the candidate with respect to the second thermocouple 430Β closer vicinity 430Α first thermocouple (or vice versa) dissociation will result in steady-state temperature, as described above. 因而,在之前不存在(在步骤520和530中)的热电偶430之间将观测到温差。 Thus, prior to the absence of a thermocouple (at step 520 and 530) of the temperature difference between the observed 430. 理论和实验已经证实该特性。 Theory and experiments have confirmed that the properties. 例如,当钨和铼热电偶430在高温和低压(例如, 在1900开尔文(Κ)的温度以及1托的压力处)被暴露于氢气时,钨热电偶430Α被观测为相对于铼热电偶430Β自然地加热,并且观测到的温差是热动力学稳定的。 For example, when tungsten and rhenium thermocouples 430 at a high temperature and low pressure (e.g., at 1900 Kelvin (K0) at the temperature and pressure of 1 Torr) is exposed to hydrogen tungsten thermocouple is observed with respect to 430Α rhenium thermocouple 430Β naturally heated, and the temperature difference observed is thermodynamically stable.

[0064]在550,使用候选表面催化气体和候选材料来构造ETD单元的可行性基于观测到的温度而被确定。 [0064] be determined based on the observed temperature of 550, the feasibility of using the gas catalytic surface materials to construct the candidate and the candidate ETD unit. 在步骤540中但不在步骤520和530中展示大温差的任何组合可以被用来构件有效的ETD单元。 In step 540 but not in steps 520 and 530 is shown in any combination of large temperature differences can be used to effectively ETD member unit. 通常,具有大温差的组合将导致在通过材料的特定性质所施加的其它约束以内具有更大功率密度的更高效的ETD单元。 Typically, a combination having a large temperature difference will result in a more powerful, more efficient ETD density units within other constraints imposed by the particular nature of the material. 例如,如果候选材料具有特别低的抗拉强度,这可限制ETD单元的大小和可能的几何形状。 For example, if the particular candidate materials having a low tensile strength, which may limit the size of the unit and ETD possible geometries. 如另一示例,如果特定的组合要求加热到升高的温度以操作,这将减小ETD单元的净效率,因为功率必须被消耗来加热系统。 As another example, if a particular combination of claim heated to an elevated temperature operation, which would reduce the net efficiency ETD unit, because power must be consumed to heat the system. 其结果是,展现较低温差的组合可导致更有效率或总体方便的ETD单元。 As a result, it shows a combination of low temperature differences can result in an overall more efficient or convenient ETD unit.

[0065]使用方法500,针对表面催化特性,材料和气体组合可以被容易地测试。 [0065] Using method 500, for the catalytic properties of the surface, the material gas composition and can be readily tested. 在一些实施例中,多于两个候选材料可以利用给定的气体通过包括附加的热电偶430在黑体圆柱体420以内而被同时测试。 In some embodiments, may utilize more than two candidates given gas 430 within the cylinder 420 is simultaneously blackbody tested by including additional thermocouple. 附加地,通过包括涂有这样的惰性材料的一个或多个热电偶430,候选材料可以类似地与已知为相对于给定气体是表面催化惰性的材料进行比较。 Additionally, by including such coated with a material inert or more thermocouples 430, candidate materials may similarly be known with respect to the surface of a given gas is catalytically inert material compared.

[0066] 图6图示了根据一个实施例的用于确定用于在ETD单元100中使用的气体、离解表面材料、以及复合表面材料的给定组合的适用性的可替代方法。 [0066] FIG. 6 illustrates one embodiment for determining a unit 100 for the gas used in the ETD dissociation surface material, and the suitability of a given combination of alternative process the surface of a composite material. 在各种实施例中,方法600 的步骤中的一些以不同顺序和/或并行地执行。 In various embodiments, the steps of the method of some 600 different order and / or performed in parallel. 方法600的一些实施例包括附加的和/或不同的步骤。 Some embodiments of the method 600 include additional and / or different steps.

[0067] 在610,候选气体流被导向第一候选材料上。 [0067] 610 is guided, the first candidate on the candidate material gas flow. 在一个实施例中,这在超高真空室中被完成,其中第一候选材料的纯净样品经受候选气体流,该流包括候选气体的二聚体和单体物质。 In one embodiment, this is done in a ultra-high vacuum chamber, wherein a pure sample of the first candidate the candidate material is subjected to a gas stream, which comprises monomeric and dimeric candidate substance gas. 如在本文中所使用的,纯净样品已经被尽可能清洁。 As used herein, the pure sample has been as clean as possible. 在其它实施例中,非纯净样品被使用。 In other embodiments, non-pure sample is used.

[0068]气流撞击在第一候选材料的样品上,吸收到样品上,与样品化学地和/或物理地反应,并且离开(去吸附)。 [0068] The gas stream impinges on the sample of the first candidate material, absorbed onto the sample and / or physically chemically react with the sample, and leave (desorption). 在620,离开第一候选材料的去吸附的通量的单体/双聚体比率被测量到。 At 620, the candidate material leaving the first monomer desorption flux / dimer ratio is measured. 在一个实施例中,去吸附的通量通过质谱仪被分析。 In one embodiment, the desorption flux is analyzed by a mass spectrometer. 在其它实施例中,适用于定量识别去吸附的物质的其它诊断工具也被使用。 In other embodiments, other diagnostic tools to identify substances suitable for quantitative desorption was also used.

[0069]在630,候选气体流被撞击在第二候选材料上。 [0069] At 630, the candidate is the gas flow impinges on a second candidate material. 在一个实施例中,这在超高真空室中被完成,其中第二候选材料的纯净样品经受候选气体流,该流包括候选气体的二聚体和单体物质。 In one embodiment, this is done in a ultra-high vacuum chamber, wherein the purified sample material is subjected to a second candidate the candidate gas stream, which comprises monomeric and dimeric candidate substance gas. 在其它实施例中,非纯净样品被使用。 In other embodiments, non-pure sample is used.

[0070] 气流撞击在第二候选材料的样品上,吸收到样品上,与样品化学地和/或物理地反应,并且离开(去吸附)。 [0070] The gas stream impinges on the second candidate sample material, absorbed onto the sample and / or physically chemically react with the sample, and leave (desorption). 在640,离开第二候选材料的去吸附的通量的单体/双聚体比率被测量到。 At 640, the monomer material to leave the second candidate adsorbed flux / dimer ratio is measured. 在一个实施例中,去吸附的通量通过质谱仪被分析。 In one embodiment, the desorption flux is analyzed by a mass spectrometer. 在其它实施例中,适用于定量识别去吸附的物质的其它诊断工具也被使用。 In other embodiments, other diagnostic tools to identify substances suitable for quantitative desorption was also used.

[0071] 在650,测量到的单体/双聚体比率被比较以确定气体和材料的特定组合是否适用于在ETD单元100的构建中使用。 [0071] In 650, the measured monomer / dimer ratio are compared to determine whether a particular combination of materials suitable for the gas and the ETD unit 100 is used in the construction. 展示超过气相平衡值的单体组分的去吸附的通量针对特定气体产生了良好的离解表面140。 Display monomer component exceeds the equilibrium value of flux vapor to produce good adsorption dissociation surface 140 for a particular gas. 相反地,展示小于或等于气相平衡值的单体组分的去吸附的通量针对特定气体产生了良好的复合表面120。 Conversely, the display value of less than or equal gas phase equilibrium adsorption of the monomer components to flux produced a good composite surface 120 for a particular gas. 在各种实施例中,如果在针对每个表面所测量的单体组分之间的差大于阈值量,特定气体和候选材料对的组合被认为适用于在ETD 单元100的构建中使用。 In various embodiments, if the difference between the measured monomer components for each surface is greater than a threshold amount, the specific gas, and combinations of candidate materials are considered suitable for use in the construction of ETD unit 100. 使用的阈值基于针对该实施例的表面之间的期望的最小温差而被选择,其中更大的温差要求更大的区别,因此更大的阈值。 Based on thresholds used for this embodiment a desired minimum temperatures between the surface of the embodiment is selected, wherein the larger the temperature difference between the requirements of a larger difference, thus a greater threshold value. 在一些这样的实施例中,上阈值也被用来设置单体组分中差的上限,以便于过滤出产生足够大的温差以造成对ETD单元100 和/或周围物体的热损害的组合。 In some such embodiments, the threshold may also be used to set the upper limit of the difference in the monomer component in order to produce a sufficiently large temperature difference in the filter to cause the composition to 100 and / or thermal damage to surrounding objects ETD unit.

[0072]以上方法600可以针对气体和材料对的多个组合而被重复以确定可以在构造ETD 单元100中被使用的那些组合(抛开诸如结构和经济可行性方面之类考虑)。 [0072] The above method 600 may be repeated for a plurality of combinations of gases and materials to determine those combinations may be used in the configuration of ETD unit 100 (aside classes considering the structural and economic feasibility of such).

[0073] 示例性测试数据 [0073] Exemplary test data

[0074] 使用图5中所示的方法500、使用图4的装置所实施的实验确定稳态温差可以在存在表面催化活性气体的一对表面之间被确立。 [0074] The method shown in FIG. 5, 500, using the experimental setup of FIG. 4 embodiment may be established to determine the steady state temperature difference between a surface of the catalytic active surface of the presence of gas. 氢二聚体H2在300K至1950K的范围内的温度处对涂有钨(W)和铼(Re)的热电偶同时测试,其中气压高至大约10托。 Hydrogen H2 dimer at a temperature in the range 300K to 1950K are coated with the tungsten (W), and rhenium (Re) thermocouple tested simultaneously, wherein the pressure up to about 10 torr. 针对超过1700K的温度,在涂有W与Re的热电偶之间发展出的不同的稳态温差为ETD效应提供了证据。 For more than 1700K temperature, coated with developed between the W and Re thermocouple different steady-state temperature difference ETD provides evidence for the effect. 所测量的最大稳态ETD温差是126K,其在1950K的平均温度和1托的压力处被观测到。 ETD measured maximum steady state temperature difference is 126K, which is observed at an average temperature of 1950K and a pressure at 1 Torr.

[0075] 基于能量尺度参数,可以推测稳态温差可以在室温被建立并且维持。 [0075] Based on the energy scale parameter can be estimated steady state temperature differential may be established and maintained at room temperature. 所有标准化学反应所基于的化学平衡常数(Keq)取决于温度和反应吉布斯自由能(Keq = eXp[-G/RT]), 对其的主要贡献通常是针对反应的结合能量。 Chemical equilibrium constant (The Keq) all standard chemical reaction depends on the reaction temperature and Gibbs free energy (Keq = eXp [-G / RT]), its main contribution is generally a binding energy response. 在这样的情况下,用于化学平衡的特征能量尺度(Φ )通过键合能量到热能的比率而给出,即Φ = AG/RT。 Wherein energy scale ([Phi]) in this case, the chemical equilibrium is given by the ratio of thermal energy to the bond, i.e., Φ = AG / RT. 因而,较弱的键需要相当低的温度以实现离解和去吸附的相似水平。 Thus, weaker bonds require a relatively low temperature to achieve a similar level to the dissociation and adsorption.

[0076]氢键(约0.5eV)通常是比共价键(约5eV)更弱的数量级,并且范德华键通常是更加弱的数量级(约〇.〇5eV)。 [0076] The hydrogen bonds (about 0.5 eV) than is typically a covalent bond (approximately of 5 eV) of magnitude weaker and weaker van der Waals bonds are generally more orders of magnitude (about 〇.〇5eV). 因而,因为H2的共价表面催化在大约2000K处运行良好,其遵循的是氢键合和范德华键合的二聚体的表面催化离解应该发生在室温或低于室温。 Accordingly, since the surface of the catalytic covalent H2 at about 2000K at a good operation, it follows that the surface of the catalytic dimer hydrogen bonding and van der Waals bond dissociation should occur at room temperature or below. 例如,因为其中4.5eV是氢二聚体的适当的键合强度处的比率Φ(4.5θν/2000Κ)与其中220K远低于室温处的比率Φ (0.5eV/220K)大致相等,可以推测的是在适当的表面对存在的情况下氢键二聚体可以易于在室温处展示表面催化特性。 For example, because the ratio is 4.5eV Φ (4.5θν / 2000Κ) at a bond strength of hydrogen bonds with the appropriate dimers wherein 220K is far below room temperature at a rate Φ (0.5eV / 220K) are substantially equal, it can be inferred is hydrogen in a suitable surface of a dimer in the presence of the catalytic surface can easily display characteristics at room temperature.

[0077]关于在一对表面催化表面之间的稳态温差的附加的实验和理论细节可以在以下发表中找到,其在此以其整体被并入本文。 [0077] Additional details regarding the experimental and theoretical steady-state temperature difference between a pair of surface catalytic surface can be found in the following table, which is hereby incorporated herein in its entirety.

[0078] Sheehan,DP·,DJMallin,JTGaramella和WFSheehan,Experimental test of a thermodynamic paradox,Found.Phys.44235(2014). [0078] Sheehan, DP ·, DJMallin, JTGaramella and WFSheehan, Experimental test of a thermodynamic paradox, Found.Phys.44235 (2014).

[0079] Sheehan,DP,Nonequilibrium heterogeneous catalysis in the long mean-free-path regime,Phys.Rev.E 88032125(2013). [0079] Sheehan, DP, Nonequilibrium heterogeneous catalysis in the long mean-free-path regime, Phys.Rev.E 88032125 (2013).

[0080] Sheehan,D·P·,J·T·Garamella,D·J·Mai1 in和W·F·Sheehan,Steady-state nonequilibrium temperature gradients in hydrogen gas-metal systems; Challenging the second law of thermodynamics,Phys.Scr.T151014030(2012). [0080] Sheehan, D · P ·, J · T · Garamella, D · J · Mai1 in and W · F · Sheehan, Steady-state nonequilibrium temperature gradients in hydrogen gas-metal systems; Challenging the second law of thermodynamics, Phys .Scr.T151014030 (2012).

[0081] 应当注意的是,相似的现象也发现存在于某种类型的等离子体中,其被称为表面电离等离子体。 [0081] It should be noted that similar phenomenon is also found in the plasma of some type, which is known as surface ionized plasma. 这样的等离子体可以在黑体条件下建立稳态压力梯度。 Such plasma may establish a pressure gradient in a steady state blackbody conditions. 如其名称所示,表面电离的等离子体通过经由强气体-表面相互作用电离气体的表面而被产生。 As the name implies, the surface via strong ionized plasma gas - producing surface-surface interaction is ionized gas. 许多表面电离的等离子体展现了强非线性特征,诸如非麦克斯韦束状离子的速度,其可继而导致稳态压力和温差。 Many ionized plasma surface exhibits strong non-linear characteristics, the non-Maxwellian velocity bundled such ions, which may in turn lead to a steady state pressure and temperature difference. 因而,ETD单元还可以被构造,其中能量在电离表面与相对于等离子电离较不活性的表面之间被传输经过腔体。 Thus, ETD unit may be configured, wherein energy is transmitted through the cavity between the surface and ionizing the plasma ionization with respect to a less active surface.

[0082] 关于在表面电离的等离子体中的稳态压力差的附加的实验和理论细节可以在以下发表中找到,其在此以其整体被并入本文。 [0082] regarding additional experimental and theoretical details on the surface of ionized plasma in the steady-state pressure difference can be found in the following table, which is hereby incorporated herein in its entirety.

[0083] Sheehan,D·P·和T·Seideman,Intrinsically biased electrocapacitive catalysis;J.Chem.Physics 122204713(2005). [0083] Sheehan, D · P · and T · Seideman, Intrinsically biased electrocapacitive catalysis; J.Chem.Physics 122204713 (2005).

[0084] Sheehan,DP和JDMeans,Minimum requirement for second law violation: A paradox revisited;Phys.Plasmas 52469(1998). [0084] Sheehan, DP and JDMeans, Minimum requirement for second law violation: A paradox revisited; Phys.Plasmas 52469 (1998).

[0085] Sheehan,DP ,Another paradox involving the second law of thermodynamics;Phys.Plasmas 3104(1996). [0085] Sheehan, DP, Another paradox involving the second law of thermodynamics; Phys.Plasmas 3104 (1996).

[0086] Sheehan,DP,A paradox involving the second law of thermodynamics; Phys.Plasmas 21893(1995). [0086] Sheehan, DP, A paradox involving the second law of thermodynamics; Phys.Plasmas 21893 (1995).

[0087] 使用多个ETD单元的示例性系统 [0087] ETD units using a plurality of exemplary system

[0088] 图2是根据一个实施例的包括平行的多个ETD单元100的系统配置200的等距示图。 [0088] FIG. 2 is an isometric diagram of the configuration 200 of the system 100 according to one embodiment includes a plurality of parallel units ETD. 仅出于图示的目的,图2示出了三个ETD单元100宽及两个ETD单元100深的ETD板的一段。 For purposes of illustration only, FIG. 2 shows a section of three ETD units 100 and 100 wide deep plate ETD ETD two units. 实践中,ETD板将包含更多(例如,成百、成千或甚至数百万的)ETD单元100。 In practice, ETD plate will contain more (e.g., hundreds, thousands or even millions of) ETD unit 100. 当ETD单元100被平行地布置时,跨系统200的热通量增大,但在单元的两侧之间的温差保持不变。 When the arrangement is in parallel ETD unit 100, 200 heat flux across the system is increased, but the temperature difference between the two sides of the unit remains unchanged. 这类似于并行地将单元布置在电路中,在其中电流增加而电压不变。 This is similar to the unit is arranged in parallel in the circuit in which the constant current increases the voltage.

[0089] 在所示的实施例中,表面120和140以及热传递表面100跨多个ETD单元100扩张。 [0089] In the embodiment shown, the surfaces 120 and 140 and 100 across the plurality of heat transfer surfaces 100 ETD expansion unit. 这有利于生产,因为ETD板可以使用现有技术中已知的方法被一层一层地构建。 This facilitates production because ETD plate may be constructed layer by layer using methods known in the prior art. 此外,相邻的单元共用分隔件160(因而,每个分隔件是四个ETD单元100的逻辑部分)。 Additionally, adjacent cells sharing a common member 160 (and thus, each spacer member is a part of four logic unit 100 ETD). 如前所述,参照图1B,单个腔体130由板中所有(或至少一些)的ETD单元100共用。 As described above, with reference to Figure 1B, the single cavity plate 130 100 shared by all (or at least some) of the ETD units. 热传递表面110使用气密密封而在板的边缘处与端壁280连接。 Heat transfer surface 110 using the hermetic seal at the edge of the plate connected to the end wall 280. 因而,热传递表面110和端壁280的组合产生密封的容器,其防止气体离开腔体130。 Thus, a combination of heat transfer surfaces 110 and the end wall 280 of the sealed vessel is generated, which prevents the gas leaving the chamber 130. 在一个实施例中,在腔体130与ETD设备的外部之间设置阀(未示出)以使能气体的插入和/或替换。 In one embodiment, a valve (not shown) between the cavity 130 and the external device to the insertion ETD and / or replacement can be a gas.

[0090] 分隔件160遍及该板在表面120和140之间维持基本上恒定的分隔230。 [0090] The partition member 160 is substantially constant over the partition plate 230 is maintained between the surfaces 120 and 140. 在各个实施例中,取决于环境和具体应用,分隔230在大约0.01微米到大约100微米的范围中被选择。 In various embodiments, depending on the circumstances and particular application, the spacer 230 is selected in the range of from about 0.01 microns to about 100 microns. 在所示的实施例中,分隔件160被等距间隔开一距离260。 In the illustrated embodiment, the partition member 160 are equally spaced apart by a distance 260. 减小分隔件160的数目增大了表面120和140的可用表面积,以表面分隔260的较少的规律性为代价。 Reducing the number of the partition member 160 increases the available surface area of ​​surface 120 and 140, the surface 260 of the partition less regularity expense. 因此,距离260基于具体应用的需求以及用于表面120和140的材料的刚性以及热传递表面110而进行选择。 Therefore, the distance 260 based on the requirements of the particular application and the heat transfer surface and a rigid material for the surface 120 and 140, 110 are selected. 在各个实施例中,距离260在大约0.1微米到大约1000微米的范围中被选择。 In various embodiments, the distance 260 is selected in the range of from about 0.1 microns to about 1000 microns. 在其它实施例中,距离260可以在一个方向上与另一方向上不同和/或非直线配置(例如,六边形单元)被使用。 In other embodiments, the distance 260 may be in a direction different from the other direction and / or non-linear configuration (e.g., hexagonal cells) are used. 在又一实施例中,微粒(例如,球形纳米珠)被使用作为分隔件160并且它们被随机或半随机地分散在腔体130中。 In yet another embodiment, particles (e.g., beads, spherical nanoparticles) are used as the partition member 160 and which are randomly or semi-randomly dispersed in the cavity 130. 这具有在生产过程期间需要较小精密控制的优点。 This has the advantage of requiring less precise control during the production process.

[0091] 图3是根据一个实施例的串联地组合三层的ETD单元100的系统配置300的侧视图表示。 [0091] Figure 3 is a series ETD embodiment of a system unit combines three layers 100 arranged side 300 of FIG. 尽管每层被示出作为是单个ETD单元100,实践中,每层可以包括并联布置的许多(例如,数百、数千甚至数百万)ETD单元,如以上参照图2所描述的。 Although each shown as a single unit 100 ETD, in practice, each layer may include many (e.g., hundreds, thousands or even millions) ETD units arranged in parallel, two as described above with reference to FIG. 显示三层的选择纯粹是为了图示的目的。 Selection displays three purely for purposes of illustration. 本文描述的原理可以被用来层叠任意数量的层。 The principles described herein may be used for any number of laminated layers. 独立的层与邻接的层处于良好的热接触。 Layer adjacent individual layers in good thermal contact. 当ETD单元100被串联布置时,单元的温差是增加的,但跨系统200的热通量不变。 When ETD unit 100 is arranged in series, it means the temperature difference is increased, but the heat flux across the system 200 unchanged. 这类似于串联地将单元布置在电路中,在其中电压增加而电流不变。 This is similar to the unit is arranged in series in the circuit in which the voltage increases and the current change.

[0092] 在所示的实施例中,相邻的层共用热传递表面110,使得一层的顶热传递表面也用作其之上的层的底热传递表面,并且反之亦然。 [0092] In the embodiment shown, the adjacent layers common heat transfer surfaces 110, such that the top layer of the heat transfer surface is also used as a substrate on which a thermal transfer layer surface, and vice versa. 在所示的实施例中,底层301具有两个表面350和360以及包含第一气体的腔体355。 In the illustrated embodiment, the bottom layer 301 has two surfaces 350 and 360 and the cavity 355 comprises a first gas. 因而,底层301导致跨其的第一温差△ T1。 Thus, the lower lead 301 across the first temperature difference △ T1 thereof. 用于表面350和360的材料以及第一气体被选择为当输入热传递表面110A处于期望的操作温度时优化系统的操作。 350 and a surface material 360 and the first gas is selected to optimize the operating system transfer surface 110A at a desired operating temperature when the heat input when.

[0093]中间层302也具有两个表面330和340以及包含第二气体的腔体335。 [0093] The intermediate layer 302 also has two surfaces 330 and 340 and the cavity 335 includes a second gas. 因而,中间层302导致跨其的第二温差△ T2。 Accordingly, a second intermediate layer 302 results in a temperature difference across its △ T2. 在一个实施例中,用于中间层302的材料和气体与在底层301 中使用的那些相同。 In one embodiment, the material used for the intermediate layer 302 and the gas is the same as those used in the bottom layer 301. 在其它实施例中,用于表面330和340的材料以及第二气体基于输入热传递表面110A的期望的操作温度和ΛΤ1被选择为当第一内部热传递表面110B处于期望的操作温度时优化系统的操作。 In other embodiments, the material 340 and the surface 330 and a second gas delivery surface 110A based on the desired operating temperature and heat input ΛΤ1 is selected when the first internal heat transfer surface at a desired operating temperature optimization system 110B operation.

[0094] 顶层303也具有两个表面310和320以及包含第三气体的腔体315。 [0094] The top layer 303 also has two surfaces 310 and 320 and the cavity 315 includes a third gas. 因而,顶层303导致跨其的第三温差A T3。 Thus, top 303 results in a temperature difference across the third A T3 thereof. 在一个实施例中,用于顶层303的材料和气体与在底层301和/或中间层302中使用的那些相同。 In one embodiment, the same as those for the top layer 303 and the material gas used in the bottom layer 301 and / or the intermediate layer 302. 在其它实施例中,用于表面310和320的材料以及第三气体基于输入热传递表面110A的期望的操作温度以及△ T1和△ T2被选择为当第二内部热传递表面110C处于期望的操作温度时优化系统的操作。 In other embodiments, the material 310 and the surface 320 and a third gas delivery surface 110A based on the desired operating temperature and heat input △ T1 and △ T2 is selected as the operation when the second internal heat transfer surfaces 110C at a desired optimization of the temperature of the operating system.

[0095]因此,作为整体的系统配置300提供了输入热传递表面110A与输出热传递表面110D之间的温差Δ Tl+Δ Τ2+Δ T3,这可以显著大于由层301-303中的任意一个所获得的温差。 [0095] Thus, as a whole system configuration 300 provides an input to an output heat transfer surface 110A of the temperature difference between the heat transfer surface 110D Δ Tl + Δ Τ2 + Δ T3, which may be significantly more than one layer of any 301-303 temperature difference obtained.

[0096]附加考虑 [0096] Additional Considerations

[0097]如本文所用,术语"包含"、"包括"、"有"、"具有"或任何其它变体旨在涵盖非排他性的包括。 [0097] As used herein, the term "comprising", "including", "has", "having" or any other variation thereof, are intended to cover a non-exclusive inclusion. 例如,包括一系列要素的过程、方法、物品或装置不一定仅限于那些要素,而是可以包括未明确列出或固有于这些过程、方法、物品或装置的其它元件。 For example, a series of elements comprising a process, method, article, or apparatus is not necessarily limited to only those elements but may include not expressly listed or inherent to other elements such process, method, article, or apparatus. 此外,除非明确有相反的说明,"或"指包含性或,而不是排他性或。 Further, unless expressly indicated to the contrary, "or" refers to an inclusive or and not to an exclusive or. 例如,条件A或B满足于下述中的任何一项:A 为真(或存在)且B为假(或不存在),A为假(或不存在)且B为真(或存在),以及A和B都为真(或存在)。 For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).

[0098] 此外,"一"或"一个"的使用被用来描述本文所述实施例的元件和部件。 [0098] In addition, "a" or "an" are used herein to describe elements and components of an embodiment. 这仅是为了方便并给予本公开的一般意义上完成的。 This is merely for convenience and to give a general sense of complete disclosure. 这种描述应被理解为包括一个或至少一个,并且单数还包括复数,除非很明显它指的是单数。 This description should be understood to include one or at least one and the singular also includes the plural unless it is obvious that it refers to a single number.

[0099] 在阅读本公开内容时,本领域的技术人员将了解针对ETD的又一可替代结构和功能设计,其产生了稳态温差。 [0099] Upon reading this disclosure, those skilled in the art will appreciate that alternative ETD for further structural and functional design, which generates a steady state temperature difference. 因而,虽然特定实施例和应用已被图示和描述,但是应当理解, 所描述的主题并不限于本文所公开的精确结构和部件,对于本领域技术人员而言显而易见的各种修改、改变和变化可在本文所公开的方法和装置中的布置、操作和细节中做出。 Thus, specific embodiments and applications While the embodiments have been illustrated and described, it is to be understood that the subject matter described herein is not limited to the precise construction and components disclosed herein, those skilled in the art will be apparent that various modifications, changes, and changes may be made arrangement, operation and details of the methods and apparatus disclosed herein are in.

Claims (27)

1. 一种表面催化热二极管单元,包括: 第一表面,所述第一表面与气体相互化学作用,使得所述气体在接近于所述第一表面处以第一速率离解;以及第二表面,所述第二表面与所述气体相互化学作用,使得所述气体在接近于所述第二表面处以第二速率离解,所述第二速率低于所述第一速率; 其中所述第一表面和所述第二表面定义被配置成包含所述气体的腔体,并且所述第一速率与所述第二速率之间的差致使跨所述腔体在所述第一表面与所述第二表面之间的稳态温差。 A surface catalyzed thermal diode unit, comprising: a first surface, a first surface of the chemical interaction with the gas, so that the gas at a first rate in said first surface close to the dissociated; and a second surface, the second surface of the chemical interaction of the gas, such that the dissociated gas at a second rate close to the second surface, said second rate being lower than the first rate; wherein said first surface and said second surface is configured to define a cavity containing said gas, and the difference between the first rate and the second rate causes across the cavity in the first surface and the second steady state temperature difference between the two surfaces.
2. 根据权利要求1所述的表面催化热二极管单元,其中所述第一表面由选自以下各项所构成的组中的至少一种材料制成:镁,铝,钪,钛,钒,铬,锰,铁,钴,镍,铜,锌,钇,锆,钼, 韦了,铭,钯,银,锡,镧,铺,镨,钕,钐,铕,IL,铪,掺杂的娃,钽,妈,铼,锇,铱,钼,金,萊,铅,氧化铝,氧化镁,二氧化钛,二氧化硅,硝化纤维素,芳族聚酰胺,尼龙,人造纤维,和聚甲基丙烯酸甲酯。 The surface of the catalytic thermal diode unit according to claim 1, wherein said first surface is made of at least one material selected from the group consisting of the following: magnesium, aluminum, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, molybdenum, Wei, and Ming, palladium, silver, tin, lanthanum, shop, praseodymium, neodymium, samarium, europium, IL, hafnium, doped baby, tantalum, mother, rhenium, osmium, iridium, molybdenum, gold, Levin, lead, alumina, magnesia, titania, silica, nitrocellulose, aramid, nylon, rayon, and polymethacrylic Methyl acrylate.
3. 根据权利要求1所述的表面催化热二极管单元,其中所述第二表面由选自以下各项所构成的组中的至少一种材料制成:聚乙烯,聚丙烯,石蜡,天然橡胶,掺杂的硅,聚醚,聚氟乙烯,聚偏二氟乙烯,聚四氟乙烯,全氟烷氧基聚合物,聚乙烯氯三氟乙烯,氟橡胶,全氟聚醚,和全氟磺酸,石墨烯,石墨和碳纳米管。 The surface of the catalytic thermal diode unit according to claim 1, wherein the second surface is made of at least one material selected from the group consisting of: polyethylene, polypropylene, paraffin, natural rubber , doped silicon, polyethers, polyvinyl fluoride, polyvinylidene fluoride, polytetrafluoroethylene, perfluoroalkoxy polymer, polyethylene, chlorotrifluoroethylene, fluororubber, perfluoropolyether, and perfluoro acid, graphene, graphite, and carbon nanotubes.
4. 根据权利要求1所述的表面催化热二极管单元,其中所述气体包括选自以下各项所构成的组中的至少一种气体:甲酸,乙酸,甲醇,乙醇,甲醛,氨,二甲基酮,甲胺,二甲胺,二甲醚,水合氢氧化钾(水),乙酰胺,甲硫,氰,氰化氢,氟化氢,硫化氢,氰甲烷,甲酰胺,氨基甲亚胺,氯化氢,氰乙烷,氮气,一氧化碳,二氧化碳,二氧化硫,氧化氮,单卤甲烷,二卤甲烷,三1¾甲烷,四1¾甲烷,1¾代乙烧,氢,氦,氖,氩,氪,氣,氡,甲烷,乙烷,和丙烷。 The surface of the catalytic thermal diode unit according to claim 1, wherein said gas comprises the group consisting of selected from at least one gas: formic acid, acetic acid, methanol, ethanol, formaldehyde, ammonia, dimethyl ketone, methylamine, dimethylamine, dimethyl ether, hydrated potassium hydroxide (aqueous), acetic acid amide, sulfide, cyanide, hydrogen cyanide, hydrogen fluoride, hydrogen sulfide, methane, cyano, carboxamide, carbamoyl imines, hydrogen, cyano ethane, nitrogen, carbon monoxide, carbon dioxide, sulfur dioxide, nitrogen oxides, methane monohaloalkyl, dihalomethane, three 1¾ methane, tetrakis 1¾ methane, 1¾ behalf acetate burning, hydrogen, helium, neon, argon, krypton, air, radon, methane, ethane, and propane.
5. 根据权利要求1所述的表面催化热二极管,其中所述第一表面基本上平行于所述第二表面。 Catalytic surface according to claim 1, the thermal diode, wherein said first surface is substantially parallel to the second surface.
6. 根据权利要求5所述的表面催化热二极管,进一步包括位于所述第一表面与所述第二表面之间的多个间隔件,所述多个间隔件将所述第一表面与所述第二表面之间的间隔维持在基本上恒定的距离。 The surface of the catalytic thermal diode to claim 5, further comprising a plurality of spacers positioned between the first surface and the second surface, the plurality of the first spacer member and the surface the spacing between said second surfaces is maintained at a substantially constant distance.
7. 根据权利要求6所述的表面催化热二极管,其中所述恒定距离处于0.01至100微米的范围中。 Catalytic surface according to claim 6, said thermal diode, wherein said constant distance in a range of 0.01 to 100 microns.
8. 根据权利要求1所述的表面催化热二极管单元,进一步包括第一热传递表面,所述第一热传递表面在所述第一表面与所述腔体的相对侧上与所述第一表面连接并且基本上平行,所述第一热传递表面被配置成从所述表面催化热二极管的外部向所述第一表面传导热量。 The surface of the catalytic thermal diode unit according to claim 1, further comprising a first heat transfer surface of the first heat transfer surface on the opposite side surface of the first cavity and the first substantially parallel to the surface of the connector and the first heat transfer surface configured to conduct heat from the exterior surface of the catalytic thermal diode to the first surface.
9. 根据权利要求8所述的表面催化热二极管单元,进一步包括第二热传递表面,所述第二热传递表面在所述第二表面与所述腔体的相对侧上与所述第二表面连接并且基本上平行,所述第二热传递表面被配置成从所述第二表面向所述表面催化热二极管之外传导热量。 9. The surface of the catalytic thermal diode unit of claim 8, further comprising a second heat transfer surface, said second heat transfer surface on the opposite side surface of the second cavity and the second surface of the connector and substantially parallel to the second heat transfer surface configured to conduct from the second surface to the outside of the catalytic surface heat thermal diode.
10. -种表面催化热二极管设备,包括以并联连接的根据权利要求5所述的多个表面催化热二极管单元,其中所述多个表面催化热二极管单元的腔体被互连,并且相邻的表面催化热二极管共用至少一个间隔件。 10. - surface of the catalytic species thermal diode device according to claim comprising a plurality of parallel-connected catalytic thermal requirements surface of the diode unit 5, wherein the plurality of cavities of the surface of the catalytic thermal diode units are interconnected, and adjacent catalytic hot surface of the diode share at least one spacer.
11. 一种表面催化热二极管设备,包括以串联连接的根据权利要求1所述的多个表面催化热二极管单元,其中相邻的表面催化热二极管单元通过共用的热传递表面而被分开,所述共用的热传递表面被配置成在相邻的表面催化热二极管之间传递热量。 A surface of the catalytic thermal diode device according to claim comprising a plurality of serially connected surface according to claim 1 catalytic thermal diode unit, wherein the adjacent surface of the catalytic unit is separated from the thermal diode through the common heat transfer surfaces, by said common heat transfer surface is configured to transfer heat between adjacent surfaces of the catalytic thermal diode.
12. 根据权利要求1所述的表面催化热二极管单元,其中所述气体在所述第一表面上以所述第一速率离解并且所述气体在所述第二表面上以所述第二速率离解。 12. The surface of the catalytic thermal diode unit according to claim 1, wherein said first surface of said gas at the first rate from the solution and the gas on the second surface at the second rate Dissociation.
13. 根据权利要求1所述的表面催化热二极管,其中所述第一表面和所述第二表面已经被清洁。 13. A surface according to claim 1, the catalytic thermal diode, wherein the first surface and the second surface has been cleaned.
14. 根据权利要求1所述的表面催化热二极管,进一步包括位于所述腔体以内的一定量的所述气体,所述气体的量被选择为使得所述气体处于〇. 01至10大气压范围内的压力下。 Catalytic surface according to claim 1 of the thermal diode further comprises an amount of the gas is located within the cavity, the amount of the gas is selected so that the gas is at a square. 01-10 atmospheres under pressure within.
15. 根据权利要求14所述的表面催化热二极管,其中所述气体是经净化的。 15. The surface of the catalytic thermal diode to claim 14, wherein the gas is purified.
16. -种用于产生及维持温差的方法,包括: 提供第一表面,所述第一表面与气体相互化学作用,使得所述气体在接近于所述第一表面处以第一速率离解; 提供第二表面,所述第二表面与所述气体相互化学作用,使得所述气体在接近于所述第二表面处以第二速率离解,所述第二速率低于所述第一速率,所述第一表面和所述第二表面定义腔体;以及在所述腔体中提供一定量的所述气体; 其中所述第一速率与所述第二速率之间的差致使跨所述腔体在所述第一表面与所述第二表面之间的所述温差。 16. - Method for generating and maintaining a temperature difference species, comprising: providing a first surface, the first surface and gas chemical interaction, such that the rate of the gas at a first surface proximate to the first dissociation; provided a second surface, the second surface of the chemical interaction of the gas, such that the gas proximate to said second surface at a second rate of dissociation, the second rate is lower than the first rate, the a first surface and a second surface defining said cavity; and an amount of the gas is provided in the cavity; wherein a difference between the first rate and the second rate causes across the cavity the temperature difference between the first surface and the second surface.
17. 根据权利要求16所述的方法,其中所述第一表面由选自以下各项所构成的组中的至少一种材料制成:Φ了,铭,钮,银,饿,依,销,金,锐,锦,钦,給,惨杂的娃,f凡,组,络,妈,猛, 铼,铁,锇,钴,铱,镍,铜,锌,m银,钼,I了,铭,钯,氧化错,氧化镁,二氧化钛,二氧化娃, 硝化纤维素,芳族聚酰胺,尼龙,人造纤维,和聚甲基丙烯酸甲酯。 17. The method according to claim 16, wherein said first surface is made of at least one material selected from the group consisting of the: Φ a, Ming Niu, silver, hungry, by pin , gold, Rui, Jin, Qin, to, miserable heteroaryl baby, f where, group, network, mother, manganese, rhenium, iron, osmium, cobalt, iridium, nickel, copper, zinc, m silver, molybdenum, the I of , Ming, palladium oxide, wrong, magnesia, titania, baby dioxide, nitrocellulose, aramid, nylon, rayon, and polymethyl methacrylate.
18. 根据权利要求16所述的方法,其中所述第二表面由选自以下各项所构成的组中的至少一种材料制成:聚乙烯,聚丙烯,石蜡,天然橡胶,掺杂的硅,聚醚,聚氟乙烯,聚偏二氟乙烯,聚四氟乙烯,全氟烷氧基聚合物,聚乙烯氯三氟乙烯,氟橡胶,全氟聚醚,和全氟磺酸, 石墨烯,石墨和碳纳米管。 18. The method according to claim 16, wherein the second surface is made of at least one material selected from the group consisting of: polyethylene, polypropylene, paraffin, natural rubber, doped silicon, polyethers, polyvinyl fluoride, polyvinylidene fluoride, polytetrafluoroethylene, perfluoroalkoxy polymer, polyethylene, chlorotrifluoroethylene, fluororubber, perfluoropolyether, and perfluorosulfonic acid, graphite ene, graphite and carbon nanotubes.
19. 根据权利要求16所述的方法,其中所述气体包括选自以下各项所构成的组中的至少一种气体:甲酸,乙酸,甲醇,乙醇,甲醛,氨,二甲基酮,甲胺,二甲胺,二甲醚,水合氢氧化钾(水),乙酰胺,甲硫,氰,氰化氢,氟化氢,硫化氢,氰甲烷,甲酰胺,氨基甲亚胺,氯化氢,氰乙烷,氮气,一氧化碳,二氧化碳,二氧化硫,氧化氮,单1¾甲烷,二1¾甲烷,三1¾甲烷,四卤甲烧,1¾代乙烧,氢,氦,氖,氩,氪,氣,氡,甲烧,乙烧,和丙烷。 19. The method according to claim 16, wherein said gas comprises at least one gas selected from the group consisting of the following: formic acid, acetic acid, methanol, ethanol, formaldehyde, ammonia, dimethyl ketone, methyl amine, dimethyl amine, diethyl ether, hydrated potassium hydroxide (aqueous), acetic acid amide, sulfide, cyanide, hydrogen cyanide, hydrogen fluoride, hydrogen sulfide, methane, cyano, carboxamide, carbamoyl imine, hydrogen chloride, cyanoethyl alkoxy, nitrogen, carbon monoxide, carbon dioxide, sulfur dioxide, nitrogen oxides, methane 1¾ mono, di 1¾, tris 1¾ methane, methyl halide four burn, burn 1¾ behalf acetate, hydrogen, helium, neon, argon, krypton, air, radon, A burn, burn acetate, and propane.
20. 根据权利要求16所述的方法,其中所述第一表面基本上平行于所述第二表面。 20. The method according to claim 16, wherein said first surface is substantially parallel to the second surface.
21. 根据权利要求20所述的方法,进一步包括: 提供位于所述第一表面与所述第二表面之间的多个间隔件,所述多个间隔件将所述第一表面与所述第二表面之间的间隔维持在基本上恒定的距离。 The spacer member providing the first surface and the plurality of spacers positioned between the first surface and the second surface, a plurality of: 21. The method of claim 20, further comprising interval between the second surface is maintained at a substantially constant distance.
22. 根据权利要求16所述的方法,进一步包括: 提供第一热传递表面,所述第一热传递表面在所述第一表面与所述腔体的相对侧上与所述第一表面连接并且基本上平行,所述第一热传递表面被配置成从所述表面催化热二极管的外部向所述第一表面传导热量。 22. The method of claim 16, further comprising: providing a first heat transfer surface of the first heat transfer surface connected to the first surface on the opposite side surface of said first cavity and substantially parallel to the first heat transfer surface configured to conduct heat from the exterior surface of the catalytic thermal diode to the first surface.
23. 根据权利要求22所述的方法,进一步包括: 提供第二热传递表面,所述第二热传递表面在所述第二表面与所述腔体的相对侧上与所述第二表面连接并且基本上平行,所述第二热传递表面被配置成从所述第二表面向所述表面催化热二极管之外传导热量。 23. The method according to claim 22, further comprising: providing a second heat transfer surface, said second heat transfer surface is connected to the second surface on the opposite side surface of the second cavity and substantially parallel to the second heat transfer surface is configured to conduct heat from the second surface to the outside of the catalytic surface of the thermal diode.
24. 根据权利要求16所述的方法,其中所述气体在所述第一表面上以所述第一速率离解并且所述气体在所述第二表面上以所述第二速率离解。 24. A method according to claim 16, wherein said first surface of said gas at the first rate and the dissociated gas on the second surface at the second rate of dissociation.
25. 根据权利要求16所述的方法,进一步包括在提供所述气体之前清洁所述第一表面和所述第二表面。 25. The method of claim 16, further comprising providing said gas prior to cleaning the first surface and the second surface.
26. 根据权利要求16所述的方法,其中位于所述腔体以内的所述气体的量导致0.01至10大气压的范围内的压力。 26. A method according to claim 16, wherein an amount of the gas is located within the cavity leads to a pressure in the range of 0.01 to 10 atmospheres.
27. 根据权利要求16所述的方法,进一步包括在提供所述气体之前净化所述气体。 27. The method of claim 16, further comprising purging the gas prior to providing the gas.
CN 201480038411 2013-05-29 2014-05-29 Epicatalytic thermal diode CN105473218A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US201361828421 true 2013-05-29 2013-05-29
US201361828419 true 2013-05-29 2013-05-29
US14289322 US9212828B2 (en) 2013-05-29 2014-05-28 Epicatalytic thermal diode
PCT/US2014/040089 WO2014194138A1 (en) 2013-05-29 2014-05-29 Epicatalytic thermal diode

Publications (1)

Publication Number Publication Date
CN105473218A true true CN105473218A (en) 2016-04-06

Family

ID=54840333

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201480038411 CN105473218A (en) 2013-05-29 2014-05-29 Epicatalytic thermal diode

Country Status (4)

Country Link
EP (1) EP3003547A4 (en)
KR (1) KR20160034856A (en)
CN (1) CN105473218A (en)
WO (1) WO2014194138A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2041412U (en) * 1988-09-14 1989-07-19 涂济民 Thermionic diode type solar water heater
US6924249B2 (en) * 2002-10-02 2005-08-02 Delphi Technologies, Inc. Direct application of catalysts to substrates via a thermal spray process for treatment of the atmosphere
US7070634B1 (en) * 2003-11-03 2006-07-04 Wang Chi S Plasma reformer for hydrogen production from water and fuel
CN101216204A (en) * 2008-01-14 2008-07-09 南京航空航天大学 Partition plate type liquid bidirectional thermal diode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4425876A (en) * 1982-09-03 1984-01-17 Conoco Inc. Alcohol dissociation and waste heat recovery process for automobiles
DE69724417D1 (en) * 1996-12-16 2003-10-02 Eudosia S P A Diodisch heat conductive wall

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2041412U (en) * 1988-09-14 1989-07-19 涂济民 Thermionic diode type solar water heater
US6924249B2 (en) * 2002-10-02 2005-08-02 Delphi Technologies, Inc. Direct application of catalysts to substrates via a thermal spray process for treatment of the atmosphere
US7070634B1 (en) * 2003-11-03 2006-07-04 Wang Chi S Plasma reformer for hydrogen production from water and fuel
CN101216204A (en) * 2008-01-14 2008-07-09 南京航空航天大学 Partition plate type liquid bidirectional thermal diode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CAPEK ET AL: "《Challenges to the Second Law of Thermodynamics》", 31 December 2005 *

Also Published As

Publication number Publication date Type
EP3003547A1 (en) 2016-04-13 application
WO2014194138A1 (en) 2014-12-04 application
KR20160034856A (en) 2016-03-30 application
EP3003547A4 (en) 2016-12-28 application

Similar Documents

Publication Publication Date Title
Ehrlich Molecular dissociation and reconstitution on solids
Striolo et al. Water in carbon nanotubes: Adsorption isotherms and thermodynamic properties from molecular simulation
Lee et al. Lattice thermal conductivity of nanoporous Si: Molecular dynamics study
Shaikh et al. Thermal conductivity improvement in carbon nanoparticle doped PAO oil: An experimental study
Inoue et al. One-step grown aligned bulk carbon nanotubes by chloride mediated chemical vapor deposition
Kim et al. Activation energy paths for graphene nucleation and growth on Cu
Kiran et al. Hydrogen storage and the 18-electron rule
Marconnet et al. Thermal conduction phenomena in carbon nanotubes and related nanostructured materials
Teo et al. The significance of plasma heating in carbon nanotube and nanofiber growth
US20080187648A1 (en) Apparatus and methods for controlled growth and assembly of nanostructures
Mingo et al. Length dependence of carbon nanotube thermal conductivity and the “problem of long waves”
Ao et al. Al doped graphene: a promising material for hydrogen storage at room temperature
Hanasaki et al. Flow structure of water in carbon nanotubes: Poiseuille type or plug-like?
Borsa et al. Mg–Ti–H thin films for smart solar collectors
US6503298B1 (en) Apparatus and methods for hydrogen separation/purification utilizing rapidly cycled thermal swing sorption
Zhao et al. Adsorption and reaction of acetaldehyde on Pt (1 1 1) and Sn/Pt (1 1 1) surface alloys
Li et al. Air-assisted growth of ultra-long carbon nanotube bundles
Liu et al. Fluid structure and transport properties of water inside carbon nanotubes
Halpern et al. Chemical energy accommodation at catalyst surfaces. Flow reactor studies of the association of nitrogen atoms on metals at high temperatures
Liu et al. Structural and vibrational properties of solid nitromethane under high pressure by density functional theory
Pozzo et al. Comparative study of water dissociation on Rh (111) and Ni (111) studied with first principles calculations
Ulbricht et al. Desorption kinetics and interaction of Xe with single-wall carbon nanotube bundles
Menning et al. General trend for adsorbate-induced segregation of subsurface metal atoms in bimetallic surfaces
Gland et al. Low-energy electron diffraction, work function charge and mass spectrometric studies of chemisorption and dehydrogenation of cyclohexane, cyclohexene and 1, 3-cyclohexadiene on the Pt (111) surface
Chuang et al. Three-dimensional carbon nanowall structures

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination