CN105182005B - One of an acceleration meter - Google Patents

One of an acceleration meter Download PDF

Info

Publication number
CN105182005B
CN105182005B CN201510661916.6A CN201510661916A CN105182005B CN 105182005 B CN105182005 B CN 105182005B CN 201510661916 A CN201510661916 A CN 201510661916A CN 105182005 B CN105182005 B CN 105182005B
Authority
CN
China
Prior art keywords
electrode
structure
provided
layer
anchor
Prior art date
Application number
CN201510661916.6A
Other languages
Chinese (zh)
Other versions
CN105182005A (en
Inventor
王鹏
郭群英
黄斌
曹卫达
何凯旋
段宝明
Original Assignee
华东光电集成器件研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华东光电集成器件研究所 filed Critical 华东光电集成器件研究所
Priority to CN201510661916.6A priority Critical patent/CN105182005B/en
Publication of CN105182005A publication Critical patent/CN105182005A/en
Application granted granted Critical
Publication of CN105182005B publication Critical patent/CN105182005B/en

Links

Abstract

本发明涉及一种加速度计,包括:a.衬底(13)中设有浅腔(2)以及衬底锚点(5);b.电极结构层(1)中部设有的中心锚点(16),中心锚点(16)的两侧对称设有至少一个悬浮电极(4),悬浮电极(4)与下面的浅腔(2)对应配合,悬浮电极(4)的上表面设有向上活动间隙(11);c.可动结构层(15),及其中设有的可动结构(10),其中部设有上层锚点(18)与中心锚点(16)对应键合连接;d.盖帽(14)。 The present invention relates to an accelerometer, comprising:.. A shallow cavity with a substrate (2) and a substrate anchor (5) (13); b. An electrode structure layer (1) is provided in the middle of the center of the anchor ( 16), side of the central anchor (16) symmetrically provided with at least one floating electrode (4), the floating electrode (4) and the underlying shallow cavity (2) with the corresponding upper surface of the floating electrode (4) is provided with upwardly active gap (11);. c of the movable structural layer (15), and is provided with a movable structure (10), wherein the anchor portion is provided with an upper layer (18) and the center of the anchor (16) connected to the corresponding bond; D. cap (14). 本发明具有如下优点:热应力对电极结构的影响大幅下降,使得电极结构在全温范围内几乎无形变,从而保证了器件在全温范围内左右两边电容的对称性,提高了传感器全温性能。 The present invention has the following advantages: the thermal stress on the electrode structure of a substantial decline, so that the electrode structure becomes almost invisible in the whole temperature range, the left and right sides of the device to ensure the capacitance in the whole temperature range symmetry, improved temperature performance full sensor .

Description

一种加速度计 One of an acceleration meter

技术领域 FIELD

[0001] 本发明属于微机械电子技术领域,具体是一种加速度计。 [0001] The present invention belongs to the field of micro electromechanical technology, particularly an accelerometer.

背景技术 Background technique

[0002] 微机电系统的发展,极大地推动了传感器技术的进步,实现了加速度传感器的微型化。 [0002] the development of micro-electromechanical systems, greatly promoted the progress of sensor technology to achieve miniaturization of the acceleration sensor. 现有电容式、压电式、压阻式、热对流、隧道电流式和谐振式等多种形式。 Conventional capacitive, piezoelectric, piezoresistive, thermal convection, and a resonance tunnel current type, and other means. 利用微机械加工工艺制作的电容式加速度计在测量精度、温度特性、利用静电力进行闭环测量和自检及易与电子线路集成等方面具有独特的优点,可广泛应用于航空航天、石油勘探、地震监测、医疗仪器等诸多领域,具有广阔的市场应用景。 Produced by using micromachining processes capacitive accelerometer measurement precision, temperature characteristics, measured by using an electrostatic force, and the closed-loop self-test for ease of integration with electronic circuits, etc., and has unique advantages, it can be widely used in aerospace, oil exploration, earthquake monitoring, medical equipment and many other fields, has broad market application prospect.

[0003] 电容式MEMS加速度计的微结构通常包含敏感结构以及电极结构。 [0003] The capacitive MEMS microstructures generally contain sensitive accelerometer structure and an electrode structure. 通过敏感结构输入加速度引起的惯性力,ffiMS加速度计将加速度信号转换成电学信号。 Sensitive structures by an inertial force caused by the acceleration input, ffiMS accelerometer converts the acceleration signal into an electrical signal. 作为一种力敏感器件,环境温度变化造成热应力会导致敏感结构或固定电极的形变,从而引起加速度计零位输出漂移,传感器全温性能下降,降低了传感器的综合精度。 As a force-sensitive device, caused by changes in ambient temperature cause thermal stress or strain sensitive structure of the fixed electrode, thereby causing the output of the zero drift of the accelerometer, the whole temperature sensor performance decrease, reducing the overall accuracy of the sensor.

[0004] 目前,一种相关技术方案通过减少管壳底部与芯片的接触面积来减少环境温度变化引起的芯片热应力,上述技术方案为封装的改善方法,需要增加模具制造费用,且管壳底部与芯片接触面积在工艺加工过程中的一致性及可靠性较差。 [0004] Currently, A related aspect of the chip due to thermal stress to reduce changes in ambient temperature by reducing the contact area of ​​the bottom shell and the chip, the above technical solution to improve the method of the package needs to be increased mold manufacturing cost, and a bottom shell chip area contact with inferior uniformity and reliability in the process of processing.

发明内容 SUMMARY

[0005] 本发明是为了解决现有Z轴向电容式MEMS加速度计由于温度变化引起的热应力对器件性能的影响问题,提供一种可以降低热应力对器件影响的加速度计,采用MEMS体硅工艺,加工工艺简单,产品的可靠性、一致性好,可以实现批量制造。 [0005] The present invention is made to solve the conventional Z-axis accelerometer MEMS capacitive problems due to thermal stress caused by temperature changes on the device performance, provide an accelerometer reduce the thermal stress on the impact device, the bulk silicon using MEMS process, simple processing technology, product reliability, consistency, and volume manufacturing can be achieved.

[0006] 为实现上述目的,本发明采用了如下技术方案: [0006] To achieve the above object, the present invention employs the following technical solutions:

[0007] —种加速度计,其特征在于包括: [0007] - species accelerometer, comprising:

[0008] a.衬底,衬底中部设有浅腔以及衬底锚点; . [0008] a substrate, a middle substrate, and the substrate provided with the shallow cavity anchor;

[0009] b.与衬底键合的电极结构层,电极结构层中部设有与浅腔对应的第一窗口,第一窗口中部设有中心锚点,它用悬臂梁连接于电极结构层上,中心锚点与衬底锚点对应键合连接; [0009] b. An electrode structure and a substrate layer bonded to the middle layer of the electrode structure is provided with a shallow cavity corresponding to the first window, the middle of the first window provided with a central anchor point which is connected to a cantilever structure layer on the electrode , corresponding to the center anchor and the anchor substrate bond connection;

[0010]第一窗口中心锚点的两侧对称设有至少一个悬浮电极,悬浮电极与下面的浅腔对应配合,悬浮电极的上表面低于电极结构层上表面一段距离,该距离即为悬浮电极向上活动间隙,悬浮电极两侧分别设有折叠固支梁与电极结构层连接; [0010] The first window center symmetrically on both sides of the anchor with at least one floating electrode, the floating electrode and a corresponding mating shallow cavity below the upper surface of the floating electrode is lower than the surface section of the upper electrode layer structure by a distance that is suspended up activities electrode gap, the floating electrode are provided on both sides of the folding beam clamped connection layer electrode structure;

[0011] C•与电极结构层键合的可动结构层,可动结构层中部设有与第一窗口相应的第二窗口,第一窗口中设有可动结构,可动结构与下面的悬浮电极形成活动间隙,可动结构中部设有上层锚点,上层锚点与下面的中心锚点对应键合连接; ~ [0011] C • layer electrode structure bonded to the movable structural layer, the movable middle structural layer is provided with a second window corresponding the first window, the window is provided with a first movable structure, the movable structure with the following suspension forming the movable electrode gap, the movable structure is provided with an upper middle anchor, the upper anchor and the anchor below the center of the corresponding bond connection; ~

[0012]可动结构层一侧设有一组pad点,每个pad点分别设有电极引线,中间的电极引线与下面电极结构层中的悬臂梁对应键合连接,两侧的电极引线分别与下面电极结构层中的折叠固支梁对应键合连接。 [0012] The layer structure of the movable side pad is provided with a set of points, each point pad electrode leads are provided, the intermediate electrode leads and the electrode structure of the cantilever layer corresponds to the following bonding connection, both sides of the electrode leads, respectively folded structure of beams fixed electrode layer under a corresponding bonded connections.

[0013] d.与可动结构层键合的盖帽。 [0013] d. The movable structure and the cap layer is bonded.

[0014]在上述技术方案的基础上,可以有以下进一步的技术方案:衬底中浅腔底面设有与悬浮电极对应配合的抗过载防粘连的下凸点,悬浮电极上设有与可动结构对应配合的抗过载防粘连的上凸点。 [0014] Based on the foregoing technical solution, the following can have a further technical solution: a substrate in a bottom surface of the shallow cavity is provided with an anti-overload under bump antiblocking cooperating with corresponding to the floating electrode, it is provided on the floating electrode and the movable structure corresponds to an anti-overload with the anti-adhesion bumps.

[0015]本发明中的可动结构即敏感质量块,为非对称质量块,当整体结构受到Z轴向的加速度时,质量块会随加速度摆动从而引起左右电容差动变化,通过固定电极输出信号,从而检测到Z轴向的加速度。 [0015] In the present invention, the movable structure is sensitive to mass, mass asymmetric, when the overall structure is subjected to acceleration along the Z axis, with the acceleration of the mass will swing about thereby causing a differential capacitance change, through the fixed electrode output signal, thereby detecting the acceleration in the Z-axis.

[0016]该低应力电容式MEMS加速度计结构采用单晶硅为主材料。 [0016] The low stress capacitive accelerometer MEMS structure using silicon-based materials. 该低应力电容式MEMS力口速度计从工艺制造上可分为三层:衬底层、结构层和盖帽层。 The low stress capacitive MEMS force from the port speedometer manufacturing process can be divided into three layers: a substrate layer, structural layer and capping layer. 敏感质量块、悬臂梁属于结构层;双端固支的电极结构与其下方整体硅形成衬底层;盖帽层构成碰撞顶面。 Sensing masses, belonging to the cantilever structure layer; electrode structure and the underlying bulk silicon clamped-clamped forming a substrate layer; capping layer top surface of collision.

[0017]该低应力电容式MEMS加速度计结构的制造工艺为:首先刻蚀衬底层形成电极结构活动浅腔,通过硅硅键合将电极结构层与衬底层连接于一起;接着通过刻蚀形成敏感结构活动浅腔以及双端固支悬浮电极结构;随后将敏感结构层通过硅硅键合与电极结构层键合于一起,利用光刻及刻蚀形成敏感结构;采用共晶键合完成结构层和盖帽层的圆片封装;刻蚀盖帽层正面,露出电极。 [0017] The process for producing a low stress capacitive MEMS accelerometer structure: firstly etching the substrate layer forming an electrode structure activity shallow cavity, the silicon-bonded silicon layer and the electrode structure connected to the substrate layer together; then formed by etching activity sensitive structure and the shallow cavity double clamped suspended electrode structure; then bonded together to form a sensitive structure by photolithography and etching of silicon-sensitive layer structure of silicon-bonded structure of the electrode layer bond; eutectic bond complete structure wafer encapsulation layer and the cap layer; etching the front side cap layer to expose an electrode.

[0018]本发明与现有的电容式MEMS加速度计结构相比具有如下优点: [0018] The present invention and the conventional capacitive MEMS accelerometer structure has the following advantages as compared to:

[0019] (1)现有技术中由于外界应力、温度变化所带来的衬底形变会传递到固定电极上, 从而引起固定电极的形变,使得两边电容不对称,造成传感器输出漂移。 [0019] (1) the prior art due to external stresses caused by temperature changes in the deformation of the substrate will be transmitted to the fixed electrode, causing deformation of the fixed electrode, so that both sides of an asymmetric capacitor, causing the sensor output drift. 本发明将以往的固定电极结构改变为双端固支悬浮电极结构,该悬浮电极结构使得加速度计在环境温度变化时,热应力对电极结构的影响大幅下降,使得电极结构在全温范围内几乎无形变,从而保证了器件在全温范围内左右两边电容的对称性,提高了传感器全温性能。 The present invention will change the conventional fixed electrode structure is a double clamped suspended electrode structure, the floating electrode structure such that the accelerometer when the ambient temperature changes, thermal stress on the electrode structure of a substantial decline, so that the electrode structure is almost in the whole temperature range undeformed, the left and right sides of the device to ensure the capacitance in the whole temperature range symmetry, the full sensor temperature performance improved.

[0020] (2)本发明通过改变器件内部电极结构,降低了热应力对电极结构的影响,避免了更改外部管壳与芯片的封装工艺,且由于利用SOI硅片作为电极结构圆片,保证了固支悬浮电极结构的一致性以及重复性;加工工艺比较简单,全部利用公知的MEMS工艺技术加工,适合大批量生产。 [0020] (2) according to the present invention, by changing the internal structure of the device electrodes, reducing the thermal stress on the electrode structure, the outer envelope to avoid the change of the chip packaging technology, and since the SOI silicon wafer as an electrode structure, to ensure the suspension clamped consistency and reproducibility of the electrode structure; relatively simple process, all using known MEMS processing technology suitable for mass production.

[0021] (3)本发明将支撑电极结构的固支梁设计为折叠形式,该折叠形式的固支梁结构可以增加热传导距离,进一步降低热应力对电极结构的影响。 [0021] (3) of the present invention, the support beams fixed at the electrode structure is designed in the form of folding, the folded form of the fixed support beam structure can increase the heat transfer distance, to further reduce the thermal stress on the electrode structure.

附图说明 BRIEF DESCRIPTION

[0022]图1为为本发明低应力电容式MEMS加速度计结构剖面图; [0022] FIG. 1 is a low-stress capacitive accelerometer MEMS-sectional view of the structure of the present invention;

[0023]图2为图1的AA剖视图; [0023] FIG. 2 is a cross-sectional view AA of Figure 1;

[0024]图3为图1的BB剖视图。 [0024] FIG. 3 is a cross-sectional view BB of FIG. 1.

具体实施方式 Detailed ways

[0025]下面结合附图对本发明的结构做进一步的说明。 [0025] The following figures further illustrate the structure of the present invention binds.

[0026] 低应力电容式MEMS加速度计结构 [0026] Low stress capacitive MEMS accelerometer structure

[0027]参照图1、图2、图3,本发明的一种加速度计结构共分4层,分别为衬底层13、电极结构层1、可动结构层15以及盖帽14,上述衬底层、电极结构层、可动结构层及盖帽均为硅材料制成。 [0027] Referring to FIG 1, FIG 2, FIG 3 An accelerometer structure consists of four layers according to the present invention, the substrate layer 13, respectively, a layer electrode structure, the movable structure 15 and the cap layer 14, the above-mentioned substrate layer, layer electrode structure, the movable structure and the cap layer are made of silicon material.

[0028]以下分别进行描述: [0028] The following are described:

[0029] a •衬底13,衬底13中部设有浅腔2以及衬底锚点5,衬底13中浅腔2底面设有一组与悬浮电极4对应配合的抗过载防粘连的下凸点12,衬底上面设有二氧化硅氧化层9; [0029] a • substrate 13, the substrate 13 is provided with a shallow central chamber 2 and a substrate anchor 5, the substrate 13 in the bottom surface of the shallow cavity 2 is provided with a set of cooperating with the floating electrode 4 corresponding to an anti-adhesion preventing overload downward convex point 12, above the substrate 9 is provided with an oxide layer of silica;

[0030] b.与衬底13键合的电极结构层1,电极结构层1中部设有与浅腔2对应的第一窗口la,第一窗口la中部设有中心锚点16,它用悬臂梁17连接于电极结构层1上,中心锚点16与衬底锚点5对应键合连接; [0030] b. Electrode structure layer 13 bonded to a substrate, an electrode structure of the middle layer 2 is provided with a window corresponding to a first shallow chamber la, la is provided with a first central window center anchor 16, which cantilever beam structure 17 connected to the electrode layer 1, the center of the anchor 16 and the substrate 5 corresponding to the bond connecting the anchor;

[0031] 第一窗口la中心锚点I6的两侧对称设有至少一个悬浮电极4,悬浮电极4与下面的浅腔2对应配合,悬浮电极4的上表面低于电极结构层1上表面一段距离,该距离即为悬浮电极4向上活动间隙11,悬浮电极4两侧分别设有折叠固支梁7与电极结构层1连接,悬浮电极4上设有与可动结构1〇对应配合的抗过载防粘连的上凸点8; [0031] The first window center la I6 bilaterally symmetrical anchor is provided with at least one floating electrode 4, and the floating electrode 4 below the shallow cavity 2 corresponding to mating, the upper surface of the floating electrode 4 is lower than the upper electrode structure of a surface layer section distance which the floating electrode 4 is the active gap 11 upward, the floating electrode 4 are provided on both sides of the movable structure with a corresponding anti-folding 1〇 clamped beam 7 is connected to an electrode structure layer, the floating electrode 4 is provided overload preventing adhesion on the bumps 8;

[0032]中心锚点16两侧对称分布的悬浮电极可以是1个也可以是2个,甚至更多,附图仅为示意图,不对悬浮电极结构做数量的限制; [0032] The center anchor 16 is symmetrically suspended on both sides of the electrode may be one or may be two, or even more, only schematic drawings, the floating electrode structures do not limit the number;

[0033] c.与电极结构层1键合的可动结构层15)可动结构层15中部设有与第一窗口la相应的第二窗口15a,第二窗口15a中设有可动结构10,即敏感质量块,可动结构1〇与下面的悬浮电极4形成活动间隙11,可动结构10中部设有两个凹形开口,凹形开口之间形成上层锚点18,上层锚点18与下面的中心锚点16对应键合连接; [0033] c. The movable structural layer and an electrode layer 1 bonded structure 15) of the movable structure 15 is provided with the middle layer corresponding to the first window la second window 15a, a second window 15a is provided in the movable structure 10 , i.e., sensitive mass, below the movable structure 1〇 suspension gap 11 forming the movable electrode 4, the movable structure 10 is provided with two concave central opening, the upper opening of the anchor 18 is formed between the concave upper anchor 18 below the center anchor 16 in the corresponding key is connected;

[0034]可动结构层15—侧设有一组pad点3,每个pad点3分别设有电极引线6,在可动结构层15上制出与pad点3及电极引线6形状相适的通槽20,通槽20围成的区域即为pad点3及电极引线6; [0034] The movable-side structure layer 15 is provided with a group of pad 3 points, 3 points for each pad electrode leads 6 are provided, a system of the movable structure 6 and the shape of the pad layer 15 and the electrode lead 3 points with appropriate 20, through-slot 20 through slot region surrounded by 3 points is the pad 6 and the electrode lead;

[0035]结合图2及图3,中间的电极引线6与下面电极结构层1中的悬臂梁17对应键合连接,两侧的电极引线6分别与下面电极结构层1中的折叠固支梁7对应键合连接; [0035] in conjunction with FIGS. 2 and 3, in the middle of the electrode lead 6 and the electrode 1 below the cantilever structure layer 17 corresponding to bonding connection, both sides of the electrode lead 6 and the electrode structures are below a layer of beams fixed folding 7 connected to the corresponding bonding;

[0036] d.与可动结构层15键合的盖帽14,它是常规结构。 [0036] d. The movable and the cap layer 15 bonded structure 14, which is a conventional structure.

[0037]以下结合附图1描述本发明实施例的低应力电容式MEMS加速度计的优点。 [0037] The following advantages of a low stress DRAWINGS capacitive MEMS accelerometer of the present invention described embodiments meter. 具体而言,当环境温度、封装及传感器安装引起的应力变化时,对于现有Z轴向电容式MEMS加速度计,上述引起的应力会使得衬底13发生形变,由于电极结构4直接与衬底13接触,因此带动电极结构4同样发生形变,从而导致加速度计左右电容不对称,造成加速度计输出漂移。 Specifically, when the stress changes due to ambient temperature, and the sensor package is mounted, the Z axis for conventional capacitive type MEMS accelerometer, so that the stress caused by the substrate 13 will be deformed, since the electrode structure and the substrate 4 is directly the contact 13, thus driving the same electrode structure 4 is deformed, thereby causing the capacitance asymmetry about the accelerometer, the accelerometer output drift caused. 而对于本发明实施例的具有悬浮电极的加速度计结构,当上述所述的应力导致衬底13发生形变时,由于电极结构4双端固支悬浮于衬底13之上,因此,衬底13在形变时不会导致电极结构4发生形变,保证了加速度计左右电容的对称性,从而使环境温度变化导致的应力以及封装、安装产生的应力仅反映到衬底13的变形上,降低了加速度计电极结构4受环境应力的影响,提高了加速度计的综合精度及环境适应性。 For accelerometer suspension structure having an electrode to an embodiment of the present invention, when the stress results in the above-described substrate 13 is deformed, since the electrode structure 4 is double clamped suspended over the substrate 13, therefore, the substrate 13 does not result in the deformation of the strain generating electrode structure 4, to ensure the symmetry of the accelerometer about the capacitance, thereby leading to changes in ambient temperature and package stress, the stress generated by the installation is reflected only to deformation of the substrate 13, the acceleration is reduced 4 meter electrode structure affected by environmental stress, and improve the overall accuracy of the environmental adaptability of the accelerometer.

[0038] 现有技术中利用下极板形成差分电容的Z轴向电容式MEMS加速度计可动结构有多种形式,包括单锚点、多个锚点等。 Differential capacitance is formed [0038] using the prior art Z-axis of the lower plate of the capacitive MEMS accelerometer movable structure forms, including single anchor point, a plurality of anchor points and the like. 为了说明本发明的优点,仅对其中的一种可动结构画出示意图,但本发明中提出的双端固支悬浮电极结构对利用下极板形成差分电容的扭摆式Z 轴向加速度计均适用。 To illustrate the advantages of the invention, only one of which shown a schematic view of the movable structure, but double clamped suspended electrode structure of the present invention proposed the use of the torsion plate of the formula Z-axis accelerometer formed in the differential capacitance are Be applicable.

Claims (1)

1. 一种加速度计,其特征在于包括: a. 衬底(13),衬底(13)中部设有浅腔⑵以及衬底锚点⑸; b. 与衬底(13)键合的电极结构层(1),电极结构层(1)中部设有与浅腔(2)对应的第一窗口(la),第一窗口(la)中部设有中心锚点(16),它用悬臂梁(17)连接于电极结构层(1) 上,中心锚点(16)与衬底锚点(5)对应键合连接; 第一窗口(la)中心锚点(16)的两侧对称设有至少一个悬浮电极(4),悬浮电极(4)与下面的浅腔(2)对应配合,悬浮电极(4)的上表面低于电极结构层(1)上表面一段距离,该距离即为悬浮电极(4)向上活动间隙(11),悬浮电极(4)两侧分别设有折叠固支梁(7)与电极结构层(1)连接; c. 与电极结构层(1)键合的可动结构层(15),可动结构层(15)中部设有与第一窗口(la)相应的第二窗口(15a),第二窗口(15a)中设有可动结构(10),可动结构(10)与下面的悬浮电极 An accelerometer, comprising:.. A substrate (13), the substrate (13) has a central shallow cavity and a substrate anchor ⑵ ⑸; b electrodes bonded with the substrate (13) structure layer (1), an electrode structure layer (1) is provided with a central shallow chamber (2) corresponding to a first window (La), a first window (La) provided with a central middle anchor (16) which cantilever with (17) connected to the electrode layer structure (1), the center of the anchor (16) and the substrate anchor (5) bonded to the corresponding connector; sides of the first window (La) center anchor (16) is provided symmetrically at least one floating electrode (4), the floating electrode (4) and the underlying shallow cavity (2) with the corresponding upper surface of the floating electrode (4) is lower than the surface of the layer structure of the electrode section (1) by a distance that is suspended electrode (4) upwardly activity gap (11), the floating electrode (4) provided with folding sides were clamped beam (7) is connected to the layer electrode structure (1); C layer electrode structure (1) may be bonded. movable structural layer (15), the movable structural layer (15) is provided with a first central window (La) a respective second window (15a), a second window (15a) is provided in the movable structure (10), may be (10) movable with the underlying structure of the floating electrode (4)形成活动间隙(11),可动结构(10)中部设有上层锚点(18),上层锚点(18)与下面的中心锚点(16)对应键合连接; 可动结构层(I5)—侧设有一组pad点(3),每个pad点C3)分别设有电极引线(6),中间的电极引线(6)与下面电极结构层(1)中的悬臂梁(17)对应键合连接,两侧的电极引线(6)分别与下面电极结构层(1)中的折叠固支梁(7)对应键合连接; d. 与可动结构层(15)键合的盖帽(14); e •衬底(I3)中浅腔(2)底面设有与悬浮电极(4)对应配合的抗过载防粘连的下凸点(12),悬浮电极(4)上设有与可动结构(10)对应配合的抗过载防粘连的上凸点(8)。 (4) forming the movable gap (11), the movable structure (10) is provided with an upper middle anchor (18), an upper anchor (18) below the center of the anchor (16) connected to the corresponding bonding; a movable structural layer (I5) - side pad is provided with a set of points (3), each pad point C3) are respectively provided with electrode leads (6), the intermediate electrode lead (6) layer electrode structure (1) below the cantilever (17 ) corresponding to the bonding connection, both sides of the electrode lead (6) respectively, the following layer electrode structure (1 clamped folding) of the beam (7) connected to the corresponding bond;. d of the movable structural layer (15) bonded the cap (14); e • a substrate (I3) in a shallow cavity (2) is provided with a bottom surface of the floating electrode (4) corresponding to an anti-adhesion preventing overload under-bump (12) is fitted, is provided on the floating electrode (4) and the movable structure (10) corresponding to an anti-overload with the anti-adhesion bumps (8).
CN201510661916.6A 2015-10-15 2015-10-15 One of an acceleration meter CN105182005B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510661916.6A CN105182005B (en) 2015-10-15 2015-10-15 One of an acceleration meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510661916.6A CN105182005B (en) 2015-10-15 2015-10-15 One of an acceleration meter

Publications (2)

Publication Number Publication Date
CN105182005A CN105182005A (en) 2015-12-23
CN105182005B true CN105182005B (en) 2018-02-27

Family

ID=54904222

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510661916.6A CN105182005B (en) 2015-10-15 2015-10-15 One of an acceleration meter

Country Status (1)

Country Link
CN (1) CN105182005B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106199070A (en) * 2016-06-24 2016-12-07 东南大学 Single anchor point support type silicon micro-machined resonant accelerometer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1217470A (en) * 1997-11-11 1999-05-26 李韫言 Double-electrode monocrystal silicon capacitance acceleration sensor and mfg. method therefor
CN1605871A (en) * 2004-10-18 2005-04-13 北京大学 Comb capacitance type Z axis accelerometer and preparation method thereof
CN101786593A (en) * 2010-01-18 2010-07-28 北京大学 Processing method of differential type high-precision accelerometer
CN102768290A (en) * 2012-05-31 2012-11-07 中国航天科技集团公司第九研究院第七七二研究所 MEMS (micro-electrochemical systems) accelerometer and production method thereof
CN102798734A (en) * 2011-05-24 2012-11-28 中国科学院上海微系统与信息技术研究所 Micro-electromechanical system (MEMS) triaxial accelerometer and manufacturing method thereof
CN103472260A (en) * 2013-08-15 2013-12-25 北京时代民芯科技有限公司 MEMS cross beam capacitor accelerometer and manufacture method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3331648B2 (en) * 1992-12-25 2002-10-07 株式会社デンソー Semiconductor acceleration sensor
JP3440480B2 (en) * 1993-01-07 2003-08-25 井関農機株式会社 Sorting-style adjustment device of the threshing-style election system
JP3325133B2 (en) * 1994-09-28 2002-09-17 正喜 江刺 Method of manufacturing a capacitance type acceleration sensor
JPH11258265A (en) * 1998-03-16 1999-09-24 Akebono Brake Ind Co Ltd Semiconductor accelerometer and its manufacture
US7578189B1 (en) * 2006-05-10 2009-08-25 Qualtre, Inc. Three-axis accelerometers
FR2924813B1 (en) * 2007-12-11 2011-06-24 Memscap pendulous accelerometer and method of manufacture thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1217470A (en) * 1997-11-11 1999-05-26 李韫言 Double-electrode monocrystal silicon capacitance acceleration sensor and mfg. method therefor
CN1605871A (en) * 2004-10-18 2005-04-13 北京大学 Comb capacitance type Z axis accelerometer and preparation method thereof
CN101786593A (en) * 2010-01-18 2010-07-28 北京大学 Processing method of differential type high-precision accelerometer
CN102798734A (en) * 2011-05-24 2012-11-28 中国科学院上海微系统与信息技术研究所 Micro-electromechanical system (MEMS) triaxial accelerometer and manufacturing method thereof
CN102768290A (en) * 2012-05-31 2012-11-07 中国航天科技集团公司第九研究院第七七二研究所 MEMS (micro-electrochemical systems) accelerometer and production method thereof
CN103472260A (en) * 2013-08-15 2013-12-25 北京时代民芯科技有限公司 MEMS cross beam capacitor accelerometer and manufacture method thereof

Also Published As

Publication number Publication date
CN105182005A (en) 2015-12-23

Similar Documents

Publication Publication Date Title
US8739626B2 (en) Micromachined inertial sensor devices
US7578189B1 (en) Three-axis accelerometers
US7934423B2 (en) Vertically integrated 3-axis MEMS angular accelerometer with integrated electronics
EP2339357B1 (en) Method for fabricating a sensor
EP2616772B1 (en) Micromachined monolithic 3-axis gyroscope with single drive
CN104094084B (en) Portion having a separate z-axis microelectromechanical system (MEMS) mass
EP2328833B1 (en) Mems sensor with movable z-axis sensing element
KR101700124B1 (en) Micromachined inertial sensor devices
US20080168838A1 (en) MEMS Sensor with Cap Electrode
JP5638598B2 (en) Vertically integrated MEMS acceleration transducer
JP4719272B2 (en) Three-axis accelerometer
US8047075B2 (en) Vertically integrated 3-axis MEMS accelerometer with electronics
US6910379B2 (en) Out-of-plane compensation suspension for an accelerometer
US9046546B2 (en) Sensor device and related fabrication methods
US8220330B2 (en) Vertically integrated MEMS sensor device with multi-stimulus sensing
JPH1151967A (en) Multi-axis acceleration sensor and its manufacture
KR20060033779A (en) Single proof mass, 3 axis mems transducer
US8661900B2 (en) Z-axis microelectromechanical device with improved stopper structure
CN100492016C (en) Micro mechanical capacitance type acceleration transducer, and fabricating method
EP1395835A1 (en) Accelerometer strain relief structure
JP5825899B2 (en) MEMS dynamic pressure sensor with special application to microphone manufacturing
US9448251B2 (en) Integrated inertial sensor and pressure sensor, and forming method therefor
CN1605871A (en) Comb capacitance type Z axis accelerometer and preparation method thereof
US6662659B2 (en) Acceleration sensor
CN101858929B (en) Capacitive micro-acceleration sensor with symmetrically combined elastic beam structure and production method thereof

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
GR01