CN105399616A - Synthesis method and application of organometallic framework compound with chemical formula of [C8H6Mn2O12]n - Google Patents

Synthesis method and application of organometallic framework compound with chemical formula of [C8H6Mn2O12]n Download PDF

Info

Publication number
CN105399616A
CN105399616A CN 201510694305 CN201510694305A CN105399616A CN 105399616 A CN105399616 A CN 105399616A CN 201510694305 CN201510694305 CN 201510694305 CN 201510694305 A CN201510694305 A CN 201510694305A CN 105399616 A CN105399616 A CN 105399616A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
compound
chemical formula
metal
formula
c8h6mn2o12
Prior art date
Application number
CN 201510694305
Other languages
Chinese (zh)
Inventor
刘峥
郭征楠
魏席
黎焕林
Original Assignee
桂林理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • C07C51/418Preparation of metal complexes containing carboxylic acid moieties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups

Abstract

The invention discloses a synthesis method and an application of an organometallic framework compound with the chemical formula of [C8H6Mn2O12]n. The organometallic framework compound with the chemical formula of [C8H6Mn2O12]n belongs to a monoclinic system and has a P21/n space group, the unit cell volume is 1.30709(14)nm<3>, the face-centered unit cell F(000) is 840, unit cell parameters are as follows: a is 0.82365(6)nm, b is 1.22868(8)nm, c is 1.30541(6)nm, alpha is 90DEG, beta is 98.345(6)DEG and gamma is 90DEG, and a three dimensional network structure is formed. The organometallic framework compound with chemical formula of [C8H6Mn2O12]n is obtained through a reaction of MnCl2.4H2O and 1,2,3,4-butanetetracarboxylic acid as raw materials in an aqueous solution with the pH value of 7-8 at 140DEG C for 72h by using a hydrothermal technology. The synthesis method has the advantages of simple operation and environmental protection. The organometallic framework compound with the chemical formula of [C8H6Mn2O12]n can be applied in the field of fluorescence analysis as a fluorescence probe.

Description

-种化学式为[C8H6Mn2012]n金属有机框架化合物的合成及应用 - chemical formula [C8H6Mn2012] Synthesis and Application of a metal-organic framework compound n

技术领域 FIELD

[0001] 本发明涉及一种化学式为[CsH6Mn20 12]n金属有机框架化合物的合成,所述金属有机框架化合物晶体属于单斜晶系,P〗/!!空间群,晶胞体积为V=l 307.08(14)ΛΛ面心晶胞F(000) = 840,具有三维网络结构,其较强的荧光性质使其可作为荧光探针在分析领域得到应用。 [0001] The present invention relates to a compound of formula to compound n synthetic organic metal frame [CsH6Mn20 12], the metal organic frameworks compound belongs to monoclinic crystal system, P〗 / !! space group, unit cell volume V = l 307.08 (14) ΛΛ face-centered unit cell F (000) = 840, a three-dimensional network structure, its strong fluorescence properties that it can be applied as a fluorescent probe in the analysis.

背景技术 Background technique

[0002] MOFs材料是有机配体与金属离子(主要为过渡金属,稀土金属)或者无机金属簇通过自组装形成的一种具有周期性网络结构的超分子晶体材料。 [0002] MOFs material is an organic ligand to metal ions (mainly a transition metal, a rare earth metal) or an inorganic metal clusters self-assembled supramolecular crystalline material having a periodic structure formed network. MOFs材料结合了无机和有机两部分的优点,其中有机配体的变化可以使得这种类分子筛结构实现结构的多样化和孔道的可调控性,从而使得定向设计成为可能。 MOFs are a combination of organic and inorganic advantages of two parts, wherein the organic ligand may be a change of this kind such that the molecular sieve structure diversification and pore structure can be regulated so that the orientation of the design possible. 人们使用不同的有机配体或者合成不同有机物作为配体,并改变配体的大小、构型等从而达到控制或改变MOFs孔道尺寸的目的。 People use different organic ligands or synthesize different organic compounds as a ligand, the ligand and the purpose of changing the size, configuration or the like so as to control the pore size changes MOFs. 正是由于这种孔道大小的可控性、超大的比表面积、低密度等特点使得MOFs在气体吸附、分离、传感,生物医学等诸多领域表现出了巨大的应用潜能。 It is because of such a controllable pore size, large surface area, density and other characteristics such MOFs adsorption gas separation, sensing, biomedical and other fields has shown great potential application. 在配位聚合物的基础上,金属有机骨架化合物作为一种新型材料,真正的发展不过短短十几年。 On the basis of the coordination polymers, metal organic framework material as a new compound, the real development in just ten years. 金属有机骨架(Metal-Organic Framework, MOFs)材料这一概念第一次被提出是在1995年美国化学家0. M. Yaghi在Nature杂志发表的论文中。 Metal-organic framework (Metal-Organic Framework, MOFs) materials of this concept was first proposed in 1995, American chemist 0. M. Yaghi in the journal Nature published papers. 他选用刚性的有机配体均苯三甲酸与过渡金属钴合成了一个具有二维层状结构的化合物C〇C6H3(C00Hl/3) 3(NC5H5)2 · 2/3NC5H5。 He selects rigid organic trimesic acid ligands to the transition metal cobalt compound synthesized C〇C6H3 having a two-dimensional layered structure (C00Hl / 3) 3 (NC5H5) 2 · 2 / 3NC5H5. 0. M. Yaghi称这种由金属离子和有机配体共同构筑的微孔材料为金属有机骨架结构材料该化合物具有可逆的吸附性质,使金属有机配位聚合物的研究得到推广。 0. M. Yaghi call this a microporous material is a metal ion and organic ligands together to build the metal-organic framework materials having adsorption properties reversible compound the study of the organometallic coordination polymers promoted. 1997年,Kitagawa 课题组报道了4, 4联吡啶分别与金属锌,镍,钴离子合成得到三个具有3x6 A孔道结构的配位聚合物。 In 1997, Kitagawa research group reported that 4, 4 respectively bipyridine metal zinc, nickel, cobalt ion coordination polymers synthesized having three 3x6 A pore structure. 1999年,Yaghi研究小组以对苯二甲酸(1,4-BDC)为配体,合成了具有简单立方六连接网络结构的金属有机骨架化合物M0F-5,它的孔径约为12.94 A,骨架空旷度可达55~61 %,Langmuir比表面积高达2900cm2/g。 In 1999, Yaghi team to terephthalic acid (1,4-BDC) as a ligand, a metal having a simple cubic synthesized six connecting network structure of an organic skeleton of the compound M0F-5, its pore size of about 12.94 A, open skeleton of up to 55 ~ 61%, Langmuir surface area of ​​up to 2900cm2 / g. 在随后的时间里,Yaghi小组又陆续合成了具有代表性的MOFs系列金属有机骨架化合物,成为了金属有机骨架化合物发展史上的一个里程碑。 In subsequent years, Yaghi synthesized MOFs group after another series of metal organic framework representative compounds, become a milestone in the history of the metal organic framework compound. 2002年,Yaghi研究小组以M0F-5为原型,通过对有机配体对苯二甲酸(1,4-BDC)的拓展和修饰,成功地合成了一系列与M0F-5骨架结构相同的金属有机骨架化合物IRM〇F(Isoreticular Metal-Organic Framework),他们的孔径可从3.8 A 跨越至28.8 A。 In 2002, Yaghi research team M0F-5 as a prototype, by the expansion of the organic ligand and modifications terephthalic acid (1,4-BDC) and successfully synthesized M0F-5 series of the same metal organic framework structure IRM〇F skeleton of the compound (Isoreticular Metal-Organic Framework), they can span a pore size from 3.8 a to 28.8 A. 与M0F-5相同,IRM0F系列金属有机骨架化合物都具有良好的稳定性,在去除客体分子后,能够得到开放并不变的骨架结构。 M0F-5 with the same, IRM0F metal organic framework series of compounds have good stability, after removing the guest molecules, and possible to obtain a constant open framework structure. 2004年,他们又以拓展的均苯三甲酸H3BTB(1, 3, 5-benzenetribenzoate)为配体合成了Ζη40(ΒΤΒ)2 · (DEF)15 · (H20)3(M0F-177) 〇M0F-177是以八面体SBU-Zn04(C02)6簇作为六连接节点与BTB连接,形成的具有6, 3-网络拓扑结构,客体溶剂分子占据85%的体积,除去客体后比表面积高达4500m2g \远大于之前报道的MOFs系列的结构。 In 2004, they used to expand trimesic acid H3BTB (1, 3, 5-benzenetribenzoate) ligand 3 (M0F-177) was synthesized Ζη40 (ΒΤΒ) 2 · (DEF) 15 · (H20) 〇M0F- 177 is octahedral SBU-Zn04 (C02) 6 cluster as six BTB connection node is connected, is formed with 6, 3 network topology, the guest molecules occupy 85% of the solvent volume was removed after the object up to a specific surface area 4500m2g \ lofty MOFs structure before the series reported. 2005年,Yaghi教授的课题组又通过调整M0F-5的有机联结体制备了一系列IRMOFs材料,并对其在77K的储氢性能进行了测试和分析。 In 2005, the research group of Professor Yaghi and by adjusting the organic link system M0F-5 prepared a series of IRMOFs material, and tested and analyzed in the hydrogen storage performance of 77K. 结果表明,从储氢质量百分数来看,IRM0F-2的储氢性能比M0F-5略差,IRM0F-9的储氢性能在压力小于0. 7bar 时明显优于M0F-5、在压力大于0. 7bar时比M0F-5略差,其余所有的IRMOFs包括IRM0F-3、 IRMOF-6、IRM0F-13和IRM0F-20均表现出M0F-5更好的储氢性能,其中IRM0F-13的储氢量在77K、lbar的条件下达到17. 8mg/g,超过了文献报道过的相同条件下IRM0F-11的储氢量16. 2mg/g。 The results show significantly better M0F-5 when the mass percentage of view from the hydrogen storage, hydrogen storage properties IRM0F-2 is slightly inferior hydrogen storage properties IRM0F-9 is at a pressure less than 0. 7bar than M0F-5, at a pressure greater than 0 . 7bar slightly worse than M0F-5, all the rest IRMOFs comprises IRM0F-3, IRMOF-6, IRM0F-13 and IRM0F-20 M0F-5 exhibited better hydrogen storage properties of a hydrogen storage where IRM0F-13 reached 17. 8mg / g at 77K, lbar conditions, the hydrogen storage capacity than IRM0F-11 of 16. 2mg / g under the same conditions as reported in the literature. 若以每个配合物分子的单位储氢量进行比较,Yaghi等制备的所有IRMOFs材料(IRMOF-2、IRMOF-3、IRMOF-6、IRMOF-9、IRM0F-13 和IRM0F-20)的储氢量均高于M0F-5。 In terms of the amount of hydrogen storage per unit molecule complex materials were all prepared in Comparative IRMOFs, Yaghi et (IRMOF-2, IRMOF-3, IRMOF-6, IRMOF-9, IRM0F-13 and IRM0F-20) of the hydrogen storage It was higher than M0F-5. 本专利提供了一种以羧酸配体、无机金属盐为原料,经水热法合成化学式为[CsH6Mn20 12]n金属有机框架化合物(MOFs)的方法,并提出了可利用其较强的荧光性质用为荧光探针使用。 This invention provides a ligand, a carboxylic acid, an inorganic metal salt is synthesized by hydrothermal chemical formula of [CsH6Mn20 12] n metal organic frameworks compound (of MOFs) method, and made available its strong fluorescence properties using fluorescent probes.

发明内容 SUMMARY

[0003] 本发明的目的是提供一种化学式为[CsH6Mn20 12]n金属有机框架化合物的合成及应用。 [0003] The object of the present invention is to provide a chemical formula [CsH6Mn20 12] Synthesis and Application of a metal-organic framework compound n.

[0004] 化学式为[CsH6Mn20 12]η金属有机框架化合物晶体属于单斜晶系,P2A空间群,晶胞体积为V=1307.09 (丨旬/V,面心晶胞F(000) = 840,晶体是以1,2, 3, 4-丁烷四羧酸四个羧基以二齿配位的模式链接两个锰离子,具有三络网络结构,使其具有较强的荧光性质, 而能作为荧光探针在分析领域得到应用;化学式为[CsH6Mn20 12]n金属有机框架化合物晶体学参数见表1,化学式为[CsH6Mn2012] η金属有机框架化合物键长A和键角°见表2。 [0004] formula [CsH6Mn20 12] η metal organic frameworks compound crystallizes in the monoclinic system, P2A space group, unit cell volume V = 1307.09 (Shu late / V, face-centered unit cell F (000) = 840, crystal is 2, 3, 4 butane tetracarboxylic acid to four carboxy bidentate mode manganese ions link two, three network having a network structure, it has strong fluorescence properties, and can be used as fluorescence probe obtained in the analysis of applications; the formula [CsH6Mn20 12] n metal organic frameworks compound crystallographic parameters in Table 1, the formula [CsH6Mn2012] η metal organic frameworks A compound bond lengths and bond angles in Table 2 °.

[0005] 表1 :化学式为[CsH6Mn2012]n金属有机框架化合物晶体学参数 [0005] Table 1: Chemical formula [CsH6Mn2012] n metal organic frameworks compound crystallographic parameters

Figure CN105399616AD00051

Figure CN105399616AD00061

[0008] 表2 :化学式为[CsH6Mn2012] η金属有机框架化合物键长A和键角。 [0008] Table 2: Chemical formula [CsH6Mn2012] η metal organic frameworks A compound bond lengths and bond angles.

Figure CN105399616AD00062

Figure CN105399616AD00071

[0012] 所述的化学式为[CsH6Mn20 12]n金属有机框架化合物合成方法具体步骤为: [0012] The chemical formula [CsH6Mn20 12] n organometallic compounds synthesis frame specific steps:

[0013] (1)将0· 2mmol MnCl2 · 4H20 和10mL 蒸馈水放入50mL 烧杯中。 [0013] (1) 0 · 2mmol MnCl2 · 4H20 was evaporated and 10mL water was placed in the feed 50mL beaker.

[0014] (2)将0· 2mmol 1,2, 3, 4- 丁烷四羧酸和5mL蒸馏水放入25mL烧杯中。 [0014] (2) 0 · 2mmol 1,2, 3, 4- butane tetracarboxylic acid and 25mL 5mL of distilled water into a beaker.

[0015] (3)将以上两个烧杯放入超声清洗器中超声震荡让其充分溶解;待两个烧杯中的物质充分溶解后进行混合,磁力搅拌;磁力搅拌搅拌30分钟后,用pH试纸进行pH测量;在磁力搅拌下进行pH调节,向烧杯中缓慢滴加分析纯氨水,至pH为7-8 ;调节完pH后继续磁力搅拌30分钟;停止磁力搅拌,把烧杯中的溶液转入反应釜中并密封,随后将反应釜放入调节好温度为140°C干燥箱中进行晶化72小时;72小时后进行程序降温降到100°C,保温10小时,10小时后关掉烘箱让其自然状态下降至室温;烘箱降至室温后取出反应釜,釜中有无色块状晶体生成,过滤,自然晾干;得到化学式为[CsH6Mn20 12]n金属有机框架化合物产物。 [0015] (3) The above two beakers placed in an ultrasonic cleaner sonotrode allowed to fully dissolve; two beakers to be mixed fully dissolved substances, magnetic stirring; magnetic stirring for 30 minutes, with pH paper pH measurement; carried out at a pH adjusting magnetic stirring, was slowly added dropwise to the beaker analytically pure ammonia to a pH of 7-8; magnetic stirring continued after adjusting pH End 30 min; magnetic stirring stopped, the solution was transferred to a beaker autoclave and sealed, then placed in the reactor regulate the temperature of crystallization for 72 hours 140 ° C oven; be programmed cooling down to 100 ° C after 72 hours, incubated 10 hours, turn off the oven after 10 hours status let it drop down to room temperature; oven after removing the reactor cooled to room temperature, the kettle bulk colorless crystals, was filtered, air dry; to give the formula [CsH6Mn20 12] n metal organic frameworks product compound.

[0016] 化学式为[CsH6Mn20 12] η金属有机框架化合物可作为荧光探针在荧光分析领域得到应用。 [0016] formula [CsH6Mn20 12] η metal-organic compounds can be used as a fluorescent probe frame applied in the field of fluorescence analysis.

[0017] 本发明合成方法操作简单,绿色环保。 [0017] The synthesis method of the present invention is simple, green.

附图说明 BRIEF DESCRIPTION

[0018] 图1为本发明化学式为[CsH6Mn20 12] η金属有机框架化合物晶体结构图 [0018] FIG. 1 is the chemical formula of the present invention [CsH6Mn20 12] η metal organic frameworks compound crystal structure of FIG.

[0019] 图2为本发明化学式为[CsH6Mn20 12]n金属有机框架化合物配位多面体图。 Chemical Formula [0019] FIG. 2 of the present invention is [CsH6Mn20 12] n metal organic frameworks compound coordination polyhedron FIG.

[0020] 图3为本发明化学式为[CsH6Mn20 12]n金属有机框架化合物晶体二维堆积图(a方向)。 Chemical Formula [0020] FIG. 3 of the present invention is [CsH6Mn20 12] n metal organic frameworks compound crystal packing diagram of a two-dimensional (a direction).

[0021] 图4为本发明化学式为[CsH6Mn20 12]n金属有机框架化合物晶体三维堆积图(a方向)。 Chemical Formula [0021] FIG. 4 of the present invention is [CsH6Mn20 12] n metal organic frameworks compound crystal packing diagram of a three-dimensional (a direction).

[0022] 图5为本发明化学式为[CsH6Mn20 12]n金属有机框架化合物DMS0溶液荧光光谱图。 [0022] FIG. 5 of the present invention are of the formula [CsH6Mn20 12] n metal organic frameworks compound DMS0 solution fluorescence spectra.

[0023] 图6为本发明1,2, 3, 4- 丁烷四羧酸红外光谱图。 [0023] FIG. 63, 4-butane tetracarboxylic acid 1,2 infrared spectrum of the present invention.

[0024] 图7为本发明化学式为[CsH6Mn20 12]n金属有机框架化合物的红外谱图。 [0024] FIG. 7 is the chemical formula of the present invention is an infrared spectrum of [CsH6Mn20 12] The n-metal compound-organic framework.

具体实施方式 detailed description

[0025] 实施例: [0025] Example:

[0026] (1)将0· 2mmol MnCl2 · 4H20 和10mL 蒸馈水放入50mL 烧杯中。 [0026] (1) 0 · 2mmol MnCl2 · 4H20 was evaporated and 10mL water was placed in the feed 50mL beaker.

[0027] (2)将0· 2mmol 1,2, 3, 4- 丁烷四羧酸和5mL蒸馏水放入25mL烧杯中。 [0027] (2) 0 · 2mmol 1,2, 3, 4- butane tetracarboxylic acid and 25mL 5mL of distilled water into a beaker.

[0028] (3)将以上两个烧杯放入超声清洗器中超声震荡让其充分溶解;待两个烧杯中的物质充分溶解后进行混合,磁力搅拌;磁力搅拌搅拌30分钟后,用pH试纸进行pH测量;在磁力搅拌下进行pH调节,向烧杯中缓慢滴加分析纯氨水,至pH为7 ;调节完pH后继续磁力搅拌30分钟;停止磁力搅拌,把烧杯中的溶液转入反应釜中并密封,随后将反应釜放入调节好温度为140°C干燥箱中进行晶化72小时;72小时后进行程序降温降到100°C,保温10小时,10小时后关掉烘箱让其自然状态下降至室温;烘箱降至室温后取出反应釜,釜中有无色块状晶体生成,过滤,自然晾干;得到化学式为[CsH6Mn20 12]n金属有机框架化合物产物。 [0028] (3) The above two beakers placed in an ultrasonic cleaner sonotrode allowed to fully dissolve; two beakers to be mixed fully dissolved substances, magnetic stirring; magnetic stirring for 30 minutes, with pH paper pH measurement; carried out at a pH adjusting magnetic stirring, was slowly added dropwise to the beaker analytically pure ammonia to a pH of 7; magnetic stirring continued after adjusting pH End 30 min; magnetic stirring stopped, the beaker was transferred into the autoclave and sealed, then placed in the reactor regulate the temperature of crystallization for 72 hours 140 ° C oven; after 72 hours cool down procedure 100 ° C, held for 10 hours and after 10 hours allowed to turn off an oven natural state down to room temperature; after the reactor taken out the oven cooled to room temperature, the kettle bulk colorless crystals, was filtered, air dry; to give the formula [CsH6Mn20 12] n metal organic frameworks product compound.

[0029] 化学式为[CsH6Mn20 12] η金属有机框架化合物作为荧光探针在荧光分析领域得到应用。 [0029] formula [CsH6Mn20 12] η metal-organic compound as a fluorescent probe frame applied in the field of fluorescence analysis.

[0030] 制得的化学式为[CsH6Mn20 12]n金属有机框架化合物晶体结构分析:分别选取尺寸合适的化合物的单晶,用Bruker SMART APEX C⑶单晶衍射仪依次收集数据。 Suitable crystal sizes were selected compound, data collection Bruker SMART APEX C⑶ diffractometer successively: [CsH6Mn20 12] n metal organic frameworks compound crystal structure analysis [0030] The chemical formula is prepared. 采用经石墨单色化的ΜοΚα射线(λ =〇. 〇71073nm),在用ω-θ模式扫描在6. 0° -50. 18°,内于293 (2) Κ收集数据点,衍射数据用SAINT程序还原,结构用SHELXL-97程序通过直接法解出, 对非氢原子及其各向异性温度因子用SHELXS-97程序进行全矩阵最小二乘法修正。 Using (λ = 〇71073nm billion.), Using ω-θ scan mode by monochromatic rays of graphite ΜοΚα 6. 0 ° -50. 18 °, in the 293 (2) Κ collected data points, using diffraction data SAINT programmed reduction, structural SHELXL-97 program solved by direct methods, and for non-hydrogen atoms anisotropic temperature factors corrected by full-matrix least-squares program SHELXS-97. 用程序SADABS进行经验吸收校正。 Empirical absorption correction program SADABS. 所有氢原子均为理论加氢。 Theory all hydrogen atoms are hydrogenated. 计算和图形是用SHELXTL完成。 Computing and graphics is done using SHELXTL. 有关晶体学和结构修正数据见表1。 For crystallographic data and structure refinement are shown in Table 1.

[0031 ] 由表1可知,化学式为[CsH6Mn20 12] "金属有机框架化合物,a=8.2365(6)A, b=12.2868(8)A,c=13.0541(6)A,a =90。,β = 98.345(6)。,γ = 90。,属于单斜晶系,Ρ2Α空间群,晶胞体积为(14)炎3,面心晶胞F(ooo) = 840。由图1和图3、4可知,化学式为[CsH6Mn2012] η金属有机框架化合物为多齿配位化合物,配体上的四个羧基都以二齿配位的模式链接两个锰离子,并进一步连接形成三维金属有机框架结构。Μη 有两种配位环境(如图2),即为Mnl、Mn2。Mnl与6个氧结合形成六配位的八面体结构,Μη2 与五个氧结合行成六面体结构。其中Mnl与01、03、04、05、06、010结合,04、05来自于配位水中的氧,01、03、06、010来自于1,2, 3,4-丁烷四羧酸配体上的羧基氧,01、06来自于配体中的羧基氧。Mn2与02、07、08、09、011结合,011是来自于配位水中的氧,02、07、08、 09来自于配体中的羧基氧。Μη与0 [0031] As apparent from Table 1, the formula [CsH6Mn20 12] "metal organic frameworks compound, a = 8.2365 (6) A, b = 12.2868 (8) A, c = 13.0541 (6) A, a = 90., β = 98.345 (6)., γ = 90., belonging to the monoclinic system, Ρ2Α space group, unit cell volume (14) 3 inflammation, face-centered unit cell F (ooo) = 840. FIG. 1 and FIG. 3, 4, the formula [CsH6Mn2012] η metal organic frameworks compound multidentate coordination compound, four carboxyl groups on the ligands are linked to mode two bidentate ligand of manganese ions, and further connected to form a three-dimensional metal-organic framework .Μη two coordination environment (Figure 2), that is, Mnl, Mn2.Mnl 6 with oxygen to form octahedral hexacoordinated, Μη2 oxygen binding with five rows into a hexahedral structure. Mnl and 01 wherein , binding 03,04,05,06,010, 04, 05 from the oxygen-coordinated water, 01,03,06,010 from the carboxyl groups on the 1,2,3,4 butane tetracarboxylic acid ligands oxygen, 01,06 from carboxylic oxygen ligand binding .Mn2 02,07,08,09,011, 011 is coordinated from oxygen water, 02,07,08, 09 from the ligand 0 and the carbonyl oxygen .Μη 键长最长为2.3537A,最短为2.1331Λ·,与文献报道的含锰-羧基单元的化合物键长相符。 The longest bond is 2.3537A, shortest 2.1331Λ ·, manganese reported in the literature - consistent with a carboxyl unit length of a bond.

[0032] 化学式为[QftMnA丄金属有机框架化合物的红外谱图(图7)与配体1,2, 3,4_丁烷四羧酸(图6)对比,由图7可知,四个主要特征峰为3417cm ^1573011^ 1389cm\671cm1左右。 [0032] formula [1,2,4 butane tetracarboxylic acid 3,4_ (FIG. 6) comparative IR spectrum of compound QftMnA Shang metal organic frameworks (FIG. 7) and the ligand, it can be seen from FIG. 7, four major characteristic peaks around 3417cm ^ 1573011 ^ 1389cm \ 671cm1. 在3417cm 1主要是-OH存在,这主要来自于水分子。 -OH in the presence of mainly 3417cm 1, mainly from the water molecules. 对比图6,原1,2, 3, 4- 丁烷四羧酸羧(-C00H)中的羟基伸缩振动v。 Comparative FIG. 6, the original hydroxyl group stretching vibration v 2, 3, 4-butane carboxylic acid (-C00H) of. H (3300~2500cm ^,羰基伸缩振动vc =。(1700~1680cm 4和羟基面外弯曲振动δ。H (面外)(950~890cm 4三个重要的特征吸收峰均消失,而在化合物3中出现了-COO的反对称v '。。(1590~1560cm 3和对称v%。。(1425~1380cm 4伸缩振动吸收峰。在671cm1附近出现Μη-0键吸收峰,进一步说明氧原子参与了配位。 H (3300 ~ 2500cm ^, carbonyl stretching vc =. (1700 ~ 1680cm 4 and the outer-hydroxy-plane bending vibration δ.H (outer surface) (950 ~ 890cm 4 three important characteristic absorption peak disappeared, whereas the compound 3 appeared in the antisymmetric v -COO '.. (1590 ~ 1560cm 3 and symmetrical v% .. (1425 ~ 1380cm 4 stretching vibration absorption peaks appear Μη-0 bond absorption peak in the vicinity 671cm1, further indicating that the oxygen atoms involved in the coordination.

Claims (3)

  1. 1. 一种化学式为[CsHeMnzOjn金属有机框架化合物,其特征在于化学式为[QftMnzOj η金属有机框架化合物属于单斜晶系,P2i/n空间群,晶胞体积为V二1307.09(14)Λ'\面屯、 晶胞F(OOO) = 840,晶体是W1,2, 3, 4-下烧四簇酸四个簇基W二齿配位的模式链接两个儘离子,具有=络网络结构,并进一步连接形成=维网络结构,其晶体学数据见表1,键长和键角见表2 ; 表1 :化学式为[QAMnzOjn金属有机框架化合物晶体学参数 A formula [CsHeMnzOjn metal organic frameworks compound, wherein the formula [QftMnzOj η metal organic frameworks compound belongs to monoclinic, P2i / n space group, unit cell volume V two 1307.09 (14) Λ '\ Tun surface unit cell F (OOO) = 840, the crystal is W1,2, 3, 4- burn mode, the W group of four clusters of four bidentate linking two make the cluster acid ions, complex network structure having a =, and further joined to form = dimensional network structure crystallographic data in table 1, bond lengths and bond angles in table 2; table 1: chemical formula [QAMnzOjn metal organic frameworks compound crystallographic parameters
    Figure CN105399616AC00021
    表2 :化学式为[C品MnzOjn金属有机框架化合物键长A和键角° Table 2: chemical formula [C product MnzOjn metal organic frameworks compound bond length and bond angle A °
    Figure CN105399616AC00022
    Figure CN105399616AC00031
    u u
  2. 2. 根据权利要求1所述的化学式为[C品MnzOj。 The chemical formula of the claim 1 is [C product MnzOj. 金属有机框架化合物的合成方法,其特征在于具体步骤为: (1) 将0. 2mmolMnClz· 4&0和10血蒸馈水放入50血烧杯中; (2) 将0. 2mmol1,2, 3, 4-下烧四簇酸和5mL蒸馈水放入25mL烧杯中; (3) 将W上两个烧杯放入超声清洗器中超声震荡让其充分溶解;待两个烧杯中的物质充分溶解后进行混合,磁力揽拌;磁力揽拌揽拌30分钟后,用抑试纸进行抑测量;在磁力揽拌下进行抑调节,向烧杯中缓慢滴加分析纯氨水,至抑为7-8 ;调节完抑后继续磁力揽拌30分钟;停止磁力揽拌,把烧杯中的溶液转入反应蓋中并密封,随后将反应蓋放入调节好溫度为140°C干燥箱中进行晶化72小时;72小时后进行程序降溫降到100°C,保溫10小时,10小时后关掉烘箱让其自然状态下降至室溫;烘箱降至室溫后取出反应蓋,蓋中有无色块状晶体生成,过滤,自然惊干;得到化学式为[CsHeMnzOjn金属有机框架化 The method of synthesizing an organic metal compound of the frame, characterized in that the specific steps: (1) 0. 2mmolMnClz · 4 & 0 10 and blood feeding distilled water was placed in a beaker 50 of blood; (2) 0. 2mmol1,2, 3, 4 - firing the four feeding the cluster acid and 5mL distilled water was placed in a 25mL beaker; (3) on the two beakers placed in an ultrasonic cleaner W sonotrode allowed to fully dissolve; after two beakers be sufficiently dissolved substance mixed, stirred magnetically embrace; embrace magnetically stirred embrace stirred for 30 minutes, measured with suppression for suppressing paper; magnetic embrace stirred for suppressing the adjustment to the beaker analytically pure ammonia was slowly added dropwise to suppression of 7-8; adjusted End after continued suppression embrace magnetically stirred for 30 min; stop embrace magnetically stirred, the reaction solution was transferred to a beaker and sealed cover, the cover is then placed in the reaction temperature regulate the 140 ° C oven for 72 hours crystallization; 72 after cooling down procedure hours 100 ° C, held for 10 hours, after 10 hours the oven turned off to let the room temperature drop natural state; lid removed after the reaction cooled to room temperature oven, cover the bulk colorless crystals, filtered, dry natural shock; to give the formula [CsHeMnzOjn metal organic frameworks of 合物产物。 The product compound.
  3. 3. 根据权利要求1所述的化学式为[Cs&Mn2〇J。 The chemical formula according to claim 1 for the [Cs & Mn2〇J. 金属有机框架化合物的应用,其特征在于化学式为[QAMnzOj。 Application of a metal-organic framework compound, wherein the formula [QAMnzOj. 金属有机框架化合物能作为巧光探针应用于巧光分析领域。 Frame can be used as the organic metal compound is applied to the optical probe Qiao Qiao optical analysis.
CN 201510694305 2015-10-22 2015-10-22 Synthesis method and application of organometallic framework compound with chemical formula of [C8H6Mn2O12]n CN105399616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201510694305 CN105399616A (en) 2015-10-22 2015-10-22 Synthesis method and application of organometallic framework compound with chemical formula of [C8H6Mn2O12]n

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201510694305 CN105399616A (en) 2015-10-22 2015-10-22 Synthesis method and application of organometallic framework compound with chemical formula of [C8H6Mn2O12]n

Publications (1)

Publication Number Publication Date
CN105399616A true true CN105399616A (en) 2016-03-16

Family

ID=55465425

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201510694305 CN105399616A (en) 2015-10-22 2015-10-22 Synthesis method and application of organometallic framework compound with chemical formula of [C8H6Mn2O12]n

Country Status (1)

Country Link
CN (1) CN105399616A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106146519A (en) * 2016-06-22 2016-11-23 江苏科技大学 Preparation, representation and application of divalent manganese fluorescent material based on dibromo 1, 4-diethyl-1, 4-diazabicyclo [2, 2, 2] octane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1229352A2 (en) * 2001-02-01 2002-08-07 Telephotonics, Inc. Photosensitive acrylate composition and waveguide device
CN101473069A (en) * 2006-05-16 2009-07-01 巴斯夫欧洲公司 Process for preparing porous metal organic frameworks
CN102425010A (en) * 2011-11-28 2012-04-25 宁波大学 1, 2, 3, 4-butane manganese tetracarboxylate ferroelectric material and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1229352A2 (en) * 2001-02-01 2002-08-07 Telephotonics, Inc. Photosensitive acrylate composition and waveguide device
CN101473069A (en) * 2006-05-16 2009-07-01 巴斯夫欧洲公司 Process for preparing porous metal organic frameworks
CN102425010A (en) * 2011-11-28 2012-04-25 宁波大学 1, 2, 3, 4-butane manganese tetracarboxylate ferroelectric material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106146519A (en) * 2016-06-22 2016-11-23 江苏科技大学 Preparation, representation and application of divalent manganese fluorescent material based on dibromo 1, 4-diethyl-1, 4-diazabicyclo [2, 2, 2] octane
CN106146519B (en) * 2016-06-22 2017-12-26 江苏科技大学 Based on 1,4-dibromo-diethyl-1,4-diazabicyclo [2.2.2] octane bivalent manganese fluorescent material characterization and application

Similar Documents

Publication Publication Date Title
Bureekaew et al. Chemistry and application of flexible porous coordination polymers
Choi et al. Metal–organic framework MOF-5 prepared by microwave heating: factors to be considered
Carson et al. Synthesis and structure characterization of copper terephthalate metal–organic frameworks
Wang et al. Hydrothermal synthesis, structures, and photoluminescent properties of benzenepentacarboxylate bridged networks incorporating zinc (II)− hydroxide clusters or zinc (II)− carboxylate layers
Zheng et al. Development of composite inorganic building blocks for MOFs
Wen et al. Multifunctional amino-decorated metal–organic frameworks: nonlinear-optic, ferroelectric, fluorescence sensing and photocatalytic properties
Anokhina et al. Chiral three-dimensional microporous nickel aspartate with extended Ni− O− Ni bonding
Qiu et al. Molecular engineering for synthesizing novel structures of metal–organic frameworks with multifunctional properties
Wang et al. A series of three-dimensional lanthanide-rigid-flexible frameworks: synthesis, structure, and luminescent properties of coordination polymers with 2, 5-pyridine dicarboxylic acid and adipic acid
Ding et al. Synthesis of a series of 4-pyridyl-1, 2, 4-triazole-containing cadmium (II) luminescent complexes
Wang et al. Highly stable chiral cadmium 1, 2, 4-benzenetricarboxylate: Synthesis, structure, and NLO and fluorescence properties
Xu et al. Effect of lanthanide contraction on crystal structures of three-dimensional lanthanide based metal–organic frameworks with thiophene-2, 5-dicarboxylate and oxalate
Thirumurugan et al. 1, 2-, 1, 3-and 1, 4-Benzenedicarboxylates of Cd and Zn of different dimensionalities: Process of formation of the three-dimensional structure
Soares-Santos et al. Photoluminescent lanthanide-organic bilayer networks with 2, 3-pyrazinedicarboxylate and oxalate
CN102962037A (en) Metal-organic framework material for methane adsorption separation and preparation method thereof
Liu et al. Facile fabrication and adsorption property of a nano/microporous coordination polymer with controllable size and morphology
Liang et al. Supramolecular Assembly of Calcium Metal− Organic Frameworks with Structural Transformations
Gao et al. Tuning metal–carboxylate coordination in crystalline metal–organic frameworks through surfactant media
Caskey et al. Selective metal substitution for the preparation of heterobimetallic microporous coordination polymers
Kathalikkattil et al. Synthesis, magnetic properties, and structural investigation of mixed-ligand Cu (II) helical coordination polymers with an amino acid backbone and N-donor propping: 1-D helical, 2-D hexagonal net (hcb), and 3-D ins topologies
He et al. Three metal-organic frameworks prepared from mixed solvents of DMF and HAc
Iremonger et al. Phosphonate monoesters as carboxylate-like linkers for metal organic frameworks
Qiu et al. Reversible anion exchange and sensing in large porous materials built from 4, 4′-bipyridine via π··· π and H-bonding interactions
Fu et al. DMF/H2O volume ratio controls the syntheses and transformations of a series of cobalt complexes constructed using a rigid angular multitopic ligand
Díaz-García et al. Nanoscaled M-MOF-74 materials prepared at room temperature

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
RJ01