CN104819774A - Flame light field probe pan-scale analysis method based on micro-lens array - Google Patents

Flame light field probe pan-scale analysis method based on micro-lens array Download PDF

Info

Publication number
CN104819774A
CN104819774A CN201510194407.7A CN201510194407A CN104819774A CN 104819774 A CN104819774 A CN 104819774A CN 201510194407 A CN201510194407 A CN 201510194407A CN 104819774 A CN104819774 A CN 104819774A
Authority
CN
China
Prior art keywords
light
flame
light field
medium
pan
Prior art date
Application number
CN201510194407.7A
Other languages
Chinese (zh)
Inventor
谈和平
袁远
齐宏
易红亮
刘彬
帅永
李赛
董士奎
Original Assignee
哈尔滨工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学 filed Critical 哈尔滨工业大学
Priority to CN201510194407.7A priority Critical patent/CN104819774A/en
Publication of CN104819774A publication Critical patent/CN104819774A/en

Links

Abstract

The invention provides a flame light field probe pan-scale analysis method based on a micro-lens array. The flame light field probe pan-scale analysis method comprises high temperature dispersion dielectric optical radiation modeling, high temperature dispersion dielectric radiation characteristic calculation, light tracking algorithm based on Monte Carlo algorithm, object image refocusing algorithm and the like. By simulating that light of different wavelengths is emitted from the inside of a medium and subjected to medium absorption, scattering attenuation, medium emission, scattering enhancement and the like, the simulating calculation of the micro-lens light field imaging of a high temperature flame is performed. Through the simulating calculation, the temperature field of the high temperature flame can be reconstructed, and a theoretical basis is provided for calibration, measurement and the like of a light field camera.

Description

一种基于微透镜阵列的火焰光场探测泛尺度分析方法 The method for detecting a pan-scale analysis of the flame light field microlens array

技术领域 FIELD

[0001] 本发明涉及高温火焰温度重建过程中的火焰成像仿真技术,尤其涉及一种基于微透镜阵列的火焰光场探测泛尺度分析方法。 [0001] The present invention relates to a high-temperature flame simulation image reconstruction process in the flame temperature, particularly, to an optical field of the flame microlens array method for detecting pan-scale analysis.

背景技术 Background technique

[0002] 多尺度概念已经在许多科技领域得到应用。 [0002] Multi-scale concept has been applied in many scientific fields. 如能源化工、遥感探测、材料加工、微机电设备等等。 The chemical energy, remote sensing, material processing, microelectromechanical devices, etc.

[0003] 但是,目前科技领域已经应用的多尺度概念是指:空间-时间,二元体系中的多尺度。 [0003] However, the current concept of multi-scale science and technology has been applied means: space - time, multi-scale binary system. 空间多尺度是指与现象有关的过程发生在几何尺度有数量级变化的空间中;而时间多尺度是指在一个物理现象中不同时间段的特征尺度有数量级的变化。 Refers to a spatial multi-scale phenomenon occurs in the process of spatial geometrical dimensions of the order of magnitude change; and the time scale refers to a plurality of physical phenomena different in characteristic time scale of the order of magnitude of change.

[0004] 在火焰光场探测过程中的热辐射传递过程,会涉及到:空间-时间-角度-频率, 四元体系,本申请将其命名为"泛尺度",只有将泛尺度中的空间尺度、时间尺度、角度尺度、 频率尺度、同时体现出来,才能够更加真实准确地模拟出高温火焰的温度场; [0004] The heat radiation transfer process in the flame light field detection process, involves: Space - Time - the angle - the frequency, quaternary system, the present application will be named "pan scale", only the spatial pan scale in scale, the time scale, the angle scale, frequency scale, while reflected, it is possible to more accurately simulate the real temperature of the flame temperature field;

[0005] 然而,很多大型工程火焰系统往往伴随着激烈震动,同时火焰燃烧又存在极强的脉动效应,其震动周期或者脉动周期可从几十毫秒到几秒;火焰尺度则可从几米到数十米; 因此,只能体现出空间尺度和时间尺度两个体现,因此,无法真实准确地模拟出高温火焰的温度场; [0005] However, many large projects are often accompanied by intense flames system vibration, while the flame and there are very strong ripple effect that vibration or pulsation cycle period can be from tens of milliseconds to several seconds; flame can scale from a few meters to several ten meters; therefore, only reflect the spatial and temporal scales of two reflected, therefore, can not truly and accurately simulate the temperature field of high-temperature flame;

[0006] 由于对于采用微透镜阵列技术的光场相机而言,被探测火焰与光场相机镜头之间巨大的几何尺度差异,通过光场相机的微透镜对被探测火焰进行探测角度离散后的探测像元所代表的探测角度范围与相机自身的探测角度范围又存在着两个数量级以上的差距,此时的角度多尺度分析就十分必要。 [0006] Since the light field camera with respect to the microlens array technique, a huge scale differences to be detected between the flame geometry and the light field camera lens, a detection angle detected by flame discrete light field camera microlens after like the detection range and detection angle camera itself represented yuan detection angle range and there are more than two orders of magnitude gap, this time the angle of multi-scale analysis it is essential.

[0007] 又如:高温火焰中既含有粒子辐射又含有气体辐射,其中气体辐射具有强烈的光谱选择性,吸收发射能力主要集中在一些吸收带内,吸收带内则集中了成千上万根谱线,而在吸收带间则没有谱线或谱线很少,从而吸收发射能力很弱。 [0007] Another example: high-temperature flame contains both particle radiation and radiation-containing gas, wherein the gas has a strong radiation spectrally selective absorption capacity emission mainly in the number of the absorption band, the absorption band is concentrated root thousands line, while no absorption band between the spectral lines or less so as to absorb the emission is weak. 从光谱角度讲,一般谱线宽度为纳米量级(1个波数)、谱带的宽度为微米量级(数百到数千个波数)、整个热辐射的光谱范围(约为0.2-100微米)为亚毫米量级(数万个波数),此时的频率度多尺度分析就十分必要。 From the spectral point of view, the line width is typically on the order of nanometers (a wave number), the band width of the order of (hundreds to thousands of wave number) microns, the entire spectral range of heat radiation (about 0.2-100 microns ) alkylene millimeter (several tens of waves), when the frequency of the multi-scale analysis it is essential.

[0008] 而目前却没有一个能够同时通过泛尺度来模拟再现高温火焰的温度场的解决方案。 [0008] At present, but not simultaneously through a pan scale capable of reproducing a high temperature flame to simulate the temperature field solution.

发明内容 SUMMARY

[0009] 本发明的目的在于解决上述现有技术存在的缺陷,提供一种能够同时满足泛尺度要求的基于微透镜阵列的火焰光场探测泛尺度分析方法。 [0009] The object of the present invention is to solve the above-described defects in the prior art, there is provided a scale pan can satisfy the requirements of the pan-scale analysis of the flame light field microlens array probe.

[0010] 一种基于微透镜阵列的火焰光场探测泛尺度分析方法,包括以下步骤: [0010] A method for detecting pan-scale analysis of the flame light field microlens array, comprising the steps of:

[0011] (1)建立高温弥散介质光辐射物理模型,赋予该物理模型尺度、物性参数; [0011] (1) establishing medium diffuse light radiation temperature physical model, the physical model is given dimensions, physical parameter;

[0012] (2)建立具有微透镜阵列的光场相机模型; [0012] (2) the light field camera model having a microlens array;

[0013] (3)计算高温弥散介质中气体、粒子光谱辐射特性参数,并将所述特性参数赋值给所述物理模型; [0013] (3) dispersing medium gas temperature is calculated, the spectral emissivity characteristic parameters of the particles, and assigned to the characteristic parameters of the physical model;

[0014] (4)利用蒙特卡洛算法进行发射光线模拟; [0014] (4) emits light simulated using Monte Carlo algorithm;

[0015] (5)计算获得光场相机CCD相面能量分布图; [0015] (5) obtained by calculation physiognomy light field camera CCD energy profile;

[0016] (6)根据所述光场相机CCD相面能量分布图计算不同微透镜所成高温弥散介质图像。 [0016] (6) FIG calculate different microlens dispersion medium to a high temperature according to the optical image field energy distribution physiognomy CCD camera.

[0017] 进一步地,如上所述的基于微透镜阵列的火焰光场探测泛尺度分析方法,步骤1 中,所述高温弥散介质共分3层,均为参与性介质,每层介质又3X3个小立方体组成,每块介质被赋予不同的参数。 [0017] Further, as described above, the flame light field microlens array probe pan scale analysis method, step 1, the temperature dispersion medium is divided into three layers, are involved in media, each medium and a 3X3 small cubes, each medium is given different parameters.

[0018] 进一步地,如上所述的基于微透镜阵列的火焰光场探测泛尺度分析方法,步骤2 中所述微透镜阵列位于主透镜与CCD之间,且处于主透镜焦平面处。 [0018] Further, as described above pan scale analysis of the flame light field detecting a microlens array, the microlens array in the step 2 is located between the main lens and the CCD, and the main lens in the focal plane.

[0019] 进一步地,如上所述的基于微透镜阵列的火焰光场探测泛尺度分析方法,步骤4 在进行发射光线模拟时,采用光线分裂方法对发射光线进行模拟。 [0019] Further, as described above pan scale analysis of the flame light field detecting a microlens array, step 4 is performed when an analog light emission using the light-emitting light splitting simulation method.

[0020] 本发明提供的基于微透镜阵列的火焰光场探测泛尺度分析方法,由于在火焰光场探测过程的热辐射传递过程能够同时满足泛尺度的要求,从而能够更加真实准确地体现出高温火焰的温度场。 [0020] the flame light field microlens array probe pan scale analysis methods, since the thermal radiation transfer process flame light field detection process is able to meet the pan scale requirements can be more truly and accurately reflect the present invention provides a high temperature flame temperature field.

附图说明 BRIEF DESCRIPTION

[0021] 图1为本发明高温弥散介质光辐射物理模型图; [0021] FIG 1 the optical radiation temperature dispersion medium of the present invention, FIG physical model;

[0022] 图2为本发明光场相机模型图; [0022] FIG. 2 is a model diagram invention, light field camera;

[0023] 图3为光线分裂原理示意图; [0023] FIG. 3 is a schematic view of the principle of split light;

[0024] 图4为相机C⑶像元辐射能量分布图; [0024] FIG. 4 is a camera pixel C⑶ radiation energy distribution;

[0025] 图5为不同微透镜成像图。 [0025] FIG. 5 is a different micro-lens imaging FIG.

具体实施方式 Detailed ways

[0026] 为使本发明的目的、技术方案和优点更加清楚,下面本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。 [0026] To make the objectives, technical solutions, and advantages of the present invention will become apparent in the following technical scheme will be clearly and completely described, obviously, the described embodiments are part of the embodiments of the present invention, but not all embodiments example. 基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。 Based on the embodiments of the present invention, those of ordinary skill in the art to make all other embodiments without creative work obtained by, it falls within the scope of the present invention.

[0027] 本发明分析方法主要包括:含粒子高温气体(高温弥散介质)光辐射建模、高温弥散介质辐射特性计算、基于蒙特卡洛算法的光线追踪算法、物像重聚焦算法等环节。 Analysis Method [0027] The present invention comprises: a high temperature gas containing particles (dispersion medium temperature) modeling light radiation, heat radiation characteristics calculated dispersion medium, Monte Carlo ray tracing algorithm based on the algorithm, the object image refocusing algorithm links. 通过模拟不同波长的光线从介质内部发射并经由介质的吸收、散射衰减、介质发射和散射增强等过程,对高温火焰的微透镜光场成像进行仿真计算。 By emitting light of different wavelengths from analog via medium inside the medium absorption, scattering attenuation, emission and scattering medium enhancement process, a light-field imaging microlens flame temperature was simulated. 通过本发明专利的仿真计算,可实现对高温火焰的温度场重建,并为光场相机的标定、测量等工作提供理论基础。 Patent simulation by the present invention, may be implemented for high-temperature flame temperature field reconstruction and to provide a theoretical basis for the light field camera calibration, measurement and so on.

[0028] 本发明基于微透镜阵列的火焰光场探测泛尺度分析方法包括以下步骤: [0028] The present invention is based on the light field of the microlens array flame detection pan scale analysis method comprising the steps of:

[0029] 步骤1 :如图1所示,建立高温弥散介质光辐射物理模型1,赋予该物理模型1尺度、物性等参数。 [0029] Step 1: 1, to establish a high temperature diffuse light radiation physical model of a medium, a physical model of the given dimensions, properties and other parameters.

[0030] 具体地,该模型为由小立方体组成的3X3X3魔方形状大立方体,由三层介质共同组成,均为参与性介质,每层由3X3个小立方体组成,总共27块。 [0030] In particular, the shape of the model by 3X3X3 Rubik cube small cubes of large, medium composed of three layers, are involved in media, each layer of 3X3 small cubes, a total of 27.

[0031] 对于采用微透镜阵列技术的光场相机而言,由于被探测火焰与光场相机镜头之间巨大的几何尺度差异,通过光场相机的微透镜对被探测火焰进行探测角度离散后的探测像元所代表的探测角度范围与相机自身的探测角度范围又存在着两个数量级以上的差距,因此,简单通过光场相机来探测分析火焰光场的热辐射强度,只能满足空间尺度、角度尺度两个尺度,因此要赋予物理模型尺度、物性等参数来同时满足泛尺度中其他两个尺度分析。 [0031] For the light field camera with a microlens array technology, a geometric difference between huge scale due to flame detection and the light field camera lens, a detection angle detected by flame discrete light field camera microlens after detecting detection angle range of the camera image represented by the detection element itself but also there is an angular range of two orders of magnitude above the gap, and therefore, simply be detected by analyzing thermal light field camera flame radiation intensity of the light field, only meet spatial scale, two angle scales scales, so to impart physical model dimensions, properties and other parameters to meet the other two scales pan scale analysis.

[0032] 步骤2 :建立具有微透镜阵列的光场相机模型,模型示意图见图2,其中微透镜整为由10*10个微透镜4构成的阵列,所述微透镜阵列位于主透镜3与CCD之间,且处于主透镜3焦平面处,其中,主透镜3的直径为D,主透镜3与微透镜4之间的距离为L,微透镜4 的直径为d,f为微透镜4的焦距。 [0032] Step 2: Create a light field camera with a microlens array model, the model is shown in Figure 2, where the entire micro-lens array 10 by the microlens 10 * 4 configuration, the microlens array 3 is located in the main lens and between the CCD, and in the focal plane of the main lens 3, wherein the diameter of the main lens 3 is D, the distance between the main lens 3 and the microlens 4 is L, the diameter of the microlens 4 is d, f of the microlens 4 the focal length.

[0033] 步骤3 :通过高温气体物性计算软件计(该软件为自己研发并获得软件著作权保护的计算软件)算获得高温弥散介质中气体、粒子光谱辐射特性参数,并将所述特性参数赋值给所述物理模型,不同介质块温度及物性分布可见表1 ; [0033] Step 3: high-temperature gas properties calculation software meter (the obtained software development and software calculation software copyright protection for their) calculated dispersion medium to obtain high-temperature gas, the spectral emissivity characteristic parameters of the particles, and the characteristic parameters assigned to the physical model, different physical properties of the dielectric block temperature profile seen from table 1;

[0034]表1介质子方块的温度和辐射物性 [0034] Table 1 medium temperature sub-blocks and the radiation properties

[0035] [0035]

Figure CN104819774AD00051

[0036] 步骤4 :利用蒙特卡洛算法进行发射光线模拟,在进行发射光线模拟时,采用光线分裂方法进行模拟以提高计算效率,并处理微角度问题,光线分裂原理示意图可见图3 ; [0036] Step 4: using a Monte Carlo simulation algorithm emit light, the light emitted during the simulation, the simulation method using the split light to improve computational efficiency, and the angle of the micro-processing problems, visible light is split Schematic Figure 3;

[0037] 具体地,将高温弥散介质光辐射物理模型1看成图3中的光点5,该光点5会向各个方向散射光线,所谓光线分裂法就是以0为入射角度,以进入主镜头3的光线作为被分析的光线主体来计算该部分光线的热辐射强度。 [0037] Specifically, the high temperature medium diffuse light radiation as a physical model of the spot 5 in FIG. 3, the light spot 5 will scatter light in all directions, the light splitting method is a so-called angle of incidence of 0 degrees to enter the main lens 3 as the light rays body is analyzed to calculate the heat radiating portion of the light intensity.

[0038]当采用蒙特卡洛法模拟光线到镜头的成像时,需保证有足够数量的模拟光线到达镜头参与成像过程。 [0038] When using the Monte Carlo method to simulate the light to the imaging lens, the need to ensure a sufficient number of analog light reaches the imaging process involved in the lens. 但正常情况下的模拟中,表面常为漫发射漫反射,介质的自身发射辐射为各向同性的,介质的散射也会将光线散射到各个方向去,再考虑到表面和介质对光线的吸收,从而使得进入镜头的光线数量大大减少。 But under normal circumstances simulation, the self-emitting radiation-emitting surface often diffuse reflection, diffuse medium is isotropic, light scattering medium will also scattered to various directions, taking into account the surface and the light absorption of the medium so that the amount of light entering the lens is greatly reduced. 当介质或表面与镜头的距离越远,能够进入镜头的光线数量以近似距离平方反比的规律快速减少,为在可接受的计算时间内模拟光线的成像,本发明采用光线分裂法可提高计算效率,并处理微角度问题。 When the media or farther from the surface of the lens, the amount of light entering the lens can be approximately the inverse square law of the distance decreases rapidly, an analog image light within an acceptable calculation time, the present invention uses the light splitting method can improve the computational efficiency and to address the issue of micro angle.

[0039] 以光点5作为一个发光点,那么相对于微透镜阵列而言,其每个微透镜处于不同角度,因此,本发明可以在同一时间点,针对同一个光点(即高温弥散介质光辐射物理模型1中每个介质块)获取不同角度的光线作为分析主体,因此,本发明可以同时满足泛尺度的要求,从而可以更加真实准确地反映出高温火焰的温度场。 [0039] In the spot 5 as a light emitting point, with respect to the microlens array, the microlenses each at different angles, therefore, the present invention may be the same point in time, for the same spot (i.e., high temperature diffusion medium optical radiation physical model of each dielectric block 1) at different angles of light acquired as the analysis subject, therefore, the present invention can simultaneously satisfy the requirements of the scale pan, thereby more accurately reflect the true temperature of the flame temperature field.

[0040] 步骤5:计算获得相机CCD相面能量分布图,计算结果可见图4 ; [0040] Step 5: Calculate the energy distribution obtained physiognomy FIG CCD camera, calculation results can be seen in FIG 4;

[0041] 具体地,由于通过微透镜阵列中不同角度的微透镜来获取图3中0角度的光线, 并计算该光线的热辐射强度,由于从不同角度的微透镜获知的0角度的光线的热辐射强度是不同的,从而得到图4所示由多个明暗不同的光点构成的高温介质图像,即通过光场相机体现出的CCD相面能量分布图。 [0041] In particular, since acquired by the microlens array at different angles of the microlens to light 0 angle Fig. 3, and calculating the thermal radiation intensity of the light, since the light 0 angle known from different angles microlenses thermal radiation intensity are different, whereby CCD physiognomy energy distribution shown in FIG temperature medium brightness image formed by a plurality of different light dots, i.e. by reflecting the light field camera 4.

[0042] 步骤6 :利用自编制重聚焦计算软件根据所述CCD相面能量分布图计算不同微透镜所成的高温介质图像,不同微透镜成像图可见图5。 [0042] Step 6: Using the preparation from the high temperature medium refocusing image calculation software calculates FIG different microlens according to a distribution of energy to the CCD physiognomy, a different imaging microlens seen in FIG. 5 FIG.

[0043] 具体地,图5就是将图4中不同的微透镜所构成高温介质图像进行聚焦计算,从而得到一个能够准确表达从图3中0角度入射的光线所体现的温度分布图,该温度分布图更加真实准确地体现了高温火焰的温度场。 [0043] In particular, FIG. 5 is the Figure 4 different microlens temperature medium image constituting focus calculation to obtain an accurately expressing the temperature profile incident from FIG angle of 3 0 of light reflected, the temperature maps more accurately reflect the true temperature field of high-temperature flame.

[0044] 最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。 [0044] Finally, it should be noted that: the above embodiments are intended to illustrate the present invention, rather than limiting;. Although the present invention has been described in detail embodiments, those of ordinary skill in the art should be understood: may still be made to the technical solutions described in each embodiment of the modified or part of the technical features equivalents; as such modifications or replacements do not cause the essence of corresponding technical solutions to depart from the technical solutions of the embodiments of the present invention and scope.

Claims (4)

1. 一种基于微透镜阵列的火焰光场探测泛尺度分析方法,其特征在于,包括以下步骤: (1) 建立高温弥散介质光辐射物理模型,赋予该物理模型尺度、物性参数; (2) 建立具有微透镜阵列的光场相机模型; (3) 计算高温弥散介质中气体、粒子光谱辐射特性参数,并将所述特性参数赋值给所述物理模型; (4) 利用蒙特卡洛算法进行发射光线模拟; (5) 计算获得光场相机CCD相面能量分布图; (6) 根据所述光场相机CCD相面能量分布图计算不同微透镜所成高温弥散介质图像。 1. A method of detecting the flame light field microlens array pan scale analysis method comprising the steps of: (1) establishing medium diffuse light radiation temperature physical model, the physical model is given dimensions, physical parameter; (2) the light field camera model having a microlens array; (3) calculating a high temperature gas diffusion medium, the spectral emissivity characteristic parameters of the particles, and assigned to the characteristic parameters of the physical model; (4) using a Monte Carlo algorithm to transmit light simulation; (5) obtained by calculation physiognomy light field camera CCD energy distribution; (6) the dispersion medium to a high temperature according to the optical image field CCD camera physiognomy calculate different power profile microlenses.
2. 根据权利要求1所述的基于微透镜阵列的火焰光场探测泛尺度分析方法,其特征在于,步骤1中,所述高温弥散介质共分3层,均为参与性介质,每层介质又3X3个小立方体组成,每块介质被赋予不同的参数。 The light field of the flame claim microlens array probe pan scale analysis method of claim 1 wherein, in step 1, the temperature dispersion medium is divided into three layers, are involved in media, each medium 3X3 and small cubes, each medium is given different parameters.
3. 根据权利要求1所述的基于微透镜阵列的火焰光场探测泛尺度分析方法,其特征在于,步骤2中所述微透镜阵列位于主透镜与CCD之间,且处于主透镜焦平面处。 3. Flame pan scale analysis optical field detection based on a microlens array, wherein one of the preceding claims, in the step of the microlens array 2 is located between the main lens and the CCD, and in the focal plane of the main lens .
4. 根据权利要求1所述的基于微透镜阵列的火焰光场探测泛尺度分析方法,其特征在于,步骤4在进行发射光线模拟时,采用光线分裂方法对发射光线进行模拟。 4. The light field of the flame microlens array probe pan scale analysis method, wherein according to claim 1, emits light when performing the simulation in step 4, using the method of splitting the emitted light beam simulation.
CN201510194407.7A 2015-04-22 2015-04-22 Flame light field probe pan-scale analysis method based on micro-lens array CN104819774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510194407.7A CN104819774A (en) 2015-04-22 2015-04-22 Flame light field probe pan-scale analysis method based on micro-lens array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510194407.7A CN104819774A (en) 2015-04-22 2015-04-22 Flame light field probe pan-scale analysis method based on micro-lens array

Publications (1)

Publication Number Publication Date
CN104819774A true CN104819774A (en) 2015-08-05

Family

ID=53730135

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510194407.7A CN104819774A (en) 2015-04-22 2015-04-22 Flame light field probe pan-scale analysis method based on micro-lens array

Country Status (1)

Country Link
CN (1) CN104819774A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105547469A (en) * 2015-12-04 2016-05-04 哈尔滨工业大学 Flame temperature pan-scale light field detection method based on micro-lens array and pulse laser
CN105865755A (en) * 2016-05-30 2016-08-17 东南大学 Display device measuring device simulating structure of human eyes and measuring method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1245894A (en) * 1998-08-26 2000-03-01 中国科学院光电技术研究所 Space three-dimensional flow field real-time measurement system
CN1716088A (en) * 2005-05-25 2006-01-04 中国科学院上海光学精密机械研究所 Three dimension imaging method
CN1723097A (en) * 2002-04-18 2006-01-18 应用材料有限公司 Thermal flux processing by scanning electromagnetic radiation
CN102270251A (en) * 2011-04-18 2011-12-07 西安交通大学 A multi-stage multi-surface complex focusing solar collector system design
CN102353478A (en) * 2011-10-10 2012-02-15 哈尔滨工业大学 Method of correction for non-contact thermometry in translucent medium environment
CN102609567A (en) * 2012-01-13 2012-07-25 西安交通大学 Design method for optimizing light-heat-fluid coupling of solar energy concentration heat collector system
CN103021014A (en) * 2012-11-29 2013-04-03 长春理工大学 Method for increasing reconstruction resolution ratio of computer integrated image
CN103440660A (en) * 2013-09-03 2013-12-11 四川大学 Quick generating method for integral imaging micro image array based on GPU
RU2511070C1 (en) * 2012-10-01 2014-04-10 Общество с ограниченной ответственностью "ТИДЕКС" Device for imaging terahertz radiation sources

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1245894A (en) * 1998-08-26 2000-03-01 中国科学院光电技术研究所 Space three-dimensional flow field real-time measurement system
CN1723097A (en) * 2002-04-18 2006-01-18 应用材料有限公司 Thermal flux processing by scanning electromagnetic radiation
CN1716088A (en) * 2005-05-25 2006-01-04 中国科学院上海光学精密机械研究所 Three dimension imaging method
CN102270251A (en) * 2011-04-18 2011-12-07 西安交通大学 A multi-stage multi-surface complex focusing solar collector system design
CN102353478A (en) * 2011-10-10 2012-02-15 哈尔滨工业大学 Method of correction for non-contact thermometry in translucent medium environment
CN102609567A (en) * 2012-01-13 2012-07-25 西安交通大学 Design method for optimizing light-heat-fluid coupling of solar energy concentration heat collector system
RU2511070C1 (en) * 2012-10-01 2014-04-10 Общество с ограниченной ответственностью "ТИДЕКС" Device for imaging terahertz radiation sources
CN103021014A (en) * 2012-11-29 2013-04-03 长春理工大学 Method for increasing reconstruction resolution ratio of computer integrated image
CN103440660A (en) * 2013-09-03 2013-12-11 四川大学 Quick generating method for integral imaging micro image array based on GPU

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘彬等: "二维参与性介质中激光脉冲的瞬态辐射传输研究", 《工程热物理学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105547469A (en) * 2015-12-04 2016-05-04 哈尔滨工业大学 Flame temperature pan-scale light field detection method based on micro-lens array and pulse laser
CN105865755A (en) * 2016-05-30 2016-08-17 东南大学 Display device measuring device simulating structure of human eyes and measuring method

Similar Documents

Publication Publication Date Title
Ihrke et al. Transparent and specular object reconstruction
RU2431823C2 (en) Method and device for nondestructive test of isolation coat
Siddique et al. The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly
Tibiriçá et al. Film thickness measurement techniques applied to micro-scale two-phase flow systems
Chien et al. Precise optical model of multi-chip white LEDs
Li et al. Crack imaging by scanning laser-line thermography and laser-spot thermography
CN104634276A (en) Three-dimensional measuring system, photographing device, photographing method, depth calculation method and depth calculation device
JP5652536B2 (en) Measuring device
Mazzucco et al. Spatially resolved measurements of plasmonic eigenstates in complex-shaped, asymmetric nanoparticles: gold nanostars
CN102818756B (en) Determination pm2.5 particulate trap laser energy based method and apparatus
Chakrabarti et al. Far-infrared SEDs of embedded protostars and dusty galaxies. I. Theory for spherical sources
Guidi et al. Performance evaluation of triangulation based range sensors
Wu et al. Holography and micro-holography of particle fields: a numerical standard
Mroczka et al. Plane-wave and Gaussian-beam scattering on an infinite cylinder
Sun et al. Three-dimensional temperature field measurement of flame using a single light field camera
CN102053050B (en) Granularity centering measuring method utilizing CCD (charge coupled device) or CMOS (complementary metal-oxide-semiconductor) as photoelectric detector
JP5133626B2 (en) Surface reflection characteristic measuring apparatus
Gill et al. Characterization of a 6 kW high-flux solar simulator with an array of xenon arc lamps capable of concentrations of nearly 5000 suns
Shi et al. Pharmaceutical applications of separation of absorption and scattering in near‐infrared spectroscopy (NIRS)
CN101856219A (en) Optical parameter reconstruction method based on frequency-domain near-infrared photoelasticimetry
Brunel et al. Determination of the size of irregular particles using interferometric out-of-focus imaging
Li et al. Accuracy analysis of centroid calculated by a modified center detection algorithm for Shack–Hartmann wavefront sensor
CN102749184B (en) Large field-of-view stray light PST (point source transmittance) testing method and device
CN102735348A (en) Wavefront measuring method based on Hartmann wavefront sensor
Wang et al. Study of scattering from a sphere with an eccentrically located spherical inclusion by generalized Lorenz–Mie theory: internal and external field distribution

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
WD01