CN105119497A - A Double-Bridge LLC Resonant Converter with Wide Input Range - Google Patents
A Double-Bridge LLC Resonant Converter with Wide Input Range Download PDFInfo
- Publication number
- CN105119497A CN105119497A CN201510629077.XA CN201510629077A CN105119497A CN 105119497 A CN105119497 A CN 105119497A CN 201510629077 A CN201510629077 A CN 201510629077A CN 105119497 A CN105119497 A CN 105119497A
- Authority
- CN
- China
- Prior art keywords
- full
- bridge
- resonant
- converter
- switching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 51
- 230000002457 bidirectional effect Effects 0.000 claims description 37
- 230000005284 excitation Effects 0.000 claims description 20
- 238000004804 winding Methods 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 238000005457 optimization Methods 0.000 abstract description 3
- 230000008901 benefit Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 2
- 238000011217 control strategy Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种电力电子变换技术,尤其是一种宽输入范围的双桥LLC谐振变换器。The invention relates to a power electronic conversion technology, in particular to a double-bridge LLC resonant converter with a wide input range.
背景技术Background technique
随着环境污染和能源匮乏问题的日益严重,可再生能源越来越受到人们的重视。可再生能源发电形式主要包括光伏发电、风力发电、水利发电和燃料电池供电等,它们都具有输出电压范围宽的特点。因此,为了能够高效地利用可再生能源,减少能源浪费,需要一种能够在宽输入电压范围内工作的DC/DC变换器。With the increasingly serious problems of environmental pollution and energy shortage, people pay more and more attention to renewable energy. The forms of renewable energy power generation mainly include photovoltaic power generation, wind power generation, hydropower generation and fuel cell power supply, all of which have the characteristics of wide output voltage range. Therefore, in order to efficiently utilize renewable energy and reduce energy waste, a DC/DC converter capable of operating in a wide input voltage range is required.
目前,传统的LLC谐振变换器可以在全负载范围内实现主开关管的零电压开通(zero-voltageswitching,ZVS),并且副边整流二极管能够实现零电流关断,避免了二极管反向恢复等缺点,因此受到越来越多的关注。但是,传统的LLC谐振变换器采用变频控制,当输入电压范围较宽时,变换器的频率范围也较宽,不利于磁性元器件的设计和优化;且采用变频控制时,励磁电感对变换器增益影响较大,在宽输入电压范围下,励磁电感的取值受到限制,不利于原边励磁电流的减小。因此,传统的LLC谐振变换器不适合宽输入电压范围的应用场合。At present, the traditional LLC resonant converter can realize zero-voltage switching (zero-voltage switching, ZVS) of the main switch in the full load range, and the secondary rectifier diode can realize zero-current shutdown, avoiding the shortcomings of diode reverse recovery , so it has received more and more attention. However, the traditional LLC resonant converter adopts frequency conversion control. When the input voltage range is wide, the frequency range of the converter is also wide, which is not conducive to the design and optimization of magnetic components; The gain has a great influence. Under the wide input voltage range, the value of the excitation inductance is limited, which is not conducive to the reduction of the excitation current of the primary side. Therefore, the traditional LLC resonant converter is not suitable for wide input voltage range applications.
发明内容Contents of the invention
本发明目的在于提供一种输出电压范围宽、采用定频控制、驱动控制简单的宽输入范围的双桥LLC谐振变换器。The purpose of the present invention is to provide a double-bridge LLC resonant converter with wide input range, wide output voltage range, constant frequency control and simple drive control.
为实现上述目的,采用了以下技术方案:本发明所述变换器包括输入直流电压源Vin、第一母线分压电容Cin1、第二母线分压电容Cin2、第一全桥开关管Q1、第二全桥开关管Q2、第三全桥开关管Q3、第四全桥开关管Q4、第一双向开关管Q5、第二双向开关管Q6、谐振电容Cr、谐振电感Lr、励磁电感Lm、变压器T、第一整流二极管D1、第二整流二极管D2、输出滤波电容Co和负载Ro;In order to achieve the above object, the following technical solutions are adopted: the converter of the present invention includes an input DC voltage source V in , a first bus voltage dividing capacitor C in1 , a second bus voltage dividing capacitor C in2 , a first full bridge switch tube Q 1. The second full-bridge switching tube Q 2 , the third full-bridge switching tube Q 3 , the fourth full-bridge switching tube Q 4 , the first bidirectional switching tube Q 5 , the second bidirectional switching tube Q 6 , the resonant capacitor C r , Resonant inductance L r , excitation inductance L m , transformer T, first rectifier diode D 1 , second rectifier diode D 2 , output filter capacitor C o and load R o ;
其中,输入直流电压源Vin的正极分别与第一母线分压电容Cin1的一端、第三全桥开关管Q3的漏极及第一全桥开关管Q1的漏极连接;第一母线分压电容Cin1的另一端分别与第二母线分压电容Cin2的一端、第二双向开关管Q6的漏极连接;第二母线分压电容Cin2的另一端分别与输入直流电压源Vin的负极、第四全桥开关管Q4的源极、第二全桥开关管Q2的源极连接;第二双向开关管Q6的源极与第一双向开关管Q5的源极相连,第一双向开关管Q5的漏极分别与第三全桥开关管Q3的源极、第四全桥开关管Q4的漏极以及谐振电容Cr的一端连接;谐振电容Cr的另一端与谐振电感Lr的一端连接,谐振电感Lr的另一端与变压器T的原边一端连接,变压器T的原边的另一端分别与第一全桥开关管Q1的源极、第二全桥开关管Q2的漏极相连,励磁电感Lm集成在变压器T中并与谐振电感Lr连接;变压器T第一副边绕组的一端与第一整流二极管D1的阳极连接,第一整流二极管D1的阴极分别与第二整流二极管D2的阴极、输出滤波电容Co的一端以及负载Ro的一端连接,变压器T第一副边绕组的另一端分别与变压器T第二副边绕组的一端、输出滤波电容Co的另一端以及负载Ro的另一端连接,变压器T第二副边绕组的另一端与二极管D2的阳极连接。Wherein, the anode of the input DC voltage source V in is respectively connected to one end of the first busbar voltage dividing capacitor C in1 , the drain of the third full-bridge switch Q3 and the drain of the first full-bridge switch Q1; The other end of the bus voltage dividing capacitor C in1 is respectively connected to one end of the second bus voltage dividing capacitor C in2 and the drain of the second bidirectional switch Q6 ; the other end of the second bus voltage dividing capacitor C in2 is respectively connected to the input DC voltage The negative pole of the source Vin , the source of the fourth full-bridge switch Q4 , and the source of the second full-bridge switch Q2 are connected; the source of the second bidirectional switch Q6 is connected to the source of the first bidirectional switch Q5 The source is connected, and the drain of the first bidirectional switch Q5 is respectively connected to the source of the third full-bridge switch Q3 , the drain of the fourth full-bridge switch Q4 and one end of the resonant capacitor Cr ; the resonant capacitor The other end of C r is connected to one end of the resonant inductance L r , the other end of the resonant inductance L r is connected to one end of the primary side of the transformer T, and the other end of the primary side of the transformer T is respectively connected to the source of the first full-bridge switching tube Q1 Pole and the drain of the second full-bridge switching tube Q2 are connected, the excitation inductance L m is integrated in the transformer T and connected to the resonant inductance L r ; one end of the first secondary winding of the transformer T is connected to the anode of the first rectifier diode D1 , the cathode of the first rectifier diode D1 is respectively connected to the cathode of the second rectifier diode D2, one end of the output filter capacitor C o and one end of the load R o , and the other end of the first secondary winding of the transformer T is respectively connected to the second end of the transformer T One end of the secondary winding, the other end of the output filter capacitor C o and the other end of the load R o are connected, and the other end of the second secondary winding of the transformer T is connected to the anode of the diode D2.
与现有技术相比,本发明具有如下优点:Compared with prior art, the present invention has following advantage:
1、适用于宽电压输入范围的应用场合,变换器采用定频PWM控制,开关频率等于谐振频率,有利于磁性元器件的设计、优化和功率密度的提高。1. It is suitable for applications with a wide voltage input range. The converter adopts fixed-frequency PWM control, and the switching frequency is equal to the resonance frequency, which is beneficial to the design and optimization of magnetic components and the improvement of power density.
2、励磁电感与谐振电感的比值对变换器的增益影响很小,在满足软开关的前提下,励磁电感值可以尽可能的取大,以减小励磁电流,进而减小原边导通损耗,进一步提高变换器的效率。2. The ratio of excitation inductance to resonant inductance has little effect on the gain of the converter. Under the premise of satisfying soft switching, the value of excitation inductance can be taken as large as possible to reduce the excitation current, thereby reducing the conduction loss of the primary side , to further improve the efficiency of the converter.
3、在全输入电压和全负载变化范围内均能够实现原边主开关管的ZVS开通以及副边整流二级管的ZCS关断,减小了开关损耗,使得变换器能够工作在高频状态,进而减小变换器的体积,增大功率密度。3. In the range of full input voltage and full load variation, the ZVS turn-on of the main switch tube on the primary side and the ZCS turn-off of the rectifier diode on the secondary side can be realized, which reduces the switching loss and enables the converter to work in a high-frequency state , thereby reducing the volume of the converter and increasing the power density.
附图说明Description of drawings
图1为本发明所述变换器的电气原理图。Fig. 1 is an electrical schematic diagram of the converter of the present invention.
图2为本发明所述变换器工作在全桥状态的等效电路图。Fig. 2 is an equivalent circuit diagram of the converter of the present invention working in a full-bridge state.
图3为本发明所述变换器工作在半桥状态的等效电路图。Fig. 3 is an equivalent circuit diagram of the converter of the present invention working in a half-bridge state.
图4为本发明所述变换器的工作波形图。Fig. 4 is a working waveform diagram of the converter of the present invention.
图5至图9是本发明所述变换器工作在不同开关模态的等效电路。5 to 9 are equivalent circuits of the converter of the present invention working in different switching modes.
图10是在两倍增益范围基础之上进一步拓宽输入电压范围的驱动控制方案。Figure 10 is a drive control scheme for further widening the input voltage range on the basis of twice the gain range.
图中符号含义:The meaning of the symbols in the figure:
Vin是输入直流电压源;Cin1、Cin2是第一、第二母线分压电容;Q1、Q2、Q3、Q4、Q5、Q6分别是第一全桥开关管Q1、第二全桥开关管Q2、第三全桥开关管Q3、第四全桥开关管Q4、第一双向开关管Q5、第二双向开关管Q6;C1、C2、C3、C4、C5、C6是开关管Q1、Q2、Q3、Q4、Q5、Q6的结电容;Lr是谐振电感;Cr是谐振电容;Lm是励磁电感;T是变压器;N1、N2是原副边匝数;D1、D2是第一、第二整流二极管;Co是输出滤波电容;Ro是输出负载;Vg1是第一全桥开关管Q1的驱动信号;Vg2是第二全桥开关管Q2的驱动信号;Vg3是第三全桥开关管Q3的驱动信号;Vg4是第四全桥开关管Q4的驱动信号;Vg5是第一双向开关管Q5的驱动信号;Vg6是第二双向开关管Q6的驱动信号;VAB是谐振槽输入电压;iLr是谐振电流;iLm是励磁电流;iD1是整流二极管D1流过的电流;iD2是整流二极管D2流过的电流;t0~t10为时间。V in is the input DC voltage source; C in1 and C in2 are the first and second bus voltage dividing capacitors; Q 1 , Q 2 , Q 3 , Q 4 , Q 5 , and Q 6 are the first full-bridge switch tubes Q 1. The second full-bridge switch Q 2 , the third full-bridge switch Q 3 , the fourth full-bridge switch Q 4 , the first bidirectional switch Q 5 , the second bidirectional switch Q 6 ; C 1 , C 2 , C 3 , C 4 , C 5 , and C 6 are the junction capacitances of the switching tubes Q 1 , Q 2 , Q 3 , Q 4 , Q 5 , and Q 6 ; L r is the resonant inductance; C r is the resonant capacitor; L m is the excitation inductance; T is the transformer; N 1 and N 2 are the number of primary and secondary turns; D 1 and D 2 are the first and second rectifier diodes; C o is the output filter capacitor; R o is the output load; V g1 is The drive signal of the first full-bridge switch tube Q1; Vg2 is the drive signal of the second full-bridge switch tube Q2 ; Vg3 is the drive signal of the third full-bridge switch tube Q3 ; Vg4 is the fourth full-bridge switch The drive signal of tube Q4 ; V g5 is the drive signal of the first bidirectional switch tube Q5 ; V g6 is the drive signal of the second bidirectional switch tube Q6 ; V AB is the input voltage of the resonant tank; i Lr is the resonant current; i Lm is the excitation current; i D1 is the current flowing through the rectifier diode D 1 ; i D2 is the current flowing through the rectifier diode D 2 ; t 0 ~ t 10 is the time.
具体实施方式Detailed ways
下面结合附图对本发明做进一步说明:The present invention will be further described below in conjunction with accompanying drawing:
如图1所示,本发明所述变换器包括输入直流电压源Vin、第一母线分压电容Cin1、第二母线分压电容Cin2、第一全桥开关管Q1、第二全桥开关管Q2、第三全桥开关管Q3、第四全桥开关管Q4、第一双向开关管Q5、第二双向开关管Q6、谐振电容Cr、谐振电感Lr、励磁电感Lm、变压器T、第一整流二极管D1、第二整流二极管D2、输出滤波电容Co和负载Ro;As shown in Figure 1, the converter of the present invention includes an input DC voltage source V in , a first bus voltage dividing capacitor C in1 , a second bus voltage dividing capacitor C in2 , a first full bridge switch Q 1 , a second full bridge Bridge switch tube Q 2 , third full bridge switch tube Q 3 , fourth full bridge switch tube Q 4 , first bidirectional switch tube Q 5 , second bidirectional switch tube Q 6 , resonant capacitor C r , resonant inductance L r , Exciting inductor L m , transformer T, first rectifier diode D 1 , second rectifier diode D 2 , output filter capacitor C o and load R o ;
其中,输入直流电压源Vin的正极分别与第一母线分压电容Cin1的一端、第三全桥开关管Q3的漏极及第一全桥开关管Q1的漏极连接;第一母线分压电容Cin1的另一端分别与第二母线分压电容Cin2的一端、第二双向开关管Q6的漏极连接;第二母线分压电容Cin2的另一端分别与输入直流电压源Vin的负极、第四全桥开关管Q4的源极、第二全桥开关管Q2的源极连接;第二双向开关管Q6的源极与第一双向开关管Q5的源极相连,第一双向开关管Q5的漏极分别与第三全桥开关管Q3的源极、第四全桥开关管Q4的漏极以及谐振电容Cr的一端连接;谐振电容Cr的另一端与谐振电感Lr的一端连接,谐振电感Lr的另一端与变压器T的原边一端连接,变压器T的原边的另一端分别与第一全桥开关管Q1的源极、第二全桥开关管Q2的漏极相连,励磁电感Lm集成在变压器T中并与谐振电感Lr连接;变压器T第一副边绕组的一端与第一整流二极管D1的阳极连接,第一整流二极管D1的阴极分别与第二整流二极管D2的阴极、输出滤波电容Co的一端以及负载Ro的一端连接,变压器T第一副边绕组的另一端分别与变压器T第二副边绕组的一端、输出滤波电容Co的另一端以及负载Ro的另一端连接,变压器T第二副边绕组的另一端与二极管D2的阳极连接。Wherein, the anode of the input DC voltage source V in is respectively connected to one end of the first busbar voltage dividing capacitor C in1 , the drain of the third full-bridge switch Q3 and the drain of the first full-bridge switch Q1; The other end of the bus voltage dividing capacitor C in1 is respectively connected to one end of the second bus voltage dividing capacitor C in2 and the drain of the second bidirectional switch Q6 ; the other end of the second bus voltage dividing capacitor C in2 is respectively connected to the input DC voltage The negative pole of the source Vin , the source of the fourth full-bridge switch Q4 , and the source of the second full-bridge switch Q2 are connected; the source of the second bidirectional switch Q6 is connected to the source of the first bidirectional switch Q5 The source is connected, and the drain of the first bidirectional switch Q5 is respectively connected to the source of the third full-bridge switch Q3 , the drain of the fourth full-bridge switch Q4 and one end of the resonant capacitor Cr ; the resonant capacitor The other end of C r is connected to one end of the resonant inductance L r , the other end of the resonant inductance L r is connected to one end of the primary side of the transformer T, and the other end of the primary side of the transformer T is respectively connected to the source of the first full-bridge switching tube Q1 Pole and the drain of the second full-bridge switching tube Q2 are connected, the excitation inductance L m is integrated in the transformer T and connected to the resonant inductance L r ; one end of the first secondary winding of the transformer T is connected to the anode of the first rectifier diode D1 , the cathode of the first rectifier diode D1 is respectively connected to the cathode of the second rectifier diode D2, one end of the output filter capacitor C o and one end of the load R o , and the other end of the first secondary winding of the transformer T is respectively connected to the second end of the transformer T One end of the secondary winding, the other end of the output filter capacitor C o and the other end of the load R o are connected, and the other end of the second secondary winding of the transformer T is connected to the anode of the diode D2.
如图2所示,当变换器工作在全桥状态时,第一双向开关管Q5、第二双向开关管Q6处于关断状态,第一全桥开关管Q1、第二全桥开关管Q2、第三全桥开关管Q3、第四全桥开关管Q4构成全桥结构。As shown in Figure 2, when the converter works in the full-bridge state, the first bidirectional switch Q 5 and the second bidirectional switch Q 6 are in the off state, and the first full-bridge switch Q 1 and the second full-bridge switch The tube Q 2 , the third full-bridge switch tube Q 3 , and the fourth full-bridge switch tube Q 4 form a full-bridge structure.
如图3所示,当变换器工作在半桥状态时,第三全桥开关管Q3、第四全桥开关管Q4关断,第一全桥开关管Q1、第二全桥开关管Q2、第一双向开关管Q5、第二双向开关管Q6以及第一母线分压电容Cin1和第二母线分压电容Cin2构成半桥结构。As shown in Figure 3, when the converter works in the half-bridge state, the third full-bridge switch Q 3 and the fourth full-bridge switch Q 4 are turned off, and the first full-bridge switch Q 1 and the second full-bridge switch The transistor Q 2 , the first bidirectional switch transistor Q 5 , the second bidirectional switch transistor Q 6 , and the first bus voltage dividing capacitor C in1 and the second bus voltage dividing capacitor C in2 form a half-bridge structure.
图4所示为变换器的工作波形,第一全桥开关管Q1、第二全桥开关管Q2的占空比固定为0.5并且互补导通,第三全桥开关管Q3、第四全桥开关管Q4分别与第一全桥开关管Q1、第二全桥开关管Q2同时导通,并且占空比均为D,第一双向开关管Q5、第二双向开关管Q6分别与第三全桥开关管Q3、第四全桥开关管Q4互补导通,占空比为1-D。占空比D的变化范围是0~0.5,变换器输入电压范围Vmax:Vmin为2:1。当输入电压是Vmin时,对应占空比D为0.5,此时变换器相当于工作在全桥状态下;当输入电压为Vmax时,对应占空比为0,变换器相当于工作在半桥状态下;当输入电压在Vmax和Vmin之间变化时,占空比D在0~0.5之间变化。通过控制占空比D,变换器实现了两倍的增益变化范围,适用于宽输入电压范围的应用。Figure 4 shows the working waveform of the converter. The duty cycle of the first full-bridge switching tube Q 1 and the second full-bridge switching tube Q 2 is fixed at 0.5 and they are complementary conduction. The third full-bridge switching tube Q 3 and the second full-bridge switching tube Q 3 The four full-bridge switch tubes Q 4 are turned on simultaneously with the first full-bridge switch tube Q 1 and the second full-bridge switch tube Q 2 respectively, and the duty cycle is D, the first bidirectional switch tube Q 5 , the second bidirectional switch tube The tube Q 6 is complementary to the third full-bridge switch tube Q 3 and the fourth full-bridge switch tube Q 4 , and the duty cycle is 1-D. The variation range of the duty ratio D is 0-0.5, and the converter input voltage range V max : V min is 2:1. When the input voltage is V min , the corresponding duty cycle D is 0.5, and the converter is equivalent to working in the full bridge state; when the input voltage is V max , the corresponding duty cycle is 0, and the converter is equivalent to working in the full bridge state. In the half-bridge state; when the input voltage changes between V max and V min , the duty cycle D changes between 0 and 0.5. By controlling the duty cycle D, the converter achieves twice the gain variation range, which is suitable for applications with a wide input voltage range.
采用图4所示的驱动控制方案时,第一双向开关管Q5、第二双向开关管Q6的开关频率与其他开关频率相同,并且能够自动实现ZVS,与负载等无关。When the drive control scheme shown in Figure 4 is adopted, the switching frequency of the first bidirectional switch Q 5 and the second bidirectional switch Q 6 is the same as other switching frequencies, and ZVS can be automatically realized regardless of the load.
下面结合图5~图9对本发明变换器的工作原理进行具体分析。在分析之前,先作如下假设:The working principle of the converter of the present invention will be specifically analyzed below with reference to FIGS. 5 to 9 . Before the analysis, make the following assumptions:
①所有功率开关管均为理想器件,不考虑开关时间、导通压降;①All power switch tubes are ideal devices, regardless of switching time and conduction voltage drop;
②所有电感和电容均为理想器件;②All inductors and capacitors are ideal devices;
③输出电容Co足够大,认为输出电压不变;③The output capacitance C o is large enough that the output voltage remains unchanged;
④电容Cin1、Cin2足够大,可以看作是两个电压为输入电压一半的电压源。④ Capacitors C in1 and C in2 are large enough to be regarded as two voltage sources whose voltage is half of the input voltage.
根据变换器的工作过程,可将变换器分为十种工作模态,由于变换器正负半周期对称,只是方向相反,因此只介绍正半周期的五种开关模态。According to the working process of the converter, the converter can be divided into ten working modes. Since the positive and negative half cycles of the converter are symmetrical, but the direction is opposite, only five switching modes of the positive half cycle are introduced.
1、开关模态I(t0~t1):1. Switch mode I(t 0 ~t 1 ):
如图5所示,在t0时刻前,第一双向开关管Q5已经导通,在t0时刻,第一全桥开关管Q1、第四全桥开关管Q4导通,变压器副边的第一整流二极管D1导通。这段时间内,谐振电感Lr与谐振电容Cr发生谐振,且谐振电流iLr大于励磁电流iLm,两者的差值通过变压器传输到副边,提供给负载。由于励磁电感Lm被输出电压钳位,不参与谐振,励磁电流线性增加。电流通路分别为Vin-Q1-T-Lr-Cr-Q4、T-D1-Ro。As shown in Figure 5, before time t0 , the first bidirectional switch Q5 has been turned on, and at time t0 , the first full-bridge switch Q1 and the fourth full-bridge switch Q4 are turned on, and the transformer secondary side of the first rectifier diode D1 conduction. During this period, the resonant inductance L r and the resonant capacitor C r resonate, and the resonant current i Lr is greater than the excitation current i Lm , and the difference between the two is transmitted to the secondary side through the transformer and supplied to the load. Since the excitation inductance L m is clamped by the output voltage and does not participate in resonance, the excitation current increases linearly. The current paths are respectively V in -Q 1 -TL r -C r -Q 4 , TD 1 -R o .
2、开关模态II(t1~t2):2. Switch mode II (t 1 ~t 2 ):
如图6所示,在t1时刻,第四全桥开关管Q4关断,在这段时间内,谐振电流给第三全桥开关管Q3、第四全桥开关管Q4、第二双向开关管Q6的结电容充放电,直到第二双向开关管Q6的体二极管导通,第三全桥开关管Q3、第四全桥开关管Q4承受的电压为输入电压一半,这个模式结束,这一阶段为第二双向开关管Q6的ZVS开通做好准备。As shown in Figure 6, at time t1 , the fourth full-bridge switch tube Q4 is turned off, and during this period, the resonant current is supplied to the third full-bridge switch tube Q3 , the fourth full-bridge switch tube Q4 , and the fourth full-bridge switch tube Q4. The junction capacitance of the second bidirectional switch Q 6 is charged and discharged until the body diode of the second bidirectional switch Q 6 is turned on, the voltage that the third full bridge switch Q 3 and the fourth full bridge switch Q 4 bear is half of the input voltage , this mode ends, and this stage is ready for the ZVS turn-on of the second bidirectional switch Q 6 .
3、开关模态IV(t2~t3):3. Switch mode IV (t 2 ~t 3 ):
如图7所示,在t2时刻,第二双向开关管Q6ZVS开通,变压器副边第一整流二极管D1导通。在这段时间内依然是谐振电感Lr与谐振电容Cr发生谐振,谐振电流iLr大于励磁电流iLm,两者的差值通过变压器传输到副边。励磁电感Lm被输出电压钳位,不参与谐振,励磁电流线性增加。此模态与模态Ⅰ相同,只是谐振槽的输入电压减半。电流通路分别为Cin1-Q1-T-Lr-Cr-Q5-Q6-Cin2、T-D1-Ro。As shown in FIG. 7 , at time t 2 , the second bidirectional switch Q 6 ZVS is turned on, and the first rectifier diode D 1 on the secondary side of the transformer is turned on. During this period of time, the resonant inductance L r and the resonant capacitor C r still resonate, the resonant current i Lr is greater than the excitation current i Lm , and the difference between the two is transmitted to the secondary side through the transformer. The excitation inductance L m is clamped by the output voltage, does not participate in the resonance, and the excitation current increases linearly. This mode is the same as mode I, except that the input voltage to the resonant tank is halved. The current paths are respectively C in1 -Q 1 -TL r -C r -Q 5 -Q 6 -C in2 , TD 1 -R o .
4、开关模态IV(t3~t4):4. Switch mode IV (t 3 ~t 4 ):
如图8所示,在这段时间内,谐振电流iLr等于励磁电流iLm,励磁电感Lm不再被输出电压钳位,开始参与谐振。输出整流二极管实现了零电流关断,原边不再向输出侧提供能量,负载能量由输出电容Co提供。电流通路分别为别为Cin1-Q1-T-Lr-Cr-Q5-Q6-Cin2、Co-Ro。As shown in Figure 8, during this period, the resonant current i Lr is equal to the excitation current i Lm , and the excitation inductance L m is no longer clamped by the output voltage, and starts to participate in resonance. The output rectifier diode realizes zero-current shutdown, the primary side no longer provides energy to the output side, and the load energy is provided by the output capacitor C o . The current paths are respectively C in1 -Q 1 -TL r -C r -Q 5 -Q 6 -C in2 , C o -R o .
5、开关模态IV(t4~t5):5. Switch mode IV (t 4 ~t 5 ):
如图9所示,在t4时刻,第一全桥开关管Q1、第一双向开关管Q5关断,在这段时间内,谐振电流分别给第一全桥开关管Q1、第二全桥开关管Q2、第三全桥开关管Q3、第四全桥开关管Q4、第一双向开关管Q5的结电容充放电,直到第一全桥开关管Q1、第四全桥开关管Q4的体二极管导通,第二全桥开关管Q2、第三全桥开关管Q3承受的电压为0,这一阶段为下一时刻第二全桥开关管Q2、第三全桥开关管Q3的零电压开通做好了准备。As shown in Figure 9 , at time t4, the first full-bridge switch tube Q1 and the first bidirectional switch tube Q5 are turned off, and during this period, the resonant current is respectively supplied to the first full-bridge switch tube Q1 and the first full-bridge switch tube Q1. The junction capacitance of the second full-bridge switch Q 2 , the third full-bridge switch Q 3 , the fourth full-bridge switch Q 4 , and the first bidirectional switch Q 5 is charged and discharged until the first full-bridge switch Q 1 , the second full-bridge switch The body diodes of the four full-bridge switch tubes Q 4 are turned on, and the voltage borne by the second full-bridge switch tube Q 2 and the third full-bridge switch tube Q 3 is 0. This stage is the second full-bridge switch tube Q at the next moment. 2. The zero-voltage turn-on of the third full-bridge switch tube Q3 is ready.
输入电压范围拓展:Extended input voltage range:
采用图4所示的驱动控制方案时,占空比D的变化范围是0~0.5,变换器输入电压范围Vmax:Vmin为2:1。由于本文中的变换器所具有的双桥结构特点,因此通过控制策略的变换,可以再次拓宽它的输入电压范围,使其输入范围可以大于2倍的增益范围。当输入电压小于Vmin时,采用全桥加频率控制的控制策略,即令变换器工作在全桥状态,保持占空比D=0.5不变,通过控制减小开关频率来保持输出稳定;当输入电压大于Vmax时,则采用图10所示的控制方法,工作在半桥状态,保持开关频率不变,通过控制占空比D来保持输出电压稳定。因此,双桥LLC谐振变换器适用于宽输入电压范围的应用。When the drive control scheme shown in Figure 4 is adopted, the variation range of the duty ratio D is 0 to 0.5, and the converter input voltage range V max : V min is 2:1. Due to the double-bridge structure characteristics of the converter in this paper, its input voltage range can be broadened again through the transformation of the control strategy, so that its input range can be greater than the gain range of 2 times. When the input voltage is less than V min , adopt the control strategy of full bridge plus frequency control, that is, make the converter work in the full bridge state, keep the duty ratio D=0.5 unchanged, and keep the output stable by controlling the reduced switching frequency; when the input When the voltage is greater than V max , adopt the control method shown in Figure 10, work in the half-bridge state, keep the switching frequency constant, and keep the output voltage stable by controlling the duty cycle D. Therefore, the double-bridge LLC resonant converter is suitable for wide input voltage range applications.
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。The above-mentioned embodiments are only descriptions of preferred implementations of the present invention, and are not intended to limit the scope of the present invention. All such modifications and improvements should fall within the scope of protection defined by the claims of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510629077.XA CN105119497A (en) | 2015-09-29 | 2015-09-29 | A Double-Bridge LLC Resonant Converter with Wide Input Range |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510629077.XA CN105119497A (en) | 2015-09-29 | 2015-09-29 | A Double-Bridge LLC Resonant Converter with Wide Input Range |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105119497A true CN105119497A (en) | 2015-12-02 |
Family
ID=54667418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510629077.XA Pending CN105119497A (en) | 2015-09-29 | 2015-09-29 | A Double-Bridge LLC Resonant Converter with Wide Input Range |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105119497A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106411139A (en) * | 2016-10-20 | 2017-02-15 | 华北电力大学 | Control method for LLC current converter with wide output range |
CN107196513A (en) * | 2017-06-21 | 2017-09-22 | 国电南瑞科技股份有限公司 | The LLC resonant transform circuits and its method of a kind of suitable wide range output |
CN108418436A (en) * | 2018-04-27 | 2018-08-17 | 合肥博鳌电气科技有限公司 | A kind of two-way LLC DC converters and its control method based on half-bridge three-level structure |
CN108964467A (en) * | 2018-06-08 | 2018-12-07 | 东南大学 | Combined type resonant full bridge Zero Current Switch DC converter and its control method |
CN109742957A (en) * | 2019-02-12 | 2019-05-10 | 深圳市新能力科技有限公司 | A kind of bicyclic complex resonance type soft switch transducer |
WO2019136662A1 (en) * | 2018-01-11 | 2019-07-18 | 深圳欣锐科技股份有限公司 | Llc controller and control method |
CN110429822A (en) * | 2019-08-07 | 2019-11-08 | 西北工业大学 | A kind of T-type LLC resonant converter and its control method |
CN110829855A (en) * | 2019-12-25 | 2020-02-21 | 国网江苏省电力有限公司宿迁供电分公司 | LLC converter switching over wide voltage range based on alternating current switch |
CN110995011A (en) * | 2019-12-25 | 2020-04-10 | 南京工程学院 | A bidirectional DC-DC converter based on AC switch switching |
CN112366946A (en) * | 2020-11-02 | 2021-02-12 | 天津理工大学 | Resonant DC-DC converter |
CN112436721A (en) * | 2020-11-30 | 2021-03-02 | 湖北工业大学 | Novel PSPWM control method and system of fixed-frequency variable-structure LLC resonant converter |
KR20210076535A (en) * | 2019-12-16 | 2021-06-24 | (주) 다쓰테크 | Power optimizer, and its method of control method of pv grid connected system using thereof |
CN113039710A (en) * | 2018-09-17 | 2021-06-25 | 金斯顿女王大学 | Power converter and periodic modulation control method thereof |
CN119070592A (en) * | 2024-08-26 | 2024-12-03 | 同济大学 | High-gain wide output voltage range isolated DC converter and control method thereof |
CN119362901A (en) * | 2024-12-23 | 2025-01-24 | 广东伟邦科技股份有限公司 | A wide voltage range resonant inductor pre-storage LCL converter for elevators |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050078491A1 (en) * | 2001-12-28 | 2005-04-14 | Wei Song | Dc-dc converters providing reduced deadtime |
US20050195622A1 (en) * | 2004-02-20 | 2005-09-08 | Lehman Bradley M. | DC power converter and method of operation for continuous conduction mode |
CN102969898A (en) * | 2012-11-29 | 2013-03-13 | 盐城工学院 | Low-voltage wide-input three-level full-bridge converter and control method thereof |
-
2015
- 2015-09-29 CN CN201510629077.XA patent/CN105119497A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050078491A1 (en) * | 2001-12-28 | 2005-04-14 | Wei Song | Dc-dc converters providing reduced deadtime |
US20050195622A1 (en) * | 2004-02-20 | 2005-09-08 | Lehman Bradley M. | DC power converter and method of operation for continuous conduction mode |
CN102969898A (en) * | 2012-11-29 | 2013-03-13 | 盐城工学院 | Low-voltage wide-input three-level full-bridge converter and control method thereof |
Non-Patent Citations (3)
Title |
---|
WEI SONG等: "Dual-bridge DC-DC converter: a new topology characterized with no deadtime operation", 《IEEE TRANSACTIONS ON POWER ELECTRONICS》 * |
WEI SONG等: "Dual-bridge DC-DC converter: a new topology of no deadtime DC-DC converters", 《APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION,2002》 * |
李菊: "全桥LLC谐振变换器的混合式控制策略", 《中国优秀硕士学位论文全文数据库(工程科技Ⅱ辑)》 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106411139A (en) * | 2016-10-20 | 2017-02-15 | 华北电力大学 | Control method for LLC current converter with wide output range |
CN106411139B (en) * | 2016-10-20 | 2019-08-30 | 华北电力大学 | A Control Method of Wide Output Range LLC Converter |
CN107196513A (en) * | 2017-06-21 | 2017-09-22 | 国电南瑞科技股份有限公司 | The LLC resonant transform circuits and its method of a kind of suitable wide range output |
WO2019136662A1 (en) * | 2018-01-11 | 2019-07-18 | 深圳欣锐科技股份有限公司 | Llc controller and control method |
CN108418436A (en) * | 2018-04-27 | 2018-08-17 | 合肥博鳌电气科技有限公司 | A kind of two-way LLC DC converters and its control method based on half-bridge three-level structure |
CN108964467A (en) * | 2018-06-08 | 2018-12-07 | 东南大学 | Combined type resonant full bridge Zero Current Switch DC converter and its control method |
CN113039710A (en) * | 2018-09-17 | 2021-06-25 | 金斯顿女王大学 | Power converter and periodic modulation control method thereof |
CN109742957A (en) * | 2019-02-12 | 2019-05-10 | 深圳市新能力科技有限公司 | A kind of bicyclic complex resonance type soft switch transducer |
CN109742957B (en) * | 2019-02-12 | 2024-02-09 | 深圳市新能力科技有限公司 | Double-ring full-resonance type soft switching converter |
CN110429822A (en) * | 2019-08-07 | 2019-11-08 | 西北工业大学 | A kind of T-type LLC resonant converter and its control method |
KR102363847B1 (en) * | 2019-12-16 | 2022-02-16 | (주) 다쓰테크 | Power optimizer, and its method of control method of pv grid connected system using thereof |
KR20210076535A (en) * | 2019-12-16 | 2021-06-24 | (주) 다쓰테크 | Power optimizer, and its method of control method of pv grid connected system using thereof |
CN110829855A (en) * | 2019-12-25 | 2020-02-21 | 国网江苏省电力有限公司宿迁供电分公司 | LLC converter switching over wide voltage range based on alternating current switch |
CN110995011A (en) * | 2019-12-25 | 2020-04-10 | 南京工程学院 | A bidirectional DC-DC converter based on AC switch switching |
CN110995011B (en) * | 2019-12-25 | 2021-05-18 | 南京工程学院 | A bidirectional DC-DC converter based on AC switch switching |
CN112366946A (en) * | 2020-11-02 | 2021-02-12 | 天津理工大学 | Resonant DC-DC converter |
CN112366946B (en) * | 2020-11-02 | 2021-10-22 | 天津理工大学 | A resonant DC-DC converter |
CN112436721A (en) * | 2020-11-30 | 2021-03-02 | 湖北工业大学 | Novel PSPWM control method and system of fixed-frequency variable-structure LLC resonant converter |
CN119070592A (en) * | 2024-08-26 | 2024-12-03 | 同济大学 | High-gain wide output voltage range isolated DC converter and control method thereof |
CN119070592B (en) * | 2024-08-26 | 2025-05-27 | 同济大学 | High-gain wide output voltage range isolated DC converter and control method thereof |
CN119362901A (en) * | 2024-12-23 | 2025-01-24 | 广东伟邦科技股份有限公司 | A wide voltage range resonant inductor pre-storage LCL converter for elevators |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105119497A (en) | A Double-Bridge LLC Resonant Converter with Wide Input Range | |
CN103944397B (en) | Boost type isolation DC/DC converter and control method thereof | |
WO2020248472A1 (en) | Asymmetric half-bridge converter and control method therefor | |
CN105141138B (en) | A kind of voltage-multiplying type Sofe Switch type recommends DC converter | |
CN111010043B (en) | Full-bridge LLC resonant converter fixed-frequency control method | |
CN101355308B (en) | A magnetically integrated zero-voltage and zero-current soft-switching full-bridge circuit | |
CN105119496A (en) | A wide input range three-level LLC resonant converter and level switching control method | |
CN103078514A (en) | Push-pull converter with voltage multiplying resonance capability | |
CN106849681A (en) | A kind of high-gain isolated active clamping Sofe Switch DC DC converters | |
CN104980037B (en) | A kind of secondary adjusting type determines frequency controlled resonant converter and its control method | |
CN103546038B (en) | A kind of soft switching full-bridge direct-current converter suppressing secondary-side voltage oscillation | |
CN110071640A (en) | A kind of three times stream rectification LLC three phase full bridge DC converter | |
CN111431415B (en) | High-boost isolated DC converter with parallel input and series output | |
CN108900100A (en) | A kind of single-phase high efficiency high frequency isolated form rectifier | |
CN106787757B (en) | A kind of CLTCL resonance DC converter | |
CN104779828A (en) | High-efficiency photovoltaic grid connected inverter | |
CN106712522A (en) | Semi-active bridge DC-DC converter PWM-phase shift composite control method | |
CN111224553A (en) | Improved bidirectional half-bridge three-level LLC direct-current converter and synchronous control method thereof | |
CN112600435B (en) | Fusion type multiport resonant power conversion system | |
CN111262442A (en) | A Resonant Converter Based on ON/OFF Control | |
CN110233575A (en) | Five element resonance networks of one kind and converter | |
CN110048611A (en) | High voltage gain Sofe Switch DC-DC converter based on switching capacity and coupling inductance | |
CN205544948U (en) | Hybrid control's LLC resonant transformation ware | |
CN110611444B (en) | Bridgeless integrated AC-DC (alternating current-direct current) rectifying circuit and rectifying method | |
CN111969847A (en) | Staggered non-isolated switch capacitor network high-gain soft switch converter and control method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20151202 |