CN104931477A - High-precision Raman-spectrum explosive recognition instrument - Google Patents

High-precision Raman-spectrum explosive recognition instrument Download PDF

Info

Publication number
CN104931477A
CN104931477A CN 201410742160 CN201410742160A CN104931477A CN 104931477 A CN104931477 A CN 104931477A CN 201410742160 CN201410742160 CN 201410742160 CN 201410742160 A CN201410742160 A CN 201410742160A CN 104931477 A CN104931477 A CN 104931477A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
light
module
precision
array
high
Prior art date
Application number
CN 201410742160
Other languages
Chinese (zh)
Inventor
许驰
Original Assignee
成都鼎智汇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention provides a high-precision Raman-spectrum explosive recognition instrument, so as to improve the distinguishability of an explosive recognition instrument. The high-precision Raman-spectrum explosive recognition instrument comprises a control/display module, a control/ acquisition circuit, a laser, a lens, a Rayleigh light filtration module, a light spitting module, a multichannel detector and an input/output port, wherein the laser is used for providing an excitation light source of a sample; the lens is used for focusing the light of the laser to irradiate onto the sample, and is used for collecting the reflected light of the sample; the Rayleigh light filtration module is used for filtering out Rayleigh scattered light in the reflected light of the lens; the multichannel detector is used for converting a light signal into an electric signal. By using the expositive recognition instrument provided by the invention, the high-precision recognition can be carried out on an explosive with lower cost, and further, the explosive recognition instrument is applicable to various public places, and is wide in application prospect.

Description

一种高精度拉曼光谱爆炸物识别仪 A high-precision Raman spectroscopy explosives identification device

技术领域 FIELD

[0001] 本发明属于物质分析技术领域,尤其是涉及一种高精度拉曼光谱爆炸物识别仪。 [0001] The present invention belongs to the technical field of material analysis, in particular, it relates to a high-precision Raman spectroscopy explosives identification device.

背景技术 Background technique

[0002] 当今世界,反恐反暴已经成为保障人民安居乐业和国家经济社会正常运转的重要内容。 [0002] in today's world, terrorism has become an important part of the anti-violence and safeguard its people and the country's economic and social functioning. 恐怖和暴力袭击中,爆炸物因为其强大的破坏力,属于各国严格防范的物品。 Terrorist and violent attacks, explosives because of its strong destructive power, countries belonging to strictly prevent items. 为了公共安全等安全目的,在机场、车站等公共场所以及其它特定场所进行爆炸物检测越来越彰显出其必要性。 For security purposes, such as public security, carry out explosives detection at airports, railway stations and other public places, and other site-specific highlights a growing necessity.

[0003]目前常用的爆炸物探测技术有探测炸药本身(如离子迀移谱),有探测引爆装置(如金属探测),还有探测爆炸物形状(如单能X光),当然也有能同时探测炸药和包裹形状(如双能X光)。 [0003] It explosives detection techniques are commonly used to detect explosive itself (e.g., ion Gan shift spectrum), the probe has a detonation device (such as a metal detector), as well as detection of explosives shape (e.g., single-energy X-rays), of course, there can be simultaneously detecting explosives and wrapping shape (e.g., dual-energy X-rays). 其中炸药探测有痕量炸药和常量炸药探测之分,痕量炸药探测是通过分析炸药挥发出来的蒸气或者残留在物体表面的炸药颗粒来实现,而常量炸药探测所需的炸药有一定质量和体积,一般通过炸药的等效原子序数、密度、外形特征等方式来实现。 Wherein detecting explosives and explosive trace points have constant detection of explosives, explosive trace detection is accomplished by analyzing the explosives vapor volatilized or remain in the surface of the particles of explosives, and Explosive constant detecting explosives have certain required quality and volume , generally realized by an equivalent atomic number, density, shape and other characteristics of the explosive manner.

[0004] 被激光束击中的物质(例如爆炸物或管制药品)将会反射或者散射大部分接收光。 [0004] The laser beam hit a substance (such as explosives or controlled substances) will be mostly reflected or scattered light received. 所述反射和散射光将主要具有与接收光相同的波长,但是一些散射光将是波长偏移的,这就是“拉曼散射”光。 The reflected and scattered light will mainly have the same received light wavelength, but some scattered light will be shifted wavelength, which is the "Raman scattering" light. 包括多个波长的光的该散射光的分布被称作“拉曼光谱”。 The distribution of the scattered light includes a plurality of light wavelengths is called "Raman spectroscopy."

[0005] 因此,以与其他光谱类似的方式,对于每一种物质(或者更精确地说对于每一种类型的分子)的拉曼光谱包括一条或多条波长带/线,并且是特定于分子的。 [0005] Thus, in a similar manner with other spectra, for each species (or, more precisely, for each type of molecule) a Raman spectrum comprising one or more wavelength band / line, and is specific to Molecules. 拉曼光谱中的每一条带或线都对应于分子中的一种振动模式。 Each band or line Raman spectrum corresponds to an oscillation mode in the molecule. 由于对于每一种分子的唯一拉曼光谱,因此可以通过将所测量的拉曼光谱与参考光谱进行比较而识别出物质。 Since for each unique Raman spectrum of a molecule, can be compared to a reference spectrum measured by Raman spectroscopy and identified substance.

[0006] 申请号为CN200980151015.5的发明专利申请公开了一种检测系统,用于确定对象是否包含确切种类的物质或分子。 [0006] Application No. CN200980151015.5 invention patent application discloses a detection system for determining whether an object contains the precise nature of the substance or molecule. 但是,该检测系统是对痕量的爆炸物等危险品进行的特定设计,而对一般情形下的爆炸物识别而言,采用这种系统的成本过高。 However, the particular design of the detection system of traces of explosives and other dangerous goods, and the identification of explosives in the general case, the use of such a system cost prohibitive.

[0007] 申请号为CN200680011539.0的发明专利申请公开了一种沉积、检测和鉴别威胁物质的系统,其将威胁物质样品沉积在基底上,在威胁物质样品沉积在基底的同时,鉴别威胁物质。 [0007] Application No. CN200680011539.0 invention patent application discloses a deposition, the threat detection and identification system substance, which threaten material sample deposited on the substrate, the threat of material deposited while the substrate of the sample, identification of the threat substance . 但是,该系统由于涉及到沉积的原理,使其应用范围受到限制,因此,虽然其精度较高,但不适于地铁等公共场所的检测。 However, the system as it relates to the deposition of the principle, it is limited the range of applications, and therefore, although high precision, but not for public places subway detected.

发明内容 SUMMARY

[0008] 本发明的目的在于提供一种便携式拉曼光谱爆炸物识别仪,解决一般的拉曼光谱识别仪信号弱、信噪比低等问题。 [0008] The object of the present invention is to provide a portable explosives identification device Raman spectroscopy, Raman spectroscopy solve the general identification device signal is weak, low-noise ratio problem. 本发明的技术方案如下: Aspect of the present invention is as follows:

[0009] 一种高精度拉曼光谱爆炸物识别仪,包括控制/显示模块、控制/采集电路、激光器、镜头、瑞利滤光模块、分光模块、多通道检测器和输入/输出端口,所述激光器,用以提供样品的激发光源;所述镜头,用以聚焦所述的激光器的光照射至样品上,并用以收集样品的反射光;所述瑞利滤光模块,用以将所述的镜头的反射光中的瑞利散射光滤除;所述多通道检测器,用以将光信号转换成电信号。 [0009] A high-precision Raman spectroscopy explosives identification device includes a control / display module, the control / acquisition circuit, a laser, a lens, a filter module Rayleigh spectral module, multichannel detector and input / output ports, the said laser light source for providing excitation of a sample; the lens for focusing the laser light is irradiated to the sample, and a sample collected for reflecting light; the Rayleigh optical module for the reflected light in the lens was filtered off Rayleigh scattered light; a multichannel detector, for converting optical signals to electrical signals.

[0010] 进一步地,所述镜头101采用数字微镜元件阵列。 [0010] Furthermore, the lens 101 of the digital micromirror device array.

[0011] 进一步地,所述的数字微镜元件阵列由数字微镜元件阵列驱动模块驱动。 [0011] Further, a digital micromirror elements of said array of digital micromirror elements driven by the driving module array.

[0012] 进一步地,所述的数字微镜元件阵列在现场可编程门阵列控制模块控制下,调节微镜角度为二个角度:+10°或-10°。 [0012] Further, the array of digital micromirror elements at a field programmable gate array control module to adjust the angle of the micromirror two angle: + 10 ° or -10 °.

[0013] 进一步地,所述分光模块包括光学器件组,该光学器件组包括两个被同向放置的1/4波片、一个检偏器,以及一个干涉器件。 [0013] Further, the spectroscopic module comprises a set of optics, the optics group comprises two quarter-wave plate is placed in the same direction, and an analyzer, and an interference device.

[0014] 进一步地,所述分光镜205为消偏振分光棱镜。 [0014] Further, the dichroic mirror 205 is a dichroic prism depolarization.

[0015] 进一步地,多通道检测器为光电二极管、光电倍增管、InGaAs探测器、C⑶或CMOS。 [0015] Further, the multi-channel detector is a photodiode, photomultiplier, InGaAs detectors, C⑶ or CMOS.

[0016] 进一步地,所述光学器件组中还包括变焦透镜。 [0016] Further, the optical device further comprises a zoom lens group.

[0017] 进一步地,所述变焦透镜能够被设置在光路上两个I/.4波片的前面。 [0017] Further, the zoom lens can be provided in front of the optical path of the two I / .4 wave plate.

[0018] 进一步地,所述的数字微镜元件阵列由数字微镜元件阵列驱动模块驱动,该驱动模块内采用DMD配套的驱动芯片,数字微镜元件阵列驱动模块与现场可编程门阵列控制模块连接,数据及控制信号由现场可编程门阵列控制模块给出,以使数字微镜元件阵列在一定频率下按预定编码迅速变换微镜角度,经光栅分光后的光谱照射在DMD数字微镜阵列上实现调制。 [0018] Further, a digital micromirror elements of said array of digital micromirror elements driven by the drive module array, using DMD chip supporting drive, a digital micromirror device array driver module and a control module field programmable gate arrays within the driving module connection, data and control signals given by the field programmable gate array control module, so that the digital micromirror array of elements in a certain predetermined frequencies rapidly transform coding micromirror angle, grating spectral spectrum after irradiation by the DMD array of digital micromirrors the realization of modulation.

[0019] 本发明的爆炸物识别仪能够以较低的成本,实现对爆炸物进行高精度的识别,且适用于广大公共场所,应用前景广阔。 [0019] The explosive device of the present invention can be identified at a low cost, with high accuracy to achieve recognition of the explosives, and for a broader public places, application prospect.

附图说明 BRIEF DESCRIPTION

[0020]图1是本发明高精度拉曼光谱爆炸物识别仪的结构示意图。 [0020] FIG. 1 is a schematic view of the precision explosive identification device of the present invention Raman spectroscopy.

[0021] 图2是空间分光物质检测仪的光路结构示意图。 [0021] FIG. 2 is a schematic view of the optical path space spectral detector substance.

具体实施方式 detailed description

[0022] 本发明所提供的高精度拉曼光谱爆炸物识别仪100包括:控制/显示模块101、控制/采集电路102、激光器103、镜头104、瑞利滤光模块105、分光模块106、多通道检测器107和输入/输出端口108,所述激光器,用以提供样品的激发光源;所述镜头,用以聚焦所述的激光器的光照射至样品上,并用以收集样品的反射光;所述瑞利滤光模块,用以将所述的镜头的反射光中的瑞利散射光滤除;所述多通道检测器,用以将光信号转换成电信号。 [0022] The present invention provides a high-precision Raman spectroscopy explosives identification device 100 comprises: a control / display module 101, a control / acquisition circuit 102, a laser 103, lens 104, filter module 105 Rayleigh spectral module 106, multi- channel detector 107 and input / output ports 108, the laser for providing excitation light source of a sample; the lens for focusing the laser light is irradiated to the sample, and the sample is collected for reflecting light; the said Rayleigh filter module for the lens of the reflected light was filtered off Rayleigh scattered light; a multichannel detector, for converting optical signals to electrical signals.

[0023] 如图1所示,操作者首先可以通过控制/显示模块101输入检测指令,即可控制控制/采集电路102启动激光器103。 [0023] 1, the operator first by the control / display module 101 detects the input command, to control / laser 103 starts acquisition circuit 102. 激光器103输出某一波长的激发光109,激发光109通过镜头104聚焦到待检测样品112上,样品112上会散射出瑞利散射光110 (波长与激发光109相同)和拉曼散射光111 (波长与激发光109不同)。 Laser 103 outputs a wavelength of the excitation light 109, the excitation light 109 to be focused on the sample 112 through the detection lens 104, the sample 112 is scattered Rayleigh scattered light 110 (the same wavelength excitation light 109) and the Raman scattered light 111 (wavelength different from the excitation light 109). 瑞利散射光110和拉曼散射光111 一同由镜头104收集进入物质检测仪100,在经过瑞利滤光模块105时瑞利散射光110会无法透过,只透过对物质检测有用的拉曼散射光111。 Rayleigh scattered light and Raman scattered light 110 with 111 collected by the lens 104 into the substance detector 100, the filter module 105 via Rayleigh Rayleigh scattered light 110 will not pass through, transmits only useful substance detection pull Raman scattering light 111. 拉曼散射光111由于通常包含一个或多个不同波长的光成分,因此拉曼散射光111需要经过分光模块106进行分光,使不同波长的光成分在空间上分开或时序地分开。 Since Raman scattered light 111 typically includes one or a plurality of light components having different wavelengths, and therefore the Raman scattered light module 111 go through the spectral beam splitter 106, the light components having different wavelengths separately or timing of spatially separated. 被分光后的拉曼散射光111由多通道检测器107转化为电信号,电信号会反馈给控制/采集电路102。 After the Raman scattered light 111 is split by a multi-channel detector 107 converted into an electrical signal, the electrical signal will be fed back to the control / acquisition circuitry 102. 控制/采集电路102对电信号进行处理分析后,最终将结果传输到控制/显示模块101上反馈给操作者。 After control / acquisition processing circuit 102 analyzes the electrical signal, the final result to the transmission control / feedback to the operator on the display module 101. 同时,操作者还可以通过使用计算机连接输入/输出模块108来操作该高精度拉曼光谱爆炸物识别仪100。 Meanwhile, the operator 108 can also be operated with high accuracy the Raman spectroscopy explosives identification device 100 is connected to input / output module by using a computer. 在这种高精度拉曼光谱爆炸物识别仪100中使用的激光器103可以是各种可见和近红外、紫外光的激光器,比如532nm、785nm、808nm或1064nm等波长的激光器。 This high precision in the laser Raman spectrum of the laser 100 explosives identification device 103 may be used in a variety of visible and near-infrared, ultraviolet lasers, such as 532nm, 785nm, 808nm or 1064nm wavelength and the like. 上述控制/采集电路102是现场可编程门阵列(FPGA)控制模块。 The control / acquisition circuitry 102 is a field programmable gate array (FPGA) control module.

[0024] 所述镜头101采用数字微镜元件(DMD)阵列。 [0024] The lens 101 using a digital micromirror device (DMD) array. 所述的数字微镜元件阵列由数字微镜元件阵列驱动模块驱动,该驱动模块内采用DMD配套的驱动芯片,数字微镜元件阵列驱动模块与现场可编程门阵列控制模块连接,数据及控制信号由现场可编程门阵列控制模块给出,以使数字微镜元件阵列在一定频率下按预定编码迅速变换微镜角度,经光栅分光后的光谱照射在DMD数字微镜阵列上实现调制。 DMD array driven by said digital micromirror device array driver module, using the DMD chip drivers supporting the driving module, a digital micromirror device array driver module and the field programmable gate array control module, data and control signals It is given by the field programmable gate array control module, so that the digital micromirror array of elements in a certain predetermined frequencies rapidly transform coding micromirror angle modulation implemented on the DMD array of digital micromirrors after irradiation spectrum by the spectral grating.

[0025] 优选地,所述的数字微镜元件阵列在现场可编程门阵列控制模块控制下,调节微镜角度为二个角度:+10°或-10°。 [0025] Preferably, said digital micromirror elements in an array at a field programmable gate array control module to adjust the angle of the micromirror two angle: + 10 ° or -10 °.

[0026] 图2所示为分光模块106的光路结构200。 [0026] Figure 2 shows the spectral module 106 of the optical structure 200. 激光器103输出某一波长的激发光109,激发光109通过镜头104聚焦到待检测样品112上,样品112上会散射出瑞利散射光110(波长与激发光109相同)和拉曼散射光111 (波长与激发光109不同)。 Laser 103 outputs a wavelength of the excitation light 109, the excitation light 109 to be focused on the sample 112 through the detection lens 104, the sample 112 is scattered Rayleigh scattered light 110 (the same wavelength excitation light 109) and the Raman scattered light 111 (wavelength different from the excitation light 109). 瑞利散射光110和拉曼散射光111 一同由镜头104收集进入物质检测仪,在经过瑞利滤光模块105时瑞利散射光110会无法透过,只透过对物质检测有用的拉曼散射光111。 Rayleigh scattered light and Raman scattered light 110 enters the lens 111 together with the material collected by the detector 104, the filter module 105 via Rayleigh Rayleigh scattered light 110 will not pass through, transmits only useful for detecting Raman substance scattered light 111. 样品的特征拉曼散射光111通常包含一个或多个不同波长的光成分。 Wherein the sample Raman scattered light 111 typically includes one or a plurality of light components having different wavelengths. 该光经过分光镜205变为透射反射光。 The light passes through the dichroic mirror 205 transmitting the reflected light becomes. 透射光210A入射到多通道检测器107A,就可以测量样品的第一特征光谱。 210A transmitted light is incident on the multichannel detector 107A, a first feature can be measured spectrum of the sample. 空间分光模块205中经过反射而射出的光经过光学器件组206以后,出射光210B入射到多通道检测器107B,就可以测量样品的第二特征光谱。 Spectral space module 205 through the reflected light is emitted through a second spectral characteristic after 206, the light emitting optics group 210B is incident on the multichannel detector 107B, a sample can be measured. 其中,光学器件组206包括两个被同向放置的1/4波片(经过这两个1/4波片的光被顺时针或逆时针旋转90度相角)、一个检偏器,以及一个干涉器件。 Wherein the optics group 206 includes two quarter-wave plate is disposed in the same direction (the light passing through the two quarter-wave plate is rotated clockwise or counterclockwise by 90 degrees phase angle), an analyzer, and an interference device. 所述分光镜205为消偏振分光棱镜。 The dichroic mirror 205 is a dichroic prism depolarization.

[0027] 多通道检测器107A和107B可以使用光电二极管、光电倍增管、InGaAs探测器、CCD或CMOS等各种探测器。 [0027] multichannel detector 107A and 107B may be used a photodiode, a photomultiplier tube, a InGaAs detector, the CCD detectors or CMOS variety.

[0028] 该多通道检测器还可以为单点探测器,数字微镜元件阵列在一定频率下按预定编码迅速变换微镜角度,经光栅分光后的光照射在数字微镜元件数字微镜阵列上实现调制,被调制的光被反射并成像在单点探测器上。 [0028] The multichannel detector probe may also be a single point, an array of digital micromirror elements at a certain frequency at a predetermined angle of the micromirror encoded transform rapidly, the irradiated light after spectral grating DMD array of digital micromirror the realization of modulation, modulated light is reflected and imaged on a single point detector.

[0029] 多通道探测器107A和107B的输出信号经过相干运算。 [0029] The multi-channel output signals of detectors 107A and 107B through coherent operation. 在相干运算之后,将比较两个结果的差异程度。 After the coherent operation, the degree of comparison between the two results. 如果差异程度低于预定阈值,则在光学器件组206中增加变焦透镜,从而提高光束的聚焦程度。 If the degree of difference is below a predetermined threshold, the increase in the zoom lens optics group 206, thereby improving the degree of focus of the light beam.

[0030] 经过相干运算之后,从多通道探测器107A和107B的输出信号进行差分运算。 [0030] After computing the coherent, multi-channel differential operation output signals of detectors 107A and 107B from. 该差分运算可以选择在两个四象限探测器中进行差分检测,以便能够最大程度地消除散射光线中的噪声,得到最终确定的待检测样品的多个纯净的特征频率。 The difference operation can be selected for differential detection in two four-quadrant detector, so that the maximum extent possible to eliminate the noise light scatter to obtain a plurality of test sample to be finalized pure characteristic frequency. 当被测面准确对焦时,四象限探测器上的聚焦光斑形状为圆形。 When the test surface are in focus, the focused spot shape on four-quadrant detector is circular.

[0031] 所述的干涉器件的中心透射波长为432.5nm,透射谱宽为7.4nm,峰值透射率为70.2%,改善了光束的时间相干性,同时较高的峰值透射率保证了所述的弱相干光透过的光通量。 The center of the interference device [0031] The transmission wavelength is 432.5nm, the transmission spectrum width of 7.4 nm, a peak transmittance of 70.2%, to improve the coherence time of the light beam, while the higher peak to ensure the transmittance of the weak coherent light transmission of the light flux.

[0032] 优选地,所述变焦透镜能够被设置在光路上两个I/.4波片的前面。 [0032] Preferably, the zoom lens can be provided in front of the optical path of the two I / .4 wave plate. 变焦透镜在光学器件组206中是可拆卸地安装的。 In the zoom lens optics group 206 is detachably mounted. 所述光学器件组还包括有用于固定变焦透镜并调整其相对于1/4波片的位移量的三维工作台。 The optical device further comprises a set for fixing and adjusting the zoom lens with respect to the amount of displacement of the quarter-wave plate D workstations.

[0033] 优选地,上述差分运算之前还包括放大运算,即多通道探测器107A和107B的输出端还具有放大器,以对于微弱的信号进行适当的放大。 [0033] Preferably, before the differential operational amplifying operation further comprises, i.e., multi-channel probe 107A and 107B also has an output terminal amplifier to weak signal for appropriate amplification.

[0034] 所述多通道探测器优选为铌酸锂电光晶体。 [0034] The detector is preferably a multi-channel optical crystal lithium niobate. 变焦透镜的透光方向与晶体X轴方向一致,在铌酸锂电光晶体的X轴方向上加峰峰值电压为300V、频率为270Hz的正弦电压信号,光沿晶体z轴方向传播。 Light transmitting direction of the zoom lens coincides with the crystal X-axis direction, X-axis direction in the lithium niobate crystal light plus peak to peak voltage of 300V, 270Hz sinusoidal voltage signal of a frequency of the light propagating along the z-axis direction of the crystal. 调节1/4波片的快慢轴使其分别与晶体电感应轴方向相同。 Adjusting slow and fast axes of the quarter-wave plate are the same so that electrical induction crystal axis direction.

[0035] 接收部分偏振分光器的透光方向分别与起偏器的透光方向成45°角,用两个光探测器测量渥拉斯顿棱镜分开的两光束,并转变为相应的电信号。 [0035] The light transmitting direction of the receiving portion and the polarization beam splitter are transmissive polarizer angle of 45 °, measured Wollaston prism with two separate beams of two optical detectors, and converted into corresponding electrical signals . 通过锁相放大器差分放大,滤掉由于器件定位误差产生的直流和谐波电信号。 By differential amplifier lock-in amplifier, filter out the harmonic due to a DC electrical device and the positioning errors. 放大器的最小输出(接近零)对应发射和接收平台相对0°旋转角,即无相对转动。 The minimum output of the amplifier (close to zero) relative to the corresponding transmitting and receiving internet 0 ° rotation angle, i.e., non-rotatable. 放大器的输出信号大小与发射和接收平台的相对转角成正比(在±5°范围内),从两路电信号的相位可确定发射和接收平台相对转动的方向。 Output signal proportional to the relative size of the transmit and receive amplifiers internet corner (in the range ± 5 °), the phase of two electrical signals may be transmitted and received to determine the direction of relative rotation of the platform.

[0036] 当信号源接收部分相对于发射部分在±5°之间转动时,锁相放大器输出电压Δν随转角Θ变化。 [0036] When the signal source is rotated relative to the receiving portion between ± 5 ° to the emitting portion, Δν lock-in amplifier output voltage changes with the rotation angle Θ. 实验中,小角度的测量采用了经玮仪(每次转动2.5")。当转角固定时,锁相放大器输出信号抖动为±0.8 μ V,每转动2.5"输出信号平均改变4 μ V。 Experiment, using a small angle measured by Wei instrument (rotation per 2.5 "). When a fixed angle, lock-in amplifier output signal jitter is ± 0.8 μ V, 2.5 per revolution" mean change in the output signal 4 μ V.

[0037] 尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。 [0037] While the embodiments of the present invention have been disclosed above, but its use is not limited to the description set forth and described embodiments, which can be applied to various fields suitable for the present invention, for the person skilled in the art , can be easily realized a further modification, thus without departing from the generic concept claims and equivalents as defined by the scope of the present invention is not limited to the specific details shown and described herein with legend.

Claims (10)

  1. 1.一种高精度拉曼光谱爆炸物识别仪,包括控制/显示模块、控制/采集电路、激光器、镜头、瑞利滤光模块、分光模块、多通道检测器和输入/输出端口,所述激光器,用以提供样品的激发光源;所述镜头,用以聚焦所述的激光器的光照射至样品上,并用以收集样品的反射光;所述瑞利滤光模块,用以将所述的镜头的反射光中的瑞利散射光滤除;所述多通道检测器,用以将光信号转换成电信号。 A high-precision Raman spectroscopy explosives identification device includes a control / display module, the control / acquisition circuit, a laser, a lens, a filter module Rayleigh spectral module, multichannel detector and input / output ports, the a laser for providing a sample of the excitation light source; a lens for focusing the laser light is irradiated to the sample, and a sample collected for reflecting light; the Rayleigh optical module, according to the reflected light lens Rayleigh scattered light was filtered off; the multichannel detector, for converting optical signals to electrical signals.
  2. 2.根据权利要求1的高精度拉曼光谱爆炸物识别仪,所述镜头101采用数字微镜元件阵列。 2. The high-precision Raman spectroscopy according to claim 1 explosives identification device, the lens array 101 using a digital micromirror elements.
  3. 3.根据权利要求2的高精度拉曼光谱爆炸物识别仪,所述的数字微镜元件阵列由数字微镜元件阵列驱动模块驱动。 According to claim 2 wherein the Raman spectrum of precision explosive identification device, a digital micromirror elements of said array of digital micromirror elements driven by the driving module array.
  4. 4.根据权利要求2的高精度拉曼光谱爆炸物识别仪,所述的数字微镜元件阵列在现场可编程门阵列控制模块控制下,调节微镜角度为二个角度:+10°或-10°。 According to claim 2 wherein the Raman spectrum of precision explosive identification device, a digital micromirror elements of said array in the field programmable gate array control module to adjust the angle of the micromirror two angle: + 10 ° or - 10 °.
  5. 5.根据权利要求1的高精度拉曼光谱爆炸物识别仪,所述分光模块包括光学器件组,该光学器件组包括两个被同向放置的1/4波片、一个检偏器,以及一个干涉器件。 According to claim 1, high-precision Raman spectroscopy explosives identification device, the spectroscopic module comprises a set of optics, the optics group comprises two quarter-wave plate is placed in the same direction, and an analyzer, and an interference device.
  6. 6.根据权利要求6的高精度拉曼光谱爆炸物识别仪,所述分光镜205为消偏振分光棱镜。 6. A high-precision Raman spectroscopy according to claim 6, explosives identification device, the dichroic mirror 205 is a dichroic prism depolarization.
  7. 7.根据权利要求1的高精度拉曼光谱爆炸物识别仪,多通道检测器为光电二极管、光电倍增管、InGaAs探测器、CCD或CMOS。 According to claim 1 wherein the Raman spectrum of precision explosive identification device, multichannel detector is a photodiode, photomultiplier, InGaAs detector, the CCD or CMOS.
  8. 8.根据权利要求5的高精度拉曼光谱爆炸物识别仪,所述光学器件组中还包括变焦透镜。 High accuracy according to claim 5 Raman spectrum explosives identification device, the optical device further comprises a zoom lens group.
  9. 9.根据权利要求8的高精度拉曼光谱爆炸物识别仪,所述变焦透镜能够被设置在光路上两个I/.4波片的前面。 High accuracy according to claim 8 Raman spectrum explosives identification device, the zoom lens can be provided in front of the optical path of the two I / .4 wave plate.
  10. 10.根据权利要求8的高精度拉曼光谱爆炸物识别仪,所述的数字微镜元件阵列由数字微镜元件阵列驱动模块驱动,该驱动模块内采用DMD配套的驱动芯片,数字微镜元件阵列驱动模块与现场可编程门阵列控制模块连接,数据及控制信号由现场可编程门阵列控制模块给出,以使数字微镜元件阵列在一定频率下按预定编码迅速变换微镜角度,经光栅分光后的光谱照射在DMD数字微镜阵列上实现调制。 10. The high-precision Raman spectroscopy according to claim 8, explosives identification device, a digital micromirror elements of said array of digital micromirror elements driven by the drive module array, using the DMD chip drivers supporting the driving module, a digital micromirror device array driving module connected to the field programmable gate array control module, data and control signals given by the field programmable gate array control module, so that the digital micromirror array of elements in a certain predetermined frequencies rapidly transform coding micromirror angle, rasterized achieved after irradiation spectrum modulation spectral array of digital micromirrors on the DMD.
CN 201410742160 2015-01-23 2015-01-23 High-precision Raman-spectrum explosive recognition instrument CN104931477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201410742160 CN104931477A (en) 2015-01-23 2015-01-23 High-precision Raman-spectrum explosive recognition instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201410742160 CN104931477A (en) 2015-01-23 2015-01-23 High-precision Raman-spectrum explosive recognition instrument

Publications (1)

Publication Number Publication Date
CN104931477A true true CN104931477A (en) 2015-09-23

Family

ID=54118749

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201410742160 CN104931477A (en) 2015-01-23 2015-01-23 High-precision Raman-spectrum explosive recognition instrument

Country Status (1)

Country Link
CN (1) CN104931477A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106323470A (en) * 2016-08-04 2017-01-11 北京华泰诺安探测技术有限公司 Polarization modulation Raman probe using spatial output Laser, and spectral detection method
US9983137B2 (en) 2015-12-23 2018-05-29 Nuctech Company Limited Safety protection device and Raman spectroscopy detection system for Raman spectroscopy detection

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101514964A (en) * 2009-03-27 2009-08-26 福州高意光学有限公司 A material detector based on Raman spectroscopy
CN101535792A (en) * 2005-02-09 2009-09-16 化学影像公司 System and method for the deposition, detection and identification of threat agents
WO2010071579A1 (en) * 2008-12-18 2010-06-24 Totalförsvarets Forskningsinstitut FOI Detecting small amounts of substances
CN101893429A (en) * 2010-07-16 2010-11-24 华中科技大学 Super-precision surface measuring system based on polarization phase-shifting microscopy interference technology
CN103196889A (en) * 2013-04-16 2013-07-10 许春 Portable raman spectrometer based on spectral analysis of micro electro mechanical system
CN203102703U (en) * 2013-01-29 2013-07-31 苏州舜新仪器有限公司 Novel laser heterodyne interference experimental instrument

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101535792A (en) * 2005-02-09 2009-09-16 化学影像公司 System and method for the deposition, detection and identification of threat agents
WO2010071579A1 (en) * 2008-12-18 2010-06-24 Totalförsvarets Forskningsinstitut FOI Detecting small amounts of substances
CN101514964A (en) * 2009-03-27 2009-08-26 福州高意光学有限公司 A material detector based on Raman spectroscopy
CN101893429A (en) * 2010-07-16 2010-11-24 华中科技大学 Super-precision surface measuring system based on polarization phase-shifting microscopy interference technology
CN203102703U (en) * 2013-01-29 2013-07-31 苏州舜新仪器有限公司 Novel laser heterodyne interference experimental instrument
CN103196889A (en) * 2013-04-16 2013-07-10 许春 Portable raman spectrometer based on spectral analysis of micro electro mechanical system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9983137B2 (en) 2015-12-23 2018-05-29 Nuctech Company Limited Safety protection device and Raman spectroscopy detection system for Raman spectroscopy detection
CN106323470A (en) * 2016-08-04 2017-01-11 北京华泰诺安探测技术有限公司 Polarization modulation Raman probe using spatial output Laser, and spectral detection method

Similar Documents

Publication Publication Date Title
US7196789B2 (en) Light processor providing wavelength control and method for same
US5786893A (en) Raman spectrometer
US5168326A (en) Method of detecting angle of optical rotation in solution having time-dependent concentration, detection apparatus therefor, and detector cell therefor
US6798507B2 (en) System and method for polarization coherent anti-stokes Raman scattering microscopy
Li et al. Coherent mode-selective Raman excitation towards standoff detection
Megerle et al. Sub-50 fs broadband absorption spectroscopy with tunable excitation: putting the analysis of ultrafast molecular dynamics on solid ground
US6204926B1 (en) Methods and system for optically correlating ultrashort optical waveforms
US7388668B2 (en) Phase sensitive heterodyne coherent anti-Stokes Raman scattering micro-spectroscopy and microscopy
US20070177240A1 (en) Optical analysis system using multivariate optical elements
US20100046039A1 (en) Microscopy imaging system and method employing stimulated raman spectroscopy as a contrast mechanism
US20080309931A1 (en) Coherently Controlled Nonlinear Raman Spectroscopy
US20080018890A1 (en) Method and apparatus for improved signal to noise ratio in raman signal detection for mems based spectrometers
US20050128482A1 (en) Differential optical technique for chiral analysis
US20090238222A1 (en) Laser system employing harmonic generation
US20050206904A1 (en) Entangled photon fourier transform spectroscopy
Fisher et al. Source-corrected two-photon excited fluorescence measurements between 700 and 880 nm
CN2874476Y (en) Terahertz time domain spectral instrument based on optical rectification
US5617205A (en) Spectral measuring method and spectral measuring apparatus
US4558951A (en) Fiber fourier spectrometer
Auböck et al. Ultrabroadband femtosecond two-dimensional ultraviolet transient absorption
CN101514964A (en) A material detector based on Raman spectroscopy
US20070041075A1 (en) Portable acousto-optical spectrometers
Owen et al. A new on‐axis multimode spectrometer for the macromolecular crystallography beamlines of the Swiss Light Source
CN1846114A (en) Method and apparatus for multiwavelength imaging spectrometer
US9207121B2 (en) Cavity-enhanced frequency comb spectroscopy system employing a prism cavity

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination