CN105048896A - 一种无刷直流电机直接转矩自适应模糊控制方法 - Google Patents

一种无刷直流电机直接转矩自适应模糊控制方法 Download PDF

Info

Publication number
CN105048896A
CN105048896A CN201510396019.7A CN201510396019A CN105048896A CN 105048896 A CN105048896 A CN 105048896A CN 201510396019 A CN201510396019 A CN 201510396019A CN 105048896 A CN105048896 A CN 105048896A
Authority
CN
China
Prior art keywords
motor
torque
phase
magnetic linkage
brshless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510396019.7A
Other languages
English (en)
Other versions
CN105048896B (zh
Inventor
张雷
田文慧
李鹏飞
张聚伟
史敬灼
张松灿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Science and Technology
Original Assignee
Henan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Science and Technology filed Critical Henan University of Science and Technology
Priority to CN201510396019.7A priority Critical patent/CN105048896B/zh
Publication of CN105048896A publication Critical patent/CN105048896A/zh
Application granted granted Critical
Publication of CN105048896B publication Critical patent/CN105048896B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种无刷直流电机直接转矩自适应模糊控制方法,基于本发明设计方法所优化得到的模糊控制器能够不同的运行状况自适应确定电机转矩的给定值,动态自适应地调整电机的转矩大小,相当于基于工程师的实际经验提前判断电机的运转状况,可改善无刷直流电机系统的动态和稳态性能,同时能够在一定程度上抑制无刷直流电机的转矩脉动现象。另一方面本发明没有安装位置传感器,因而简化了系统结构,减少了系统的成本,也提高了电机运行的可靠性。

Description

一种无刷直流电机直接转矩自适应模糊控制方法
技术领域
[0001] 本发明涉及一种无刷直流电机的控制方法,尤其是涉及一种无刷直流电机直接转 矩自适应模糊控制方法。
背景技术
[0002] 与传统直流电机相比,无刷直流电机采用电子换向器取代了机械换向器,是一种 有着美好发展前途和广泛应用前景的新型电机。无刷直流电机具有结构简单、运行可靠、运 行效率高和调速性能好等优良特性,目前在各种伺服系统、机械制造、机器人、电动汽车、航 空航天等众多领域得到了广泛应用。但在实际应用中,存在着电机的转矩脉动问题,限制了 其在高精度、高性能场合的应用。
[0003] 直接转矩控制技术最初是作为异步电动机的一种变频调速方案,它是在矢量控制 的基础上舍弃了解耦控制的思想,直接在定子坐标系下分析和计算电机的数学模型,并通 过选择不同的逆变器开关状态来直接控制电机的转矩。直接转矩控制技术采用电机的转矩 和磁链的双闭环结构,可获得快速的转矩响应,并获得良好的调速性能。直接转矩控制技术 在异步电动机和永磁同步电机都取得了较好的效果,近年来直接转矩控制技术开始广泛和 成功地应用于无刷直流电机,并且开始进入实用阶段。
[0004] 模糊控制技术和方法不需要建立控制对象的精确数学模型,在实际中获得了大量 成功的应用。但是由于模糊控制器中的模糊规则主要是基于该领域专家的经验知识进行 提取,存在较大的主观性;二是在确定模糊规则的条件下,模糊变量的隶属度函数决定了控 制系统的性能,而隶属度函数包含众多因素,这是包含多参数的寻优问题,很难获得全局最 优。
[0005] 发明人在实现本发明时发现已有的控制技术存在一些不足之处:对于无刷直流电 机的模糊控制技术,在确定模糊控制器的结构及其参数时较为困难,多数是依靠经验或者 反复试凑,获得的性能也不理想;另外在利用现有的优化方法优化控制器的参数时,单目标 优化方法涉及到复杂的评价函数构造问题,其中的参数较难确定。另一方面,现有的电机转 子位置传感器增大了电机的体积和成本,也容易受到外部电磁信号的干扰,因而降低了运 行的可靠性。
发明内容
[0006] 本发明的目的是为解决模糊控制器的结构及其参数时难以确定的问题,提供一种 无刷直流电机直接转矩自适应模糊控制方法。
[0007] 本发明为解决上述技术问题的不足,所采用的技术方案是: 一种无刷直流电机直接转矩自适应模糊控制方法,包括以下步骤: 步骤1、基于多目标优化算法确定无刷直流电机模糊控制器采用自适应模糊PID控制 器,通过多目标优化算法确定对应的自适应模糊PID控制器的最优参数; 步骤2、通过三相相电流检测单元和三相相电压检测电单元分别检测并计算无刷直流 电机的三相相电流和三相端电压值,并利用坐标变换模块将三相相电流和三相相电压值转 换为相电压和相电流在两相静止α β坐标系上的分量,建立对应的α β坐标系; 步骤3、通过磁链计算单元利用步骤2中确立的α β坐标系相电压和相电流对应的分 量分别计算出无刷直流电机的定子磁链以及转子的实际位置; 步骤4、通过转速传感器(采用增量式光电编码器)得出无刷直流电机的实际转速; 步骤5、通过磁矩计算单元利用步骤3和步骤4中的计算的定子磁链和实际转速计算无 刷直流电机的实际转矩; 步骤6、通过步骤4中得出的实际转速与无刷直流电机的给定转速的差值以及单位采 样周期内差值的变化量计算出转速偏差和偏差变化率,并利用步骤1中确定自适应PID模 糊控制器中的各个参数,计算得出无刷直流电机的给定转矩; 步骤7、通过步骤6中的计算得出的给定转矩与步骤5中计算得出的实际转矩之间的 差值计算出转矩偏差,并将转矩偏差输入转矩滞环调节单元中,输出得到转矩滞环输出信 号; 步骤8、通过步骤3中计算出无刷直流电机的定子磁链和无刷直流电机给定磁链的幅 值可以计算出对应的磁链偏差,并将磁链偏差输入磁链滞环调节单元中,输出得到磁链滞 环的输出信号; 步骤9、通过步骤3中所确定的电机当前转子位置、步骤7中得到的转矩滞环输出信号 和步骤8中得到的磁链滞环输出信号,确定无刷直流电机对应逆变器的六个开关管的对应 状态; 步骤10、通过步骤9中确定的逆变器六个开关管的对应状态作为逆变器控制单元的输 入,进而可驱动所述无刷直流电机运行。
[0008] 所述的步骤2中的坐标转换模块被称为Clarke变换模块。
[0009] 本发明的有益效果是:基于本发明设计方法所优化得到的模糊控制器能够不同 的运行状况自适应确定电机转矩的给定值,动态自适应地调整电机的转矩大小,相当于基 于工程师的实际经验提前判断电机的运转状况,可改善无刷直流电机系统的动态和稳态性 能,同时能够在一定程度上抑制无刷直流电机的转矩脉动现象。另一方面本发明没有安装 位置传感器(Hall传感器),因而简化了系统结构,减少了系统的成本,也提高了电机运行 的可靠性。
附图说明
[0010] 图1、本发明实施例的一种基于多目标优化的模糊控制器设计方法流程图。
[0011] 图2、本发明实施例的无刷直流电机直接转矩自适应模糊控制方法的流程图。
[0012] 图3、本发明实施例的一种基于多目标优化算法的无刷直流电机的自适应模糊控 制装置的结构框图。
[0013] 图4、本发明实施例的一种基于多目标优化的无刷直流电机的自适应模糊控制装 置的结构示意图。
[0014] 图5、本发明实施例的无刷直流电机自适应模糊控制装置的控制结构图。
[0015] 图6、本发明实施例的中断控制子程序流程图。
[0016] 图7、无刷直流电机的电压矢量和扇区分布示意图。
[0017] 图8、磁链滞环调节信号图。
[0018] 图9、转矩滞环调节信号图。
具体实施方式
[0019] 图中所示,具体实施方式如下: 一种无刷直流电机直接转矩自适应模糊控制方法,包括以下步骤: 步骤1、基于多目标优化算法确定无刷直流电机模糊控制器采用自适应模糊PID控制 器,通过多目标优化算法确定对应的自适应模糊PID控制器的最优参数; 步骤2、通过三相相电流检测单元和三相相电压检测电单元分别检测并计算无刷直流 电机的三相相电流和三相相电压值,并利用坐标变换模块将三相相电流和三相相电压值转 换为相电压和相电流在两相静止α β坐标系上的分量,建立对应的α β坐标系; 步骤3、利用步骤2中确立的α β坐标系相电压和相电流对应的分量,通过磁链计算单 元计算出无刷直流电机的定子磁链,并通过反电动势法确定转子实际位置(所在扇区); 步骤4、通过转速传感器(采用增量式光电编码器)得出无刷直流电机的实际转速; 步骤5、通过磁矩计算单元利用步骤3和步骤4中的计算的定子磁链和实际转速计算无 刷直流电机的实际转矩; 步骤6、通过步骤4中得出的实际转速与无刷直流电机的给定转速的差值以及单位采 样周期内差值的变化量计算出转速偏差和偏差变化率,并利用步骤1中确定自适应PID模 糊控制器中的各个参数,计算得出无刷直流电机的给定转矩; 步骤7、通过步骤6中的计算得出的给定转矩与步骤5中计算得出的实际转矩之间的 差值计算出转矩偏差,并将转矩偏差输入转矩滞环调节单元中,输出得到转矩滞环输出信 号; 步骤8、通过步骤3中计算出无刷直流电机的定子磁链和无刷直流电机给定磁链的幅 值可以计算出对应的磁链偏差,并将磁链偏差输入磁链滞环调节单元中,输出得到磁链滞 环输出信号; 步骤9、通过步骤3中确定的电机当前转子位置(即为所在扇区信号)、步骤7中得到的 转矩滞环输出信号和步骤8中得到的磁链滞环输出信号,确定无刷直流电机对应逆变器的 六个开关管的对应状态; 步骤10、通过步骤9中确定的逆变器六个开关管的对应状态作为逆变器控制单元的输 入,进而可驱动所述无刷直流电机运行。
[0020] 所述的步骤2中的坐标转换模块为Clarke变换模块。
[0021] 本发明中步骤1中自适应模糊PID控制器的最优参数的步骤如下: 1)根据无刷直流电机控制系统的类型和特点,确定模糊控制器的输入变量和输出变 量的数目。这里将系统转速偏差和转速偏差的变化率作为两个模糊输入变量,而将PID控 制策略中的比例、积分和微分参数的修正量作为三个模糊输出变量。
[0022] 2)确定所述模糊控制器中所有模糊变量的对应的隶属度函数类型和数目,这里 所有的模糊变量均包含5个模糊语言术语"NB (负大)、NS (负小)、ZO (正中)、PS (正小)、 PB (正大)",对应5个隶属度函数,每个模糊变量对应的隶属度函数参数可用三个参数 (X1, X2) ^ 进彳丁表。
[0023] 根据步骤2),可确定所述模糊控制器中共包含三个模糊规则子库,其中每个模糊 规则子库中的模糊规则数目为5 X 5=25条。
[0024] 确定待优化的多个优化目标。根据应用中的额定负载值,将电机控制系统的基于 额定负载的阶跃响应性能中的超调量、上升时间和调节时间作为待优化的多个优化目标。
[0025] 确定优化方法中的个体编码形式。将模糊控制器中的模糊变量所对应的隶属度函 数和模糊控制规则参数进行编码作为多目标优化方法中的个体。
[0026] 对于所述的两输入-三输出的模糊控制器而言,其所包含参数总共为75+15个:其 中模糊规则表包含三个子库,每个子库为25个参数,总共的参数数目为25X3=75个;而5 个模糊变量所对应的隶属度函数参数数目为3 X 5=15个。因而优化算法中每个个体可用一 个长度为90的实数编码串进行表示。
[0027] 针对每个个体所对应的模糊控制器参数,计算电机控制系统的多个优化目标,并 基于多目标优化算法中的Pareto占优概念对个体进行评价和比较。
[0028] 选择当前种群中的部分优良个体,实施克隆和变异操作,产生一定数目并发生变 异的新个体。
[0029] 计算新产生个体的超调量、上升时间和调节时间,并再次利用Pareto占优概念对 新个体进行比较和选择,确定新一代的种群。
[0030] 算法终结条件判断,若满足则结束算法的迭代优化过程,否则转到步骤6)继续进 行算法的优化过程。
[0031] 当多目标优化算法结束后,可得到并输出最优的模糊控制器的参数。
[0032] 本发明实施例的无刷直流电机直接转矩自适应模糊控制方法如图2所示,包括如 下步骤: 通过电机转子的得到初始时电机转子相对于三相定子的位置,同时能够确定初始时定 子磁链的初始值,如下式所示。
Figure CN105048896AD00071
[0033] 式中表示转子永磁体的磁链幅值,是一个恒定值。―災、:_和 · 調_贝扮另瞭雜賴翻奸觀細相#止喊:獅社齡1:。
[0034] 通过三相端电压和二相相电流可得到估算的电机转矩和磁链,其中定子磁链表示 为幅值和相位角的极坐标形式。
[0035] 通过定子相电压和相电流检测电路,可得到三相端电压ί/3,~ K和两相相电流 i3,厶的检测值,其中第三相的相电流可以通过另外两相得到,它们满足下面公式
Figure CN105048896AD00072
假定Hlf为三相逆变器的直流侧电压。通过确定三相端电压等于1¾丨的时 亥IJ,可以确定定子三相反电动势的过零时刻,进而可确定转子的实际位置。该功能是通过程 序进行实现,如果检测得到的三相端电压与/2的差值小于某个阈值,则视为两者 相等,该时刻即视为该相反电动势的过零时刻。进一步,确定转子的实际位置对应扇区信息 的原理如下。
[0036] 假定电机的三相定子绕组的通电相序为:
Figure CN105048896AD00081
如果按照 上述的预定位的方法使得转子永磁铁的初始位置滞后于A相绕组Hgg角度,则在 一个通电周期内会依次检测到6次三相端电压等弓
Figure CN105048896AD00082
的时刻,分别表示为
Figure CN105048896AD00083
Figure CN105048896AD00084
;中 :表示三相端电压在该 Ui , Uk ' C I " SJ 二·* U JL V Z 周期内首次等
Figure CN105048896AD00085
时刻,而
Figure CN105048896AD00086
则三相端电压在该周期内第 二次等于的时刻。则转子位置所处扇区的划分方法如下所示:
Figure CN105048896AD00087
同时通过所述的三相相电压和三相相电流,通过坐标变换可得到它们在两相静止汉冷 坐标系上的分量和。
[0037] 定子磁链计算公式如下
Figure CN105048896AD00088
定子每一相的相电阻,而[为系统的米样时间。
[0038] ||和^则分别表示定子磁链的幅值和幅角。
[0039] 接下来可得到电机转矩的计算公式
Figure CN105048896AD00089
式中4为电机定子的自感系数。利用无刷直流电机的转子磁链和定子电流以及电机 转速可得到电机的转矩的计算公式:
Figure CN105048896AD00091
电机的转速是通过转速传感器(采用增量式光电编码器)检测得出实际转速。
[0040] 由电机的给定转速和实际转速得到的速度偏差e和速度偏差的变化率ec。
[0041] 将所述的速度偏差e和速度偏差的变化率ec作为所述模糊控制器的输入信号,经 过模糊推理和去模糊化操作得到模糊控制器的三个输出信号,即PID控制器比例、积分和 微分三个参数的修正量,进一步得到PID控制器的输出,即系统的给定转矩。
[0042] 本实施例中,PID控制器的初始参数是通过工程上常用的试凑法进行确定,模糊推 理过程中去模糊化方法则是采用中心法。
[0043] 计算所述的实际转矩和给定转矩的偏差,并输入到转矩滞环调节器得到转矩滞环 输出;IS。所述的转矩滞环调节器采用两电平调节,如图9所示,当大于滞环宽度Jl时输出 高电平1,而当小于41¾时输出低电平-1。
[0044] 计算所述的实际磁链和给定磁链的偏差,并输入到磁链滞环调节器得到磁链滞环 输出:_L。所述的转矩滞环调节器采用三电平调节,如图8所示,当大于滞环宽度ft:时输 出电平1,而当小于=1¾:肘输出电平-1,当偏差由正转负时输出电平0,同样当偏差由负转 正时输出电平0。
[0045] 根据转矩滞环输出1¾、磁链滞环输出以及转子位置所在扇区三个信号,通 过查表1所对应的逆变器开关管状态表来确定开关管的状态。本实施例中的逆变器开关管 状态表如表1所不。
[0046] 表1
Figure CN105048896AD00092
其中表1所示的六个电压矢量以及转子位置的扇区的分布如图7所示。
[0047] 根据所述逆变器开关管的状态来控制逆变器输出电压,进而可驱动所述无刷直流 电机运行。
[0048] 本发明实施例的一种基于多目标优化的无刷直流电机的自适应模糊控制装置的 结构如图3所示。
[0049] 采用图3所示的控制装置时,可将该装置细分为无刷直流电机的三相相电流和相 电压检测电单元、转矩计算单元、磁链计算单元、转子位置估算单元、转速检测单元和模糊 控制器单元、转矩滞环调节单元、磁链滞环调节单元、开关管状态选择单元和逆变器控制单 J L 〇
[0050] 三相相电流和相电压检测电单元用于检测和计算无刷直流电机的三相相电流和 相电压,具体包括相电流和相电压检测单元和坐标变换单元。通过检测电路得到的电机的 定子三相相电流和相电压,并分别通过坐标变换模块最终得到相电压和相电流在两相静止 坐标系上的分量。
[0051 ] 转矩计算单元利用所述的坐标系上相电压和相电流来计算电机的电磁转矩。
[0052] 转子位置估算单元是利用检测得到的三相端电压来估算转子的实际位置以及所 处的扇区信息。
[0053] 磁链计算单元同样利用所述的:__:坐标系上相电压和相电流来计算电机的定子 磁链。
[0054] 在计算得到电机的定子磁链后,通过转速计算单元可得到电机的实际转速。
[0055] 利用给定转速和实际转速作为模糊控制器的输入,可得到电机的给定转矩。
[0056] 利用给定转矩和实际转矩可得到转矩偏差,作为转矩滞环调节单元的输入信号, 可得到转矩滞环输出信号。
[0057] 利用给定磁链和实际磁链幅值可得到磁链偏差,作为磁链滞环调节单元的输入信 号,可得到磁链滞环输出信号。
[0058] 根据转矩滞环输出信号、磁链滞环输出信号以及转子位置所在扇区三个信号,通 过查表1所对应的逆变器开关管状态表可确定开关管的状态。
[0059] 根据所述逆变器开关管的状态来作为逆变器控制单元的输入,进而可驱动所述无 刷直流电机运行。
[0060] 本发明实施例的一种基于多目标优化的无刷直流电机的自适应模糊控制装置的 具体结构如图4所示。
[0061] 首先将单相工频交流电源通过整流器和由电容组成的滤波器,得到直流电源,再 通过逆变器可将该直流电源进一步转化为交流电源,对所述的无刷直流电机进行供电。具 体的控制方法为: 检测无刷直流电机的定子三相端电压和两相相电流,其中第三相的相电流可通过另外 两相得到。对于电机的相电压和相电流通过坐标变换模块,可得到分量,进一步可计算电机 的磁链%和转矩£。
[0062] 通过采用增量式光电编码器这种类型的测速传感器,可得出无刷直流电机的实际 转速。
[0063] 根据电机的给定转速和实际转速得到的速度偏差e和速度偏差的变化率ec。
[0064] 将所述的速度偏差e和速度偏差的变化率ec作为所述模糊控制器的输入信号,得 到模糊控制器的三个输出信号,即PID控制器比例、积分和微分三个参数的修正量,进一步 得到PID控制器的输出,即系统的给定转矩。
[0065] 计算所述的实际转矩和给定转矩的偏差,并输入到转矩滞环调节器得到转矩的调 整方向信息1 ;同时计算所述的实际磁链和给定磁链的偏差,并输入到磁链滞环调节器得 到转矩的调整方向信息2。由所述的两个滞环输出的调整方向信息结合转子位置所在扇区, 同时根据逆变器开关状态查询表确定开关状态并作用于逆变器上,从而可驱动电机运行。 [0066] 本发明实施例的一种基于多目标优化的无刷直流电机的自适应模糊控制装置的 控制结构如图5所示,其中电机的三相相电压和相电流的坐标变换模块、转子位置估算模 块、转矩计算模块、磁链计算模块、自适应模糊控制模块、转矩和磁链滞环调节器模块以及 逆变器的开关管状态选择模块,全都集成到所采用NXP公司的型号为NPC1768的ARM芯片 中,并采用软件的方法来实现。本发明中控制程序的流程图如图6所示。
[0067] 保护现场操作包括暂存控制子程序中所用到的寄存器,保存其中的数据不被覆 盖,并在控制程序运行完后重新恢复这些寄存器的内容,主程序中的相关数据和标志位不 丢失。
[0068] 转子位置估算单元是利用检测得到的三相端电压,并且结合预定位方法通过程序 设计来估算转子的实际位置以及所处的扇区信息。
[0069] 定子磁链的计算是通过对检测得到的定子三相端电压和相电流,并利用电机本身 的相电阻参数计算得到的。在得到定子磁链后,利用电机本身的电感参数可计算得到转子 磁链,进一步可计算得到电机的转矩。
[0070] 所述的转矩滞环计算单元是采用两电平调节方式,根据不同的转矩差以及所设定 的转矩滞环宽度,可得到不同的转矩滞环输出值,用于作为下面逆变器开关管的状态选择 信号1。
[0071] 所述的磁链滞环计算单元是采用三电平调节方式,分别反映磁链的增加、减小和 保持不变,同样根据不同的磁链偏差以及所设定的磁链滞环宽度,可得到不同的输出值,也 同样作为下面逆变器开关管的状态选择信号2。
[0072] 结合所述的两个逆变器开关管状态选择信号和转子位置所在扇区,查询表1所示 的逆变器开关状态表可确定不同时刻的逆变器开关状态,进一步驱动电机运行。
[0073] 由以上实施例可以看出,本发明可基于多目标优化算法来自动确定最优的模糊控 制器参数,克服了人为方法进行确定的不足;所设计的自适应模糊控制方法能够不同的运 行状况自适应确定电机转矩的给定值,可改善无刷直流电机系统的动态和稳态性能,同时 能够在一定程度上抑制无刷直流电机的转矩脉动现象。另一方面本发明通过检测电机的定 子端电压的方法来确定转子位置,省去了电机位置传感器,因而简化了系统结构,减少了系 统的成本。
[0074] 以上所述是本发明的优选实施方式,对于本技术领域的普通技术人员能够在不脱 离本发明技术原理的前提下,可以适当做出一些改进和替换,这些改进和替换也应视为本 发明的保护范围。
[0075] 本发明所列举的技术方案和实施方式并非是限制,与本发明所列举的技术方案和 实施方式等同或者效果相同方案都在本发明所保护的范围内。

Claims (3)

1. 一种无刷直流电机直接转矩自适应模糊控制方法,其特征在于:包括以下步骤: 步骤1、基于多目标优化算法确定无刷直流电机模糊控制器采用自适应模糊PID控制 器,通过多目标优化算法确定对应的自适应模糊PID控制器的最优参数,参数确定包括如 下步骤: 步骤a、根据无刷直流电机控制系统的类型和特点,确定模糊控制器的输入变量和输出 变量的数目;这里将系统转速偏差和转速偏差的变化率作为两个模糊输入变量,而将PID 控制策略中的比例、积分和微分参数的修正量作为三个模糊输出变量; 步骤b、确定所述模糊控制器中所有模糊变量的对应的隶属度函数类型和数目,这里 所有的模糊变量均包含5个模糊语言术语"NB(负大)、NS(负小)、ZO(正中)、PS(正小)、 PB(正大)",对应5个隶属度函数,每个模糊变量对应的隶属度函数参数,可用三个参数 (X1,x2,X3)进行表不; 步骤2、通过三相相电流检测单元和三相相电压检测电单元分别检测并计算无刷直流 电机的三相相电流和三相相电压值,并利用坐标变换模块将三相相电流和三相相电压值转 换为相电压和相电流在两相静止a0坐标系上的分量,建立对应的a0坐标系; 步骤3、通过磁链计算单元利用步骤2中确立的a0坐标系相电压和相电流对应的分 量计算出无刷直流电机的定子磁链以及转子的 实际位置,定子磁链计算公式如下:
Figure CN105048896AC00021
步骤4、通过转速计算单元测出的定子磁链计算出无刷直流电机的实际转速; 步骤5、通过磁矩计算单元利用步骤3和步骤4中的计算的定子磁链和实际转速计算无 刷直流电机的实际转矩,实际转矩计算公式如下,首先根据步骤3中的定子磁链得到转子 磁链,如下公式:
Figure CN105048896AC00031
式中4为电机定子的自感系数;利用无刷直流电机的转子磁链和定子电流以及电机转 速可得到电机的转矩的计算公式:
Figure CN105048896AC00032
步骤6、通过步骤4中得出的实际转速与无刷直流电机的给定转速的差值以及单位采 样周期内差值的变化量计算出转速偏差和偏差变化率,并利用步骤1中确定自适应PID模 糊控制器中的各个参数,计算得出无刷直流电机的给定转矩; 步骤7、通过步骤6中的计算得出的给定转矩与步骤5中计算得出的实际转矩之间的 差值计算出转矩偏差,并将转矩偏差输入转矩滞环调节单元中,输出得到转矩滞环输出信 号; 步骤8、通过步骤3中计算出的无刷直流电机定子磁链和无刷直流电机定子磁链的幅 值,可以计算出对应的磁链偏差,并将磁链偏差输入磁链滞环调节单元中,输出得到磁链滞 环的输出信号; 步骤9、通过步骤3中的电机当前转子位置、步骤7中得到的转矩滞环输出信号和步骤 8中得到的磁链滞环输出信号,确定无刷直流电机对应逆变器的六个开关管的对应状态; 步骤10、通过步骤9中确定的逆变器六个开关管的对应状态作为逆变器控制单元的输 入,进而可驱动所述无刷直流电机运行。
2. 根据权利要求1所述的一种无刷直流电机直接转矩自适应模糊控制方法,其特征在 于:所述的步骤2中的坐标转换模块为Clarke变换模块。
3. 根据权利要求1所述的一种无刷直流电机直接转矩自适应模糊控制方法,其特征在 于:步骤4中的转速计算单元为转速传感器,转速传感器采用增量式光电编码器。
CN201510396019.7A 2015-07-08 2015-07-08 一种无刷直流电机直接转矩自适应模糊控制方法 Expired - Fee Related CN105048896B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510396019.7A CN105048896B (zh) 2015-07-08 2015-07-08 一种无刷直流电机直接转矩自适应模糊控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510396019.7A CN105048896B (zh) 2015-07-08 2015-07-08 一种无刷直流电机直接转矩自适应模糊控制方法

Publications (2)

Publication Number Publication Date
CN105048896A true CN105048896A (zh) 2015-11-11
CN105048896B CN105048896B (zh) 2018-03-23

Family

ID=54455164

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510396019.7A Expired - Fee Related CN105048896B (zh) 2015-07-08 2015-07-08 一种无刷直流电机直接转矩自适应模糊控制方法

Country Status (1)

Country Link
CN (1) CN105048896B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107719187A (zh) * 2017-09-30 2018-02-23 合肥巨动力系统有限公司 一种电动汽车电驱动系统扭矩控制提高扭矩精度的方法
CN108233806A (zh) * 2016-12-13 2018-06-29 扬州大学 一种无刷直流电机的控制方法
CN109327168A (zh) * 2018-10-08 2019-02-12 长安大学 一种永磁同步电机模糊滞环电流控制系统及方法
CN110971169A (zh) * 2019-12-20 2020-04-07 长安大学 基于模糊输出占空比的永磁同步电机直接转矩控制方法
CN111313789A (zh) * 2020-02-12 2020-06-19 长安大学 一种基于双模糊控制的永磁同步电机直接转矩控制方法
CN112096649A (zh) * 2020-08-28 2020-12-18 武汉理工大学 一种车载空调风机控制方法、存储介质及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090160394A1 (en) * 2007-12-24 2009-06-25 Delta Electronics, Inc. Sensorless control apparatus and method for induction motor
CN102497152A (zh) * 2011-11-22 2012-06-13 重庆大学 旋转压实仪控制系统及综合控制方法
CN102522948A (zh) * 2012-01-09 2012-06-27 重庆交通大学 Dtc系统中转矩滞环宽度的混合智能调节方法
CN103241390A (zh) * 2013-05-30 2013-08-14 清华大学 微纳卫星飞行姿态控制装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090160394A1 (en) * 2007-12-24 2009-06-25 Delta Electronics, Inc. Sensorless control apparatus and method for induction motor
CN102497152A (zh) * 2011-11-22 2012-06-13 重庆大学 旋转压实仪控制系统及综合控制方法
CN102522948A (zh) * 2012-01-09 2012-06-27 重庆交通大学 Dtc系统中转矩滞环宽度的混合智能调节方法
CN103241390A (zh) * 2013-05-30 2013-08-14 清华大学 微纳卫星飞行姿态控制装置及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘洋,王钦若,陈思哲: "《永磁同步电机双模糊自适应直接转矩控制》", 《微电机》 *
孟令瑞,张雷,侯春杰: "《无刷直流电机直接转矩自适应模糊控制器的设计》", 《微电机》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108233806B (zh) * 2016-12-13 2021-05-04 扬州大学 一种无刷直流电机的控制方法
CN108233806A (zh) * 2016-12-13 2018-06-29 扬州大学 一种无刷直流电机的控制方法
CN107719187A (zh) * 2017-09-30 2018-02-23 合肥巨动力系统有限公司 一种电动汽车电驱动系统扭矩控制提高扭矩精度的方法
CN109327168A (zh) * 2018-10-08 2019-02-12 长安大学 一种永磁同步电机模糊滞环电流控制系统及方法
CN110971169A (zh) * 2019-12-20 2020-04-07 长安大学 基于模糊输出占空比的永磁同步电机直接转矩控制方法
CN110971169B (zh) * 2019-12-20 2021-06-25 长安大学 基于模糊输出占空比的永磁同步电机直接转矩控制方法
CN111313789A (zh) * 2020-02-12 2020-06-19 长安大学 一种基于双模糊控制的永磁同步电机直接转矩控制方法
CN111313789B (zh) * 2020-02-12 2021-07-23 长安大学 一种基于双模糊控制的永磁同步电机直接转矩控制方法
CN112096649A (zh) * 2020-08-28 2020-12-18 武汉理工大学 一种车载空调风机控制方法、存储介质及系统

Also Published As

Publication number Publication date
CN105048896B (zh) 2018-03-23

Similar Documents

Publication Publication Date Title
CN105048896A (zh) 一种无刷直流电机直接转矩自适应模糊控制方法
CN105048918B (zh) 一种无刷直流电机自适应模糊控制方法
CN103414415A (zh) 一种基于pi参数自整定的电机控制方法
CN104378038B (zh) 基于人工神经网络的永磁同步电机参数辨识方法
CN102497153B (zh) 永磁同步电机功率角恒定自适应控制方法
CN102208891A (zh) 基于摩擦和扰动补偿的pmsm伺服系统控制方法
CN104779873B (zh) 一种用于pmsm伺服系统的预测函数控制方法
CN103647493B (zh) 一种永磁同步电机的h无穷转速估计方法
CN108092567A (zh) 一种永磁同步电动机转速控制系统及方法
CN102510253B (zh) 一种无轴承同步磁阻电机无传感器控制器及其控制方法
CN103895832A (zh) 一种船舶电伺服鳍、翼鳍减横摇智能矢量控制方法
Sergaki et al. Online search based fuzzy optimum efficiency operation in steady and transient states for DC and AC vector controlled motors
CN110739893B (zh) 一种改进自适应无轨迹卡尔曼滤波转动惯量辨识方法
CN106911282A (zh) 一种改进模糊控制的永磁电机无速度测速系统
Divandari et al. A novel dynamic observer and torque ripple minimization via fuzzy logic for SRM drives
CN105024612A (zh) 一种基于参数辨识的电机电流控制方法及系统
Wang et al. An improved predictive functional control with minimum-order observer for speed control of permanent magnet synchronous motor
CN109586645A (zh) 一种永磁同步电机惯量识别方法及设备
CN109150043A (zh) 交流伺服系统电流环中的电压前馈补偿方法
CN112532132A (zh) 一种永磁同步电机电流快速响应控制方法
Prabu et al. Advanced direct torque control of induction motor
CN110829932A (zh) 一种横向磁通开关磁阻电机的直接转矩控制系统及其方法
de Pelegrin et al. A model-based suboptimal control to improve induction motor efficiency
Burian et al. Investigation of the Pump Unit Control System With the Neural Network Productivity Estimator
Lešić et al. Fault-tolerant control of a wind turbine with generator stator inter-turn faults

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180323

Termination date: 20190708