CN104834380A - Flexible object tactile modeling and expressing method applied to mobile terminal - Google Patents

Flexible object tactile modeling and expressing method applied to mobile terminal Download PDF

Info

Publication number
CN104834380A
CN104834380A CN 201510240286 CN201510240286A CN104834380A CN 104834380 A CN104834380 A CN 104834380A CN 201510240286 CN201510240286 CN 201510240286 CN 201510240286 A CN201510240286 A CN 201510240286A CN 104834380 A CN104834380 A CN 104834380A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
finger
deformation
force
mobile terminal
active
Prior art date
Application number
CN 201510240286
Other languages
Chinese (zh)
Inventor
吴涓
邓鹏�
王路
宋爱国
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention discloses a flexible object tactile modeling and expressing method applied to a mobile terminal. The method is characterized in that the change of a contact area between a human finger end and a touch screen is obtained in real time on the mobile terminal by utilizing a contact area detection function of the mobile terminal, then the magnitude of finger press force is calculated according to pre-marked relation between the press force and the contact area and is used for calculating tactile response and virtual flexible object deformation, then contact force is fed back to a user in virtue of a certain tactile reproduction device, and meanwhile a deformation effect is displayed on the mobile terminal. The method has the advantages that 1, the problem that traditionally, in case of touch screen-based tactile reproduction, only tangential displacement is detected, and normal direction relative displacement cannot be directly detected is solved; 2, based on a principle that acting force and counter-acting force are balanced, the accurate calculation of virtual contact force is realized; 3, by considering object hardness and the magnitude of the finger active press force, deformation rendering and touch interaction with sense of reality are realized.

Description

一种应用于移动终端的柔性物体的触觉建模与表达方法 The haptic modeling applied to a mobile terminal of one kind of flexible objects and expression methods

技术领域 FIELD

[0001] 本发明属于力触觉建模领域,具体来说,涉及一种应用于移动终端的柔性物体的触觉建模与表达方法。 [0001] The present invention belongs to the field of modeling tactile force, particularly, to a method of expressing a tactile modeling applied to a flexible body of the mobile terminal.

背景技术 Background technique

[0002] 伴随着移动终端如智能手机、平板电脑等便携式设备的不断推广,人们的生活越来越离不开移动终端,但其人机交互接口的功能目前主要集中在视、听觉交互上,能提供的触觉功能很有限。 [0002] With the continuous promotion of mobile terminals such as a portable device for smart phones, tablet computers, people's lives become increasingly dependent on mobile terminal, but its function is human-computer interaction interface is currently focused on the visual and auditory interaction, tactile function can provide very limited. 将力触觉与移动终端产品有机结合,能够让操作者触摸、感知虚拟物体, 产生沉浸感,从而能给用户带来更加逼真的体验。 The force touch and mobile terminal products combine to allow the operator to touch, perceive virtual objects, resulting in immersion, so to give users a more realistic experience. 因此,面向移动终端的视/触觉的建模方法成为力触觉建模领域的研宄热点。 Thus, depending on the modeling / haptic for mobile terminals has become a hot topic in a Subsidiary Tactile modeling.

[0003] 目前,面向移动终端的柔性物体力触觉建模主要是基于力觉反馈,利用机械装置输出作用力,从而实现物体柔顺性的表达。 [0003] Currently, flexible object-oriented modeling Tactile mobile terminal is mainly based on the force sense feedback, force output by mechanical means, in order to achieve the expression of an object compliant. 但该方法对移动终端屏幕或触觉装置有特殊的要求,同时,当手指与移动终端触摸屏交互时,难以实现深度检测,不能真实的反映人手主动作用力对力触觉响应的影响。 However, this method has a special requirement on the mobile terminal screen or haptic means, while, when the finger touch screen to interact with the mobile terminal, it is difficult to detect the depth, can not reflect the true impact of manpower Tactile active force response. 对柔性物体的变形量的计算主要有两种方法:一类是基于几何的力触觉建模,另一类是基于物理意义的力触觉建模。 Calculating an amount of deformation of the flexible body are mainly two methods: one is based on the geometric model tactile force, the other is based on modeling the physical meaning of the haptic forces. 基于几何的力触觉建模方法,是通过几何插值的方法直接改变物体表面的控制点从而改变物体形状,比如线性插值法和高斯函数插值法;基于物理意义的力触觉建模是从物理定律出发,分析力和形变的关系,比如有限元法和弹簧-质点法。 Tactile geometric modeling method based on a direct method by changing the geometric interpolation control point so as to change the surface shape of the object, such as a linear interpolation and interpolation Gaussian function; Tactile modeling based on physical meaning is from physical laws analyze the relationship between force and deformation, such as finite element method and mass - spring method. 基于几何的建模方法具有速度快、容易实现的特点,但不能真实的反应物体内部的物理属性,基于物理意义的建模方法能够描述物体的物理属性、逼真度高,但计算量大、实时性较差。 Geometry-based modeling method having fast, easy to implement, but not the physical properties of the real object inside the reactor, based on the modeling of the physical meaning can describe the physical properties of objects, high fidelity, but computationally intensive, real-time poor. 这两种计算方法,不能同时实现具有真实感的变形渲染和触觉交互。 Both calculation methods, and can not achieve modification rendering a realistic tactile interaction.

发明内容 SUMMARY

[0004] 本发明所要解决的技术问题是:利用指端与移动终端屏幕接触面积,计算主动按压力的大小,继而计算柔性物体的触觉响应和虚拟物体表面变形量,给人更加真实的触觉体验。 [0004] The present invention solves the technical problem: the use of finger contact area with the mobile terminal screen, is calculated according to the active size of the pressure, the flexible haptic response object and the virtual object is then calculated amount of deformation of the surface, giving a more realistic tactile experience .

[0005] 为解决上述技术问题,本发明采用的技术方案分以下三步: [0005] To solve the above problems, the present invention employs the following technical solution divided into three steps:

[0006] 步骤1)基于移动终端系统平台,获取人手指端与触摸屏的接触面积,标定出手指主动按压力与指端接触面积的计算公式; [0006] Step 1) based on the mobile terminal platform system, acquiring a contact area of ​​the end of a human finger with the touch screen, calibration of the active finger pressing force and the contact area of ​​the finger is calculated;

[0007] 步骤2)利用1)中建立的计算公式,根据实时检测的接触面积大小,计算手指主动按压力大小,进而计算手指与触摸屏交互过程中的触觉响应。 [0007] Step 2) using 1) the calculation formula created according to the size of the contact area detected in real time, the pressing force active finger size calculated, and then calculate the finger with the touch screen in response to the haptic interaction process.

[0008] 步骤3)根据手指主动按压力大小和虚拟物体的刚度系数,计算虚拟物体表面的变形量。 [0008] Step 3) the size of the active pressing pressure and the stiffness coefficient of the virtual object, the virtual object calculated amount of deformation of the surface of the finger.

[0009] 进一步,所述的步骤1)中,利用移动终端平台,实时获取手指与移动终端触摸屏的接触面积,标定出手指主动按压力与指端接触面积的计算公式,其标定过程如下: [0009] Further, according to step 1), the internet using a mobile terminal, acquiring a contact area of ​​the finger in real time with the mobile terminal touch screen, the finger active calibration finger pressing force and contact area calculation formula, which calibration procedure is as follows:

[0010] 首先,将压力传感器安装在移动终端的背后,采集人手主动按压力大小。 [0010] First, a pressure sensor mounted on the back of the mobile terminal, acquisition active pressing on manpower. 与此同时,调用移动终端系统自带的函数,将手指与触摸屏的接触面积等效为一个椭圆,检测出椭圆长轴和短轴大小,进而计算椭圆面积。 Meanwhile, the mobile terminal call system comes function, the contact area of ​​the finger with the touch screen is equivalent to an ellipse, and a minor axis of the ellipse detected size, then calculate the area of ​​an ellipse. 初始状态下,当手指接触移动终端屏幕时,压力传感器采集的压力值为Ftl,指端与屏幕的接触面积大小为S tl,其中Ftl包含移动终端的自身重量和指端自然接触屏幕时产生的压力。 Initially, when the finger touches the screen of the mobile terminal, the acquired pressure value is a pressure sensor Ftl, the contact area of ​​the finger and the screen size is S tl, where generated when the finger Ftl own weight and nature of the mobile terminal comprising a contact screen pressure. 当指端与触摸屏的接触面积发生改变时,手指的主动按压力大小依据式(1)计算得到: When the contact area of ​​the finger with the touch screen is changed, the finger pressing on an active basis of formula (1) is calculated:

Figure CN104834380AD00051

[0012] 式⑴中,Fp表示手指的主动按压力的大小,f为根据测量得到的压力值和接触面积的拟合函数,f (St)表示当指端与移动终端屏幕接触面积为St时手指主动按压力的大小, Smax表示指端与屏幕的最大接触面积,当手指的主动按压力增加到一定值之后,主动按压力的增加对手指接触屏幕面积没有很大的影响,所以设定作用力阈值F pmax,当手指主动按压力大于Fp _时,FP不变,而指端在实际按压屏幕时的作用力一般不会大于FP _。 When [0012] In the formula ⑴, Fp represents the finger size of the active pressing force, f is the fitting function in accordance with the contact area and pressure values ​​measured, f (St) indicates that when the mobile terminal screen with a finger contact area St active finger pressing force size, Smax represents the finger with the screen's maximum contact area, when the pressure reaches a certain value by actively finger, take the initiative to increase the pressing force of no significant impact on the finger touching the screen area, so setting role force threshold F pmax, when the active finger pressing pressure is greater than Fp _, FP unchanged, while in the actual finger force pressing the screen is generally not greater than FP _.

[0013] 进一步,利用步骤1)中建立的计算公式,计算手指主动按压力的大小,进而计算移动终端触觉响应。 [0013] Further, with the step 1) establish the calculation formula to calculate the magnitude of the pressing force active finger, the mobile terminal further calculates a haptic response. 当人手在按压物体时,指端的主动按压力和物体反馈给指端的力是作用力与反作用力的关系,即按压力与反馈力的大小相等、方向相反。 When the hand is pressed objects, active objects and the pressing force of the force feedback to the fingers of the finger is the relationship of action and reaction, i.e. according to the size and pressure feedback force equal and opposite. 而将按压力施加在移动终端上时,由于触摸屏的最大承受力和触觉反馈装置输出力的限制,实际触觉反馈力的大小正比于主动按压力,而非等于主动按压力。 While a pressing force exerted on the mobile terminal, due to limitations and maximum tolerance force outputted haptic feedback touch panel, haptic feedback the actual size of the active force is proportional to the pressing force, the pressing force not equal to active. 因此,移动终端触觉响应力大小依据式(2)计算得到: Thus, the mobile terminal based on the haptic response to a force magnitude of formula (2) is calculated:

Figure CN104834380AD00052

[0015] 式(2)中,F。 [0015] Formula (2), F. 表示移动终端触觉响应力大小,Fp表示手指主动按压力大小,F pniax表示主动按压力的最大值,F。 Represents the size of the mobile terminal tactile response force, Fp indicates a finger pressing on active, F pniax active pressing force represents the maximum value, F. _表示触觉反馈装置所能产生的最大作用力。 _ Represents the maximum force can be generated by the tactile feedback device.

[0016] 进一步,所述的步骤3)中,根据手指主动按压力大小计算虚拟物体表面的变形量。 [0016] Further,) in the step 3, the pressing force of the finger size calculated active amount of deformation of the virtual object surface. 由于当人手与虚拟物体交互时,视/触觉再现过程只需达到感觉的一致性,即在感觉上所看到的变形和感受到的力与真实环境的变化趋势接近,而无需在数值上完全一致,因此变形量采用函数拟合近似的计算方法。 Because when staff interact with the virtual objects, video / tactile feeling of reproduction process only to achieve consistency, in the sense that is seen and trends deformation force felt close to the real environment, without having to completely numerically consistent, so the amount of deformation calculation method similar functional fit. 在人手在触摸屏上无相对滑动的情况下,虚拟物体在人手主动按压力作用下产生变形,变形中心点的法向相对位移,即物体在变形中心点的形变量,依据式(3)计算得到: In the hand without sliding on the touch screen, the virtual object is deformed, the deformation of the center point of active Method manpower relative displacement under the action of the pressing force, i.e., the center point of the object in the modification of deformation, (3) is calculated according to the formula to give :

Figure CN104834380AD00053

[0018] 式(3)中,(Kxc^yci)表示物体表面变形中心(X c^yci)点处的变形量,Fp表示在(¾%)点处手指主动按压力大小,F p的大小依据式(1)计算得到,kn表示法向变形系数,与物体的刚度系数相关,kn值越大,在相同大小力的作用下,产生的变形量越小。 In [0018] formula (3), (Kxc ^ yci) represents the amount of deformation at a point of deformation of the center surface of the object (X c ^ yci), Fp indicates (¾%) at the point where the finger active pressing force size, the size of the field F p calculated according to formula (1) obtained, kn representation, modification to the correlation coefficient and stiffness coefficient of the object, the larger the value kn, the smaller the amount of deformation under the effect of the same amount of force.

[0019] 对于各向同性的物体,根据分布式弹簧-质点模型,当受到法向力作用时,作用力会通过中心弹簧由作用中心传递到相邻区域的各个质点,引起相邻质点发生相对位移,即在发生形变的区域内,与变形中心点距离相等的同心圆上的点产生的形变量相等。 [0019] For isotropic object, a distributed mass - spring model, when subjected to the normal force, the spring force will pass through the center of each dot to the center by the action of adjacent regions, caused by the adjacent particles occurs relatively displacement, i.e. in the region of deformation occurs, deformation generated by the equal point on the center point of a distance equal to the concentric deformation. 由于移动终端计算能力的限制,结合前期研宄,将终端变形区域内各点的形变量与离变形中心点的距离关系等效为指数函数。 Due to limit the ability of a mobile computing terminal, in conjunction with the pre-study based on the deformation of each deformation point within the terminal area from the distance relationship with the center point of the modification is equivalent to an exponential function. 物体表面各点的形变量,依据式(4)计算得到: Deformation of the object surface points is calculated according to formula (4) to give:

Figure CN104834380AD00061

[0021] 式(4)中,d(x,y)表示变形区域内点(x,y)的形变量,d(xQ,y Q)表示变形中心点(xQ,y(i)处的变形量,L(x,y)表示点(x,y)到变形中心点(X c^yci)的距离,k表示切向变形的衰减系数,k的取值与物体的刚度有关,刚度越大,k值越大,物体表面变形区域越小,D表示物体表面变形区域,超出变形区域D的物体变形量忽略不计。为实现柔性物体直观的变形渲染效果,通常使变形区域的面积大于手指与移动终端触摸屏的接触面积。 In [0021] the formula (4), d (x, y) represents a point within the deformation region (x, y) of the deformation, d (xQ, y Q) represents a deformation of the deformable center point (xQ, y (i) at amount, L (x, y) represents the point (x, y) to the center point from the transformation (X c ^ yci), and k represents the attenuation coefficient related to tangential deformation, which varies with the stiffness k of the object, the greater the stiffness , k larger the value, the smaller the deformation of the surface area of ​​the object, D represents the surface area of ​​the object deformation, deformation amount of deformation of the object outside the area D is negligible. in order to achieve a flexible and intuitive modifications rendering object, typically the area that the region is greater than the deformation finger the contact area of ​​the touch screen of the mobile terminal.

[0022] 与现有技术相比,本发明的技术方案具有以下有益效果: [0022] Compared with the prior art, the technical solution of the present invention has the following advantages:

[0023] 本发明的应用于移动终端的柔性物体触觉建模与表达方法,利用指端与移动终端屏幕接触面积的测量,计算主动按压力的大小,继而建立柔性物体触觉响应和虚拟物体表面形变的计算模型,给人更加真实的触觉体验。 [0023] The flexible haptic object modeling and expression methods applied to a mobile terminal of the present invention, the mobile terminal using the measurement finger contact area of ​​the screen, is calculated according to the active size of the pressure, and then to establish the flexible object and the virtual object in response to tactile surface deformation computing model, giving a more realistic tactile experience. 该方法的优点在于,针对移动终端的触觉交互的特点:1)解决了传统基于触摸屏的触觉再现时,只有切向位移检测,而法向相对位移无法直接检测的问题;2)基于作用力与反作用力平衡原理,实现了虚拟接触力的准确计算;3)考虑了虚拟物体的硬度以及人手主动按压力的大小,实现了具有真实感的变形渲染和触觉交互。 The advantage of this method is that the characteristics of tactile interaction of the mobile terminal: 1) to solve the traditional time haptic touch screen playback based only tangential detected displacement, and the problem normal relative displacement can not be detected directly; 2) based on the biasing force and a reaction force balance principle, to achieve accurate calculation of the virtual contact force; 3) virtual object considered active manpower hardness and size of the pressing force, rendering the deformation and achieve a realistic tactile interaction.

附图说明 BRIEF DESCRIPTION

[0024] 图1为本发明的系统框架。 [0024] FIG 1 the framework of the present invention.

[0025] 图2为本发明的作用力及物体表面形变意图。 [0025] FIG force and the surface 2 of the present invention is intended to deformation.

[0026] 图3为标定主动按压力与接触面积的关系曲线图。 [0026] FIG. 3 is a calibration of the active area of ​​the contact pressing force graph showing relationship.

具体实施方式 detailed description

[0027] 下面结合具体实施例对本发明进行详细说明。 Specific embodiments of the present invention will be described in detail [0027] below in conjunction.

[0028] 如图1所示,本发明的一种应用于移动终端的柔性物体触觉建模与表达方法,包括以下过程: [0028] As shown in FIG 1 A haptic object of the present invention is a flexible modeling and expression methods applied to a mobile terminal, comprising the following procedure:

[0029] 步骤1),搭建移动终端软件平台,实时获取手指与移动终端触摸屏的接触面积,标定出手指主动按压力与接触面积的计算公式,其标定过程如下: [0029] Step 1), the mobile terminal software platform to build real-time acquiring a contact area of ​​the finger with the touch screen of the mobile terminal, the active calibration finger pressing force to the contact area calculation formula, which calibration procedure is as follows:

[0030] 首先,将压力传感器安装在移动终端的背后,采集人手主动按压力大小。 [0030] First, a pressure sensor mounted on the back of the mobile terminal, acquisition active pressing on manpower. 与此同时,调用移动终端系统自带的函数,将手指与触摸屏的接触面积等效为一个椭圆,检测出椭圆长轴和短轴大小,进而计算椭圆面积。 Meanwhile, the mobile terminal call system comes function, the contact area of ​​the finger with the touch screen is equivalent to an ellipse, and a minor axis of the ellipse detected size, then calculate the area of ​​an ellipse. 初始状态下,当手指接触移动终端屏幕时,压力传感器采集的压力值为F tl,指端与屏幕的接触面积大小为Stl,其中Ftl包含移动终端的自身重量和指端自然接触屏幕时产生的压力。 Initially, when the finger touches the screen of the mobile terminal, the acquired pressure value is a pressure sensor F tl, the contact area of ​​the finger with the screen size is Stl, which is generated when the finger Ftl own weight and nature of the mobile terminal comprising a contact screen pressure. 当指端与触摸屏的接触面积发生改变时,手指的主动按压力大小依据式(1)计算得到: When the contact area of ​​the finger with the touch screen is changed, the finger pressing on an active basis of formula (1) is calculated:

Figure CN104834380AD00062

[0032] 式⑴中,Fp表示手指的主动按压力的大小,f为根据测量得到的压力值和接触面积的拟合函数,f (St)表示当指端与移动终端屏幕接触面积为St时手指主动按压力的大小, Smax表示指端与屏幕的最大接触面积,当手指的主动按压力增加到一定值之后,主动按压力的增加对手指接触屏幕面积没有很大的影响,所以设定作用力阈值Fpmax,当手指主动按压力大于Fp _时,FP不变,而指端在实际按压屏幕时的作用力一般不会大于FP _。 When [0032] In the formula ⑴, Fp represents the finger size of the active pressing force, f is the fitting function in accordance with the contact area and pressure values ​​measured, f (St) indicates that when the mobile terminal screen with a finger contact area St active finger pressing force size, Smax represents the finger with the screen's maximum contact area, when the pressure reaches a certain value by actively finger, take the initiative to increase the pressing force of no significant impact on the finger touching the screen area, so setting role force threshold Fpmax, when the active finger pressing pressure is greater than Fp _, FP unchanged, while in the actual finger force pressing the screen is generally not greater than FP _.

[0033] 步骤2),利用步骤1)中建立的计算公式,计算手指主动按压力的大小,进而计算移动终端触觉响应。 [0033] Step 2), Step 1 using the calculation formula created), the pressing force is calculated the size of active finger, the mobile terminal further calculates a haptic response. 当人手在按压物体时,指端的主动按压力和物体反馈给指端的力是作用力与反作用力的关系,即按压力与反馈力的大小相等、方向相反。 When the hand is pressed objects, active objects and the pressing force of the force feedback to the fingers of the finger is the relationship of action and reaction, i.e. according to the size and pressure feedback force equal and opposite. 而将按压力施加在移动终端上时,由于触摸屏的最大承受力和触觉反馈装置输出力的限制,实际触觉反馈力的大小正比于主动按压力,而非等于主动按压力。 While a pressing force exerted on the mobile terminal, due to limitations and maximum tolerance force outputted haptic feedback touch panel, haptic feedback the actual size of the active force is proportional to the pressing force, the pressing force not equal to active. 因此,移动终端触觉响应力大小依据式(2)计算得到: Thus, the mobile terminal based on the haptic response to a force magnitude of formula (2) is calculated:

Figure CN104834380AD00071

[0035] 式(2)中,F。 [0035] Formula (2), F. 表示移动终端触觉响应力大小,Fp表示手指主动按压力大小,F pniax表示主动按压力的最大值,F。 Represents the size of the mobile terminal tactile response force, Fp indicates a finger pressing on active, F pniax active pressing force represents the maximum value, F. _表示触觉反馈装置所能产生的最大作用力。 _ Represents the maximum force can be generated by the tactile feedback device.

[0036] 步骤3),如图2所示,根据手指主动按压力大小计算虚拟物体表面的变形量。 [0036] Step 3), as shown in Figure 2, pressing on the active amount of deformation of the virtual object calculated according to the finger surface. 由于当人手与虚拟物体交互时,视/触觉再现过程只需达到感觉的一致性,即在感觉上所看到的变形和感受到的力与真实环境的变化趋势接近,而无需在数值上完全一致,因此变形量采用函数拟合近似的计算方法。 Because when staff interact with the virtual objects, video / tactile feeling of reproduction process only to achieve consistency, in the sense that is seen and trends deformation force felt close to the real environment, without having to completely numerically consistent, so the amount of deformation calculation method similar functional fit. 在人手在触摸屏上无相对滑动的情况下,虚拟物体在人手主动按压力作用下产生变形,变形中心点的法向相对位移,即物体在变形中心点的形变量, 依据式(3)计算得到: In the hand without sliding on the touch screen, the virtual object is deformed, the deformation of the center point of active Method manpower relative displacement under the action of the pressing force, i.e., the center point of the object in the modification of deformation, (3) is calculated according to the formula to give :

Figure CN104834380AD00072

[0038] 式(3)中,(Kxc^yci)表示物体表面变形中心(X ciJci)点处的变形量,Fp表示在(¾%)点处手指主动按压力大小,F p的大小依据式(1)计算得到,kn表示法向变形系数,与物体的刚度系数相关,kn值越大,在相同大小力的作用下,产生的变形量越小。 [0038] Formula (3), (Kxc ^ yci) represents the amount of deformation at the points of the surface deformation of the center of the object (X ciJci), Fp indicates (¾%) at the point where the finger active pressing force magnitude, F p size according to formula (1) is calculated, kn representation, modification to the correlation coefficient and stiffness coefficient of the object, the larger the value kn, the smaller the amount of deformation under the effect of the same amount of force.

[0039] 对于各向同性的物体,根据分布式弹簧-质点模型,当受到法向力作用时,作用力会通过中心弹簧由作用中心传递到相邻区域的各个质点,引起相邻质点发生相对位移,即在发生形变的区域内,与变形中心点距离相等的同心圆上的点产生的形变量相等。 [0039] For isotropic object, a distributed mass - spring model, when subjected to the normal force, the spring force will pass through the center of each dot to the center by the action of adjacent regions, caused by the adjacent particles occurs relatively displacement, i.e. in the region of deformation occurs, deformation generated by the equal point on the center point of a distance equal to the concentric deformation. 由于移动终端计算能力的限制,结合前期研宄,将终端变形区域内各点的形变量与离变形中心点的距离关系等效为指数函数。 Due to limit the ability of a mobile computing terminal, in conjunction with the pre-study based on the deformation of each deformation point within the terminal area from the distance relationship with the center point of the modification is equivalent to an exponential function. 物体表面各点的形变量,依据式(4)计算得到: Deformation of the object surface points is calculated according to formula (4) to give:

Figure CN104834380AD00073

[0041] 式(4)中,d(x,y)表示变形区域内点(x,y)的形变量,d(xQ,y Q)表示变形中心点(xQ,y(i)处的变形量,L(x,y)表示点(x,y)到变形中心点(X c^yci)的距离,k表示切向变形的衰减系数,k的取值与物体的刚度有关,刚度越大,k值越大,物体表面变形区域越小,D表示物体表面变形区域,超出变形区域D的物体变形量忽略不计。为实现柔性物体直观的变形渲染效果,通常使变形区域的面积大于手指与移动终端触摸屏的接触面积。 In [0041] the formula (4), d (x, y) represents a point within the deformation region (x, y) of the deformation, d (xQ, y Q) represents a deformation of the deformable center point (xQ, y (i) at amount, L (x, y) represents the point (x, y) to the center point from the transformation (X c ^ yci), and k represents the attenuation coefficient related to tangential deformation, which varies with the stiffness k of the object, the greater the stiffness , k larger the value, the smaller the deformation of the surface area of ​​the object, D represents the surface area of ​​the object deformation, deformation amount of deformation of the object outside the area D is negligible. in order to achieve a flexible and intuitive modifications rendering object, typically the area that the region is greater than the deformation finger the contact area of ​​the touch screen of the mobile terminal.

[0042] 下面以虚拟纺织品的力触觉再现为例,说明该方法的具体实施步骤。 [0042] In the following textile Tactile virtual playback to illustrate particular embodiments of the process steps.

[0043] 步骤1),标定手指在移动终端触摸屏上的主动按压力与接触面积的关系曲线: [0043] Step 1), the active calibration pressing force curve finger contact area on the touch screen of the mobile terminal:

[0044] 本实例采用的移动终端是搭载了Android 4. 2系统的三星平板电脑T310,首先, 搭建软件平台,并在平板电脑后背安装三个压力传感器,压力传感器的安装位置呈三角形分布,使安装了传感器的平板电脑能平稳地放在水平桌面上,这样,当指端按压平板电脑屏幕时,可以同时获取手指按压面积大小和主动按压力大小,主动按压力大小等于三个压力传感器采集到的压力值之和。 [0044] The mobile terminal according to the present example uses a tablet mounted Samsung Android 4. 2 T310 system, first of all, to build software platform, and three pressure sensors installed in the back of the tablet, the installation position of the triangular distribution of the pressure sensor, mounting a sensor of the tablet can be smoothly placed on a horizontal table, so that, when the finger is pressed tablet screen, pressing a finger can get active area size and simultaneously pressing on, pressing on equal active pressure sensor to collect three and the pressure value.

[0045] 初始状态下,当手指接触移动终端屏蒂时,指端的主动按压力大小Ftl= 3· 07N,指端与屏幕的接触面积大小Stl= 9. 43。 [0045] Initially, when the finger touches the screen, the mobile terminal pedicle, the active finger pressing on Ftl = 3 · 07N, finger contact with the screen size of the area Stl = 9. 43. 然后采集指端与屏幕接触面积S随着主动按压力F p 缓慢增加而改变的面积值,如图3所示为标定的手指主动按压力与接触面积的关系曲线, 拟合曲线的关系式为/(4= 3.08,3χ1°^。设定人手主动按压力的最大阈值为& _= 5N,主动按压力与接触面积的计算公式 Area value is then acquired finger contact with the screen S as the active area pressing force F p increases slowly changed, active pressing force and contact area for the calibration curve shown in Figure 3 the finger fitting curve is the relationship / (4 = 3.08,3χ1 ° ^. manpower active set maximum pressing force threshold & _ = 5N, active contact area of ​​the pressing force is calculated

Figure CN104834380AD00081

[0046] 步骤2)根据指端主动按压力大小,计算移动终端触觉响应力的大小: [0046] Step 2) The active finger pressing on, the terminal calculates the moving force of the magnitude of tactile response:

[0047] 本实例采用轻小的触觉指环作为力触觉反馈装置,该触觉指环用牵引线套在指端(指环位置与手指接触屏幕位置不重叠),通过固定在指端背部的微型电机带动牵引线产生法向作用力,产生的法向作用力最大值为F_ x= 3. 3Ν。 [0047] The present example adopts as a light ring of small force haptic tactile feedback device, the haptic pull wire sheath with the ring finger (ring finger contact position does not overlap the position of the screen), fixed by mini-motor driven pulling back finger generating normal line force produced by the method of maximum force F_ x = 3. 3Ν. 当指端按压触摸屏上点(640, 250),与屏幕的接触面积S = 200时,利用步骤1)中建立的指端主动按压力与接触面积的关系,实时得到人手的主动按压力大小& = 3.08/Μ<Γ3χ2Ο° -3.07 = 2.891此时,触觉响应力大小 When the finger presses the touch screen points (640, 250), screen the contact area S = 200, using the step 1) is established by the relationship between pressure and active finger contact area, obtained in real time the hand pressing on active & = 3.08 / Μ <Γ3χ2Ο ° -3.07 = 2.891 In this case, a haptic force magnitude in response to

Figure CN104834380AD00082

[0048] 步骤3)计算虚拟物体受按压作用力时表面变形量的大小与分布: [0048] Step 3) calculates a virtual object surface size and distribution of the amount of deformation when the pressing force by:

[0049] 本实例以法向形变系数kn= 0. 5mm/N的虚拟纺织品为例,当物体受到指端主动按压力作用时,纺织品变形中心点的法向相对位移为 [0049] In the present example method kn = 0. 5mm / N virtual textile deformation coefficient to an example, when the body is subjected to pressing force acting active finger, the deformation relative to the center of the textile displacement method

Figure CN104834380AD00083

. 任取变形区域内一点M,该点到变形中心点的距离L = I. 5mm,切向形变系数ks= 0. 5mm/N,该点处的形变量 Take any point deformation of the inner region M, the distance between the point of deformation of the center point L = I. 5mm, shear strain coefficient ks = 0. 5mm / N, deformation at the point

Figure CN104834380AD00084

Claims (4)

  1. 1. 一种应用于移动终端的柔性物体的触觉建模与表达方法,其特征在于,利用指端与移动终端屏幕接触面积,计算主动按压力的大小,继而计算柔性物体的触觉响应和虚拟物体表面变形量,实现步骤包括以下三步: 步骤1)基于移动终端系统平台,获取人手指端与触摸屏的接触面积,标定出手指主动按压力与指端接触面积的计算公式; 步骤2)利用1)中建立的计算公式,根据实时检测的接触面积大小,计算手指主动按压力大小,进而计算手指与触摸屏交互过程中的触觉响应; 步骤3)根据手指主动按压力大小和虚拟物体的刚度系数,计算虚拟物体表面的变形量。 Modeling and tactile expression 1. A method applied to a mobile terminal of a flexible object, wherein the mobile terminal screen using finger contact area, the pressing force of the calculated active size, and then calculates and tactile response of a flexible object virtual object the amount of surface deformation, to achieve step comprising the following three steps: step 1) based on the mobile terminal platform system, acquiring a contact area of ​​the end of a human finger with the touch screen, the calibration formula finger pressing force active contact area with the finger; step 2) using 1 ) calculated established in accordance with the contact area size detected in real time, calculates finger active pressing on, then calculate the haptic response finger and the touch screen interaction process; step 3) the active pressing on and the virtual object stiffness coefficient of the finger, calculating an amount of deformation of the virtual object surface.
  2. 2. 根据权利要求1所述的应用于移动终端的柔性物体的触觉建模与表达方法,其特征在于,利用移动终端平台,实时获取手指与移动终端触摸屏的接触面积,标定出手指主动按压力与指端接触面积的计算公式,其标定过程如下: 首先,将压力传感器安装在移动终端的背后,采集人手主动按压力大小,与此同时,调用移动终端系统自带的函数,将手指与触摸屏的接触面积等效为一个椭圆,检测出椭圆长轴和短轴大小,进而计算椭圆面积;初始状态下,当手指接触移动终端屏幕时,压力传感器采集的压力值为F tl,指端与屏幕的接触面积大小为Stl,其中Ftl包含移动终端的自身重量和指端自然接触屏幕时产生的压力。 The haptic modeling and expression methods applied to a mobile terminal of a flexible object according to claim 1, wherein the internet using a mobile terminal, acquiring a contact area of ​​the finger in real time with a mobile terminal having a touch screen, a calibration finger pressing force active calculated area in contact with the finger, which the calibration process is as follows: first, a pressure sensor mounted on the back of the mobile terminal, acquisition active hand pressing on, at the same time, the system comes with the mobile terminal call function, the touch screen with a finger contact area equivalent to an ellipse, and a minor axis of the ellipse detected size, and then calculate the area of ​​the ellipse; the initial state, when the finger touches the screen of the mobile terminal, the acquired pressure value is a pressure sensor F tl, finger screen contact area size Stl, the pressure generated when the finger Ftl own weight and a mobile terminal comprising a contact screen wherein NATURAL. 当指端与触摸屏的接触面积发生改变时,手指的主动按压力大小依据式(1)计算得到: When the contact area of ​​the finger with the touch screen is changed, the finger pressing on an active basis of formula (1) is calculated:
    Figure CN104834380AC00021
    式(1)中,Fp表示手指的主动按压力的大小,f为根据测量得到的压力值和接触面积的拟合函数,f (St)表示当指端与移动终端屏幕接触面积为St时手指主动按压力的大小,Smax 表示指端与屏幕的最大接触面积,当手指的主动按压力增加到一定值之后,主动按压力的增加对手指接触屏幕面积没有很大的影响,所以设定作用力阈值F pmax,当手指主动按压力大于Fpmax时,FP不变,而指端在实际按压屏幕时的作用力一般不会大于F P_。 Formula (1), Fp indicates the magnitude of the pressing force active in the fingers, f is the fitting function in accordance with the contact area and pressure values ​​measured, f (St) indicates that when the mobile terminal screen with a finger contact area St finger initiative by the size of the pressure, Smax represents the maximum contact area of ​​the finger and the screen, when the pressure reaches a certain value by actively finger, take the initiative to increase the pressing force of no significant impact on the finger touching the screen area, the setting force threshold F pmax, when the active finger pressing pressure is greater than Fpmax, FP unchanged, while in the actual finger force pressing the screen is generally not greater than F P_.
  3. 3. 根据权利要求1所述的应用于移动终端的柔性物体的触觉建模与表达方法,其特征在于,利用步骤1)中建立的计算公式,计算手指主动按压力的大小,进而计算移动终端触觉响应;当人手在按压物体时,指端的主动按压力和物体反馈给指端的力是作用力与反作用力的关系,即按压力与反馈力的大小相等、方向相反;而将按压力施加在移动终端上时, 由于触摸屏的最大承受力和触觉反馈装置输出力的限制,实际触觉反馈力的大小正比于主动按压力,而非等于主动按压力;因此,移动终端触觉响应力大小依据式(2)计算得到: 3. Expression haptic modeling and flexible method applied to a mobile object terminal according to claim 1, wherein the step of using a calculation formula created), the pressing force is calculated the size of active finger, the mobile terminal further calculates tactile response; human hand when pressing the object, and the finger pressing force active object fingertip force feedback to the relationship of action and reaction, i.e. according to the size and pressure feedback force equal and opposite directions; and a pressing force is applied when the mobile terminal, since limiting the maximum tolerance and haptic means for outputting the force touchscreen feedback, the actual size of the haptic feedback force proportional to the active pressing force, rather than equal to the active pressing force; Thus, the mobile terminal tactile response to a force based on the size of formula ( 2) calculated:
    Figure CN104834380AC00022
    式(2)中,F。 (2) In the formula, F. 表示移动终端触觉响应力大小,Fp表示手指主动按压力大小,Fpniax表示主动按压力的最大值,F_x表示触觉反馈装置所能产生的最大作用力。 Represents the size of the mobile terminal tactile response force, Fp indicates active finger pressing on, Fpniax represents the maximum value of the pressing force active, F_x represents the maximum force can be generated by the tactile feedback device.
  4. 4. 根据权利要求1所述的应用于移动终端的柔性物体的触觉建模与表达方法,其特征在于,根据手指主动按压力大小计算虚拟物体表面的变形量;由于当人手与虚拟物体交互时,视/触觉再现过程只需达到感觉的一致性,即在感觉上所看到的变形和感受到的力与真实环境的变化趋势接近,而无需在数值上完全一致,因此变形量采用函数拟合近似的计算方法;在人手在触摸屏上无相对滑动的情况下,虚拟物体在人手主动按压力作用下产生变形,变形中心点的法向相对位移,即物体在变形中心点的形变量,依据式(3)计算得到: The haptic modeling and expression methods applied to a mobile terminal of a flexible object according to claim 1, characterized in that the active surface of the virtual object calculated amount of deformation of the pressing force according to the size of a finger; when the hand due to interaction with the virtual object , visual / tactile feeling reproduction only achieve consistency, i.e. seen in the sense modification and change of force felt close to the real environment, without completely consistent in value, using a function of the amount of the deformation Quasi approximate calculation method of bonding; at hand without sliding on the touch screen, the virtual object is deformed in pressing force under the action of the active hand, deformation of the center point displaced relative method, i.e., the center point of the object in the deformation of the deformation, according to of formula (3) is calculated:
    Figure CN104834380AC00031
    式(3)中,(Kxc^yci)表示物体表面变形中心(Xc^y ci)点处的变形量,Fp表示在(Xc^yci)点处手指主动按压力大小,Fp的大小依据式(1)计算得到,kn表示法向变形系数,与物体的刚度系数相关,kn值越大,在相同大小力的作用下,产生的变形量越小; 对于各向同性的物体,根据分布式弹簧-质点模型,当受到法向力作用时,作用力会通过中心弹簧由作用中心传递到相邻区域的各个质点,引起相邻质点发生相对位移,即在发生形变的区域内,与变形中心点距离相等的同心圆上的点产生的形变量相等;由于移动终端计算能力的限制,结合前期研宄,将终端变形区域内各点的形变量与离变形中心点的距离关系等效为指数函数。 Represented by the formula (3), (Kxc ^ yci) the amount of deformation at the point of deformation of the center of the object surface (Xc ^ y ci), Fp indicates (Xc ^ yci) at a point finger active pressing on, Fp size according to formula ( 1) is calculated, the modification coefficient kn notation, stiffness coefficient associated with the object, the larger the value kn, the smaller the amount of deformation under the effect of the same amount of force; for isotropic object, a distributed spring - particle model, when subjected to the normal force, the spring force will pass through the center of each dot to the center by the action of adjacent regions, caused by relative displacement of adjacent particles, i.e., in the region of deformation occurs, the deformation of the center point equal to the deformation point of equal distance on the concentric circle generated; due to the limitation of the mobile terminal computing capability, combined pre-study based on the deformation of each deformation point within the terminal area from the distance relationship with the deformation of the center point equivalent to an exponential function . 物体表面各点的形变量,依据式(4)计算得到: Deformation of the object surface points is calculated according to formula (4) to give:
    Figure CN104834380AC00032
    式⑷中,d(x, y)表示变形区域内点(X,y)的形变量,(!(Xci, 表示变形中心点(Xci, yj 处的变形量,L(x, y)表示点(X,y)到变形中心点(χ〇, y〇)的距离,k表示切向变形的衰减系数,k的取值与物体的刚度有关,刚度越大,k值越大,物体表面变形区域越小,D表示物体表面变形区域,超出变形区域D的物体变形量忽略不计。为实现柔性物体直观的变形渲染效果,通常使变形区域的面积大于手指与移动终端触摸屏的接触面积。 In formula ⑷, d (x, y) represents the deformation of the inner area point (X, y) of variable shape, (! (Xci, the center point of a modification (Xci, the amount of deformation at yj, L (x, y) represents the point (X, y) to the center point of a distance modification (χ〇, y〇), the attenuation coefficient k expressed tangential deformation, which varies with the stiffness k of the object, the greater the stiffness, the greater the value of k, the surface modification the smaller the area, D represents the surface area of ​​the object deformation, deformation amount of deformation of the object outside the area D is negligible. in order to achieve a flexible and intuitive modifications rendering object, so that the area of ​​the deformation region is generally larger than the contact area of ​​the finger with the touch screen of the mobile terminal.
CN 201510240286 2015-05-12 2015-05-12 Flexible object tactile modeling and expressing method applied to mobile terminal CN104834380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201510240286 CN104834380A (en) 2015-05-12 2015-05-12 Flexible object tactile modeling and expressing method applied to mobile terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201510240286 CN104834380A (en) 2015-05-12 2015-05-12 Flexible object tactile modeling and expressing method applied to mobile terminal

Publications (1)

Publication Number Publication Date
CN104834380A true true CN104834380A (en) 2015-08-12

Family

ID=53812317

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201510240286 CN104834380A (en) 2015-05-12 2015-05-12 Flexible object tactile modeling and expressing method applied to mobile terminal

Country Status (1)

Country Link
CN (1) CN104834380A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105138223A (en) * 2015-08-27 2015-12-09 东南大学 Object softness reproduction method based on finger-cot type force touch interaction device
CN105389101A (en) * 2015-10-20 2016-03-09 联想(北京)有限公司 Information processing method and electronic equipment
WO2017031841A1 (en) * 2015-08-21 2017-03-02 深圳市汇顶科技股份有限公司 Touch pressure detection device and method
WO2017206052A1 (en) * 2016-05-31 2017-12-07 深圳市汇顶科技股份有限公司 Method and device for use in detecting pressure
WO2017206051A1 (en) * 2016-05-31 2017-12-07 深圳市汇顶科技股份有限公司 Method and device for use in detecting pressure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101231553A (en) * 2001-11-01 2008-07-30 伊梅森公司 Method and apparatus for providing tactile feedback sensations
CN103853332A (en) * 2014-03-20 2014-06-11 东南大学 Fingerstall type force touch interaction device and interaction method applied to mobile terminal
CN103869983A (en) * 2014-03-26 2014-06-18 南京信息工程大学 Flexible object deformation simulation method for force haptic human-computer interaction
US20150097791A1 (en) * 2013-10-08 2015-04-09 Tk Holdings, Inc. Force sensor with haptic feedback

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101231553A (en) * 2001-11-01 2008-07-30 伊梅森公司 Method and apparatus for providing tactile feedback sensations
US20150097791A1 (en) * 2013-10-08 2015-04-09 Tk Holdings, Inc. Force sensor with haptic feedback
CN103853332A (en) * 2014-03-20 2014-06-11 东南大学 Fingerstall type force touch interaction device and interaction method applied to mobile terminal
CN103869983A (en) * 2014-03-26 2014-06-18 南京信息工程大学 Flexible object deformation simulation method for force haptic human-computer interaction

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017031841A1 (en) * 2015-08-21 2017-03-02 深圳市汇顶科技股份有限公司 Touch pressure detection device and method
CN105138223A (en) * 2015-08-27 2015-12-09 东南大学 Object softness reproduction method based on finger-cot type force touch interaction device
CN105138223B (en) * 2015-08-27 2018-06-22 东南大学 Based on kinds of reproducing the object softness fingerstall interaction device Tactile
CN105389101A (en) * 2015-10-20 2016-03-09 联想(北京)有限公司 Information processing method and electronic equipment
US9946507B2 (en) 2015-10-20 2018-04-17 Lenovo (Beijing) Limited Electronic device and control method
WO2017206052A1 (en) * 2016-05-31 2017-12-07 深圳市汇顶科技股份有限公司 Method and device for use in detecting pressure
WO2017206051A1 (en) * 2016-05-31 2017-12-07 深圳市汇顶科技股份有限公司 Method and device for use in detecting pressure

Similar Documents

Publication Publication Date Title
US8279193B1 (en) Interactivity model for shared feedback on mobile devices
US20110074701A1 (en) Methods and apparatus for distinguishing between touch system manipulators
US20140168093A1 (en) Method and system of emulating pressure sensitivity on a surface
CN103294183A (en) Terminal equipment and method for feeding back pressure by using same
CN102508546A (en) Three-dimensional (3D) virtual projection and virtual touch user interface and achieving method
KR20090127544A (en) The system for recogniging of user touch pattern using touch sensor and accelerometer sensor
US20100277428A1 (en) Touch panel input assisting device, computer operating method using the device, and tactile sense interlocking program
CN101598973A (en) Human-computer interaction system based on electro-ocular signal
US20140160424A1 (en) Multi-touch interactions on eyewear
US8659571B2 (en) Interactivity model for shared feedback on mobile devices
CN102541319A (en) Electronic equipment and display processing method thereof
Kammermeier et al. Display of holistic haptic sensations by combined tactile and kinesthetic feedback
Su et al. Use of tactile feedback to control exploratory movements to characterize object compliance
WO2010032268A2 (en) System and method for controlling graphical objects
CN102253713A (en) Display system orienting to three-dimensional images
JP2015153420A (en) Multitask switching method and system and electronic equipment having the same system
JP2010113445A (en) Touch panel and method of detecting operation
US20140210745A1 (en) Using Neural Signals to Drive Touch Screen Devices
CN102314297A (en) Window object inertia displacement method and realizing device
CN103092525A (en) Screen capture method for mobile terminal and mobile terminal based on the screen capture method
US20140210730A1 (en) Stylus based object modification on a touch-sensitive display
CN102043566A (en) Electronic device with touch panel and operating method thereof
CN104360816A (en) Screen capture method and system
CN101739125A (en) Method, equipment, and electric device to implement operation by operation body
CN105183356A (en) Character output method, input device and electronic device

Legal Events

Date Code Title Description
C06 Publication
EXSB Decision made by sipo to initiate substantive examination
WD01