CN105017538A - Degradable shape memory high polymer material of regular network structure and preparation method therefor - Google Patents

Degradable shape memory high polymer material of regular network structure and preparation method therefor Download PDF

Info

Publication number
CN105017538A
CN105017538A CN 201510205953 CN201510205953A CN105017538A CN 105017538 A CN105017538 A CN 105017538A CN 201510205953 CN201510205953 CN 201510205953 CN 201510205953 A CN201510205953 A CN 201510205953A CN 105017538 A CN105017538 A CN 105017538A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
shape memory
arm
network structure
arms
degradable
Prior art date
Application number
CN 201510205953
Other languages
Chinese (zh)
Inventor
潘毅
李兴建
王亚茹
郑朝晖
丁小斌
彭宇行
Original Assignee
中国科学院成都有机化学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention relates to a degradable shape memory high polymer material of a regular network structure and a preparation method therefor. The degradable shape memory high polymer material is characterized in that the degradable shape memory high polymer material of the regular network structure is obtained through step-growth polymerization of various equal-arm-length tetrahedral structure four-arm macromonomers with different special functional groups by utilizing an efficient click chemistry method. Different components of the network and compatibility and network soft and hard area distribution can be adjusted by selecting different four-arm macromonomers, so that the material has suitable microphase separation and different phase inversion temperatures to endow the shape memory performance. The preparation method can control the microstructure, shape memory performance, thermodynamic property and degradability of the material by adjusting the contents, types and molecular weights of the four-arm macromonomers, and is an effective method for obtaining the degradable shape memory high polymer material with excellent shape memory performance and high mechanical performance.

Description

规整网络结构的可降解形状记忆高分子材料及其制备方法 Biodegradable shape memory polymer material and a preparation method of the regular network structure

技术领域 FIELD

[0001] 本发明涉及具有规整网络结构的可降解形状记忆高分子材料的制备方法。 [0001] The present invention relates to a method for preparing a degradable shape memory polymer material having a regular network structure. 将各种具有不同特殊官能团的四臂大分子单体经高效的点击化学方法交联得到规整网络结构的可降解形状记忆高分子材料,属于高分子新材料领域。 The four arms of various special macromers having different functional groups via cross-linking method for efficient Click chemistry regular network structure obtained degradable shape memory polymer, belonging to the field of polymer materials.

背景技术 Background technique

[0002] 形状记忆聚合物是一种可以响应外界刺激,并调整自身状态参数,从而回复到预先设定状态的一种智能高分子材料。 [0002] The shape memory polymer may be a response to external stimuli, and adjust its state parameters, so as to return to an intelligent polymer material a predetermined state. 它拥有刺激方式多样化、变形量大、性能和响应条件可调、易加工、赋形容易、质轻且价廉等特点,近年来成为智能高分子材料研究、开发和应用的一个新热点,在智能纺织材料、生物医用材料、航空航天技术、微流体控制技术和3D打印等领域显示了极为广阔的应用。 It has diverse stimuli embodiment, large deformation, performance and response condition adjustable, easy processing, easy shaping, lightweight and low cost, etc., in recent years become a new hot spot intelligent polymer materials research, development and application, It shows a very broad application in the field of smart textile materials, biomedical materials, aerospace technology, microfluidic control technology and 3D printing.

[0003] 随着对形状记忆聚合物结构和性能认识的深化,以及高分子聚合物合成技术的发展,通过分子设计以得到预期结构和性能的形状记忆材料已成为现实。 [0003] With the deepening of the shape memory polymer structure and properties of understanding, and the development of polymer synthesis techniques, designed to give the desired molecular structure and properties of shape memory material has become a reality. 材料能够展现形状记忆效应并不是某种聚合物的特殊性质,而是材料的结构和形态协同作用的结果。 Materials capable of exhibiting shape memory effect is not certain special properties of polymers, but the morphology of the material and structure result of synergistic effect. 这就提供了一种可能,即把一些新的结构和形状记忆原理结合起来,通过分子设计及分子结构的调整来合成具有优异性能的形状记忆物材料。 This provides a possibility that the new structures and principles of shape memory combined to synthesize a shape memory material having excellent properties by molecular design and adjustment of the molecular structure. 丰富多彩的自然界为新型结构的发现与应用提供了很好的启示。 Colorful nature provides a good inspiration for the discovery and application of new structures.

[0004] 生物界经过20亿年的进化其结构与功能已达到几近完美的程度,实现了结构与功能和局部与整体的协调和统一。 [0004] After 20 billion years of biological evolution of its structure and function has reached near-perfect degree, and realize the structure and function of regional and global coordination and harmonization. 向自然学习已成为高性能材料发展的重要源泉,例如,仿生荷叶表面的超疏水自清洁涂层材料、仿生蜘蛛丝的"生物钢",仿生壁虎脚或贻贝的超粘性材料、仿生贝壳珍珠层的陶瓷增韧复合材料和仿生鲨鱼皮的游泳衣等。 Has become an important source of high-performance materials to the development of natural learning, for example, the surface of the lotus leaf biomimetic superhydrophobic self-cleaning coating materials, bionic spider silk "biological steel" bionic gecko feet or mussels ultra-viscous materials, biomimetic shells toughened ceramic composites and biomimetic sharkskin swimwear nacre. 利用仿生学设计先进功能材料已成为材料研究的前沿,并且成为材料设计的最高境界。 Bionic design of advanced functional materials has become a cutting-edge research material, and became the highest state of material design.

[0005] 海洋生物水母能对刺激做出迅速响应进而对海水能产生强的推动力,能够一张一弛地快速自由游动。 [0005] marine life jellyfish can respond quickly to stimuli in turn seawater to produce strong impetus, a relaxation can quickly swim freely. 水母之所以能够对刺激做出快速、一致性响应的关键在于水母体内能够感受刺激的"起搏器"细胞在其肌肉中高度有序性排列并形成网络化所决定,这样水母能够实现刺激响应性在时空上的同步性进而能够做出快速响应和产生强的推动力。 The key jellyfish was able to make fast, consistent response to stimuli that jellyfish can feel the excitement of "pacemaker" cells are highly in its orderly arrangement of muscles and form a network of the decision, in response to stimuli such jellyfish can be achieved of synchronization in time and space and further to respond quickly and strongly urging force is generated. 受此启发,我们设计制备了一种具有高度规整性网络结构的形状记忆高分子材料,使材料中够响应刺激的分子开关(可逆相)在材料网络结构中规整性的排列分布,实现刺激响应性在时空上的同步性,从而提高材料的形状记忆性能。 Inspired, we designed a shape memory polymer having a highly regular structure of the prepared network, molecular switches (reversible phase) in response to a stimulus enough material arranged in regular distribution in the material of network structure, implemented in response to stimulation of synchronization in time and space, thereby improving the shape memory properties of the material. 由于形状记忆高分子材料的分子机理的本质是基于体系内部分子链构象变化的熵增原理。 Due to the nature of the molecular mechanism of the shape memory polymer material it is based on the principle of entropy increase the internal molecular chain conformation change system. 在一定温度下通过外力作用赋形,降低到转变温度(T trans)以下高分子的链段运动被冻结,从而阻止分子链的蜷曲,材料的形状得以固定;而在Ttrans以上,蜷曲分子的链段运动被激活,使其朝着最大构象熵的状态变化,材料得以回复。 At a temperature shaping by external force, reduced to a transition temperature (T trans) segmental motion of the polymer is frozen so as to prevent curling of the molecular chain, the shape of the material is secured; whereas above Ttrans, curled chain molecule segment movement is activated, so that the maximum toward the conformational entropy of the status change, then recover the material. 因此,为了获得链段运动的完全冻结,在T trans以下抑制分子链蜷曲以及在高于Ttrans时完全激活分子链,构建具有"高度规整性网络结构"分布的形状记忆网络是理想的方法。 Accordingly, in order to obtain completely frozen sections of chain movement, suppressed the T trans and fully activated molecular chain curled above the Ttrans molecular chains, constructed with "highly regular network structure" shape memory network distribution method is desirable. 因为利用规整网络结构能够有效地调节分子链间的相互作用力,使其在材料内部均匀分散,高分子链能够一致性的运动,并且均匀分布的分子开关(可逆相)能够在时空上一致性地快速传递外界的温度刺激,那么相应的高分子链段在Ttrans上下可以得到完全、快速的冻结与激活。 It possible to effectively regulate the interaction force between the molecular chains, uniformly dispersed within the material, the consistency of the polymer chain movement is possible, and a uniform distribution of molecular switches (reversible phase) using a regular network structure can be consistent in time and space the rapid transfer of external stimuli temperature, then the corresponding segment of the polymer can be fully and quickly frozen and vertically Ttrans activation. 因此,通过规整性网络结构的设计能够获得更优异的形状记忆性能。 Thus, by designing a network structure regularity it is possible to obtain more excellent shape memory properties.

[0006] 另一方面,对于高度规整性网络结构形状记忆高分子材料,由于交联点分布很均匀、交联点之间分子链的长度相一致,在变形拉伸时,网络结构能够协同受力,内应力在不同高分子链上均匀分散,能够提高材料的机械性能。 [0006] On the other hand, for highly regular network structure of a shape memory polymer material, the crosslinking point is evenly distributed, the molecular chain length between the crosslinking points coincide, when the stretching deformation, the structure of the network can be coordinated by force, internal stress is uniformly dispersed in different polymer chains, the mechanical properties of the material can be improved. 而无规交联的形状记忆聚合物,交联点密度分布不均匀、分子链长度不一致,在变形拉伸时高交联区域存在不可逆的分子链断裂, 不仅有损机械性能而且削弱形状记忆性能。 While randomly crosslinked shape memory polymer, a crosslinking point density distribution non-uniform, inconsistent molecular chain length, the presence of the high cross tensile deformation molecular chain irreversible joint region, not only detrimental to impair the mechanical properties and shape memory properties . 因此,将高度规整性网络结构引入到形状记忆材料,不仅有利于提高形状记忆高分子材料的形状记忆性能,而且还可以增强材料的机械性能。 Thus, the highly regular structure of the network into a shape memory material, not only help to improve the performance of the shape memory material is a shape memory polymer, but also can enhance the mechanical properties of the material.

发明内容 SUMMARY

[0007] 本发明涉及具有规整网络结构的可降解形状记忆高分子材料及其制备方法。 [0007] The present invention relates to biodegradable shape memory polymer material and a preparation method having regular network structure. 其特点是利用高效的点击化学方法可以将各种具有不同特殊官能团的等臂长四面体结构四臂大分子单体经过步增长聚合得到规整网络结构的可降解形状记忆高分子材料。 Characterized degradable shape memory polymer with efficient Click chemistry methods may be various other arm length tetrahedral structure quadrifilar special macromers having different functional groups obtained through step-growth polymerization regular network structure. 通过分子结构的设计和调整,可以选择不同的四臂大分子单体来调整这些网络的不同组分及相容性、网络软硬区域分布,使其具有适当的微相分离和不同的相转变温度从而赋予形状记忆性能。 By adjusting the molecular structure and design, four arm can choose different macromonomers to adjust various components and compatibility, these networks area network hardware and software distribution, to have an appropriate microphase separation and various phase transformation temperature thereby imparting the shape memory property. 该形状记忆聚合物根据四臂大分子单体官能团的不同使用不同的点击化学方法。 The shape memory polymer different click chemistry method using four different functional groups of the macromonomer arms. 该制备方法能通过调节四臂大分子单体的含量、种类和分子量来控制材料的微观结构、形状记忆性能、热力学性能和可降解性,是一种获得优异形状记忆性能和高机械性能的可降解形状记忆高分子材料的有效方法。 The preparation method by adjusting the content of four-arm macromonomer, type and molecular weight to control the microstructure of the material, the shape memory properties, thermal properties and biodegradability, a shape memory property and to obtain excellent mechanical properties can be high effective method for degradation of the shape memory polymer material. 作为可降解形状记忆材料,本发明中涉及的形状记忆高分子材料尤其适用于生物医用材料领域,如支架材料、手术缝合线、药物控释和微创手术器件等。 As the biodegradable shape memory material, the shape memory polymer material of the present invention relates are particularly useful in the field of biomedical materials, such as scaffolds, surgical sutures, and drug release devices such as minimally invasive surgery.

[0008] 本发明的目的在于提供一种利用高效的点击化学方法将各种具有不同特殊官能团的等臂长四面体结构四臂大分子单体经过步增长聚合制备规整网络结构的可降解形状记忆高分子材料的方法。 [0008] The object of the present invention to provide an efficient method of using click chemistry with various degradable shape memory tetrahedral structure like arm length quadrifilar macromonomers different specific functional groups prepared through step-growth polymerization regular network structure the method of polymer material. 该发明通过高效、模块化的点击化学方法为构造规整网络结构的可降解形状记忆材料提供了一种通用的方法。 The invention will efficient, modular configuration click chemistry method regular network structure biodegradable shape memory material provides a general method. 可以通过简单调节四臂单分子单体的含量、 种类和分子量来控制材料的微观结构、形状记忆性能、热力学性能和可降解性,并因规整网络结构的高度规整性,可以获得优异形状记忆性能和高机械性能的可降解形状记忆高分子材料。 Can control the microstructure of the material by simply adjusting the four-arm unimolecular monomer content, type and molecular weight, shape memory properties, thermal properties and biodegradability, and high degree of regularity can be obtained an excellent shape memory property because of the regular network structure high mechanical properties and biodegradable shape memory polymer.

[0009] 为达到上述目标,本发明提供了一种制备规整网络结构的可降解形状记忆高分子材料的方法:具有不同官能团的四臂大分子单体、催化剂或引发剂和溶剂按照一定的比例和顺序加入反应瓶中,室温下搅拌溶解,注入反应模具中。 [0009] To achieve the above object, the present invention provides a process for preparing regular network structure of a shape memory polymer may be degradable methods: a macromonomer having four arms of different functional groups, or according to a certain proportion of the catalyst and solvent initiator were added sequentially and the reaction flask, was dissolved with stirring at room temperature, the reaction injection mold. 通过加热或光照反应一定的时间,脱模后室温干燥即可得到规整网络结构的形状记忆材料。 Heating the reaction time or by a certain light, after drying at room temperature to obtain a release shape memory material regular network structure.

[0010] 本发明中规整网络结构的可降解形状记忆高分子材料的配比为: [0010] The ratio of biodegradable shape memory polymer of the present invention, the network structure is structured:

[0011] A:四臂大分子单体(不同的官能团比为I : l)70-89wt% [0011] A: four arms of the macromonomer (a different functional group ratio of I: l) 70-89wt%

[0012] B :引发剂或催化剂0· 1-lwt%,C :溶剂10% -30% [0012] B: initiator or catalyst 0 · 1-lwt%, C: 10% -30% solvent

[0013] 其中,在上述配比中: [0013] wherein, in the ratio of:

[0014] A四臂大分子单体,选取可降解的具有不同官能团的四臂大分子单体,如四臂聚D,L-丙交酯、四臂聚己内酯、四臂聚十五内酯、四臂聚L-丙交酯、四臂聚乙交酯、四臂聚2-环氧己烷-1,5-二酮、四臂聚对二氧环己酮、四臂二元共聚物或三元共聚物等单体的一种或多种。 [0014] A four-arm macromer selected quadrifilar degradable macromers having different functional groups, such as a four-arm poly-D, L- lactide, polycaprolactone four-arm, four-arm polyethylene fifteen lactones, four-arm poly-L- lactide, polyglycolide four-arm, four-arm polyethylene hexane-1,5-dione 2-oxiranyl, four-arm poly dioxanone, four arms two yuan one monomer of a copolymer or terpolymer or the like more.

[0015] B四臂大分子单体的末端官能基团,选取能够发生点击化学反应的官能基团,如叠氮基封端的四臂大分子单体和炔基功能化的四臂大分子单体、巯基封端的四臂大分子单体和炔基或烯基功能化的四臂大分子单体、二烯(甲基呋喃)功能化四臂大分子单体和亲二烯体(顺丁烯二酸酐)功能化四臂大分子单体、四唑功能化的四臂大分子单体和烯基功能化的四臂大分子单体等。 [0015] The terminal functional groups B macromonomer four arms, selected functional groups capable of undergoing a click chemistry reaction, four arms and alkynyl groups macromer functionalized as azido four arms terminated macromonomer body, mercapto-terminated macromonomer four arms and alkynyl or alkenyl functionalized macromonomer four arms, diene (methylfuran) tetra functional macromonomer arms and dienophile (maleic dianhydride) tetra functional macromonomer arms, four arms macromonomer and alkenyl functionalized tetrazole quadrifilar functionalized macromonomer.

[0016] C引发剂或催化剂,催化剂选用抗坏血酸钠还原CuSO4体系、CuI、Cu⑴(PPh 3) 3Br 等;引发剂选用偶氮类或有机过氧类引发剂或各种光引发剂。 [0016] C initiator or catalyst, reducing the choice of sodium ascorbate CuSO4 system, CuI, Cu⑴ (PPh 3) 3Br the like; azo-based initiators or organic peroxide selected initiators or various photoinitiators.

[0017] D溶剂,选取能促进A、B和C的分散而加入适量的溶剂,要求毒性小,溶解性好。 [0017] D solvents, promotes select A, B and C, and dispersing an appropriate amount of solvent required low toxicity and good solubility.

[0018] 为了制备形状记忆材料,主要通过改变B构成的聚合物的玻璃化温度、熔点和分子量来获得一系列形状记忆性能的高分子材料。 [0018] To prepare the shape memory material, mainly by varying the glass transition temperature, melting point and molecular weight of the polymer B to obtain a series of configuration properties of the shape memory polymer material.

具体实施方式 detailed description

[0019] 下面结合实施例对本发明作进一步的描述。 [0019] The following embodiments in conjunction with embodiments of the present invention will be further described. 本发明所涉及的主题范围并非仅限于这6个实例,而应以权利要求中限定的为准。 Scope of the subject matter of the present invention is not limited to this example 6, but should be defined in the claims and their equivalents.

[0020] 实例1 [0020] Example 1

[0021] A四臂大分子单体 [0021] A four-arm macromer

[0022] 叠氮基功能化四臂聚D,L-丙交酯(Mn= 23000) 3g [0022] azido-functional four-arm polyethylene D, L- lactide (Mn = 23000) 3g

[0023] 端炔基功能化四臂聚D,L-丙交酯(Mn= 23000) 3g [0023] The terminal alkyne functional groups four-arm polyethylene D, L- lactide (Mn = 23000) 3g

[0024] B催化剂 [0024] B catalyst

[0025] CuI 0. 06g [0025] CuI 0. 06g

[0026] C 溶剂 [0026] C the solvent

[0027] 二氯甲烷48g [0027] 48g of dichloromethane

[0028] 反应式如下: [0028] The reaction is as follows:

[00291 [00291

Figure CN105017538AD00051

[0030] 其制备方法为:叠氮基和端炔基功能化四臂大分子单体、CuI和二氯甲烷加入反应瓶中,室温下搅拌溶解,注入反应模具中。 [0030] The preparation method as: azide and alkynyl end functionalized macromonomer four arms, CuI and dichloromethane added to the reaction flask, and dissolved with stirring at room temperature, the reaction injection mold. 在60°C条件下反应6-12小时,脱模后干燥即可得到规整网络结构的形状记忆材料。 The reaction for 6-12 hours at 60 ° C under conditions and dried to obtain a shape memory material after release of the regular network structure.

[0031] 产物指标: [0031] The product index:

[0032] 玻璃化转变温度:46°C ; [0032] Glass transition temperature: 46 ° C;

[0033] 51°C下的形状恢复率:99% ; Shape recovery ratio at [0033] 51 ° C: 99%;

[0034] 形状恢复时间:5秒。 [0034] The shape recovery time: 5 seconds.

[0035] 实例2 [0035] Example 2

[0036] A四臂大分子单体 [0036] A four-arm macromer

[0037] 巯基功能化四臂聚己内酯(Mn= 46000) 3g [0037] The mercapto-functional four-arm polycaprolactone (Mn = 46000) 3g

[0038] 降冰片烯功能化四臂聚己内酯(Mn= 46000) 3g [0038] The norbornene-functional four-arm polycaprolactone (Mn = 46000) 3g

[0039] B催化剂 [0039] B catalyst

[0040] 光引发剂(2-羟基-4' -(2-羟基乙氧基)-2-甲基苯丙酮)0.06g [0040] The photoinitiator (2-hydroxy-4 '- (2-hydroxyethoxy) -2-methyl-propiophenone) 0.06 g of

[0041] C 溶剂 [0041] C the solvent

[0042] 二氯甲烷48g [0042] 48g of dichloromethane

[0043] 反应式如下: [0043] The reaction is as follows:

Figure CN105017538AD00061

[0045] 其制备方法为:巯基和降冰片烯功能化四臂大分子单体、光引发剂和二氯甲烷加入反应瓶中,室温下搅拌溶解,注入反应模具中。 [0045] The preparation method as: sulfhydryl and norbornene functionalized quadrifilar macromer, photoinitiator and dichloromethane added to the reaction flask, and dissolved with stirring at room temperature, the reaction injection mold. 在室温条件下紫外光照反应1-10分钟,脱模后干燥即可得到规整网络结构的形状记忆材料。 UV irradiation for 1-10 minutes at room temperature, and dried to obtain a shape memory material after release of the regular network structure.

[0046] 产物指标: [0046] The product index:

[0047] 熔点:54°C ; [0047] Melting point: 54 ° C;

[0048] 70°C下的形状恢复率:99% ; Shape recovery ratio at [0048] 70 ° C: 99%;

[0049] 形状恢复时间:11秒。 [0049] The shape recovery time: 11 seconds.

[0050] 实例3 [0050] Example 3

[0051] A四臂大分子单体 [0051] A four-arm macromer

[0052] 甲基咲喃功能化四臂聚丙交酯-Co-己内酯(Mn= 10500) 3g [0052] thiopyran methyl Kou quadrifilar functionalized polylactide -Co- caprolactone (Mn = 10500) 3g

[0053] 顺丁烯二酸酐功能化四臂聚丙交酯-Co-己内酯(Mn= 10500) 3g [0053] The maleic anhydride functionalized polylactide -Co- quadrifilar caprolactone (Mn = 10500) 3g

[0054] B催化剂 [0054] B catalyst

[0055] 光引发剂(2-羟基-4' -(2-羟基乙氧基)-2-甲基苯丙酮) 0.06g [0055] The photoinitiator (2-hydroxy-4 '- (2-hydroxyethoxy) -2-methyl-propiophenone) 0.06 g of

[0056] C 溶剂 [0056] C the solvent

[0057] 二氯甲烷48g [0057] 48g of dichloromethane

[0058] 反应式如下: [0058] The reaction is as follows:

Figure CN105017538AD00062

[0060] 其制备方法为:甲基呋喃和顺丁烯二酸酐功能化四臂聚丙交酯-CO-己内酯、光引发剂和二氯甲烷加入反应瓶中,室温下搅拌溶解,注入反应模具中。 [0060] The preparation method as: methyl furan and maleic anhydride-functionalized polylactide -CO- quadrifilar caprolactone, a photoinitiator and dichloromethane added to the reaction flask, and dissolved with stirring at room temperature, the reaction injection mold in. 在37°C条件下反应6-12小时,脱模后干燥即可得到规整网络结构的形状记忆材料。 The reaction for 6-12 hours at 37 ° C for the condition, and dried to obtain a shape memory material after release of the regular network structure.

[0061] 产物指标: [0061] The product index:

[0062] 玻璃化转变温度:36°C ; [0062] Glass transition temperature: 36 ° C;

[0063] 40°C下的形状恢复率:99% ; Shape recovery ratio at [0063] 40 ° C: 99%;

[0064] 形状恢复时间:14秒。 [0064] Shape Recovery time: 14 seconds.

[0065] 实例4 [0065] Example 4

[0066] A四臂大分子单体 [0066] A four-arm macromer

[0067] 双键功能化四臂聚丙交酯-co-2-环氧己烷-1,5-二酮(Mn = 10000) 3g [0067] double bond functionalized poly (lactide) -co-2- epoxycyclohexane-1,5-dione four arms (Mn = 10000) 3g

[0068] 四唑功能化四臂聚丙交酯-co-2-不氧己烷-1,5-二酮(Mn = 10000) 2g [0068] tetrazol-functionalized polylactide quadrifilar not -co-2- oxo-hexane-1,5-dione (Mn = 10000) 2g

[0069] 四唑功能化四臂聚己内酯(Mn = 10000) Ig [0069] tetrazol-functional four-arm polycaprolactone (Mn = 10000) Ig

[0070] B引发剂 [0070] B initiator

[0071] 无引发剂 [0071] No initiator

[0072] C 溶剂 [0072] C the solvent

[0073] 二氯甲烷48g [0073] 48g of dichloromethane

[0074] 反应式如下: [0074] The reaction is as follows:

Figure CN105017538AD00071

[0076] 其制备方法为:双键和四唑功能化功能化四臂聚丙交酯-co-2-环氧己烷-1,5-二酮、四唑功能化四臂聚己内酯、二氯甲烷加入反应瓶中,室温下搅拌溶解,注入反应模具中。 [0076] The preparation process: a double bond and tetrazole functionalized functionalized polylactide quadrifilar -co-2- epoxyhexane-1,5-dione, tetrazolyl functional four-arm polycaprolactone, the reaction flask was added methylene chloride, and dissolved with stirring at room temperature, the reaction injection mold. 在室温条件下紫外光照反应1-10分钟,脱模后干燥即可得到规整网络结构的形状记忆材料。 UV irradiation for 1-10 minutes at room temperature, and dried to obtain a shape memory material after release of the regular network structure.

[0077] 该材料具有形状记忆性能,主要产物指标如下: [0077] The material having shape memory properties, the major product indicators are as follows:

[0078] 玻璃花转变温度:38°C ; [0078] - glass transition temperature: 38 ° C;

[0079] 38°C下的形状恢复率:99% ; Shape recovery ratio at [0079] 38 ° C: 99%;

[0080] 形状恢复时间:8秒。 [0080] Shape Recovery time: 8 seconds.

Claims (9)

  1. 1. 一种具有规整网络结构的可降解形状记忆高分子材料,采用四臂可降解大分子单体之间的点击化学反应获得具有规整网络结构的可降解形状记忆高分子材料,其特征在于可降解的规整网络结构具有形状记忆性能。 Biodegradable shape memory polymer A having a regular network structure, using click chemistry reaction between a four-arm degradable macromer obtained degradable shape memory polymer material having a regular structure of the network, which may be characterized in that degradation structured network structure having shape memory properties.
  2. 2. 根据权利要求1所述的具有规整网络结构的可降解形状记忆高分子材料,其特征在于该高分子材料具有规整性网络结构,能够赋予材料优异的形状记忆性能包括快速的回复速度和高回复率。 The degradable shape memory polymer material having the regular network structure as claimed in claim 1, characterized in that the polymer material has a regular network structure, capable of imparting the shape memory material having excellent properties including rapid response and high speed response rate.
  3. 3. 根据权利要求1所述的具有规整网络结构的可降解形状记忆高分子材料,其特征在于该高分子材料具有优异的机械性能和可降解性能。 The degradable shape memory polymer material having the regular network structure as claimed in claim 1, characterized in that the polymer material has excellent mechanical properties and biodegradability properties.
  4. 4. 根据权利要求1所述的基于规整网络结构的可降解形状记忆高分子材料,其特征在于制备时原料配比为: A:四臂大分子单体(不同的官能团比为I : l)70-89wt% B :引发剂或催化剂0• I-Iwt % C :溶剂10% -30%。 The degradable shape memory polymer based on the regular network structure as claimed in claim 1, characterized in that the ratio of starting material is prepared: A: four arms of the macromonomer (a different functional group ratio of I: l) 70-89wt% B: initiator or catalyst 0 • I-Iwt% C: 10% -30% solvent.
  5. 5. 根据权利要求1所述的具有规整网络结构的可降解形状记忆高分子材料,其特征在于其制备方法为:具有不同官能团的四臂大分子单体、催化剂或引发剂和溶剂按照一定的比例和顺序加入反应瓶中,室温下搅拌溶解,注入反应模具中,通过加热或光照反应一定的时间,脱模后室温干燥即可得到规整网络结构的形状记忆材料。 The degradable shape memory polymer material having the regular network structure as claimed in claim 1, characterized in that it is prepared: four arms macromers having different functional groups, a catalyst or initiator, and a solvent in a certain and the ratio of the reaction flask were added sequentially, and dissolved with stirring at room temperature, the reaction injection mold, by heating or light a certain reaction time, after demolding dried at room temperature to obtain a shape memory material regular network structure.
  6. 6. 根据权利要求4或5所述的基于规整网络结构的可降解形状记忆高分子材料,其特征在于选取可降解的四臂大分子单体,四臂大分子单体为四臂聚D,L-丙交酯、四臂聚己内酯、四臂聚十五内酯、四臂聚L-丙交酯、四臂聚乙交酯、四臂聚2-环氧己烷-1,5-二酮、四臂聚对二氧环己酮或它们之间的四臂二元共聚物或三元共聚物。 6. Biodegradable shape memory polymer based on the regular network structure of claim 4 or claim 5, characterized in that the selection of four-arm degradable macromer, macromer four arms four arms poly-D, L- lactide, polycaprolactone four-arm, four-arm polyethylene pentadecalactone, four-arm poly-L- lactide, polyglycolide four-arm, four-arm poly-2-1,5 epoxy hexane - dione, four four-arm polyethylene copolymer or terpolymer arms between them or dioxanone.
  7. 7. 根据权利要求6所述的基于规整网络结构的可降解形状记忆高分子材料,其特征在于选取能够发生点击化学反应的官能化四臂大分子单体,四臂大分子单体为叠氮基封端的四臂大分子单体和炔基功能化的四臂大分子单体、巯基封端的四臂大分子单体和炔基或烯基功能化的四臂大分子单体、二烯(甲基呋喃)功能化四臂大分子单体和亲二烯体(顺丁烯二酸酐)功能化四臂大分子单体、四唑功能化的四臂大分子单体和烯基功能化的四臂大分子单体。 The degradable shape memory polymer based on the regular network structure as claimed in claim 6, characterized in that the selection click chemistry functional macromers capable of four-arm, four-arm azide macromer quadrifilar-terminated macromonomer and alkynyl groups functionalized macromonomer four arms, four-mercapto-capped macromonomer arms and alkynyl or alkenyl functionalized macromonomer four arms, diene ( methylfuran) tetra functional macromonomer arms and dienophile (maleic anhydride) tetra functional macromonomer arms, tetrazole functionalized macromonomer four arms and four alkenyl functionalized the macromonomer arms.
  8. 8. 根据权利要求7所述的基于规整网络结构的可降解形状记忆高分子材料,其特征在于同一种功能化的四臂大分子单体可以是不同类型的一种、两种或多种大分子单体。 8. Based Biodegradable shape memory polymer regular network structure, wherein according to claim 7, the same four arms functionalized macromonomer may be of a different type, two or more large monomer molecule.
  9. 9. 根据权利要求5基于规整网络结构的可降解形状记忆高分子材料,其特征在于催化剂选用抗坏血酸钠还原CuS04、CuI、Cu(I) (PPh3)3Br ;引发剂选用偶氮类、有机过氧类热引发剂或光引发剂。 5 9. The degradable shape memory polymer based on regular network structure as claimed in claim, characterized in that the reduction catalyst is sodium ascorbate selected CuS04, CuI, Cu (I) (PPh3) 3Br; azo initiator selected organic peroxy based thermal initiator or a photoinitiator.
CN 201510205953 2014-04-21 2015-04-21 Degradable shape memory high polymer material of regular network structure and preparation method therefor CN105017538A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201410159295 2014-04-21
CN 201510205953 CN105017538A (en) 2014-04-21 2015-04-21 Degradable shape memory high polymer material of regular network structure and preparation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201510205953 CN105017538A (en) 2014-04-21 2015-04-21 Degradable shape memory high polymer material of regular network structure and preparation method therefor

Publications (1)

Publication Number Publication Date
CN105017538A true true CN105017538A (en) 2015-11-04

Family

ID=54407871

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201510205953 CN105017538A (en) 2014-04-21 2015-04-21 Degradable shape memory high polymer material of regular network structure and preparation method therefor

Country Status (1)

Country Link
CN (1) CN105017538A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6388043B1 (en) * 1998-02-23 2002-05-14 Mnemoscience Gmbh Shape memory polymers
CN101475677A (en) * 2008-12-18 2009-07-08 浙江大学 Multi-block biodegradable shape memory polymeric compound with regular structure and preparation thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6388043B1 (en) * 1998-02-23 2002-05-14 Mnemoscience Gmbh Shape memory polymers
CN101475677A (en) * 2008-12-18 2009-07-08 浙江大学 Multi-block biodegradable shape memory polymeric compound with regular structure and preparation thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
THOMAS DEFIZE等: ""Multifunctional Polye-caprolactone)-Forming Networks by Diels-Alder Cycloaddition:Effect of the Adduct on the Shape-Memory Properties"", 《MACROMOLECULAR CHEMISTRY AND PHYSICS》 *
THOMAS DEFIZE等: ""Thermoreversibly Crosslinked Poly(e-caprolactone) as Recyclable Shape-Memory Polymer Network"", 《MACROMOLECULAR RAPID COMMUNICATIONS》 *

Similar Documents

Publication Publication Date Title
Zhou et al. Electrospun water-soluble carboxyethyl chitosan/poly (vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration
Amin et al. Synthesis and characterization of thermo-and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery
Li et al. Studies on poly (acrylic acid)/attapulgite superabsorbent composite. I. Synthesis and characterization
Jia et al. Synthesis and characterization of in situ cross-linkable hyaluronic acid-based hydrogels with potential application for vocal fold regeneration
Shen et al. Biodegradable stimuli-responsive polypeptide materials prepared by ring opening polymerization
Chaterji et al. Smart polymeric gels: redefining the limits of biomedical devices
Elvira et al. Starch-based biodegradable hydrogels with potential biomedical applications as drug delivery systems
Haraguchi Synthesis and properties of soft nanocomposite materials with novel organic/inorganic network structures
Bae et al. Biodegradable amphiphilic multiblock copolymers and their implications for biomedical applications
Warren et al. Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization
Matricardi et al. Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering
Bayraktar et al. Silk fibroin as a novel coating material for controlled release of theophylline
Sinnwell et al. Recent advances in microwave-assisted polymer synthesis
Madhavan et al. Evaluation of composition and crosslinking effects on collagen-based composite constructs
Haque et al. Super tough double network hydrogels and their application as biomaterials
Kundu et al. Silk fibroin/poly (vinyl alcohol) photocrosslinked hydrogels for delivery of macromolecular drugs
Sokker et al. Synthesis and characterization of hydrogels based on grafted chitosan for the controlled drug release
Wischke et al. Evaluation of a degradable shape-memory polymer network as matrix for controlled drug release
Ye et al. Condensed state structure and biocompatibility of the konjac glucomannan/chitosan blend films
CN103881398A (en) Method for improving water resistance of polyvinyl alcohol film by using poly(trimethylene carbonate) and poly(p-dioxanone)
Jerez et al. Protein-based bioplastics: effect of thermo-mechanical processing
Ito Slide-ring materials using topological supramolecular architecture
Sen et al. Microwave initiated synthesis of polyacrylamide grafted guar gum (GG-g-PAM)—characterizations and application as matrix for controlled release of 5-amino salicylic acid
Jia et al. Self-healing supramolecular hydrogel made of polymers bearing cholic acid and β-cyclodextrin pendants
Avella et al. Addition of glycerol plasticizer to seaweeds derived alginates: Influence of microstructure on chemical–physical properties

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
WD01