CN105056304B - Enhanced bone biomimetic material of a kind of multi-layer nano fabric and preparation method thereof - Google Patents
Enhanced bone biomimetic material of a kind of multi-layer nano fabric and preparation method thereof Download PDFInfo
- Publication number
- CN105056304B CN105056304B CN201510546454.3A CN201510546454A CN105056304B CN 105056304 B CN105056304 B CN 105056304B CN 201510546454 A CN201510546454 A CN 201510546454A CN 105056304 B CN105056304 B CN 105056304B
- Authority
- CN
- China
- Prior art keywords
- fabric
- biomimetic material
- bone
- nanofiber
- layer nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 210000000988 bone and bone Anatomy 0.000 title claims abstract description 61
- 239000002977 biomimetic material Substances 0.000 title claims abstract description 41
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 239000002059 nanofabric Substances 0.000 title claims 12
- 239000002121 nanofiber Substances 0.000 claims abstract description 87
- 239000004744 fabric Substances 0.000 claims abstract description 64
- 108010022355 Fibroins Proteins 0.000 claims abstract description 22
- 229910052588 hydroxylapatite Inorganic materials 0.000 claims abstract description 19
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 claims abstract description 19
- 238000009987 spinning Methods 0.000 claims abstract description 16
- 238000009941 weaving Methods 0.000 claims abstract description 16
- 229920000747 poly(lactic acid) Polymers 0.000 claims abstract description 14
- 239000004626 polylactic acid Substances 0.000 claims abstract description 14
- BYEAHWXPCBROCE-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-ol Chemical compound FC(F)(F)C(O)C(F)(F)F BYEAHWXPCBROCE-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000002184 metal Substances 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 11
- 238000004804 winding Methods 0.000 claims description 11
- 239000008367 deionised water Substances 0.000 claims description 10
- 229910021641 deionized water Inorganic materials 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 239000012890 simulated body fluid Substances 0.000 claims description 6
- 238000001291 vacuum drying Methods 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 claims description 4
- 235000004879 dioscorea Nutrition 0.000 claims 3
- 238000010041 electrostatic spinning Methods 0.000 claims 3
- 239000007921 spray Substances 0.000 claims 2
- 241000255789 Bombyx mori Species 0.000 claims 1
- 240000007594 Oryza sativa Species 0.000 claims 1
- 235000007164 Oryza sativa Nutrition 0.000 claims 1
- 238000013019 agitation Methods 0.000 claims 1
- 238000009954 braiding Methods 0.000 claims 1
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 235000009566 rice Nutrition 0.000 claims 1
- 238000001338 self-assembly Methods 0.000 claims 1
- 238000001523 electrospinning Methods 0.000 abstract description 15
- 239000000463 material Substances 0.000 abstract description 12
- 230000033558 biomineral tissue development Effects 0.000 abstract description 10
- 238000005516 engineering process Methods 0.000 abstract description 6
- 230000003592 biomimetic effect Effects 0.000 abstract description 5
- 239000010839 body fluid Substances 0.000 abstract description 3
- 210000001124 body fluid Anatomy 0.000 abstract description 3
- 239000011664 nicotinic acid Substances 0.000 abstract description 2
- 239000011148 porous material Substances 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 18
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 238000003756 stirring Methods 0.000 description 4
- 230000017423 tissue regeneration Effects 0.000 description 4
- 235000008708 Morus alba Nutrition 0.000 description 3
- 240000000249 Morus alba Species 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- IYMAXBFPHPZYIK-BQBZGAKWSA-N Arg-Gly-Asp Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O IYMAXBFPHPZYIK-BQBZGAKWSA-N 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 239000000316 bone substitute Substances 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 238000002316 cosmetic surgery Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 206010065687 Bone loss Diseases 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- 208000005102 Kashin-Beck Disease Diseases 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 206010039203 Road traffic accident Diseases 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 108010072041 arginyl-glycyl-aspartic acid Proteins 0.000 description 1
- 239000011173 biocomposite Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 230000033667 organ regeneration Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
Landscapes
- Materials For Medical Uses (AREA)
Abstract
本发明涉及一种多层纳米纤维织物增强的骨仿生材料及其制备方法。多层纳米纤维织物增强的骨仿生材料是由羟基磷灰石在多层纳米纤维织物模板上自组装而成,有机的纳米纤维与无机的羟基磷灰石质量比为1:1‑9,孔隙率30‑50%。具体的制备方法为:将丝素蛋白和聚乳酸按照不同的质量比溶于六氟异丙醇中配制不同质量分数的纺丝溶液,通过静电纺丝制备纳米纤维纱线,并利用机织技术编织多层的纳米纤维织物作为模板,利用模拟体液仿生矿化的方法对织物进行矿化得到多层纳米纤维织物增强的骨仿生材料。本发明制得的骨仿生材料能够从功能上和结构上进行仿生天然骨,是一种具有较好的应用前景的骨仿生材料。The invention relates to a bone bionic material reinforced by multi-layer nanofiber fabric and a preparation method thereof. The bone biomimetic material reinforced by multilayer nanofiber fabric is self-assembled by hydroxyapatite on a multilayer nanofiber fabric template. The mass ratio of organic nanofibers to inorganic hydroxyapatite is 1:1‑9, and the pores rate 30‑50%. The specific preparation method is: dissolving silk fibroin and polylactic acid in hexafluoroisopropanol according to different mass ratios to prepare spinning solutions with different mass fractions, preparing nanofiber yarns by electrospinning, and using weaving technology The multilayer nanofiber fabric is woven as a template, and the fabric is mineralized by simulating the biomimetic mineralization of body fluid to obtain a bone biomimetic material reinforced by multilayer nanofiber fabric. The bone biomimetic material prepared by the invention can biomime natural bone in terms of function and structure, and is a bone biomimetic material with good application prospects.
Description
技术领域technical field
本发明属于生物医用材料技术领域,涉及一种多层纳米纤维织物增强的骨仿生材料及其制备方法,应用于骨修复或骨替代材料。The invention belongs to the technical field of biomedical materials, and relates to a multi-layer nanofiber fabric reinforced bone bionic material and a preparation method thereof, which are applied to bone repair or bone substitute materials.
背景技术Background technique
我国是一个拥有13亿人口的大国,也是一个骨组织修复和重建材料的需求大国,目前我国由风湿和类风湿引发的大骨节病患者有数百万人;有七千万伴随人口老龄化的骨质疏松症患者;每年由于疾病、交通事故和运动创伤等造成的骨缺损、骨折和骨缺失患者人数近一千万;需要行颅颌面和肢体整形、美容的人数也在千万人以上。目前用于骨组织修复的主要有金属、陶瓷和聚合物几大类,但是现有的骨组织修复材料都不能在力学性能和生物相容性两个方面同时满足骨修复或替代材料的要求。因此,制备能主动诱导、激发组织器官再生并具有良好力学性能的骨仿生材料对于解决临床日益扩大的骨修复需求具有重要的意义,这类材料追求与天然生物组织具有相似的结构、组成和功能。天然骨是一种由约30%的有机基质和70%的羟基磷灰石构成的有机/无机生物复合材料,有机基质主要包括非胶原蛋白、粘多糖等。羟基磷灰石纳米晶体有序地嵌在胶原纤维基质中,有机和无机组元间的密切协同作用以及分子水平的独特组装,赋予了天然骨的多级结构和优异的力学性能。my country is a large country with a population of 1.3 billion, and it is also a country with a large demand for bone tissue repair and reconstruction materials. At present, there are millions of patients with Kashin-Beck disease caused by rheumatism and rheumatoid; there are 70 million people with an aging population. Patients with osteoporosis; the number of patients with bone defects, fractures and bone loss caused by diseases, traffic accidents and sports trauma is nearly 10 million every year; the number of people who need craniomaxillofacial and limb plastic surgery and cosmetic surgery is also more than ten million . At present, there are mainly metals, ceramics and polymers for bone tissue repair, but none of the existing bone tissue repair materials can meet the requirements of bone repair or replacement materials in terms of mechanical properties and biocompatibility. Therefore, the preparation of bone biomimetic materials that can actively induce and stimulate tissue and organ regeneration and have good mechanical properties is of great significance to meet the growing needs of clinical bone repair. Such materials pursue the structure, composition and function similar to natural biological tissues. . Natural bone is an organic/inorganic biocomposite material composed of about 30% organic matrix and 70% hydroxyapatite. The organic matrix mainly includes non-collagen, mucopolysaccharide, etc. Hydroxyapatite nanocrystals are orderly embedded in the collagen fiber matrix. The close synergy between organic and inorganic components and the unique assembly at the molecular level endow natural bone with a multi-level structure and excellent mechanical properties.
发明内容Contents of the invention
本发明的目的是提供一种多层纳米纤维织物增强的骨仿生材料的制备方法。通过静电纺技术制备聚乳酸/丝素蛋白复合纳米纤维并加捻成纱线,利用机织技术将纱线编织成多层织物,随后将多层织物在模拟体液中仿生矿化得到多层纳米纤维织物增强的骨仿生材料。这种多层纳米纤维织物增强的骨仿生材料不仅在成分上模拟了天然骨,而且在结构上实现了对天然骨的仿生,具有优异的力学性能、良好的骨诱导性,以及良好的生物相容性。The purpose of the present invention is to provide a preparation method of bone biomimetic material reinforced by multi-layer nanofiber fabric. Polylactic acid/silk fibroin composite nanofibers were prepared by electrospinning technology and twisted into yarns, and the yarns were woven into multi-layer fabrics by weaving technology, and then the multi-layer fabrics were biomimetic mineralized in simulated body fluids to obtain multi-layer nanofibers. Fiber-fabric-reinforced bone biomimetic materials. This multi-layer nanofiber fabric-reinforced bone biomimetic material not only simulates natural bone in composition, but also realizes the biomimicry of natural bone in structure, with excellent mechanical properties, good osteoinductivity, and good biophasic properties. Capacitance.
实现本发明目的技术方案是,一种多层纳米纤维织物增强的骨仿生材料,它是由羟基磷灰石在多层纳米纤维织物模板上自组装而成。这种骨仿生材料中,有机的纳米纤维与无机的羟基磷灰石质量比为1:1-9,孔隙率30-50%。所述的多层纳米纤维织物模板是利用静电纺丝制备的纳米纤维加捻成纳米纤维纱线,再经机织技术编织而成,纳米纤维纱线的直径为60-500μm,多层纳米纤维织物的层数大于等于2,经密100-150根/5cm,150-200根/5cm。所述的纳米纤维成分为丝素蛋白和聚乳酸,丝素蛋白和聚合物的质量比为1:1-19,纳米纤维的直径200-900nm。所述的丝素蛋白来源于桑蚕蚕丝和柞蚕蚕丝,丝素蛋白分子的特性粘度[η]大于或等于0.50,所述的聚乳酸分子量大于100000。所述的羟基磷灰石呈球状形貌,尺寸为尺寸为70nm- 150nm。The technical solution for realizing the object of the present invention is a bone biomimetic material reinforced by multilayer nanofiber fabric, which is self-assembled by hydroxyapatite on a multilayer nanofiber fabric template. In this bone biomimetic material, the mass ratio of organic nanofibers to inorganic hydroxyapatite is 1:1-9, and the porosity is 30-50%. The multilayer nanofiber fabric template is formed by twisting nanofibers prepared by electrospinning into nanofiber yarns, and then weaving through weaving technology. The diameter of the nanofiber yarns is 60-500 μm, and the multilayer nanofibers The number of layers of the fabric is greater than or equal to 2, and the warp density is 100-150 threads/5cm, and 150-200 threads/5cm. The nanofiber components are silk fibroin and polylactic acid, the mass ratio of silk fibroin to polymer is 1:1-19, and the diameter of the nanofiber is 200-900nm. The silk fibroin is derived from mulberry silk and tussah silk, the intrinsic viscosity [η] of the silk fibroin molecule is greater than or equal to 0.50, and the molecular weight of the polylactic acid is greater than 100,000. The hydroxyapatite has a spherical shape and a size of 70nm-150nm.
制备这种多层纳米纤维织物增强的骨仿生材料的方法,采用如下步骤:The method for preparing the bone biomimetic material reinforced by this multilayer nanofiber fabric adopts the following steps:
(1)将丝素和聚乳酸按照质量比为1:1-19溶解于六氟异丙醇中,常温下磁力搅拌1-5天得到质量分数为6-8%的纺丝溶液;(1) Dissolve silk fibroin and polylactic acid in hexafluoroisopropanol at a mass ratio of 1:1-19, and magnetically stir at room temperature for 1-5 days to obtain a spinning solution with a mass fraction of 6-8%;
(2)按照图示1搭建静电纺丝装置,将步骤(1)中的纺丝溶液加入到注射泵中制备连续的纳米纤维纱线。静电纺丝电压为15-24 kV,纺丝溶液总流量为0.5-0.9 mL/h ,金属喇叭的直径为10-20cm,金属喇叭与卷绕装置的垂直距离为40-60cm,喷头与金属喇叭的垂直距离为4-8cm,喷头与金属喇叭的水平距离为3-5cm,喷头的数目为2-16个,喷头内径0.26-0.86 mm,正负喷头溶液流量比1:0.5-2,正负喷头间的距离13-17.5 cm,卷绕速度40-53mm/min;(2) Build an electrospinning device according to Figure 1, and add the spinning solution in step (1) into a syringe pump to prepare continuous nanofiber yarns. The electrospinning voltage is 15-24 kV, the total flow rate of the spinning solution is 0.5-0.9 mL/h, the diameter of the metal horn is 10-20 cm, the vertical distance between the metal horn and the winding device is 40-60 cm, the nozzle and the metal horn The vertical distance of the nozzle is 4-8cm, the horizontal distance between the nozzle and the metal horn is 3-5cm, the number of nozzles is 2-16, the inner diameter of the nozzle is 0.26-0.86 mm, the positive and negative nozzle solution flow ratio is 1:0.5-2, the positive and negative The distance between nozzles is 13-17.5 cm, and the winding speed is 40-53mm/min;
(3)将步骤(2)中制备的纳米纤维纱线利用机织的方法编织成多层纳米纤维织物,多层纳米纤维织物的层数大于等于2,经密50-200根/5cm,纬密80-300根/5cm;(3) Weaving the nanofiber yarn prepared in step (2) into a multilayer nanofiber fabric by weaving, the number of layers of the multilayer nanofiber fabric is greater than or equal to 2, the warp density is 50-200 threads/5cm, and the weft Density 80-300/5cm;
(4)将步骤(3)中制备的多层纳米纤维织物浸泡在质量分数为80-90%的乙醇水溶液中20-40min。然后将织物在去离子水中清洗2-3次后在真空干燥烘箱中50-60℃下干燥;(4) Soak the multilayer nanofiber fabric prepared in step (3) in an aqueous ethanol solution with a mass fraction of 80-90% for 20-40 minutes. Then wash the fabric in deionized water for 2-3 times and dry it in a vacuum drying oven at 50-60°C;
(5)将步骤(4)中得到的多层纳米纤维织物浸泡在1-1.5倍的模拟体液中,在37℃下恒温矿化6h-72h后取出样品,用去离子水清洗3-5次后,在真空烘箱中50-60℃下干燥得到多层纳米纤维织物增强的骨仿生材料。(5) Soak the multi-layer nanofiber fabric obtained in step (4) in 1-1.5 times the simulated body fluid, and then take out the sample after constant temperature mineralization at 37°C for 6h-72h, and wash it with deionized water for 3-5 times Finally, drying at 50-60° C. in a vacuum oven to obtain a multilayer nanofiber fabric-reinforced bone biomimetic material.
与现有的骨替代材料及其制备方法相比相比,本发明具有以下优点:Compared with the existing bone substitute material and its preparation method, the present invention has the following advantages:
(1)本发明中纳米纤维的成分主要是丝素蛋白和聚乳酸,将含有这两种组分的纱线编织成板层状的多层纳米纤维纱织物能够仿生天然骨中的纳米胶原微纤束构成的板层结构。因此,制备的多层纳米纤维织物增强的骨仿生材料能够在成分和结构上仿生天然骨,具有很好的生物相容性和骨诱导性;(1) The main components of nanofibers in the present invention are silk fibroin and polylactic acid. Weaving the yarns containing these two components into a laminated multi-layer nanofiber yarn fabric can mimic the nanocollagen microstructure in natural bone. Laminate structure composed of fiber bundles. Therefore, the prepared multilayer nanofiber fabric-reinforced bone biomimetic material can biomime natural bone in terms of composition and structure, and has good biocompatibility and osteoinductivity;
(2)本发明利用模拟体液仿生矿化的方法对多层纳米纤维织物进行仿生矿化,可以精确的控制羟磷灰石的生长形貌和矿化含量,使本发明的多层纳米纤维织物增强的骨仿生材料具有较好的强度和生物相容性;(2) The present invention utilizes the method of simulating the biomimetic mineralization of body fluids to perform biomimetic mineralization on multilayer nanofiber fabrics, which can accurately control the growth morphology and mineralization content of hydroxyapatite, so that the multilayer nanofiber fabrics of the present invention The enhanced bone biomimetic material has better strength and biocompatibility;
(3)利用静电纺丝的方法制备了纤维沿轴取向的纳米纤维纱线,采用不同的织物组织结构结合机织方法获得所需的织物形状和大小;控制织物的矿化程度,可以形成一定结构和含量的孔隙,能够充分满足骨移植过程中对骨仿生材料的要求。(3) Nanofiber yarns with fibers oriented along the axis were prepared by electrospinning, and different fabric structures were combined with weaving methods to obtain the required fabric shape and size; controlling the mineralization degree of the fabric can form a certain The structure and content of pores can fully meet the requirements of bone biomimetic materials in the process of bone transplantation.
本发明利用静电纺丝技术纺成了纳米纤维沿轴取向并具有一定捻度的纱线,并利用机织的方法将纳米纱线编织成多层的织物,通过模拟体液对多层织物进行矿化后以构建织物增强的骨仿生材料。制备的这种多层纳米纤维织物增强的骨仿生材料具有优异的力学性能,良好的骨诱导性以及生物相容性。The invention utilizes electrospinning technology to spin yarns with nanofibers oriented along the axis and with a certain twist, and weaves the nanofibers into multi-layer fabrics by weaving, and mineralizes the multi-layer fabrics by simulating body fluids Then to construct fabric-reinforced bone biomimetic materials. The prepared multilayer nanofiber fabric-reinforced bone biomimetic material has excellent mechanical properties, good osteoinductivity and biocompatibility.
附图说明Description of drawings
图1 静电纺丝装置示意图,1卷绕装置、2喷头、3注射泵、4金属喇叭、5 高压发生器、51正极、52负极;Figure 1 Schematic diagram of the electrospinning device, 1 winding device, 2 nozzle, 3 injection pump, 4 metal horn, 5 high voltage generator, 51 positive electrode, 52 negative electrode;
图2 实施例1中制备的骨仿生材料上生长的羟基磷灰石SEM照片。Fig. 2 SEM photograph of hydroxyapatite grown on the bone biomimetic material prepared in Example 1.
具体实施方式detailed description
下面结合附图通过实例对本发明进一步详细说明。The present invention will be further described in detail below by examples in conjunction with the accompanying drawings.
一种多层纳米纤维织物增强的骨仿生材料,它是由羟基磷灰石在多层纳米纤维织物模板上自组装而成。这种骨仿生材料中,有机的纳米纤维与无机的羟基磷灰石质量比为1:1-9,孔隙率30-50%。所述的多层纳米纤维织物模板是利用静电纺丝制备的纳米纤维加捻成纳米纤维纱线,再经机织技术编织而成,纳米纤维纱线的直径为60-500μm,多层纳米纤维织物的层数大于等于2,经密100-150根/5cm,150-200根/5cm。所述的纳米纤维成分为丝素蛋白和聚乳酸,丝素蛋白和聚合物的质量比为1:1-19,纳米纤维的直径200-900nm。所述的丝素蛋白来源于桑蚕蚕丝和柞蚕蚕丝,丝素蛋白分子的特性粘度[η]大于或等于0.50,所述的聚乳酸分子量大于100000。所述的羟基磷灰石呈球状形貌,尺寸为尺寸为70nm- 150nm。A bone biomimetic material reinforced by multilayer nanofiber fabric, which is self-assembled by hydroxyapatite on a multilayer nanofiber fabric template. In this bone biomimetic material, the mass ratio of organic nanofibers to inorganic hydroxyapatite is 1:1-9, and the porosity is 30-50%. The multilayer nanofiber fabric template is formed by twisting nanofibers prepared by electrospinning into nanofiber yarns, and then weaving through weaving technology. The diameter of the nanofiber yarns is 60-500 μm, and the multilayer nanofibers The number of layers of the fabric is greater than or equal to 2, and the warp density is 100-150 threads/5cm, and 150-200 threads/5cm. The nanofiber components are silk fibroin and polylactic acid, the mass ratio of silk fibroin to polymer is 1:1-19, and the diameter of the nanofiber is 200-900nm. The silk fibroin is derived from mulberry silk and tussah silk, the intrinsic viscosity [η] of the silk fibroin molecule is greater than or equal to 0.50, and the molecular weight of the polylactic acid is greater than 100,000. The hydroxyapatite has a spherical shape and a size of 70nm-150nm.
实施例1Example 1
一种多层纳米纤维织物增强的骨仿生材料的方法,采用如下步骤:A method for bone biomimetic material reinforced by multilayer nanofiber fabric, adopts the following steps:
(1)将柞蚕丝素和聚乳酸按照质量比为1:9溶解于六氟异丙醇中,常温下磁力搅拌2天得到质量分数为6%的纺丝溶液;(1) Dissolve tussah silk fibroin and polylactic acid in hexafluoroisopropanol at a mass ratio of 1:9, and magnetically stir at room temperature for 2 days to obtain a spinning solution with a mass fraction of 6%;
(2)按照图示1搭建静电纺丝装置,将步骤(1)中的纺丝溶液加入到注射泵3中制备连续的纳米纤维纱线。高压发生器5的静电纺丝电压为16 kV,纺丝溶液总流量为0.6 mL/h,金属喇叭的直径为10cm,金属喇叭4与卷绕装置1的垂直距离为40cm,喷头2与金属喇叭4的垂直距离为5cm,喷头与金属喇叭的水平距离为3cm,喷头的数目为4个,喷头内径0.36 mm,正负喷头溶液流量比1:1,正负喷头间的距离14 cm,卷绕速度45mm/min;(2) Build an electrospinning device according to Figure 1, and add the spinning solution in step (1) to the syringe pump 3 to prepare continuous nanofiber yarns. The electrospinning voltage of the high-voltage generator 5 is 16 kV, the total flow rate of the spinning solution is 0.6 mL/h, the diameter of the metal horn is 10 cm, the vertical distance between the metal horn 4 and the winding device 1 is 40 cm, the nozzle 2 and the metal horn The vertical distance of 4 is 5cm, the horizontal distance between the nozzle and the metal horn is 3cm, the number of nozzles is 4, the inner diameter of the nozzle is 0.36 mm, the solution flow ratio of positive and negative nozzles is 1:1, and the distance between positive and negative nozzles is 14 cm. Speed 45mm/min;
(3)将步骤(2)中制备的纳米纤维纱线利用机织的方法编织成多层纳米纤维织物,多层纳米纤维织物的层数为2层,经密100根/5cm,纬密120根/5cm;(3) Weave the nanofiber yarn prepared in step (2) into a multilayer nanofiber fabric by weaving. The number of layers of the multilayer nanofiber fabric is 2 layers, the warp density is 100 pieces/5cm, and the weft density is 120 root/5cm;
(4)将步骤(3)中制备的多层纳米纤维织物浸泡在质量分数为85%的乙醇水溶液中20 min。然后将织物在去离子水中清洗2次后在真空干燥烘箱中50℃下干燥;(4) Soak the multilayer nanofiber fabric prepared in step (3) in 85% ethanol aqueous solution for 20 min. Then the fabric was washed twice in deionized water and then dried in a vacuum drying oven at 50°C;
(5)将步骤(4)中得到的多层纳米纤维织物浸泡在1.5倍的模拟体液中,在37℃下恒温矿化12h后取出样品,用去离子水清洗3次后,在真空烘箱中50℃下干燥得到多层纳米纤维织物增强的骨仿生材料。(5) Soak the multi-layer nanofiber fabric obtained in step (4) in 1.5 times the simulated body fluid, and take out the sample after constant temperature mineralization at 37 °C for 12 h, wash it with deionized water for 3 times, and place it in a vacuum oven Dry at 50°C to obtain a multilayer nanofiber fabric reinforced bone biomimetic material.
表1显示了多层纳米纤维织物增强的骨仿生材料的力学性能、孔隙率,以及有机无成分(多层织物)与无机成分(羟基磷灰石)的比例。多层纳米纤维织物增强的骨仿生材料的SEM照片如图2(图中放大倍数为100倍)所示,由图可以看出,在骨仿生材料中羟基磷灰石沿纱线中纳米纤维的轴向均匀生长。Table 1 shows the mechanical properties, porosity, and ratio of organic-free components (multilayer fabrics) to inorganic components (hydroxyapatite) of multilayer nanofiber fabric-reinforced bone biomimetic materials. The SEM photo of the bone biomimetic material reinforced by multi-layer nanofiber fabric is shown in Figure 2 (magnification is 100 times in the figure). Axially uniform growth.
实施例2Example 2
一种多层纳米纤维织物增强的骨仿生材料的方法,采用如下步骤:A method for bone biomimetic material reinforced by multilayer nanofiber fabric, adopts the following steps:
(1)将柞蚕丝素和聚乳酸按照质量比为15:85溶解于六氟异丙醇中,常温下磁力搅拌2天得到质量分数为7%的纺丝溶液;(1) Dissolve tussah silk fibroin and polylactic acid in hexafluoroisopropanol at a mass ratio of 15:85, and magnetically stir at room temperature for 2 days to obtain a spinning solution with a mass fraction of 7%;
(2)按照图示1搭建静电纺丝装置,将步骤(1)中的纺丝溶液加入到注射泵中制备连续的纳米纤维纱线。静电纺丝电压为18 kV,纺丝溶液总流量为0.8 mL/h ,金属喇叭的直径为15cm,金属喇叭与卷绕装置的垂直距离为45cm,喷头与金属喇叭的垂直距离为5cm,喷头与金属喇叭的水平距离为3cm,喷头的数目为6个,喷头内径0.45 mm,正负喷头溶液流量比1:0.5,正负喷头间的距离15 cm,卷绕速度40 mm/min;(2) Build an electrospinning device according to Figure 1, and add the spinning solution in step (1) into a syringe pump to prepare continuous nanofiber yarns. The electrospinning voltage was 18 kV, the total flow rate of the spinning solution was 0.8 mL/h, the diameter of the metal horn was 15 cm, the vertical distance between the metal horn and the winding device was 45 cm, the vertical distance between the nozzle and the metal horn was 5 cm, and the distance between the nozzle and the winding device was 45 cm. The horizontal distance of the metal horn is 3 cm, the number of nozzles is 6, the inner diameter of the nozzle is 0.45 mm, the solution flow ratio of the positive and negative nozzles is 1:0.5, the distance between the positive and negative nozzles is 15 cm, and the winding speed is 40 mm/min;
(3)将步骤(2)中制备的纳米纤维纱线利用机织的方法编织成多层纳米纤维织物,多层纳米纤维织物的层数为4层,经密80根/5cm,纬密100根/5cm;(3) Weave the nanofiber yarn prepared in step (2) into a multilayer nanofiber fabric by weaving. The number of layers of the multilayer nanofiber fabric is 4 layers, the warp density is 80 threads/5cm, and the weft density is 100 root/5cm;
(4)将步骤(3)中制备的多层纳米纤维织物浸泡在质量分数为80%的乙醇水溶液中25 min。然后将织物在去离子水中清洗3次后在真空干燥烘箱中50℃下干燥;(4) Soak the multilayer nanofiber fabric prepared in step (3) in 80% ethanol aqueous solution for 25 min. Then the fabric was washed 3 times in deionized water and then dried in a vacuum drying oven at 50°C;
(5)将步骤(4)中得到的多层纳米纤维织物浸泡在1.5倍的模拟体液中,在37℃下恒温矿化24h后取出样品,用去离子水清洗4次后,在真空烘箱中50℃下干燥得到多层纳米纤维织物增强的骨仿生材料。表1显示了多层纳米纤维织物增强的骨仿生材料的力学性能、孔隙率,以及有机成分(多层织物)与无机成分(羟基磷灰石)的比例。(5) Soak the multi-layer nanofiber fabric obtained in step (4) in 1.5 times the simulated body fluid, and take out the sample after constant temperature mineralization at 37 °C for 24 h, wash it with deionized water for 4 times, and place it in a vacuum oven Dry at 50°C to obtain a multilayer nanofiber fabric reinforced bone biomimetic material. Table 1 shows the mechanical properties, porosity, and ratio of organic components (multilayer fabrics) to inorganic components (hydroxyapatite) of multilayer nanofiber fabric-reinforced bone biomimetic materials.
实施例3Example 3
一种多层纳米纤维织物增强的骨仿生材料的方法,采用如下步骤:A method for bone biomimetic material reinforced by multilayer nanofiber fabric, adopts the following steps:
(1)将桑蚕丝素蛋白和聚乳酸按照质量比10:90溶解于六氟异丙醇中,常温下磁力搅拌2天得到质量分数为8%的纺丝溶液;(1) Dissolve mulberry silk fibroin and polylactic acid in hexafluoroisopropanol at a mass ratio of 10:90, and stir magnetically at room temperature for 2 days to obtain a spinning solution with a mass fraction of 8%;
(2)按照图示1搭建静电纺丝装置,将步骤(1)中的纺丝溶液加入到注射泵中制备连续的纳米纤维纱线。静电纺丝电压为20 kV,纺丝溶液总流量为0.9 mL/h ,金属喇叭的直径为10cm,金属喇叭与卷绕装置的垂直距离为40cm,喷头与金属喇叭的垂直距离为5cm,喷头与金属喇叭的水平距离为3cm,喷头的数目为8个,喷头内径0.7 mm,正负喷头溶液流量比1:2,正负喷头间的距离16 cm,卷绕速度50 mm/min;(2) Build an electrospinning device according to Figure 1, and add the spinning solution in step (1) into a syringe pump to prepare continuous nanofiber yarns. The electrospinning voltage was 20 kV, the total flow rate of the spinning solution was 0.9 mL/h, the diameter of the metal horn was 10 cm, the vertical distance between the metal horn and the winding device was 40 cm, the vertical distance between the nozzle and the metal horn was 5 cm, and the distance between the nozzle and the winding device was 40 cm. The horizontal distance of the metal horn is 3 cm, the number of nozzles is 8, the inner diameter of the nozzle is 0.7 mm, the solution flow ratio of the positive and negative nozzles is 1:2, the distance between the positive and negative nozzles is 16 cm, and the winding speed is 50 mm/min;
(3)将步骤(2)中制备的纳米纤维纱线利用机织的方法编织成多层纳米纤维织物,多层纳米纤维织物的层数为2层,经密85根/5cm,纬密90根/5cm;(3) Weave the nanofiber yarn prepared in step (2) into a multilayer nanofiber fabric by weaving, the number of layers of the multilayer nanofiber fabric is 2 layers, the warp density is 85 pieces/5cm, and the weft density is 90 root/5cm;
(4)将步骤(3)中制备的多层纳米纤维织物浸泡在质量分数为85%的乙醇水溶液中20 min。然后将织物在去离子水中清洗2次后在真空干燥烘箱中50℃下干燥;(4) Soak the multilayer nanofiber fabric prepared in step (3) in 85% ethanol aqueous solution for 20 min. Then the fabric was washed twice in deionized water and then dried in a vacuum drying oven at 50°C;
(5)将步骤(4)中得到的多层纳米纤维织物浸泡在1.5倍的模拟体液中,在37℃下恒温矿化36h后取出样品,用去离子水清洗3次后,在真空烘箱中55℃下干燥得到多层纳米纤维织物增强的骨仿生材料。表1显示了多层纳米纤维织物增强的骨仿生材料的力学性能、孔隙率以及有机无成分(多层织物)与无机成分(羟基磷灰石)的比例。(5) Soak the multi-layer nanofiber fabric obtained in step (4) in 1.5 times the simulated body fluid, and take out the sample after constant temperature mineralization at 37 °C for 36 h, wash it with deionized water for 3 times, and place it in a vacuum oven The bone biomimetic material reinforced by multi-layer nanofiber fabric was obtained by drying at 55°C. Table 1 shows the mechanical properties, porosity, and ratio of organic-free components (multi-layer fabrics) to inorganic components (hydroxyapatite) of multilayer nanofiber fabric-reinforced bone biomimetic materials.
表1 一种多层纳米纤维织物增强的骨仿生材料的力学性能Table 1 Mechanical properties of a multilayer nanofiber fabric reinforced bone biomimetic material
因此,本发明得到的纳米纤维织物和仿生矿化相结合构建分级结构的骨仿生材料能够从功能上和结构上进行仿生天然骨。成分中的柞蚕丝素含有的极性基团能够使羟基磷灰石在织物中定点生长并且与织物紧密结合,同时丝素中的Arg-Gly-Asp(RGD)三肽序列可作为生物识别信号促进细胞粘附;纱线在空间上的三维编织实现了在结构上对骨材料的分级仿生。根据本发明的方法制备的骨仿生材料具有优异的力学性能、良好的成形性和生物学性能,是一种具有潜在应用的骨组织工程支架材料。Therefore, the bone biomimetic material with hierarchical structure constructed by combining the nanofiber fabric and biomimetic mineralization obtained in the present invention can biomime natural bone functionally and structurally. The polar group contained in the tussah silk fibroin in the composition can make hydroxyapatite grow at a fixed point in the fabric and be tightly combined with the fabric, and the Arg-Gly-Asp (RGD) tripeptide sequence in the silk fibroin can be used as a biological recognition signal Facilitates cell adhesion; spatially three-dimensional weaving of yarns enables structurally graded biomimicry of bone materials. The bone biomimetic material prepared by the method of the invention has excellent mechanical properties, good formability and biological properties, and is a bone tissue engineering scaffold material with potential applications.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510546454.3A CN105056304B (en) | 2015-08-31 | 2015-08-31 | Enhanced bone biomimetic material of a kind of multi-layer nano fabric and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510546454.3A CN105056304B (en) | 2015-08-31 | 2015-08-31 | Enhanced bone biomimetic material of a kind of multi-layer nano fabric and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105056304A CN105056304A (en) | 2015-11-18 |
CN105056304B true CN105056304B (en) | 2017-07-14 |
Family
ID=54485960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510546454.3A Expired - Fee Related CN105056304B (en) | 2015-08-31 | 2015-08-31 | Enhanced bone biomimetic material of a kind of multi-layer nano fabric and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105056304B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106492277B (en) * | 2016-12-16 | 2019-04-02 | 中国人民解放军第三军医大学 | A kind of biomimetic artificial bone bracket and preparation method thereof |
CN106975102A (en) * | 2017-03-08 | 2017-07-25 | 中原工学院 | A kind of bone bionic composite material with negative poisson's ratio structure and preparation method thereof |
CN107376027A (en) * | 2017-06-15 | 2017-11-24 | 昆明理工大学 | A kind of macromolecule/hydroxyapatite crystal whisker complex stephanoporate bracket for cartilaginous tissue reparation and preparation method thereof |
CN109172871A (en) * | 2018-09-10 | 2019-01-11 | 中原工学院 | A kind of small-bore nano fibrous tissue engineering blood vessel bracket of bilayer and preparation method thereof |
CN114949353B (en) * | 2022-01-24 | 2023-05-30 | 东华大学 | Biological function differentiated adaptive musculoskeletal system prosthesis and preparation method thereof |
CN114525630A (en) * | 2022-02-28 | 2022-05-24 | 中国人民解放军东部战区总医院 | Composite fiber scaffold and preparation method and application thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102120871B (en) * | 2011-03-22 | 2012-09-05 | 暨南大学 | Preparation method of chitosan fiber reinforced polylactic acid composite material |
CN102188753B (en) * | 2011-05-10 | 2013-10-09 | 中原工学院 | A nano-bone biomimetic material containing tussah silk fibroin and its preparation method |
CN102580160A (en) * | 2012-02-20 | 2012-07-18 | 汪泱 | Tissue engineering scaffold material of chemical bonding active material and preparation method thereof |
CN103300945A (en) * | 2013-06-06 | 2013-09-18 | 上海交通大学 | Medical porous composite material |
CN104027846A (en) * | 2014-06-20 | 2014-09-10 | 东华大学 | Non-woven material reinforced tissue engineering composite three-dimensional scaffold and preparation method thereof |
-
2015
- 2015-08-31 CN CN201510546454.3A patent/CN105056304B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN105056304A (en) | 2015-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105056304B (en) | Enhanced bone biomimetic material of a kind of multi-layer nano fabric and preparation method thereof | |
Wu et al. | State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications | |
Li et al. | A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning | |
Jiao et al. | Construction and application of textile-based tissue engineering scaffolds: a review | |
ES2701478T3 (en) | Process for the production of a hybrid structure consisting of microfibres and coupled silk fibroin nanofibers, hybrid structure obtained in this way and its use as an implantable medical device | |
Bian et al. | The construction and performance of multi-level hierarchical hydroxyapatite (HA)/collagen composite implant based on biomimetic bone Haversian motif | |
JP2004321484A (en) | Medical high molecular nano-micro fiber | |
CN105457101A (en) | Preparation method of small-caliber intravascular stent of three-layer structure | |
CN101879330A (en) | A kind of small diameter silk fibroin tubular material and preparation method thereof | |
Yu et al. | Fabrication and characterization of electrospun thermoplastic polyurethane/fibroin small-diameter vascular grafts for vascular tissue engineering | |
Reverchon et al. | Biodegradable synthetic scaffolds for tendon regeneration | |
CN108938143A (en) | A kind of small-bore bionical blood vessel of three-decker and preparation method thereof | |
CN103357067B (en) | Fibroin-base artificial ligament repair material and preparation method thereof | |
CN110064074A (en) | A kind of compound support frame material and its preparation method and application | |
Meng et al. | Recent advances of electrospun nanofiber-enhanced hydrogel composite scaffolds in tissue engineering | |
CN101653624A (en) | Preparation method of composite nanometer fiber small-diameter intravascular tissue engineering stent material | |
Li et al. | Biocompatible and biodegradable 3D double-network fibrous scaffold for excellent cell growth | |
CN104998302A (en) | Nano cartilage repair material taking aligned nanofiber mat as skeleton and preparation method of nano cartilage repair material | |
CN104815355B (en) | Surface has hydroxyapatite/polyamide composite biological material of nanofiber loose structure and preparation method thereof | |
CN105169489A (en) | Multi-layer nanofiber fabric bone tissue engineering scaffold material and preparation method thereof | |
Oprea et al. | Electrospun nanofibers for tissue engineering applications | |
CN106798948A (en) | A kind of method of regulation and control biofilm surface topological structure to promote cell to creep | |
CN103266421A (en) | Preparation method of caprolactone lactate copolymer/collagen/chitosan small-caliber intravascular stent | |
CN105148321B (en) | Bone alternate material of bionical natural bony structure that a kind of nanofiber by mineralising is built and preparation method thereof | |
Gao et al. | Recent advances on nerve guide conduits based on textile methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170714 Termination date: 20210831 |