CN105120750B - 用于校正光学信号的方法和装置 - Google Patents

用于校正光学信号的方法和装置 Download PDF

Info

Publication number
CN105120750B
CN105120750B CN201480016308.3A CN201480016308A CN105120750B CN 105120750 B CN105120750 B CN 105120750B CN 201480016308 A CN201480016308 A CN 201480016308A CN 105120750 B CN105120750 B CN 105120750B
Authority
CN
China
Prior art keywords
tissue
light
implant
optical signalling
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480016308.3A
Other languages
English (en)
Other versions
CN105120750A (zh
Inventor
G·J·肯兹
W·麦克米伦
N·维希涅夫斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Midrex Technologies Inc
Original Assignee
Midrex Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Midrex Technologies Inc filed Critical Midrex Technologies Inc
Priority to CN201711281206.6A priority Critical patent/CN108013881B/zh
Priority to CN202110577806.7A priority patent/CN113274007A/zh
Publication of CN105120750A publication Critical patent/CN105120750A/zh
Application granted granted Critical
Publication of CN105120750B publication Critical patent/CN105120750B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/1459Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters invasive, e.g. introduced into the body by a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal

Abstract

一种光学装置被用于监测埋置在哺乳动物的组织中(例如,皮肤下)的植入物。该植入物接收来自该光学装置的激发光,并发射由该光学装置所检测的光,包括分析物相关光学信号。由于水合作用、血液灌注和氧合作用中的变化,组织的散射和吸收特性随着时间而变化。该光学装置布置有光源、滤光片和检测器,以发送激发波长范围内的激发光并测量检测波长内的发射光。组织中光散射和吸收的变化(例如漫反射率)被监测。该光源、滤光片和检测器也可以用于监测组织中的自身荧光以校正自身荧光背景。

Description

用于校正光学信号的方法和装置
相关申请交叉引用
本申请要求于2013年3月14日提交的、题为“Method and Device for CorrectingOptical Signals”的美国临时专利申请61/785,087的权益,该申请在此通过引用整体并入。
背景技术
本发明涉及用于监测植入物的方法和装置,并具体地涉及用于校正从植入物发射的发光信号的方法和装置。
在某些个体中,对分析物(例如葡萄糖、乳酸盐或氧)水平的监测对于他们的健康是很重要的。高水平或低水平的葡萄糖,或其他分析物,可能有不利影响或预示特定的健康状态。葡萄糖的监测对于患有糖尿病的个体特别重要,他们中的一个子集必须确定何时需要胰岛素以降低他们体内的葡萄糖水平或者何时需要额外的葡萄糖以提高他们体内的葡萄糖水平。
被许多患有糖尿病的个体用来亲自监测他们的血糖水平的常规技术包括定期抽取血液,将该血液施加到测试条,并使用量热、电化学或光度检测法来确定血糖水平。这种技术不允许连续或自动监测体内的葡萄糖水平,而通常必须在周期性基础上手动执行。不幸的是,葡萄糖水平的检查的一致性在个体之间变化很大。许多糖尿病患者发现定期测试不方便,并且他们有时会忘记测试他们的葡萄糖水平或者没有时间进行适当的测试。此外,一些个体希望避免与测试相关联的疼痛。未受监控的葡萄糖可能导致高血糖或低血糖发作。监测个体分析物水平的植入式传感器将允许个体更容易地监测他们的葡萄糖或其他分析物水平。
各种装置已经被开发用于监测血流中或各种组织的间质液中的分析物(例如,葡萄糖)。许多这些装置使用被插入到患者血管中或皮下的传感器。因为高散射存在下的低荧光水平,这些植入式传感器通常难以光学地读取或监测,前述高散射归因于皮肤状况的动态变化(例如,血液水平和水合作用)。皮肤是高度散射的,并且该散射可以主导光传播。散射是由组织中折射率变化所引起的,并且,皮肤中的主要散射组分归于脂质、胶原蛋白和其他生物组分。主要的吸收是由血液、黑色素、水和其他组分所引起的。
一个装置(公开于Yu的已公布美国专利申请20090221891中),包括葡萄糖分析部件。当传感器被植入体内时,通过外部光学器件经皮读出光学信号。荧光计,分别对供体发色团和受体发色团测量激发光强度、环境光强度以及发光和环境光的复合强度。通过握持荧光计接近皮肤并对准传感器来进行测量。提供的最终输出是来自这两个发色团的发光强度之间的归一化比值,该比值可以使用校准数据被转换为分析物浓度。校准曲线通过测量响应对葡萄糖浓度而被经验性地建立。尽管该装置提供了一些光学信号校正,但获得准确读数可能仍然是困难的,这归因于导致从植入物发射的光的光学散射和吸收的动态的皮肤变化。
Merritt的美国专利申请20110028806公开了另一种用于测量血糖水平的方法和系统。一组光电二极管检测从一个或多个发射器(例如多个LED)发射到患者皮肤中的光能量的发光和反射。结合到葡萄糖的小分子代谢物报道子(reporter)(SMMRs)被引入角质层和表皮的组织以提供更易于检测的发光。使用在接近激发波长处进行的反射强度测量来校准测试结果。此外,该方法包括测量第二发光和反射强度,以归一化来自第一组测量的数据。第一发光和反射强度测量在使用SMMR处理的部位处进行。第二发光和反射强度测量在未处理的背景部位处进行。然后使用背景测量通过波长归一化来校正背景组织发光和吸收。尽管该方法对于背景发光和反射提供了一些光信号校正,但是从表皮中的葡萄糖结合分子获得准确和/或一致的葡萄糖读数可能仍然是困难的。
仍然需要这样一种小型的、紧凑的装置,该装置可以准确和一致地监测植入式传感器,并提供信号给分析者,而基本上不限制患者的运动和活动。当分析物水平处于或接近阈值水平时,分析物的连续和/或自动监测可以对患者提供警告。例如,如果葡萄糖是分析物,那么该监测装置可以被配置成警告患者当前正在发生或即将发生高血糖或低血糖。那么患者就可以采取适当的行动。
发明内容
根据一个方面,提供一种方法,用于校正从植入物发射的至少一个分析物相关光学信号。该植入物通常被埋置在哺乳动物身体的组织中。该植入物能够响应于激发波长范围内的激发光,发射处于发射波长范围内的分析物相关光学信号。该方法包括发送激发波长范围内的第一激发光穿过组织到植入物,并且响应于该第一激发光测量从组织发射的发射波长范围内的第一光学信号。该方法还包括发送处于发射波长范围内的第二激发光到组织中,并且响应于该第二激发光测量从组织发射的发射波长范围内的第二光学信号。根据所测量的信号计算至少一个校正的信号值。
根据另一个方面,提供一种光学检测装置,用于监测埋置在哺乳动物身体的组织中的植入物。该植入物能够响应于激发波长范围内的激发光,发射处于发射波长范围内的至少一个分析物相关光学信号。该装置包括第一光源,该第一光源被布置成发送激发波长范围内的第一激发光穿过组织到植入物。第二光源,被布置成发送处于发射波长范围内的第二激发光到组织中。至少一个检测器,被布置成响应于第一激发光测量从组织发射的发射波长范围内的第一光学信号,以及被布置成响应于第二激发光测量从组织发射的发射波长范围内的第二光学信号。
根据另一个方面,提供一种方法,用于校正至少一个从埋置在哺乳动物身体的组织中的植入物发射的分析物相关光学信号。该植入物能够响应于激发波长范围内的激发光,发射处于发射波长范围内的分析物相关光学信号。该方法包括发送激发波长范围内的第一激发光穿过组织到植入物,并且响应于该第一激发光测量从组织发射的发射波长范围内的第一光学信号。该方法还包括发送激发波长范围内的第二激发光到组织中,并且响应于该第二激发光测量从组织发射的发射波长范围内的第二光学信号。第二激发光和响应于第二激发光发射的光形成光路,该光路从植入物被横向间隔开足够的距离,以避免来自植入物报道子(例如,发光、发光、生物发光或磷光报道子)的显著贡献。根据所测量的光学信号计算至少一个校正的信号值。
根据另一个方面,提供一种光学检测装置,用于监测埋置在哺乳动物身体的组织中的植入物。该植入物能够响应于激发波长范围内的激发光,发射处于发射波长范围内的至少一个分析物相关光学信号。该装置包括第一光源,该第一光源被布置成发送激发波长范围内的第一激发光穿过组织到植入物。第一检测器,被布置成响应于第一激发光测量从组织发射的发射波长范围内的第一光学信号。第二光源,被布置成发送激发波长范围内的第二激发光到组织中。第二检测器,被布置成响应于第二激发光测量从组织发射的发射波长范围内的第二光。第二光源和第二检测器被相对于彼此放置,使得第二激发光和响应于该第二激发光发射的光形成光路,该光路从植入物被横向间隔开足够的距离,以避免来自植入物报道子的显著贡献。
附图说明
本发明的前述方面和优点通过阅读下面的详细描述并通过参考以下附图将变得更好理解,其中:
图1示出根据本发明一个实施例的用于监测植入物的光学检测装置的示意性侧视图。
图2示出根据本发明另一个实施例的用于监测植入物的光学检测装置的示意性侧视图。
图3示出根据本发明另一个实施例的光学检测装置的一些方面的示意性侧视图。
图4示出根据本发明另一个实施例的光学检测装置的示意性俯视图。
图5示出图4的装置的示意性剖面图。
图6示出根据本发明一些实施例的光学检测装置的示意性侧视图。
图7示出根据本发明一些实施例的光学检测装置的示意性俯视图。
图8示出图7的装置的示意性剖面图。
图9示出根据本发明一些实施例的光学检测装置的示意性俯视图。
图10示出图9的装置的示意性剖面图。
图11示出根据本发明一些实施例的光学检测装置的示意性俯视图。
图12示出图11的装置的示意性分解图。
具体实施方式
在下面的描述中,应当理解,结构之间所有描述的连接可以是直接操作性连接或者是通过中间结构的间接操作性连接。一组要素包括一个或多个要素。对要素的任何描述应理解为是指至少一个要素。多个要素包括至少两个要素。除非另有要求,任何描述的方法步骤不需要一定以特定的所示出顺序执行。源自第二要素的第一要素(例如数据)包括等于该第二要素的第一要素,以及通过处理第二要素和任选的其他数据所生成的第一要素。根据参数做出确定或决策包括根据该参数和可选的根据其他数据做出确定或决策。除非另有规定,一些数量/数据的指标可以是该数量/数据本身,或者不同于该数量/数据本身的指标。本发明的一些实施例中描述的计算机程序可以是独立的软件实体或其他计算机程序的子实体(例如,子例程,代码对象)。计算机可读介质包括非暂时性介质如磁的、光学的和半导体的存储介质(例如硬盘驱动器,光盘,闪存,DRAM),以及通信链路,例如导电电缆和光纤链路。根据一些实施例,本发明提供(尤其是)计算机系统,该计算机系统包括被编程以执行此处描述的方法的硬件(例如,一个或多个处理器和相关的存储器),以及编码指令以执行此处描述的方法的计算机可读介质。
以下的说明以举例的方式而未必是以限制的方式阐明了本发明的实施例。
图1示出根据本发明第一实施例的光学检测装置10的示意性侧视图,该光学检测装置10用于监测植入式传感器或植入物12。植入物12被埋置在哺乳动物身体的组织中(在各种实施例中,其可以是组织的一部分,该部分附接于或不附接于身体的其余部分)。植入物12通常被埋置在皮肤14的表面之下。植入物12被埋置在皮肤14的表面之下的第一深度处,该第一深度优选为足够的深度,以将植入物安置在皮下组织中(例如,皮肤14的表面之下1至5mm范围内)。在一些实施例中,植入物12被埋置在处于皮肤14的表面之下大于或等于2mm的深度处的组织中,并且在其他实施例中,植入物12被埋置在处于皮肤表面之下大于或等于4mm的深度处的组织中。
植入物12能够响应于激发波长范围内的激发光,发射至少一个发射波长范围内的分析物相关光学信号。分析物可以包括,例如,个体体内的葡萄糖或其他分析物。合适的光学信号包括,但不限于,发光、生物发光、磷光、自发光和漫反射信号。在优选的实施例中,植入物12包含一个或多个发光染料,该发光染料的光发射强度根据个体体内的目标分析物的量或存在而变化。
第一光源16被布置为从皮肤14的表面发送激发波长范围内的第一激发光到植入物12。第二光源18被布置为从皮肤14的表面发送第二激发光到组织15中。第二激发光优选处于分析物相关发光信号的发射波长范围内(例如,发射峰)。合适的光源包括,但不限于,激光,半导体激光,发光二极管(LED),有机LED。
至少一个检测器,并且更优选至少两个检测器20、22随光源16、18布置。第一检测器20被放置以响应于来自第一光源16的第一激发光来测量在皮肤14的表面处发射的发射波长范围内的第一光学信号(例如,光的强度)。检测器20还被布置成响应于第二激发光来测量从组织15发射的穿过皮肤14表面的发射波长范围内的第二光学信号。合适的检测器包括,但不限于,光电二极管或CCD。尽管对于一些实施例来说多个检测器是优选的,人们也可以使用单个通用检测器。检测器20、22优选经过滤(例如,二向色滤光片或其它合适的滤光片)以测量在相应波长范围内发射的光学信号。在这个例子中,对葡萄糖浓度敏感的合适发光染料是Alexa 647,Alexa 647响应于约600至650nm范围内(吸收峰647nm)的激发光(吸收),并且发射波长在约670至750nm范围内,具有约680nm的发射峰。
在装置10的操作中,针对漫反射和/或自身荧光校正从植入物12发射的分析物相关发光信号。光源16被激活以从皮肤14的表面发送激发波长范围内的第一激发光到植入物12。第一检测器20响应于该第一激发光在皮肤14的表面处测量从组织15发射的处于发射波长范围内的第一光学信号,正如由从光源16到植入物12到第一检测器20的第一光路24所表示的那样。光路24提供了初级的分析物相关光学信号。第二光源18被激活以从皮肤14的表面发送第二激发光到位于皮肤14的表面之下的组织15中的第二深度。第二激发光基本上处于分析物相关发光信号的发射波长范围内(例如,发射峰)。第一检测器20响应于第二激发光测量从组织15发射穿过皮肤14的表面的处于发射波长范围内的第二光学信号,正如由第二光路26所表示的那样。
第二光学信号可以用作参考信号,以针对组织15中光的漫反射或散射而校正初级的分析物相关光学信号。在一些实施例中,在皮肤14表面之下光路26延伸所达的第二深度可以基本上等于植入物12被埋置所处的第一深度(例如,在皮肤14表面之下1至5mm深度处的皮下组织中)。在一些实施例中,第二光学信号的光路26延伸到大于或等于皮肤14的表面之下2mm的深度,并且在其他实施例中,第二光学信号的光路26延伸到大于或等于皮肤的表面之下4mm的深度。
一个附加校正因子可以可选地通过激活第一光源16以从皮肤14的表面发送第三激发光到组织15中的第三深度来获得,该第三激发光处于激发波长范围内。在一些实施例中,第三深度可以不同于第一深度和第二深度,并且第三深度可以在皮肤14的表面之下1至5mm范围内。第二检测器22测量响应于第三激发光从组织15发射穿过皮肤14的表面的激发波长范围内的第三光学信号,如由第三光路28所表示的那样。根据所测量的光学信号计算至少一个校正的信号值。在一个例子中,来自植入物的初级分析物相关信号可以被校正为:
校正信号=S(LS1,D1)*C(LS2,D1)*C(LS1,D2) (1)
在上面的式子(1)中,项S(LS1,Dl)表示第一光学信号,第一光学信号是从第一光路24测量得到的初级的分析物相关光学信号,该第一光路24从第一光源16到植入物12到第一检测器20。项C(LS2,Dl)表示第二光学信号,第二光学信号是从第二光路26测量得到的校正因子信号,该第二光路26从第二光源18到第一检测器20。项C(LS1,D2)表示可选的第三光学信号,第三光学信号是从第三光路28测量得到的附加校正因子信号,该第三光路28从第一光源16到第二检测器22。
因此,从植入物12发射的初级的分析物相关光学信号可以针对分析物相关光学信号的发射波长范围内的漫反射或散射而被校正,以解决组织15中信号的光学散射或吸收。分析物相关光学信号可以可选地针对激发波长范围内的散射、反射或衰减而被校正,以解决皮肤属性中的动态变化。通过一个或多个参考信号来校正分析物相关信号的一个优点是:准确和/或一致的葡萄糖值可以从对发射自位于组织中相对较深处(例如在皮下区域中)的植入物的光进行的测量而被确定。从植入物12发射的光可能被植入物和皮肤14的表面之间的组织15强烈调整。除了针对激发光和背景或环境光的校正之外(如果需要的话),本发明的实施例提供了针对从组织15发射的光的调整而进行校正的手段。
另一个优点在于,用于校正因子(例如漫反射、自身荧光和/或背景光)的参考光学信号的测量是在几秒或更少时间内在与植入物12埋置的组织15相同区域中进行的,这样一来,在测量时间处,动态的皮肤或组织属性(该属性在身体不同区域中可能是变化的)对于校正信号与对于初级的分析物相关信号来说基本上是相同的。在对分析物相关信号、漫反射校正信号和/或自身荧光校正信号执行光学读取之前,可以进行暗读取以解决背景或环境光,并且该读取可以用来进一步校正信号,例如,通过背景减除。对校正因子的光学读取的优选顺序为背景减除、自身荧光校正和漫反射校正,尽管不需特定顺序。
在一些实施例中,分析物浓度(例如,葡萄糖水平)从校正的信号值而被确定。优选地,使用查找表或校准曲线根据校正的信号值来确定分析物浓度。查找表或校准曲线可以在包含于光学器件的微处理器中。在一些实施例中,微处理器被编程以存储所测量的信号值和/或计算校正的信号值。替代性地,这些功能可以在独立的处理器中或与该光学装置通信的外部计算机中执行。外部处理器或计算机接收表示所测量的光学信号的数据,并计算校正的信号值和分析物浓度。替代性地,可以提供多个处理器,例如,在与一个或多个外部处理器或计算机通信(无线地或通过电线)的光学装置中提供一个或多个处理器。
图2示出用于监测植入物12的光学检测装置30的另一个实施例。在这个实施例中,植入物12还能够响应于第二激发波长范围(该第二激发波长范围可以共享第一发射波长范围或与之重叠)内的激发光,发射第二发射波长范围内的至少一个分析物不相关光学信号。植入物12优选含有分析物不相关发光染料,该分析物不相关发光染料用于控制非分析物在报道子染料上的物理或化学作用(例如,光漂白或pH)。多种染料可以使用。该分析物不相关光学信号不受组织15中存在的分析物所调整并提供用于归一化、偏移校正或内部校准的数据。该分析物不相关信号可以补偿非分析物的影响,该影响是化学的或生理学的(例如,氧、pH、氧化还原条件)或光学的(例如,水、光吸收/散射化合物、血红蛋白)。替代性地,该分析物不相关信号可以由植入物12中的稳定参考染料所提供。合适的稳定参考材料包括,但不限于,镧系元素掺杂的晶体,镧系元素的纳米颗粒,量子点,螯合的镧系元素染料和金属(例如,金或银)纳米颗粒。稳定参考染料可以为其他信号提供参考信号(例如,用于确定光漂白)。
第二实施例不同于上面描述的第一实施例,在于装置30包括第三光源40用于发送激发光穿过皮肤14的表面到组织15中。在装置30的操作中,使用三个参考信号来校正从植入物12发射的分析物相关发光信号。第一光源32被激活以发送第一激发波长范围内的激发光,从皮肤14的表面,穿过组织15,到植入物12。第一检测器34响应于第一激发光在皮肤14的表面处测量从组织15发射的第一发射波长范围内的第一光学信号,正如由第一光路42所表示的,该第一光路42从第一光源32到植入物12且到第一检测器34。该第一光学信号是初级分析物相关光学信号。
第二光源38被激活以从皮肤14的表面发送第二激发光到组织15中的第二深度。该第二激发光优选处于初级分析物相关光学信号的第一发射波长范围内(例如,发射峰)。第一检测器34响应于第二激发光在皮肤14的表面处测量从组织15发射的发射波长范围内的第二光学信号,正如由第二光路44所表示的那样。第二光学信号可以被用来校正植入物12和皮肤14的表面之间的组织15中光的漫反射或散射。在一些实施例中,第二光路44的深度可以基本上等于植入物12被埋置所处的第一深度(优选在皮肤14的表面之下1至5mm的皮下组织中)。在一些实施例中,第二光学信号的光路44延伸到大于或等于皮肤14的表面之下2mm的深度,并且在其他实施例中,第二光学信号的光路44延伸到大于或等于皮肤的表面之下4mm的深度。
接着,光源38被激活以从皮肤14的表面发送第二激发波长范围内的第三激发光到植入物12。第二检测器36响应于该第三激发光在皮肤14的表面处测量从组织15发射的第二发射波长范围内的第三光学信号,正如由第三光路46所表示的那样。在这个实施例中,第三光学信号是分析物不相关发光信号。接着,第三光源40被激活以从皮肤14的表面发送第四激发光到组织15中。第四激发光优选处于分析物不相关发光信号的发射波长范围内。检测器36响应于第四激发光在皮肤14的表面处测量从组织15发射的该发射波长范围内的第四光学信号,正如第四光路48所表示的那样。根据所测量的光学信号计算至少一个校正的信号值。在一个例子中,来自植入物12的初级分析物相关信号可以被校正为:
校正信号=S(LS1,D1)*C(LS2,D1)/[S(LS2,D2)*C(LS3,D2)] (2)
在上面的式子(2)中,项S(LS1,Dl)表示第一光学信号,第一光学信号是从第一光路42测量得到的初级分析物相关信号,该第一光路42从第一光源32到植入物12到第一检测器34。项C(LS2,Dl)表示第二光学信号,第二光学信号是从第二光路44测量得到的校正因子信号,该第二光路44从第二光源38到第一检测器34。项S(LS2,D2)表示第三光学信号,第三光学信号是从第三光路46测量得到的分析物不相关信号,该第三光路46从第二光源38延伸到植入物12到第二检测器36。项C(LS3,D2)表示第四光学信号,第四光学信号是从第四光路48测量得到的校正因子信号,该第四光路48从第三光源40延伸到第二检测器36。
在一些实施例中,其中利用两个植入物报道子(例如,发光染料),下面这样是可能的,即植入物报道子的激发(吸收)或发射波长范围可以共享或者重叠。例如,在图2的实施例中,第一染料(其提供分析物相关发光信号)的发射波长范围与第二染料(其提供分析物不相关发光信号)的激发波长范围共享或重叠。在另一个实施例中,第一染料和第二染料可以共享或重叠激发波长范围(这样就可以使用共同的光源),并发射不同发射波长范围内的光学信号。在另一个实施例中,第一染料和第二染料可以由不同激发波长范围内的光所激发并发射相同或重叠的一个或多个发射波长范围的光学信号。
图3示出相对于皮肤14的表面之下植入物12的第一深度D1的组织15中不同深度D2、D3、D4处的光学询问(interrogation)。检测器52、54、56的布置与光源50之间的间距S1、S2、S3确定相应光路的深度D2、D3、D4。在一些实施例中,对光学信号校正的读取在多个深度处执行,正如由相应的光路所表示的那样,并且,用于校正的参考光学信号的测量值被平均用于校正因子。在一些实施例中,参考光学信号的光路延伸到组织15中的深度D2,该深度D2大于植入物12被埋置所处的深度D1。参考光学信号的光路也可以延伸到组织15中的深度D3,使得该光路穿过植入物12。
当光学装置具有光源和检测器之间间距的多种可能组合时(如图3-9所示),实现方式可以更灵活,因为植入物12的深度可以是应用特定的。在一个实施例中,至少一个分析物不相关信号(其可以由稳定参考染料发射)被用于确定一条或多条光路和所得的一个或多个光学信号的适当深度,该一个或多个光学信号被测量以针对漫反射和/或自身荧光来校正分析物相关信号。优选地,使用查找表基于从植入物发射的分析物不相关发光信号的所测量的强度,来确定应当使用归一化光学信号的哪一个或多个可能的深度,或者更具体地,哪一对或多对光源/检测器配对。查找表可以是在包含于光学器件的微处理器中,或者是在独立的处理器中或与该光学装置通信的外部计算机中,其接收表示所测量的光学信号的数据(例如,在所选波长内测量的光的强度)。
在一些实施例中,处理器被编程为确定(例如,通过计算或查找表)被分配给一个或多个漫反射信号的测量结果的量或权重。被分配给所测量的漫反射信号的量或权重然后可以被用于校正或归一化一个或多个植入物报道子信号(例如,从植入物发射的初级分析物相关信号),以计算校正的信号值。该量或权重优选根据分析物不相关光学信号(例如,来自稳定参考染料)的强度而被确定。分析物不相关光学信号的强度可以随植入物在组织中的深度而变化。例如,如果植入物被埋置在皮肤的表面之下2mm的深度处的组织中,在组织中光衰减的量将可能小于如果该植入物被埋置在4mm深度处。比起从埋置于较大深度处的植入物发射的那些信号,从较浅的植入物发射的报道子光学信号可能需要较小的针对漫反射和/或自身荧光的校正因子。在一些实施例中,用于校正或归一化分析物相关光学信号的漫反射校正因子与深度成正比,并且,根据分析物不相关信号的测量结果来确定被分配给漫反射测量结果的量或权重。
图4示出光学装置60的另一个实施例,在该实施例中,光学装置60具有附加光源和检测器,光源和检测器之间的间距有多种可能的组合。光源和检测器被布置在适于放置在皮肤表面上的传感器贴片62中,下面更详细地描述光源和检测器。至少一个,并且更优选三个中心激发器光源64A、64B和64C被放置以通过贴片62中的中心通路66发送激发光。中心通路66可以包含一个或多个光波导。至少一个检测器,并且更优选由三个中心检测器68A、68B和68C组成的内环围绕中心通路66布置。同样优选的是,具有多个外环激发器光源和外环检测器(在这个例子中为25个外环光源和检测器)的外环70基本上呈环形图案布置,提供可能的光通道的多种排列。激发光源和检测带的组合是光通道。光学装置60的一个可能的实现方式的例子现在将参考图4-11和表1给出,该例子描述了12条光通道。
表1
如表1所示,光通道1-3用以测量来自植入物的三个报道子染料信号,包括分析物特异性信号、分析物不相关信号和稳定参考染料信号。光通道1用以测量来自植入物的分析物特异性发光信号,例如强度随葡萄糖水平变化的光信号。其他实施例可以包括来自植入物的多个分析物相关信号。光通道2用以测量分析物不相关对照,该分析物不相关对照针对报道子染料上的非分析物物理或化学作用(例如,光漂白,pH)。光通道3用以测量稳定参考染料(例如,镧系元素)。
如列于表1和示于图4,各光通道1-3包括一个相应配对,配对为三个中心激发器光源64A、64B和64C中的一个与三个中心检测器68A、68B和68C中对应的一个。图6示出了植入物报道子的光学检测的光路的示意性侧视图。激发光通过中心通路66(其优选包括单片波导)被发送,从皮肤14的表面,穿过组织15,并且到植入物12。中心检测器68A、68B和68C响应于激发光在皮肤14的表面处测量从组织15发射的相应发射波长范围内的光学信号。
用于分析物相关信号的合适染料是Alexa 647,染料Alexa 647响应于约600至650nm的激发波长范围(激发峰647nm)内的激发光,并且在约670至750nm的发射波长范围内,发射峰约为680nm。用于分析物不相关信号的合适染料是Alexa 750,染料Alexa 750响应于约700至760nm的激发波长范围(激发峰750nm)内的激发光,并且在约770至850nm的发射波长范围内,发射峰约为780nm。合适的稳定参考染料是铒,铒具有约650至670nm的第一激发光波长范围(激发峰约650nm),约800至815nm的第二激发波长范围(约805nm的激发峰),以及约980至1050nm的发射波长范围(约1020nm的发射峰)。在另一个实施例中,铒和Alexa 647可以从相同光源被激发,其优点在于,多个光源之间功率归一化的可选步骤被减少或被消除。
再次参照表1,光通道4-6提供激发器功率归一化信号,这在使用多于一个光源的实施例中是优选的。激发器功率归一化信号被用于对由各光源输出的激发光的功率的差异进行归一化,其中,各光源的输出功率可能略有不同。如图4-5所示,从中心通路66传播到外环70的激发光的衰减被测量,减少或消除由植入物12的报道子(例如,荧光团)的贡献。光通道4-6包括配对的组合,配对为三个中心激发器光源64A、64B和64C以及外环检测器6的配对。替代性地,可以使用多个检测器来检测激发器功率归一化信号的强度,优选外环检测器。对于激发器功率归一化信号,植入物报道子的激发波长范围内的激发光被发送到组织15中。从组织15发射的激发波长范围内的光学信号通过检测器6而被检测。植入物报道子的校正的信号值可以针对相应光源的激发器功率而被归一化,例如,通过将对报道子所测量的光学信号除以激发波长范围内的激发光的所测量的强度。
光学通道7-9(表1)提供漫反射测量结果以校正来自植入物的发光染料报道子信号。如图7-8所示,外部检测器6测量由组织15所造成的光学信号的衰减,该光学信号处于植入物12的发光报道子染料的发射波长范围内。光通道7-9包括外部激发器光源71A、71B和71C中的三个,它们被布置在外环70中,在这个例子中,它们中的每一个与检测器6配对,并且优选地被放置成提供各光源/检测器组合之间的一系列距离,从而对植入物12的各发光报道子染料计算漫反射校正值。在替代性实施例中,可以使用多个检测器而不是利用检测器6来测量所有三个光学信号。
光通道10-12(表1)提供自身荧光和环境光的测量,以校正来自植入物的发光染料报道子信号。如图9-10所示,光通道10-12包括布置在外环70中的外部激发器光源和外环检测器的三个配对73A、73B和73C。外部激发器光源和外部检测器的三个配对73A、73B和73C提供了植入物12的三个报道子发光染料的相同激发和发射光谱,并且位于外环70上远离植入物12。具体地,用于一个或多个自身荧光测量的每一个外部激发器光源/检测器配对相对于彼此而被放置,使得激发光和响应于该激发光发射的光形成光路78,光路78从植入物12被横向间隔开足够的距离,以避免来自植入物荧光团的显著贡献。
优选横向间隔S4大于或等于0.25cm,更优选大于0.5cm,并且最优选大于1cm。还优选光路78的深度延伸约1-5mm到皮肤14的表面之下的组织15中。当使用多个配对时,各光路可以具有基本上相同的深度或不同的深度,并且所测量的自身荧光光学信号的强度可以被平均以获得校正因子。优选来自一个或多个植入物报道子(例如,荧光团)的、对自身荧光测量的贡献小于所测量的强度的30%,更优选小于20%,最优选小于10%。
图11示出传感器贴片62的俯视图,该传感器贴片62具有用于激发光的中心通路66。贴片62的优选尺寸可以是,例如,约16mm的直径和约1.6mm的厚度T。图12示出了贴片62的示意性分解图,该贴片62包括堆叠的多个层。在一些实施例中,层可以包括具有约200um优选厚度的塑料盖80、具有约100um优选厚度的光控制膜82、具有约200um优选厚度的滤光片84、具有约100um优选厚度的另一个光控制膜86、具有约200um优选厚度的硅层88、具有约400um优选厚度的印刷电路板(PCB)90、具有约300um优选厚度的电池92和具有约200um厚度的壳体94。PCB 90可以包括微处理器,该微处理器被编程为存储所测量的值和/或如前面所述计算校正的信号值。光控制膜是透镜阵列,该透镜阵列在其背侧上具有孔阵列。
本领域技术人员应当清楚,所描述发明的实施例可以包括有线或无线手持式阅读器、无线皮肤贴片阅读器、台上仪器、成像系统、手持式装置(例如,手机或移动通信装置)、智能电话附件和应用程序,或者利用所公开的光学器件和算法的任何其他配置。
组织的光学异质性在某些情况下可能是显著的。因此,利用单个光源和单个检测器以确保每一种颜色通过相同光路(该光路穿过组织)可以是有利的。在一个实施例中,光源可以被安放一组可移动滤光片,该滤光片处于光源和皮肤的表面之间。同样,可以利用单个光检测器代替分开的、离散的检测器元件。通过使用可移动或可更换的滤光片以允许测量多个波长,检测器可以被用来检测不同颜色。更换或移动滤光片可以由控制转盘、滤光带或其他手段的机械致动器来实现。替代性地,光学滤光片可以涂有一种材料,当经受电流、电势、温度或其他可控的影响时,该材料将改变光学滤光特性,使得单个光检测器可用来检测多种颜色。
本领域技术人员应当清楚,上述实施例可以以多种方式改变而不脱离本发明的范围。例如,一个或多个光源、一个或多个检测器、滤光片和/或连接光学部件的光纤的多种不同的排列或布置可以用于实现本发明的装置和方法。例如,在一些实施例中,光源和检测器被连同光纤或电缆布置,以发送激发光到皮肤中并测量从皮肤发射的光学信号,而不必须在直接在个体的皮肤上放置光源和检测器。在替代性实施例中,装置的尺寸和/或波长范围的目前的优选值可能不同。因此,本发明的范围应当由随后的权利要求及其合法等同物来确定。

Claims (27)

1.一种用于校正从埋置在哺乳动物身体的组织中的植入物发射的分析物相关光学信号的方法,所述植入物被配置成响应于接收到激发波长范围内的激发信号,发射处于发射波长范围内的分析物相关光学信号,所述方法包括:
a)从光学装置发送所述激发波长范围内的第一生成光穿过所述组织到所述植入物;
b)响应于所述第一生成光,测量从所述组织发射的所述发射波长范围内的第一光学信号;
c)从所述光学装置发送第二生成光到所述组织中,所述第二生成光在所述发射波长范围内;
d)响应于所述第二生成光,测量从所述组织发射的所述发射波长范围内的第二光学信号;和
e)根据所述第一光学信号和所述第二光学信号计算校正的信号值。
2.根据权利要求1所述的方法,其中所述第二光学信号行进延伸到所述组织中的深度基本上等于所述植入物被埋置处的深度的光路。
3.根据权利要求2所述的方法,其中所述植入物被埋置处的所述深度为皮肤的表面之下1mm至5mm的范围内。
4.根据权利要求1所述的方法,其中所述第二光学信号行进延伸到所述组织中的深度大于所述植入物被埋置处的深度的光路。
5.根据权利要求1所述的方法,其中所述第一生成光、所述植入物和所述第一光学信号共同限定第一光路的至少一部分,所述方法还包括:
a)从所述光学装置向所述组织中发送在所述激发波长范围内的第三生成光;以及
b)响应于所述第三生成光,测量从所述组织发射的所述发射波长范围内的第三光学信号,所述第三生成光和所述第三光学信号共同限定第二光路的至少一部分,所述第二光路的至少一部分与所述第一光路的相应部分横向间隔开,所述校正的信号值还根据所述第三光学信号来计算。
6.根据权利要求1所述的方法,其中:
所述植入物被埋置在皮下组织中,并且
所述第二生成光行进延伸到所述组织中的深度大于或等于皮肤的表面之下2mm的光路。
7.根据权利要求1所述的方法,其中所述植入物埋置在所述组织中的第一深度处,并且所述第二光学信号行进延伸到所述组织中第二深度的光路,所述方法还包括:
a)从所述光学装置发送第三生成光到所述组织中使得所述第三生成光行进延伸到所述组织中第三深度的光路;和
b)测量从所述组织发射的第三光学信号,所述第三光学信号行进延伸到所述组织中第三深度的光路,所述第三深度不同于所述第一深度以及所述第二深度,所述校正的信号值还根据所述第三光学信号来计算。
8.根据权利要求1所述的方法,其中:
所述激发波长范围是第一激发波长范围;
所述植入物被埋置在所述组织中第一深度处;并且
所述第二光学信号行进延伸到所述组织中第二深度的光路,所述方法还包括:
从所述光学装置发送第二激发波长范围内的第三生成光穿过所述组织到所述植入物;
测量从所述组织发射的分析物不相关光学信号,根据所述分析物不相关光学信号来确定所述第一深度。
9.根据权利要求1所述的方法,其中至少基于从所述植入物发射的分析物不相关光学信号向所述第二光学信号分配量或权重来计算所述校正的信号值。
10.根据权利要求1所述的方法,其中所述激发波长范围是第一激发波长范围,所述发射范围是第一发射范围,并且所述植入物被配置成响应于接收到第二激发波长范围内的激发信号,发射具有第二发射范围的信号,所述方法还包括:
a)从所述光学装置发送所述第二激发波长范围内的第三生成光穿过所述组织到所述植入物;
b)响应于所述第三生成光,测量从所述植入物发射的所述第二发射波长范围内的第三光学信号;
c)从所述光学装置向所述组织中发送在所述第二发射波长范围内的第四生成光;以及
d)响应于所述第四生成光,测量从所述组织发射的第四光学信号,所述校正的信号值还根据所述第三光学信号和所述第四光学信号来计算。
11.根据权利要求1所述的方法,还包括:
a)从所述光学装置向所述组织中发送在所述激发波长范围内的第三生成光;和
b)响应于所述第三生成光,测量从所述组织发射的在所述激发波长范围内的第三光学信号,并且所述校正的信号值还根据所述第三光学信号计算。
12.一种用于监测埋置在哺乳动物身体的组织中的植入物的光学检测装置,所述植入物被配置成响应于接收到激发波长范围内的激发信号,发射处于发射波长范围内的分析物相关光学信号,所述装置包括:
a)第一光源,被配置成发送所述激发波长范围内的第一生成光穿过所述组织到所述植入物;
b)第二光源,被配置成发送第二生成光到所述组织中,所述第二生成光在所述发射波长范围内;以及
c)至少一个检测器,被配置成:(1)响应于所述第一生成光,测量从所述植入物发射的所述发射波长范围内的第一光学信号,以及(2)响应于所述第二生成光,测量从所述组织发射的所述发射波长范围内的第二光学信号。
13.根据权利要求12所述的装置,还包括至少一个处理器,所述处理器被配置成:(1)接收表示所述第一光学信号和所述第二光学信号的数据,以及(2)根据所述第一光学信号和所述第二光学信号计算分析物的量或浓度中的至少一个。
14.根据权利要求12所述的装置,其中所述第二光源和至少一个检测器被配置成使得所述第二光学信号行进延伸到所述组织中的深度基本上等于所述植入物被埋置处的深度的光路。
15.根据权利要求12所述的装置,其中所述第二光源和至少一个检测器被配置成使得所述第二光学信号行进延伸到所述组织中的深度大于所述植入物被埋置处的深度的光路。
16.根据权利要求15所述的装置,其中所述光路延伸到在皮肤的表面之下1mm至5mm的深度。
17.根据权利要求12所述的装置,其中所述至少一个检测器包括第一检测器,所述第一检测器和所述第一光源共同被配置成使得所述第一光学信号行进第一光路,所述装置还包括:
第三光源,被配置成发送所述激发波长范围内的第三生成光到所述组织中;以及
第二检测器,被配置成响应于所述第三生成光,测量从所述组织中发射的所述发射波长范围内的第三光学信号,所述第三光源和所述第二检测器共同被配置成使得所述第三光学信号行进第二光路,该第二光路从所述植入物被横向间隔开使得所述第三光学信号不包括来自所述植入物的显著贡献。
18.根据权利要求12所述的装置,其中所述植入物被埋置在皮下组织中,并且所述第二光源和至少一个检测器被配置成使得所述第二光学信号行进延伸到所述组织中的深度大于或等于皮肤的表面之下3mm的光路。
19.根据权利要求12所述的装置,其中所述至少一个检测器包括第一检测器,并且所述植入物被埋置在所述组织中的第一深度处,所述装置还包括:
a.第三光源,被配置成发送第三生成光到所述组织中;以及
b.第二检测器,被配置成响应于所述第三生成光,测量从所述组织发射的第三光学信号,所述第三光源和所述第二检测器共同被配置成使得所述第三光学信号行进延伸到所述组织中第二深度的第一光路,所述第二光源和所述至少一个检测器被配置成使得所述第二光学信号行进延伸到所述组织中第三深度的第二光路,所述第二深度不同于所述第一深度和所述第三深度。
20.根据权利要求13所述的装置,其中所述植入物被埋置在所述组织中的第一深度处,所述第二光源和至少一个检测器被共同配置成使得所述第二光学信号行进延伸到所述组织中第二深度的光路,并且所述处理器还被配置成根据表示从所述植入物发射的分析物不相关信号的测量结果的数据来确定所述第一深度。
21.根据权利要求13所述的装置,其中所述处理器还被配置成通过根据表示从所述植入物发射的分析物不相关信号的测量结果的数据来分配量或权重到表示所述第二光学信号的数据来计算校正的信号值。
22.根据权利要求12所述的装置,其中:
所述分析物相关光学信号是第一分析物相关光学信号;
所述发射波长范围是第一发射波长范围;
所述激发波长范围是第一激发波长范围;
所述植入物被配置成响应于所述第一激发波长范围内的激发光,发射处于所述第一发射波长范围内的所述第一分析物相关光学信号;
所述植入物还被配置成响应于第二激发波长范围内的激发光,发射处于第二发射波长范围内的至少一个分析物不相关光学信号,所述装置还包括:
a)第三光源,被配置成发送所述第二激发波长范围内的第三生成光穿过所述组织到所述植入物,所述至少一个检测器被配置成响应于所述第三生成光,测量从所述组织发射的所述第二发射波长范围内的第三光学信号;和
b)第四光源,被配置成发送第四生成光到所述组织中,所述第四生成光在所述第二发射波长范围内,所述至少一个检测器被配置成响应于所述第四生成光,测量从所述组织发射的第四光学信号。
23.根据权利要求13所述的装置,其中:
所述至少一个检测器还被配置成响应于发送到所述组织中的第三生成光,测量从所述组织发射的所述激发波长范围内的第三光学信号,以及
所述处理器还被配置成根据表示所述第三光学信号的数据计算分析物的量或浓度中的至少一个。
24.根据权利要求12所述的装置,其中所述第一光源、所述第二光源和所述至少一个检测器被布置在被放置在皮肤的表面上的传感器贴片中。
25.根据权利要求1所述的方法,其中:
所述第一生成光由所述光学装置的第一光源发出;并且
所述第二生成光由所述光学装置的第二光源发出。
26.根据权利要求1所述的方法,其中:
所述激发波长范围包括600nm-650nm;并且
所述发射波长范围包括670nm-750nm。
27.根据权利要求12所述的装置,其中:
所述激发波长范围包括600nm-650nm;并且
所述发射波长范围包括670nm-750nm。
CN201480016308.3A 2013-03-14 2014-03-06 用于校正光学信号的方法和装置 Active CN105120750B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201711281206.6A CN108013881B (zh) 2013-03-14 2014-03-06 用于校正光学信号的方法和装置
CN202110577806.7A CN113274007A (zh) 2013-03-14 2014-03-06 用于校正光学信号的方法和装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361785087P 2013-03-14 2013-03-14
US61/785,087 2013-03-14
PCT/US2014/021298 WO2014158988A1 (en) 2013-03-14 2014-03-06 Method and device for correcting optical signals

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN201711281206.6A Division CN108013881B (zh) 2013-03-14 2014-03-06 用于校正光学信号的方法和装置
CN202110577806.7A Division CN113274007A (zh) 2013-03-14 2014-03-06 用于校正光学信号的方法和装置

Publications (2)

Publication Number Publication Date
CN105120750A CN105120750A (zh) 2015-12-02
CN105120750B true CN105120750B (zh) 2018-01-12

Family

ID=51530341

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201711281206.6A Active CN108013881B (zh) 2013-03-14 2014-03-06 用于校正光学信号的方法和装置
CN201480016308.3A Active CN105120750B (zh) 2013-03-14 2014-03-06 用于校正光学信号的方法和装置
CN202110577806.7A Pending CN113274007A (zh) 2013-03-14 2014-03-06 用于校正光学信号的方法和装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201711281206.6A Active CN108013881B (zh) 2013-03-14 2014-03-06 用于校正光学信号的方法和装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202110577806.7A Pending CN113274007A (zh) 2013-03-14 2014-03-06 用于校正光学信号的方法和装置

Country Status (8)

Country Link
US (3) US10045722B2 (zh)
EP (2) EP2967454B1 (zh)
JP (3) JP6457998B2 (zh)
CN (3) CN108013881B (zh)
AU (2) AU2014241420B2 (zh)
BR (1) BR112015022216A2 (zh)
CA (1) CA2904031A1 (zh)
WO (1) WO2014158988A1 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9517023B2 (en) 2009-06-01 2016-12-13 Profusa, Inc. Method and system for directing a localized biological response to an implant
US10010272B2 (en) 2010-05-27 2018-07-03 Profusa, Inc. Tissue-integrating electronic apparatus
CN110604585B (zh) 2010-10-06 2023-04-18 普罗弗萨股份有限公司 组织整合性传感器
USD850626S1 (en) 2013-03-15 2019-06-04 Rhythm Diagnostic Systems, Inc. Health monitoring apparatuses
US10244949B2 (en) 2012-10-07 2019-04-02 Rhythm Diagnostic Systems, Inc. Health monitoring systems and methods
US10610159B2 (en) * 2012-10-07 2020-04-07 Rhythm Diagnostic Systems, Inc. Health monitoring systems and methods
US10413251B2 (en) 2012-10-07 2019-09-17 Rhythm Diagnostic Systems, Inc. Wearable cardiac monitor
US10045722B2 (en) 2013-03-14 2018-08-14 Profusa, Inc. Method and device for correcting optical signals
CN111544011B (zh) * 2013-06-06 2023-06-06 普罗菲尤萨股份有限公司 用于探测来自植入传感器的光信号的设备和方法
EP3180613B1 (en) * 2014-08-11 2023-10-18 The Regents of The University of California Continuous analyte sensor
CN107949327A (zh) * 2015-06-25 2018-04-20 普罗菲尤萨股份有限公司 用于可植入分析物传感器的经皮读取器
MX2018002587A (es) 2015-09-02 2019-02-07 Metronom Health Inc Sistemas y métodos para control continuo de la salud utilizando un sensor de analitos optoenzimático.
WO2017132404A1 (en) * 2016-01-26 2017-08-03 Kirby Brett S Near-infrared spectroscopy for sensing glycogen in muscle tissue
TWI730080B (zh) * 2016-04-20 2021-06-11 美商菲歐普提斯公司 可執行電子選擇式組織深度分析之血氧計探針
JP6917633B2 (ja) * 2016-09-14 2021-08-11 Dynamic Brain Lab合同会社 生体情報測定装置
WO2018119204A1 (en) 2016-12-21 2018-06-28 Profusa, Inc. Polymerizable near-ir dyes
WO2018119400A1 (en) 2016-12-22 2018-06-28 Profusa, Inc. System and single-channel luminescent sensor for and method of determining analyte value
IL268333B (en) 2017-01-30 2022-07-01 Medibeacon Inc A method for non-invasive monitoring of fluorescent tracer with background separation corrections
CN115120241A (zh) * 2017-01-30 2022-09-30 麦迪贝肯有限公司 利用漫反射校正的荧光示踪剂的非入侵监测方法
US11369292B2 (en) * 2017-02-12 2022-06-28 SeeDevice Inc. Portable apparatus for noninvasively measuring blood glucose level and operating method thereof
US11591557B2 (en) 2017-02-21 2023-02-28 Dots Technology Corp. Systems for allergen detection
JP2020515367A (ja) * 2017-03-29 2020-05-28 グラフトウォークス, インコーポレイテッド マルチモード診断を伴うウェアラブルデバイス
EP3638119A4 (en) 2017-06-15 2020-11-25 Senseonics, Incorporated SYSTEM AND METHOD FOR MEASURING A QUANTITY OF BLOOD AND / OR COAGULATION IN A POCKET SURROUNDING AN IMPLANTABLE MEDICAL DEVICE
WO2019006400A1 (en) 2017-06-29 2019-01-03 Profusa, Inc. FABRIC INTEGRATION SENSORS FOR DETECTION OF MULTIPLE ANALYTES
KR102531994B1 (ko) 2017-12-29 2023-05-15 삼성전자주식회사 생체 성분 측정 장치 및 방법
CN112770668A (zh) 2018-07-16 2021-05-07 布鲁恩医疗创新有限责任公司 灌注和氧合测量
WO2020206062A1 (en) * 2019-04-02 2020-10-08 Shifamed Holdings, Llc Systems and methods for monitoring health conditions
US11131584B2 (en) * 2019-08-01 2021-09-28 Viavi Solutions Inc. Sensor device
WO2021041961A1 (en) 2019-08-28 2021-03-04 Rhythm Diagnostic Systems, Inc. Vital signs or health monitoring systems and methods
CN113476043A (zh) * 2021-07-01 2021-10-08 深圳亿杉医疗科技有限公司 一种非侵入式传感装置及检测方法、检测仪

Family Cites Families (200)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4703756A (en) 1986-05-06 1987-11-03 The Regents Of The University Of California Complete glucose monitoring system with an implantable, telemetered sensor module
US5242835A (en) 1987-11-03 1993-09-07 Radiometer A/S Method and apparatus for determining the concentration of oxygen
US6040194A (en) 1989-12-14 2000-03-21 Sensor Technologies, Inc. Methods and device for detecting and quantifying substances in body fluids
US5342789A (en) 1989-12-14 1994-08-30 Sensor Technologies, Inc. Method and device for detecting and quantifying glucose in body fluids
US5222496A (en) * 1990-02-02 1993-06-29 Angiomedics Ii, Inc. Infrared glucose sensor
US6362175B1 (en) 1991-09-20 2002-03-26 The Trustees Of The University Of Pennsylvania Porphyrin compounds for imaging tissue oxygen
US5284140A (en) 1992-02-11 1994-02-08 Eli Lilly And Company Acrylic copolymer membranes for biosensors
JP2533430B2 (ja) 1992-03-24 1996-09-11 三ツ星ベルト株式会社 色素分子を分散させたポリアミド複合物とその製造方法
IL107396A (en) 1992-11-09 1997-02-18 Boehringer Mannheim Gmbh Method and apparatus for analytical determination of glucose in a biological matrix
US5487885A (en) 1992-12-21 1996-01-30 Biophysica, Inc. Sunblocking polymers and their formulation
US5837865A (en) 1993-10-15 1998-11-17 Trustees Of The University Of Pennsylvania Phosphorescent dendritic macromolecular compounds for imaging tissue oxygen
US5882494A (en) 1995-03-27 1999-03-16 Minimed, Inc. Polyurethane/polyurea compositions containing silicone for biosensor membranes
US5628310A (en) * 1995-05-19 1997-05-13 Joseph R. Lakowicz Method and apparatus to perform trans-cutaneous analyte monitoring
US6104945A (en) 1995-08-01 2000-08-15 Medispectra, Inc. Spectral volume microprobe arrays
US5711861A (en) 1995-11-22 1998-01-27 Ward; W. Kenneth Device for monitoring changes in analyte concentration
US6002954A (en) 1995-11-22 1999-12-14 The Regents Of The University Of California Detection of biological molecules using boronate-based chemical amplification and optical sensors
US6766183B2 (en) * 1995-11-22 2004-07-20 Medtronic Minimed, Inc. Long wave fluorophore sensor compounds and other fluorescent sensor compounds in polymers
AU1058297A (en) 1995-11-22 1997-06-11 Minimed, Inc. Detection of biological molecules using chemical amplification and optical sensors
ES2177961T3 (es) 1996-01-26 2002-12-16 Roche Diagnostics Gmbh Procedimiento y dispositivo para la determinacion de un analito en una matriz dispersante.
AUPN814496A0 (en) 1996-02-19 1996-03-14 Monash University Dermal penetration enhancer
GB9616896D0 (en) 1996-08-12 1996-09-25 British Tech Group Pharmaceutical compositions
AU5446098A (en) 1996-11-21 1998-06-10 Lawrence Livermore National Laboratory Detection of biological molecules using boronate-based chemical amplification and optical sensors
US6274086B1 (en) 1996-12-16 2001-08-14 The Trustees Of The University Of Pennsylvania Apparatus for non-invasive imaging oxygen distribution in multi-dimensions
US6043437A (en) 1996-12-20 2000-03-28 Alfred E. Mann Foundation Alumina insulation for coating implantable components and other microminiature devices
US8527026B2 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
US6741877B1 (en) 1997-03-04 2004-05-25 Dexcom, Inc. Device and method for determining analyte levels
US7192450B2 (en) 2003-05-21 2007-03-20 Dexcom, Inc. Porous membranes for use with implantable devices
US6001067A (en) 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
US5895658A (en) 1997-09-17 1999-04-20 Fossel; Eric T. Topical delivery of L-arginine to cause tissue warming
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
GB9814506D0 (en) 1998-07-03 1998-09-02 Stanley Christopher J Optical sensor for insitu measurement of analytes
WO2000001294A1 (en) 1998-07-04 2000-01-13 Whitland Research Limited Non-invasive measurement of blood analytes
US6013122A (en) 1998-08-18 2000-01-11 Option Technologies, Inc. Tattoo inks
CA2340652C (en) 1998-08-20 2013-09-24 Cook Incorporated Coated implantable medical device comprising paclitaxel
US6330464B1 (en) 1998-08-26 2001-12-11 Sensors For Medicine & Science Optical-based sensing devices
US6602678B2 (en) 1998-09-04 2003-08-05 Powderject Research Limited Non- or minimally invasive monitoring methods
CA2351734A1 (en) 1998-11-20 2000-06-02 University Of Connecticut Generic integrated implantable potentiostat telemetry unit for electrochemical sensors
US20030099682A1 (en) 1998-11-20 2003-05-29 Francis Moussy Apparatus and method for control of tissue/implant interactions
US6783937B1 (en) 1999-02-25 2004-08-31 Pall Corporation Negatively charged membrane
US8346363B2 (en) 1999-03-05 2013-01-01 Metacure Limited Blood glucose level control
US6475750B1 (en) 1999-05-11 2002-11-05 M-Biotech, Inc. Glucose biosensor
US6366793B1 (en) 1999-09-10 2002-04-02 Beckman Coulter, Inc. Minimally invasive methods for measuring analtes in vivo
US20050119737A1 (en) 2000-01-12 2005-06-02 Bene Eric A. Ocular implant and methods for making and using same
EP2261240B1 (en) 2000-02-11 2015-09-02 The Texas A & M University System Biosensor compositions and methods of use
DE10011284B4 (de) 2000-03-08 2007-06-28 Disetronic Licensing Ag Vorrichtung für eine In-vivo Messung der Konzentration eines Inhaltsstoffs einer Körperflüssigkeit
WO2001075450A2 (en) 2000-04-04 2001-10-11 The Regents Of The University Of California Fluorescent lifetime assays for non-invasive quantification of analytes
US6565960B2 (en) 2000-06-01 2003-05-20 Shriners Hospital Of Children Polymer composite compositions
US20020048577A1 (en) 2000-08-01 2002-04-25 University Of Washington Methods and devices to modulate the wound response
MXPA03001043A (es) 2000-08-04 2003-05-27 Sensors For Med & Science Inc Deteccion de analitos en ambientes acuosos.
GB0025147D0 (en) 2000-10-13 2000-11-29 Torsana Diabetes Diagnostics A Optical sensor for in situ measurement of analytes
US6642015B2 (en) 2000-12-29 2003-11-04 Minimed Inc. Hydrophilic polymeric material for coating biosensors
US8069254B2 (en) 2001-02-28 2011-11-29 Sharp Laboratories Of America, Inc. Communication period management in a communication system
US6694158B2 (en) 2001-04-11 2004-02-17 Motorola, Inc. System using a portable detection device for detection of an analyte through body tissue
DK1385423T3 (da) 2001-04-27 2008-03-25 Eyesense Ag Udstyr til måling af glukosekoncentrationer i blod
FI20010898A0 (fi) 2001-04-30 2001-04-30 Ylae Herttuala Seppo Ekstrasellulaarinen superoksididismutaasi (EC-SOD) geeniterapia restenoosoin ehkäisemiseksi
DE60214698T2 (de) 2001-04-30 2007-09-13 Medtronic, Inc., Minneapolis Implantierbare medizinische vorrichtung und pflastersystem
US6844028B2 (en) 2001-06-26 2005-01-18 Accelr8 Technology Corporation Functional surface coating
GB0116853D0 (en) 2001-07-10 2001-09-05 Torsana Diabetes Diagnostics A Optical sensor containing particles for in SITU measurement of analytes
US6702857B2 (en) 2001-07-27 2004-03-09 Dexcom, Inc. Membrane for use with implantable devices
US7096053B2 (en) 2001-10-02 2006-08-22 Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern California Internal biochemical sensing device
AU2002355020B2 (en) 2001-11-27 2007-11-08 Teijin Medical Technologies Co., Ltd Implant material and process for producing the same
TWI293363B (en) 2001-12-11 2008-02-11 Sensors For Med & Science Inc High performance fluorescent optical sensor
US7202947B2 (en) * 2001-12-19 2007-04-10 Wisconsin Alumni Research Foundation Depth-resolved fluorescence instrument with angled excitation
US8010174B2 (en) 2003-08-22 2011-08-30 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8260393B2 (en) 2003-07-25 2012-09-04 Dexcom, Inc. Systems and methods for replacing signal data artifacts in a glucose sensor data stream
US7613491B2 (en) 2002-05-22 2009-11-03 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
GB0204640D0 (en) 2002-02-27 2002-04-10 Torsana Diabetes Diagnostics A Injection apparatus
DE10212140A1 (de) * 2002-03-19 2003-10-09 Henry Arthur Muglia Blutzuckersensor und Meßverfahren zur Bestimmung des Blutzuckerwerts
US7153265B2 (en) 2002-04-22 2006-12-26 Medtronic Minimed, Inc. Anti-inflammatory biosensor for reduced biofouling and enhanced sensor performance
US7813780B2 (en) 2005-12-13 2010-10-12 Medtronic Minimed, Inc. Biosensors and methods for making and using them
US20030208166A1 (en) 2002-05-06 2003-11-06 Schwartz Anthony H. Implantable device with free-flowing exit and uses thereof
KR20050010827A (ko) 2002-05-20 2005-01-28 오르버스 메디칼 테크놀로지즈 인코포레이티드 약물 용리 이식성 의료 장치
US7226978B2 (en) 2002-05-22 2007-06-05 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US20050118726A1 (en) 2002-08-26 2005-06-02 Schultz Jerome S. System and method for detecting bioanalytes and method for producing a bioanalyte sensor
US7285424B2 (en) * 2002-08-27 2007-10-23 Kimberly-Clark Worldwide, Inc. Membrane-based assay devices
US7162289B2 (en) 2002-09-27 2007-01-09 Medtronic Minimed, Inc. Method and apparatus for enhancing the integrity of an implantable sensor device
US20040106951A1 (en) 2002-11-22 2004-06-03 Edman Carl Frederick Use of electric fields to minimize rejection of implanted devices and materials
US20040143221A1 (en) 2002-12-27 2004-07-22 Shadduck John H. Biomedical implant for sustained agent release
AU2003303597A1 (en) 2002-12-31 2004-07-29 Therasense, Inc. Continuous glucose monitoring system and methods of use
US20040133079A1 (en) 2003-01-02 2004-07-08 Mazar Scott Thomas System and method for predicting patient health within a patient management system
US20040161853A1 (en) 2003-02-13 2004-08-19 Zhongping Yang Implantable chemical sensor with rugged optical coupler
US7406345B2 (en) 2003-02-14 2008-07-29 Eyesense Ag Apparatus for measuring an analyte concentration from an ocular fluid
EP1599508B1 (en) 2003-02-28 2009-08-19 EyeSense AG Copolymers comprising biomolecules
US6965791B1 (en) 2003-03-26 2005-11-15 Sorenson Medical, Inc. Implantable biosensor system, apparatus and method
US6828572B2 (en) 2003-04-01 2004-12-07 Axcelis Technologies, Inc. Ion beam incident angle detector for ion implant systems
US7134999B2 (en) 2003-04-04 2006-11-14 Dexcom, Inc. Optimized sensor geometry for an implantable glucose sensor
US20070010702A1 (en) 2003-04-08 2007-01-11 Xingwu Wang Medical device with low magnetic susceptibility
US7186789B2 (en) 2003-06-11 2007-03-06 Advanced Cardiovascular Systems, Inc. Bioabsorbable, biobeneficial polyester polymers for use in drug eluting stent coatings
US20040259270A1 (en) * 2003-06-19 2004-12-23 Wolf David E. System, device and method for exciting a sensor and detecting analyte
EP1651946A1 (en) 2003-07-30 2006-05-03 Novartis AG Reflection hologram sensor in contact lens
US20050027175A1 (en) 2003-07-31 2005-02-03 Zhongping Yang Implantable biosensor
US7591801B2 (en) 2004-02-26 2009-09-22 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US7519408B2 (en) 2003-11-19 2009-04-14 Dexcom, Inc. Integrated receiver for continuous analyte sensor
ATE473444T1 (de) 2003-08-07 2010-07-15 Eyesense Ag Ophthalmischer sensor
US9687368B2 (en) 2003-08-13 2017-06-27 Medtronic Vascular, Inc. Biocompatible controlled release coatings for medical devices and related methods
WO2005032418A2 (en) 2003-10-01 2005-04-14 University Of Washington Novel porous biomaterials
CN100998499B (zh) * 2003-10-28 2013-07-24 薇拉莱特公司 使用组织荧光确定某一糖化终产物或疾病状态
US20050095174A1 (en) 2003-10-31 2005-05-05 Wolf David E. Semipermeable sensors for detecting analyte
AU2004285603A1 (en) 2003-11-03 2005-05-12 Microchips, Inc. Medical device for sensing glucose
EP1685085A2 (en) 2003-11-20 2006-08-02 Angiotech International Ag Implantable sensors and implantable pumps and anti-scarring agents
US20050148003A1 (en) 2003-11-26 2005-07-07 Steven Keith Methods of correcting a luminescence value, and methods of determining a corrected analyte concentration
US7496392B2 (en) * 2003-11-26 2009-02-24 Becton, Dickinson And Company Fiber optic device for sensing analytes
US8423114B2 (en) 2006-10-04 2013-04-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
EP2239567B1 (en) 2003-12-05 2015-09-02 DexCom, Inc. Calibration techniques for a continuous analyte sensor
EP3175780A1 (en) 2003-12-18 2017-06-07 Metronom Health, Inc. Implantable biosensor and methods of use thereof
GB0329849D0 (en) 2003-12-23 2004-01-28 Precisense As Fluorometers
US8029765B2 (en) 2003-12-24 2011-10-04 Masimo Laboratories, Inc. SMMR (small molecule metabolite reporters) for use as in vivo glucose biosensors
US20060002969A1 (en) 2004-01-27 2006-01-05 University Of Washington Methods for reducing the foreign body reaction
US7450980B2 (en) 2004-03-31 2008-11-11 Terumo Kabushiki Kaisha Intracorporeal substance measuring assembly
ES2547220T3 (es) 2004-04-20 2015-10-02 Dendritic Nanotechnologies, Inc. Polímeros dendríticos con amplificación y funcionalidad interior mejoradas
US20050245799A1 (en) 2004-05-03 2005-11-03 Dexcom, Inc. Implantable analyte sensor
CN101087630A (zh) 2004-05-04 2007-12-12 罗切斯特大学 可植入生物电生理界面基质
CA2565624A1 (en) 2004-05-04 2005-11-17 University Of Rochester Implantable bio-electro-physiologic interface matrix
GB0411162D0 (en) * 2004-05-19 2004-06-23 Precisense As Optical sensor for in vivo detection of analyte
US8690865B2 (en) 2004-05-28 2014-04-08 Georgia Tech Research Corporation Methods and devices for thermal treatment
AU2004320509A1 (en) 2004-06-02 2005-12-22 Darrel Dean Drinan Use of electric fields to minimize rejection of implanted devices and materials
AU2005251479A1 (en) 2004-06-14 2005-12-22 Eyesense Ag Combined apparatus for measuring the blood glucose level from an ocular fluid
US20070004046A1 (en) 2005-07-01 2007-01-04 Platypus Technologies, Llc Detection of analytes
US7968085B2 (en) 2004-07-05 2011-06-28 Ascendis Pharma A/S Hydrogel formulations
GB0416732D0 (en) 2004-07-27 2004-09-01 Precisense As A method and apparatus for measuring the phase shift induced in a light signal by a sample
EP1782062A4 (en) 2004-08-24 2010-09-08 Univ South Florida EPOXY-IMPROVED POLYMER MEMBRANE FOR INCREASING THE DURABILITY OF BIOSENSORS
US7166680B2 (en) 2004-10-06 2007-01-23 Advanced Cardiovascular Systems, Inc. Blends of poly(ester amide) polymers
US7248907B2 (en) * 2004-10-23 2007-07-24 Hogan Josh N Correlation of concurrent non-invasively acquired signals
GB0426822D0 (en) 2004-12-07 2005-01-12 Precisense As Sensor for detection of glucose
US8280476B2 (en) 2005-03-29 2012-10-02 Arkal Medical, Inc. Devices, systems, methods and tools for continuous glucose monitoring
US20060270919A1 (en) * 2005-05-11 2006-11-30 Mytek, Llc Biomarkers sensing
EP1885308A4 (en) 2005-05-27 2011-08-31 Johnson & Johnson Consumer DISCRETE PLASTER FOR VIRUS LESIONS
US20070038046A1 (en) 2005-08-09 2007-02-15 Hayter Paul G Kinematic fluorescence measurement band
US7725148B2 (en) 2005-09-23 2010-05-25 Medtronic Minimed, Inc. Sensor with layered electrodes
US7704704B2 (en) 2005-09-28 2010-04-27 The Texas A&M University System Implantable system for glucose monitoring using fluorescence quenching
US8515518B2 (en) 2005-12-28 2013-08-20 Abbott Diabetes Care Inc. Analyte monitoring
US8160670B2 (en) 2005-12-28 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring: stabilizer for subcutaneous glucose sensor with incorporated antiglycolytic agent
US8114269B2 (en) 2005-12-30 2012-02-14 Medtronic Minimed, Inc. System and method for determining the point of hydration and proper time to apply potential to a glucose sensor
EP2004241B1 (en) 2006-03-28 2013-08-07 Glusense Ltd. Implantable sensor
US7809441B2 (en) 2006-05-17 2010-10-05 Cardiac Pacemakers, Inc. Implantable medical device with chemical sensor and related methods
EP2034955B1 (en) 2006-06-22 2015-05-13 University of South Florida Collagen scaffolds, medical implants with same and methods of use
DK1882446T3 (da) 2006-07-24 2009-01-12 Eyesense Ag Anordning til måling af en analyt i en öjenvæske
WO2008143651A2 (en) 2006-12-07 2008-11-27 The Ohio State University Research Foundation A system for in vivo biosensing based on the optical response of electronic polymers
US20080139903A1 (en) 2006-12-08 2008-06-12 Isense Corporation Method and apparatus for insertion of a sensor using an introducer
DE102007003341B4 (de) * 2007-01-17 2018-01-04 Eyesense Ag Okularsensor und Messsystem zum Nachweis eines Analyten in einer Augenflüssigkeit
KR101610885B1 (ko) 2007-01-17 2016-04-08 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 프린팅­기반 어셈블리에 의해 제조되는 광학 시스템
US8738107B2 (en) 2007-05-10 2014-05-27 Medtronic Minimed, Inc. Equilibrium non-consuming fluorescence sensor for real time intravascular glucose measurement
US8088097B2 (en) 2007-11-21 2012-01-03 Glumetrics, Inc. Use of an equilibrium intravascular sensor to achieve tight glycemic control
DE102007024642A1 (de) 2007-05-24 2008-11-27 Eyesense Ag Hydrogel-Implantat für Sensorik von Metaboliten am Auge
EP2152350A4 (en) 2007-06-08 2013-03-27 Dexcom Inc INTEGRATED MEDICINE DELIVERY DEVICE FOR USE WITH A CONTINUOUS ANALYZING SUBSTANCE SENSOR
US8785624B2 (en) 2007-06-13 2014-07-22 University Of Southern California Organic photosensitive optoelectronic devices with nonplanar porphyrins
GB0717150D0 (en) 2007-09-04 2007-10-17 Univ Warwick Apparatus and method
WO2009061367A2 (en) * 2007-11-05 2009-05-14 Biosensor, Inc. Optical sensor for determining the concentration of an analyte
GB0803492D0 (en) 2008-02-26 2008-04-02 Glysure Ltd Fibre optic sensor
US8080821B2 (en) 2008-03-18 2011-12-20 The University Of Connecticut Thyristor radiation detector array and applications thereof
US8452402B2 (en) 2008-04-23 2013-05-28 Medtronic, Inc. Optical sensing device for use in a medical device
US8986208B2 (en) 2008-09-30 2015-03-24 Abbott Diabetes Care Inc. Analyte sensor sensitivity attenuation mitigation
ES2530450T3 (es) 2008-10-02 2015-03-03 Eyesense Ag Elemento sensor implantable
ES2364375T3 (es) 2008-10-02 2011-09-01 Eyesense Ag Dispositivo de implantación para sensores de metabolitos.
US8385998B2 (en) 2008-10-24 2013-02-26 Jin Zhang Contact lens integrated with a biosensor for the detection of glucose and other components in tears
US20100160749A1 (en) * 2008-12-24 2010-06-24 Glusense Ltd. Implantable optical glucose sensing
WO2010127187A1 (en) 2009-04-29 2010-11-04 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
WO2010133831A1 (en) 2009-05-18 2010-11-25 Glysure Ltd Glucose sensor calibration
US9517023B2 (en) 2009-06-01 2016-12-13 Profusa, Inc. Method and system for directing a localized biological response to an implant
US20110028806A1 (en) 2009-07-29 2011-02-03 Sean Merritt Reflectance calibration of fluorescence-based glucose measurements
EP2314608A1 (de) 2009-10-26 2011-04-27 EyeSense AG Stabilisierung von Biosensoren für in vivo Anwendungen
US8666471B2 (en) 2010-03-17 2014-03-04 The Board Of Trustees Of The University Of Illinois Implantable biomedical devices on bioresorbable substrates
AU2011217067A1 (en) 2010-02-19 2012-09-06 Lightship Medical Limited Subcutaneous glucose sensor
WO2011101624A1 (en) 2010-02-19 2011-08-25 Glysure Ltd Indicator system for fibre optic sensor
CN102933144B (zh) 2010-02-19 2015-08-12 格莱苏有限公司 血管内葡萄糖传感器
WO2011101627A2 (en) 2010-02-19 2011-08-25 Glysure Ltd Fluorescence measurement
US8579879B2 (en) 2010-02-19 2013-11-12 Medtronic Minimed, Inc. Closed-loop glucose control startup
FR2958557B1 (fr) 2010-04-07 2014-10-31 Centre Nat Rech Scient Procede de traitement d'effluents comprenant des composes halogenes
EP2555810B1 (en) 2010-04-08 2018-08-22 Healionics Corporation Implantable medical devices having microporous surface layers and method for reducing foreign body response to the same
US10010272B2 (en) 2010-05-27 2018-07-03 Profusa, Inc. Tissue-integrating electronic apparatus
US8543354B2 (en) 2010-06-23 2013-09-24 Medtronic Minimed, Inc. Glucose sensor signal stability analysis
US9515206B2 (en) 2010-08-25 2016-12-06 The University Of South Dakota Electron-deficient fluorous porphyrins and methods of making and their use in organic solar cells
CN110604585B (zh) 2010-10-06 2023-04-18 普罗弗萨股份有限公司 组织整合性传感器
US20120123276A1 (en) 2010-11-16 2012-05-17 Assaf Govari Catheter with optical contact sensing
US9131136B2 (en) 2010-12-06 2015-09-08 Apple Inc. Lens arrays for pattern projection and imaging
EP2652510B1 (de) 2010-12-17 2016-06-22 EyeSense AG Verwendung von hydrogelen für biosensoren mit erhöhter sensitivität
JP5881729B2 (ja) 2010-12-17 2016-03-09 アイセンス アーゲー 高感度を有する競合的バイオセンサー
ES2638076T3 (es) 2010-12-28 2017-10-18 Dura Chemicals, Inc. Aditivos para composiciones líquidas curables
US20120172692A1 (en) 2011-01-05 2012-07-05 Janet Tamada Sensing Fluid Concentration for Continuous Glucose Monitoring
US20120245445A1 (en) 2011-03-21 2012-09-27 Michael Darryl Black Glucose Monitoring System
US9008744B2 (en) 2011-05-06 2015-04-14 Medtronic Minimed, Inc. Method and apparatus for continuous analyte monitoring
US9037205B2 (en) * 2011-06-30 2015-05-19 Glusense, Ltd Implantable optical glucose sensing
US9469941B2 (en) 2011-07-01 2016-10-18 Empire Technology Development Llc Paraben derivatives for preserving cellulosic materials
US9101301B2 (en) 2011-08-15 2015-08-11 The University Of Connecticut Control of biofouling in implantable biosensors
US9642568B2 (en) 2011-09-06 2017-05-09 Medtronic Minimed, Inc. Orthogonally redundant sensor systems and methods
JP2013103094A (ja) 2011-11-16 2013-05-30 Sony Corp 測定装置、測定方法、プログラム及び記録媒体
US20130158413A1 (en) * 2011-12-15 2013-06-20 Nellcor Puritan Bennett Llc Optical measurement of physiological blood parameters
WO2013102162A1 (en) 2011-12-29 2013-07-04 Wellsense, Inc. Analyte sensor with extended range of detection
US8891088B2 (en) * 2012-01-20 2014-11-18 The Curators Of The University Of Missouri Total internal reflection photoacoustic spectroscopy
DE102012201892A1 (de) 2012-02-09 2013-08-14 Robert Bosch Gmbh Bestimmung des Blutzuckerspiegels eines Patienten unter Verwendung eines implantierbaren Sensors und eines elektrischen Funktionspflasters
US9693714B2 (en) * 2012-02-10 2017-07-04 Senseonics, Incorporated Digital ASIC sensor platform
US8869588B2 (en) 2012-02-21 2014-10-28 Symbol Technologies, Inc. Ultrasonic positioning system with reverberation and flight time compensation
EP2822453B1 (en) * 2012-03-08 2017-12-13 Koninklijke Philips N.V. Apparatus for determining a property of a tissue
US9493807B2 (en) 2012-05-25 2016-11-15 Medtronic Minimed, Inc. Foldover sensors and methods for making and using them
CA2904127C (en) 2013-03-14 2023-10-17 Profusa, Inc. Polymer based oxygen sensors
US10045722B2 (en) 2013-03-14 2018-08-14 Profusa, Inc. Method and device for correcting optical signals
CN111544011B (zh) 2013-06-06 2023-06-06 普罗菲尤萨股份有限公司 用于探测来自植入传感器的光信号的设备和方法
CN107949327A (zh) 2015-06-25 2018-04-20 普罗菲尤萨股份有限公司 用于可植入分析物传感器的经皮读取器

Also Published As

Publication number Publication date
CN113274007A (zh) 2021-08-20
CN105120750A (zh) 2015-12-02
CN108013881B (zh) 2021-06-15
CA2904031A1 (en) 2014-10-02
EP3763292A1 (en) 2021-01-13
JP6924740B2 (ja) 2021-08-25
WO2014158988A1 (en) 2014-10-02
AU2014241420B2 (en) 2018-05-31
EP2967454A4 (en) 2016-11-16
US10045722B2 (en) 2018-08-14
AU2018223020A1 (en) 2018-09-27
JP2019076740A (ja) 2019-05-23
US20220095960A1 (en) 2022-03-31
US20190192057A1 (en) 2019-06-27
JP2016515003A (ja) 2016-05-26
EP2967454A1 (en) 2016-01-20
US20140275869A1 (en) 2014-09-18
CN108013881A (zh) 2018-05-11
BR112015022216A2 (pt) 2017-07-18
AU2018223020B2 (en) 2020-10-15
EP2967454B1 (en) 2020-04-22
AU2014241420A1 (en) 2015-09-17
JP2021183155A (ja) 2021-12-02
JP6457998B2 (ja) 2019-01-23
US11134871B2 (en) 2021-10-05

Similar Documents

Publication Publication Date Title
CN105120750B (zh) 用于校正光学信号的方法和装置
JP7350526B2 (ja) 埋込センサからの光信号を検出する装置及び方法
US10064573B2 (en) Analyte permeable membrane systems for oxidative and optical stability
US20100130839A1 (en) Implantable devices and method for determining a concentration of a substance and/or molecule in blood or tissue of a patient
US20140343381A1 (en) Opacity consistent polymer graft for optical sensor
US11109779B2 (en) Chemical modification of analyte permeable membrane for enhanced oxidative stability

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant