CN104808017A - Probe for near-field optical microscopes and preparation method thereof - Google Patents

Probe for near-field optical microscopes and preparation method thereof Download PDF

Info

Publication number
CN104808017A
CN104808017A CN 201410036355 CN201410036355A CN104808017A CN 104808017 A CN104808017 A CN 104808017A CN 201410036355 CN201410036355 CN 201410036355 CN 201410036355 A CN201410036355 A CN 201410036355A CN 104808017 A CN104808017 A CN 104808017A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
semiconductor
metal
tip
layer
probe
Prior art date
Application number
CN 201410036355
Other languages
Chinese (zh)
Inventor
徐耿钊
樊英民
刘争晖
钟海舰
黄增立
徐科
Original Assignee
中国科学院苏州纳米技术与纳米仿生研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention provides a probe for near-field optical microscopes. The probe comprises a cantilever beam substrate, a semiconductor needlepoint arranged on the cantilever beam substrate, and two metal electrodes arranged on the semiconductor needlepoint oppositely. The semiconductor needlepoint and the two metal electrodes form a metal-semiconductor-metal photoelectric detector which is used for converting optical signals into electrical signals, wherein one metal electrode is used to be connected with an external direct-current bias voltage loading device, and the other metal electrode is used for collecting light current and transmitting the light current to a controller of a near-field optical microscope. The probe of the invention has the advantage that by adopting the probe, the structure of a near-field optical microscope can be simplified, the operation complexity of a near-field optical microscope can be reduced, the range of application can be greatly expanded, and transfer and replacement of the probe in various environments are facilitated.

Description

用于近场光学显微镜的探针及其制备方法 The method of preparing a probe and the near-field optical microscope

技术领域 FIELD

[0001] 本发明涉及光学测试技术领域,尤其涉及一种用于近场光学显微镜的探针及其制备方法。 [0001] The present invention relates to the field of optical measurement techniques, and more particularly to a method for preparing a probe SNOM used.

背景技术 Background technique

[0002] 测量材料对光的吸收、散射以及发光现象,是研究半导体内载流子的跃迁、复合以及晶格运动模式的重要实验手段,并且对样品无损伤。 [0002] The absorption, scattering material and the light emitting phenomenon of the light measurement, research transition, as well as an important experimental tool lattice composite motion pattern carriers within the semiconductor, and no sample damage. 而随着纳米技术的发展,人们感兴趣的材料和器件的尺度越来越小;而普通的光学探测手段受到显微物镜衍射极限的限制,其空间分辨率一般在微米数量级上。 With the development of nanotechnology, dimensions and materials of the device smaller growing interest; ordinary optical detection means is limited to the diffraction limit of the microscope objective, the spatial resolution is generally in the order of micrometers. 而自20世纪80年代以来,随扫描探针显微镜技术的快速进步,其与光学探测技术相结合,发展出的近场光学显微镜,具有超过衍射极限的光学空间分辨率,成为解决这一问题的重要方案和纳米结构研究中的一种重要手段。 And since the 1980s, with the rapid advances in scanning probe microscopy techniques, with optical detection technology, developed near-field optical microscope, with more than the diffraction limit of the optical spatial resolution, to be to solve this problem an important means of important research programs and nanostructures.

[0003] 和其它扫描探针显微镜一样,近场光学显微镜也是将一个针尖置于样品表面,通过探测针尖样品间的隧道电流或者原子力相互作用来维持针尖样品间距离的恒定,通常在I nm的数量级上。 [0003] and the other as a scanning probe microscope, SNOM tip is placed on a sample surface, to maintain a constant distance between the tip of the sample by a tunnel current between the probe tip or an atomic force interaction between the sample, usually of I nm an order of magnitude. 进而通过针尖在样品表面的扫描,逐点采集样品表面的光信号。 Further collecting light signal of the sample surface of the sample surface is scanned point by point by the needle tip. 近场光学显微镜主要通过两种方式来实现超过光学衍射极限的高空间分辨率:有孔探针近场光学显微镜和散射式近场光学显微镜。 NSOM is mainly realized beyond the optical diffraction limit high spatial resolution in two ways: the apertured SNOM probe and scattering the near-field optical microscope.

[0004] 图1A及图1B所示为现有技术中近场光学显微镜的探针示意图。 Probe microscope is a schematic view of the prior art near field optical [0004] FIGS. 1A and FIG. 1B. 参见图1A,有孔探针近场光学显微镜使用一个尖端开小孔11的镀有金属膜的光纤探针10,并且开的小孔11的直径远小于光波长,通过这个小孔11米集样品13表面的近场光学信号并通过光纤传导到外部的光电探测器。 1A, the apertured SNOM probe using an optical fiber coated with a metal film, a tip of the small holes 11 of the probe 10, and the opening diameter of the aperture 11 is much smaller than the wavelength of light, through the orifice set 11 m near-field optical signal sample 13 and conducted to the exterior surface of the photodetector through an optical fiber. 参见图1B,散射式近场光学显微镜采用一个金属针尖12,利用金属表面等离激元震荡、尖端放电的“避雷针”效应以及金属针尖12和偶极震荡天线效应等效应将电磁场局域在金属针尖12周围包括样品13,形成增强的近场光学信号,再通过显微物镜等光学系统收集这些信号并传到到光电探测器。 1B, the scattering SNOM tip 12 using a metal, a metal surface plasmon oscillation, the discharge tip "lightning rod" effect and the effect of shock metal tip 12 and the dipole antenna effect like the local electromagnetic field in the metal around the tip 12 includes a sample 13, form an enhanced near-field optical signals, then these signals collected by a microscope objective and transmitted to the optical system such as a photodetector. 最后,光电探测器将针尖逐点采集到的光信号转换成电信号通过计算机采集和记录。 Finally, the photodetector needle tip points collected by the optical signals into electrical signals by a computer acquisition and recording.

[0005] 而在实际应用中,上述工作方式的局限性在于光电探测器总是在距离针尖比较远的地方,都需要复杂的光学机构将针尖收集到的光信号传导到光电探测器。 [0005] In practical applications, the limitations of the above-described mode of operation is that the photodetector is always more distant from the needle tip where the needle tip need to collect the optical signal to the optical means conducting complex to the photodetector. 对于有孔探针的方式,针尖后面总是连接一条比较长的光纤,从针尖一直连接到光电探测器前的光纤耦合机构来传到光信号;对于散射式的方式,也需要一套可以多个维度精密调节的光学系统将显微物镜的焦点长时间稳定而精确对准针尖所在的位置,已采集针尖增强的近场光学信号并传到到远处的光电探测器。 For the embodiment of the probe hole behind the tip is always connected to a long optical fiber, has been connected to the fiber coupling mechanism from the needle tip before the optical signal transmitted to the photodetector; manner for scattering, also needs to be a multiple fine adjustment of the dimensions of the optical system of the microscope objective focus long-term stability and precise alignment of the location of the tip, the tip has acquired an enhanced near-field optical signals and transmitted to the photodetector distance. 这都大大增加了操作的负责程度。 This greatly increases the degree of charge of the operation.

发明内容 SUMMARY

[0006] 本发明所要解决的技术问题是,提供一种用于近场光学显微镜的探针及其制备方法,其能够简化近场光学显微镜结构和操作复杂度,大大拓宽其使用范围,从而方便探针在各种环境中的传递和更换。 [0006] The present invention solves the technical problem, and to provide a method for preparing a probe SNOM for which NSOM can be simplified structure and operation complexity, significantly broadening its use so as to facilitate transmitting probe and replaced in a variety of environments.

[0007] 为了解决上述问题,本发明提供了一种用于近场光学显微镜的探针,包括悬臂梁基底、设置在所述悬臂梁基底上的半导体针尖,设置在半导体针尖上的两个金属电极,所述两个金属电极相对设置,所述半导体针尖与两个金属电极形成用于将光信号转换为电信号的金属-半导体-金属光电探测器,其中一个金属电极用于与一外部直流偏压加载装置连接,另一金属电极用于收集光电流并将光电流传输给近场光学显微镜的控制器。 [0007] In order to solve the above problems, the present invention provides a probe for a near-field optical microscope, the cantilever comprising a substrate, a semiconductor tip disposed on the cantilever substrate, two metal provided on the semiconductor tip electrode disposed opposite the two metal electrodes, the semiconductor tip is formed with two metal electrodes for converting optical signals to electrical signals metal - semiconductor - metal photodetector, wherein a metal electrode is used with an external DC loading the biasing means, and the other metal electrode for collecting light and the photoelectric current controller stream to near-field optical microscope.

[0008] 进一步,所述半导体针尖的材料为II1-族氮化物。 [0008] Further, as the semiconductor material of the tip II1- nitride.

[0009] 进一步,所述II1-族氮化物包括氮化镓、氮化铝、氮化铟及其合金。 [0009] Further, the II1- comprising gallium nitride, aluminum nitride, indium nitride and their alloys.

[0010] 一种上述的用于近场光学显微镜的探针的制备方法,包括如下步骤:提供一悬臂梁基底;在所述悬臂梁基底上形成半导体针尖;在所述半导体针尖上形成两个相对设置的金属电极;所述半导体针尖与两个金属电极形成用于将光信号转换为电信号的金属-半导体_金属光电探测器。 [0010] A method for preparing the above-described probe for near-field optical microscope, comprising the steps of: providing a cantilever substrate; forming a cantilever on the tip of the semiconductor substrate; two are formed on the semiconductor tip metal electrode disposed opposite; the semiconductor tip is formed of metal and two metal electrodes for converting optical signals into electrical signals - _ metal semiconductor photodetector.

[0011] 进一步,所述在所述悬臂梁基底上形成半导体针尖的步骤还包括如下步骤:在所述悬臂梁基底上依次生长半导体层、二氧化硅层及金属层;在所述金属层表面相对于悬臂梁基底上制作半导体针尖的位置涂有光刻胶进行保护;依次去除没有光刻胶保护的金属层及二氧化硅层,使得在所述半导体层上形成一凸起,所述凸起的组成自半导体层依次为二氧化硅层、金属层及光刻胶;依次去除所述凸起上的光刻胶及金属层,形成仅包含二氧化硅层的凸起;刻蚀所述半导体层及二氧化硅层,至二氧化硅层消失,形成一半导体针尖,在所述半导体针尖所在位置之外暴露出悬臂梁基底。 Step [0011] Further, the tip is formed in a semiconductor substrate on said cantilever further comprising the step of: sequentially growing a semiconductor layer, a silicon dioxide layer and a metal layer on the cantilever substrate; the surface of the metal layer with respect to the cantilever tip fabricating a semiconductor substrate coated with a protective photoresist; sequentially removing the metal layer not protected by the photoresist and the silicon dioxide layer, such that a projection is formed on the semiconductor layer, the projections since the composition of the semiconductor layer followed by a silicon dioxide layer, a metal layer and a photoresist; etching the semiconductor layer; sequentially removing the photoresist projection and a metal layer, forming silicon dioxide layer comprising only projections and a silicon dioxide layer, a silicon dioxide layer to disappear forming a semiconductor tip, a cantilever substrate is exposed outside of the semiconductor position where the needle tip.

[0012] 进一步,所述在所述半导体针尖上形成两个相对设置的金属电极的步骤还包括如下步骤:在所述半导体针尖表面沉积一金属薄膜;将所述金属薄膜刻蚀为两个相对设置的电极,所述半导体针尖与两个金属电极形成金属-半导体-金属光电探测器,所述金属-半导体-金属光电探测器用于将光信号转换为电信号。 Step [0012] Further, the metal electrodes are formed two oppositely disposed on said semiconductor tip further comprising the step of: depositing a metal thin film on a surface of the semiconductor tip; the two opposing metal thin film is etched electrodes, the semiconductor tip and two metal electrodes forming a metal - semiconductor - metal photodetector, the metal - semiconductor - metal photodetector for converting an optical signal into an electric signal.

[0013] 进一步,在所述悬臂梁基底上生长半导体层后,生长二氧化硅层之前,在所述半导体层上继续生长一与所述半导体层材料不同的另一半导体层。 [0013] Further, after growing a semiconductor layer on the cantilever substrate, prior to growth of a silicon dioxide layer, on said semiconductor layer continues to grow semiconductor layers of different semiconductor material layer with said further.

[0014] 进一步,所述半导体针尖的材料为II1-族氮化物。 [0014] Further, the semiconductor material is a tip II1- nitride.

[0015] 一种用于近场光学显微镜的探针,包括悬臂梁基底,形成于所述悬臂梁基底上的半导体针尖,以及形成于所述半导体针尖上的两个金属电极。 [0015] A probe for a near-field optical microscope, the cantilever comprising a substrate, formed on the semiconductor substrate on the tip of the cantilever, the two metal electrodes and forming on the semiconductor tip.

[0016] 本发明的优点在于,由半导体针尖本身将近场光学信号转换成电信号输出,从而在近场光学测量中避免了使用复杂的光学耦合系统将探针针尖采集到的光信号传导到远处的光电探测器,简化了近场光学显微镜结构和操作复杂度,大大拓宽了其使用范围,从而方便探针在各种环境(包括超高真空环境)中的传递和更换,并且不需要在实验中耗费大量人力调节光学系统使其稳定地对准探针尖端。 [0016] The advantage of the present invention is that the near field of the optical signal converted by the semiconductor tip itself into an electrical signal output, thereby avoiding the use of complex optical system coupled to the probe tip of an optical signal transmitted to the far acquired in the near field optical measurement at the photodetector, the near-field optical microscope simplifies the structure and complexity of operation, greatly broadens the scope of its use, so as to facilitate transfer and replacement of the probe in various environments (including ultra-high vacuum environment), and need not be experiment labor intensive adjustment optical system so as to stably aligned with the probe tip.

附图说明 BRIEF DESCRIPTION

[0017] 图1A及图1B所示为现有技术中近场光学显微镜的探针示意图; [0017] As shown in FIGS. 1A and 1B a schematic view of a probe for the near-field optical microscope in the prior art;

图2A所示为本发明用于近场光学显微镜的探针的侧面示意图; FIG 2A present invention is shown a side schematic view of a probe for a near-field optical microscope;

图2B所示为本发明用于近场光学显微镜的探针的俯视图; FIG. 2B present invention is shown a top view of a probe for near-field optical microscope;

图3所示为用于近场光学显微镜的探针的制备方法的步骤示意图; 3 shows a step of the method for NSOM probe schematic;

图4A〜图4H及5A〜图5H所示为本发明用于近场光学显微镜的探针的制备流程图,其中,图4A〜图4H为侧视图,图5A〜图5H为俯视图。 FIG 4H and FIG 4A~ 5A~ flowchart of FIG. 5H prepared NSOM probe of the present invention is shown, in which, FIG 4A~ FIG. 4H is a side view, FIG 5A~ FIG 5H is a top view of FIG.

具体实施方式 detailed description

[0018] 下面结合附图对本发明提供的用于近场光学显微镜的探针及其制备方法的具体实施方式做详细说明。 [0018] DETAILED DESCRIPTION probe and its preparation method for the near-field optical microscope of the drawings The present invention provides the following detailed description made in conjunction.

[0019] 图2A所示为本发明用于近场光学显微镜的探针的侧面示意图,图2B所示为本发明用于近场光学显微镜的探针的俯视图。 [0019] Figure 2A for a schematic view of the present invention, the side surface of the probe near-field optical microscope, the probe is a top view of FIG invention, for near-field optical microscope in Figure 2B. 参见图2A及图2B所示,本发明用于近场光学显微镜的探针包括悬臂梁基底20、设置在所述悬臂梁基底20上的半导体针尖21、设置在半导体针尖21上的两个金属电极22。 Two metal semiconductor probe tip see FIG. 2A and FIG. 2B, the present invention is used in NSOM cantilever comprises a substrate 20, disposed on the cantilever 21 of the base 20, disposed on the semiconductor tip 21 electrode 22.

[0020] 所述悬臂梁基底20可以采用单晶硅制备。 [0020] The preparation of single-crystal silicon cantilever substrate 20 may be employed. 所述半导体针尖21可以采用II1-族氮化物材料制备,例如,氮化镓、氮化铝、氮化铟及其合金。 The tip 21 of the semiconductor preparation II1- nitride material may be used, e.g., gallium nitride, aluminum nitride, indium nitride and their alloys. 依其不同的组分,其禁带宽度可以覆盖从红外、可见光一直到紫外波段范围,并且全部为直接带隙半导体,具有优良的光电转换特性;并且具有高的热导率、化学稳定性好(几乎不被任何酸腐蚀)等性质和强的抗辐照能力,可以应用于各种使用环境。 According to its different components, which can cover the forbidden band from the infrared, visible light up to ultraviolet range, and all of the direct band gap semiconductor having an excellent photoelectric conversion characteristics; and having a high thermal conductivity, good chemical stability (hardly etched any acid) and other properties of radiation hardness and strength, can be applied to various use environments. 所述金属电极22可以采用金属制备,例如,铝。 The metal electrode 22 can be prepared using a metal, such as aluminum.

[0021] 所述两个金属电极22相对设置,所述半导体针尖21与两个金属电极22形成用于将光信号转换为电信号的金属-半导体-金属光电探测器(MSM光电探测器),其中一个金属电极22与一外部直流偏压加载装置连接,另一金属电极22收集光电流并将光电流传输给近场光学显微镜的控制器。 [0021] The two metal electrode 22 disposed opposite the semiconductor tip 21 is formed with two metal electrodes 22 for converting optical signals into electrical signals a metal - semiconductor - metal photodetector (MSM photodetector), wherein a metal electrode 22 is connected to an external DC bias loading apparatus, another metal electrode 22 collect light and a photoelectric current stream to the controller of the near-field optical microscope. 进一步,在半导体针尖21的针尖尖端这一对金属电极22间具有一距离,所述距离可以为50〜100 nm。 Further, the tip of the semiconductor tip 21 having a tip distance between the metal electrodes 22, the distance may be 50~100 nm.

[0022] 金属-半导体-金属光电探测器(MSM光电探测器)利用金属半导体接触界面附近肖脱基势垒造成的内建电场使光生电子空穴对分离,并扩散到两个金属电极中,形成光电流。 [0022] a metal - semiconductor - metal photodetector built-in field (MSM photodetector) near the metal-semiconductor contact interfaces using Schottky barrier caused by the light-generated electron hole pairs are separated and spread to two metal electrodes, The photo-currents. 它只需要在半导体同一侧制备出两组电极,并且两个电极可以使用同一材质的金属,不要制备欧姆接触的电极、不需要对半导体进行掺杂,加工制备简单。 It requires the same side of the semiconductor preparation of two sets of electrodes, and two electrodes can be made of the same metal, ohmic contact electrode not prepared, the semiconductor need not be doped, prepared simple processing. 同时,金属-半导体-金属光电探测器(MSM光电探测器)具有响应速度极快、暗电流低等优势。 Meanwhile, a metal - semiconductor - metal photodetector (MSM photodetector) having a fast response, the advantages of low dark current. 这些优良特性是本发明为突破传统近场光学显微镜局限的物理基础。 These properties are superior to conventional NSOM break the physical limitation basis of the present invention.

[0023] 本发明用于近场光学显微镜的探针使用如同普通原子力显微镜一样。 [0023] The present invention is a probe for SNOM using the same as an ordinary atomic force microscope. 将本发明的探针安装于原子力显微镜扫描头部,在原子力显微镜控制器的控制下使半导体针尖21与样品表面接触,并将半导体针尖21移至样品表面待测位置,通过半导体针尖21尖端与样品间力的相互作用来维持半导体针尖21与样品间距离的恒定。 The probe of the present invention is attached to an atomic force microscope scanning head, under the control of the semiconductor tip atomic force microscope controller 21 in contact with the sample surface, and the semiconductor tip 21 to the position of the measured sample surface, the tip and the semiconductor tip 21 interaction between the sample to maintain a constant distance between the sample 21 and the semiconductor tip.

[0024] 探测与控制样品与半导体针尖21之间的相互作用力是原子力显微镜基本功能之一,通常说来,在控制样品与半导体针尖21之间的作用力不变,即意味着二者间的距离不变。 [0024] 21 force between the probe tip and the semiconductor sample and the control is one of the basic functions of an atomic force microscope, generally speaking, a force between the control sample and the semiconductor tip 21 is constant, which means that between the two the distance constant. 同时,半导体针尖21和两个金属电极共同组成了金属-半导体-金属光电探测器(MSM光电探测器),在其中一个金属电极22上加载直流偏压(金属-半导体-金属光电探测器必须在有偏置电压情况下工作),当半导体针尖21尖端附近有光信号的时候,会在金属电极22中产生光电流,另一个金属电极22收集到的光电流经过电流前置放大器放大后送入近场光学显微镜控制器,并最终被控制计算机采集和记录,并通过控制半导体针尖21在样品表面逐点扫描而形成近场光学像。 Meanwhile, the semiconductor tip 21 and two metal electrodes composed of a metal - semiconductor - metal photodetector (MSM photodetector), in which a metal electrode 22 is loaded DC bias (metal - semiconductor - metal photodetector must working under the bias voltages), when a semiconductor tip 21 near the tip of the optical signal, a current is generated photocurrent, the other metal electrode 22 to the collector of the current after the pre-amplifier 22 is fed in the metal electrodes NSOM controller, and eventually control the computer acquisition and recording, and is formed by a near-field optical image of the semiconductor tip 21 by controlling the scanning point on the sample surface.

[0025] 本发明还提供一种上述用于近场光学显微镜的探针的制备方法,图3 A所示为用于近场光学显微镜的探针的制备方法的步骤示意图。 [0025] The present invention also provides a method for preparing the above-described near-field optical microscopy probe, a schematic diagram is shown in FIG step preparation method for NSOM probe 3 A. 参见图3,所述方法包括如下步骤:步骤S30、提供一悬臂梁基底;步骤S31、在所述悬臂梁基底上形成半导体针尖;步骤S32、在所述半导体针尖上形成两个相对设置的金属电极;所述半导体针尖与两个金属电极形成金属-半导体-金属光电探测器,所述金属-半导体-金属光电探测器用于将光信号转换为电信号。 Referring to Figure 3, the method comprising the following steps: Step S30, the cantilever beam providing a substrate; step S31, the needle tip is formed on a semiconductor substrate of said cantilever; step S32, two oppositely disposed forming a metal on the semiconductor tip electrode; said semiconductor tip and two metal electrodes forming a metal - semiconductor - metal photodetector, the metal - semiconductor - metal photodetector for converting an optical signal into an electric signal.

[0026] 所述步骤S31在所述悬臂梁基底上形成半导体针尖步骤进一步还包括如下步骤:参见图3B,步骤S310、在所述悬臂梁基底上依次生长半导体层、二氧化硅层及金属层;步骤S311、在所述金属层表面相对于悬臂梁基底上制作半导体针尖的位置涂有光刻胶进行保护;步骤S312、依次去除没有光刻胶保护的金属层及二氧化硅层,使得在所述半导体层上形成一凸起,所述凸起的组成自半导体层依次为二氧化硅层、金属层及光刻胶;步骤S313、依次去除所述凸起上的光刻胶及金属层,形成仅包含二氧化硅层的凸起;步骤S314、刻蚀所述半导体层及二氧化硅层,至二氧化硅层消失,形成一半导体针尖。 [0026] Step S31 the step is formed on the semiconductor tip the cantilever substrate further comprises the step of: 3B, the step S310, the cantilever on the base semiconductor layer are sequentially grown silicon dioxide layer and a metal layer ; step S311, the surface of the metal layer with respect to the position of the tip of cantilever fabricating a semiconductor substrate coated with a protective photoresist; step S312, the sequence is not protected by the resist is removed and the silicon dioxide layer, a metal layer, such that the a projection is formed on the semiconductor layer, the composition of the protrusions from the semiconductor layer are a silicon dioxide layer, a metal layer and a photoresist; step S313, the projection sequentially removing the photoresist and the metal layer is formed only the projections comprise silicon dioxide layer; step S314, the semiconductor layer, and etching the silicon dioxide layer, a silicon dioxide layer to disappear forming a semiconductor tip.

[0027] 所述步骤S32在所述半导体针尖上形成两个相对设置的金属电极的步骤进一步还包括如下步骤:参见图3C,步骤S320、在所述半导体针尖表面沉积一金属薄膜;步骤S321、将所述金属薄膜刻蚀为两个相对设置的电极,所述半导体针尖与两个金属电极形成用于将光信号转换为电信号的金属-半导体-金属光电探测器。 Step [0027] The step S32 is formed of two metal electrodes disposed on opposing the semiconductor tip further comprising the step of: Referring to Figure 3C, step S320, the metal thin film is deposited on a surface of the semiconductor tip; step S321, etching the metal thin film is disposed opposite the two electrodes, the semiconductor tip is formed of metal and two metal electrodes for converting optical signals into electrical signals - semiconductor - metal photodetector.

[0028] 图4A〜图4H及5A〜图5H所示为本发明用于近场光学显微镜的探针的制备流程图,其中,图4A〜图4H为侧视图,图5A〜图5H为俯视图。 [0028] FIG 4A~ FIG 4H and 5H prepared flowchart of FIG 5A~ NSOM probe of the present invention is shown, in which, FIG 4A~ FIG. 4H is a side view, FIG 5A~ FIG 5H is a top view of FIG. .

[0029] 参见图44及图5么,参考步骤530,提供一悬臂梁基底401。 [0029] Referring to FIG. 44 and FIG. 5 Mody, with reference to step 530, substrate 401 provides a cantilever beam. 所述悬臂梁基底401可以采用单晶硅制备。 The cantilever beam 401 may be prepared in a single crystal silicon substrate employed.

[0030] 参见图4B及图5B,参考步骤S301,在所述悬臂梁基底401上依次生长半导体层402、二氧化硅层403及金属层404。 [0030] Referring to FIGS. 4B and 5B, the reference step S301, the semiconductor layer 402 are sequentially grown silicon dioxide layer 403 and the metal layer 404 on the substrate 401 of the cantilever.

[0031] 所述生长半导体层402的方法可以为金属有机化合物化学气相沉淀方法(M0CVD),金属有机化合物化学气相沉淀方法为现有技术,在此不赘述。 Method [0031] The growth of the semiconductor layer 402 may be a metal organic chemical vapor deposition method (M0CVD), metal organic chemical vapor deposition method of the prior art, is not described herein. 所述半导体层402的厚度可以为Γ4微米。 The thickness of the semiconductor layer 402 may be Γ4 microns. 所述半导体层402可以采用II1-族氮化物材料制备,例如,氮化镓、氮化铝、氮化铟及其合金。 The semiconductor layer 402 was prepared II1- nitride material may be used, e.g., gallium nitride, aluminum nitride, indium nitride and their alloys. 依其不同的组分,其禁带宽度可以覆盖从红外、可见光一直到紫外波段范围,并且全部为直接带隙半导体,具有优良的光电转换特性;并且具有高的热导率、化学稳定性好(几乎不被任何酸腐蚀)等性质和强的抗辐照能力,可以应用于各种使用环境。 According to its different components, which can cover the forbidden band from the infrared, visible light up to ultraviolet range, and all of the direct band gap semiconductor having an excellent photoelectric conversion characteristics; and having a high thermal conductivity, good chemical stability (hardly etched any acid) and other properties of radiation hardness and strength, can be applied to various use environments.

[0032] 进一步,根据本发明用于近场光学显微镜的探针所探测的光的波长,必要时还可在半导体薄膜之上再生长10〜100 nm其它II1-族氮化物材料。 [0032] Further, according to the present invention, the wavelength of light used for NSOM probe detected, but also other II1- regrowth 10~100 nm nitride material over the semiconductor film, if necessary.

[0033] 所述生长二氧化硅层403的方法为等离子体增强化学气相沉积法(PECVD),等离子体增强化学气相沉积法为现有技术,在此不赘述。 Method [0033] The grown silicon dioxide layer 403 is a plasma enhanced chemical vapor deposition (PECVD), plasma enhanced chemical vapor deposition of the prior art, is not described herein.

[0034] 所述生长金属层404的方法为电子束蒸发方法,电子束蒸发方法为现有技术,在此不赘述。 Method [0034] The growth of the metal layer 404 is an electron beam evaporation method, an electron beam evaporation method of the prior art, is not described herein. 在本具体实施方式中,所述金属层404的材料为镍,在本发明其他实施方式中,也可以为金等其他金属。 In the present embodiment, the metal layer 404 is a nickel material, in other embodiments of the present invention may be gold and other metals.

[0035] 参见图4C及图5C,参考步骤S311,在所述金属层404表面相对于悬臂梁基底上制作半导体针尖的位置涂有光刻胶405进行保护。 [0035] Referring to FIGS. 4C and 5C, the reference to step S311, the surface of the metal layer 404 with respect to the position of the tip of cantilever fabricating a semiconductor substrate 405 is coated with photoresist to protect. 所述光刻胶405可以为PMMA光刻胶。 The photoresist 405 may be a PMMA photoresist. 在本具体实施方式中,仅在所述金属层404表面相对于悬臂梁基底上制作半导体针尖的位置涂有光刻胶405进行保护。 In the present embodiment, only the surface of the metal layer 404 with respect to the position of the tip of cantilever fabricating a semiconductor substrate 405 is coated with photoresist to protect. 而在本发明其他具体实施方式中,所述光刻胶405涂覆在金属层404的全部表面,则需要进一步去除制作半导体针尖的位置之外的金属层404表面的光刻胶405,使得仅在所述金属层404表面相对于悬臂梁基底上制作半导体针尖的位置涂有光刻胶405进行保护。 In other embodiments of the present invention, the photoresist 405 is coated on the entire surface of the metal layer 404, it is necessary to further remove the photoresist surface of the metal layer 404 other than the position of fabricating a semiconductor tip 405, such that only the surface of the metal layer 404 with respect to the position of the tip of cantilever fabricating a semiconductor substrate 405 is coated with photoresist to protect. 所述去除光刻胶405的方法为紫外线光刻。 The method of removing the photoresist 405 is ultraviolet lithography.

[0036] 参见图4D及图参考步骤S312,依次去除没有光刻胶405保护的金属层404及二氧化硅层403,使得在所述半导体层402上形成一凸起,所述凸起的组成自半导体层402依次为二氧化娃层403、金属层404及光刻胶405。 [0036] Referring to FIGS. 4D and the reference step S312, the sequentially removing the metal layer 405 not protected by the photoresist 404 and silicon dioxide layer 403, such that a projection is formed on the semiconductor layer 402, the composition of the projections since the semiconductor layer 402 were baby dioxide layer 403, the metal layer 404 and the photoresist 405.

[0037] 去除所述金属层404的方法根据金属层404的材料不同而不同,例如,金属层404为镍时,可采用三氯化铁溶液湿法腐蚀镍层。 Method [0037] removing the metal layer 404 depending on the material of the metal layer 404 being different, e.g., a nickel metal layer 404, a wet etching solution of ferric chloride may be employed a nickel layer. 采用镍作为金属层404的材料的优点在于,在本步骤去除金属层404时,仅需用三氯化铁溶液腐蚀镍即可,方法简单、安全、成本低。 The advantages of using nickel as the material of the metal layer 404 that, in this step of removing the metal layer 404, only with a ferric chloride solution to the corrosion of nickel, simple, safe, and low cost. 去除所述二氧化硅层403的方法为反应离子刻蚀的方法(RIE)。 The method of removing the silicon dioxide layer 403 is a method (RIE) reactive ion etching. 所述三氯化铁溶液湿法腐蚀金属膜及反应离子刻蚀的方法为现有技术,在此不赘述。 The wet etching solution of ferric chloride method of reactive ion etching of metal film of the prior art, is not described herein.

[0038] 参见图4E及图5E,参考步骤S313,依次去除所述凸起上的光刻胶405及金属层404,形成仅包含二氧化硅层403的凸起。 [0038] Referring to FIGS. 4E and 5E, the reference step S313, the projection sequentially removing the photoresist 405 and the metal layer 404, forming silicon dioxide layer 403 comprising a projection only. 去除所述光刻胶405的方法为采用丙酮浸泡。 The method of removing the photoresist 405 is acetone soak. 去除所述金属层404的方法为采用三氯化铁溶液湿法腐蚀金属膜。 The method of removing the metal layer 404 is a wet etching using ferric chloride solution the metal film.

[0039] 参见图4F及图5F,参考步骤S314,刻蚀所述半导体层402及二氧化硅层403,至二氧化硅层403消失,形成一半导体针尖406,在半导体针尖406所在位置之外暴露出悬臂梁基底401。 [0039] Referring to FIGS. 4F and FIG. 5F, the reference step S314, the semiconductor layer 402 and etching the silicon dioxide layer 403, silicon dioxide layer 403 to disappear, a semiconductor tip 406 is formed outside the location of the needle tip 406 of the semiconductor cantilever substrate 401 is exposed. 在本具体实施方式中,所述刻蚀半导体层402及二氧化硅层403的方法为感应耦合等离子体方法(ICP),此方法为现有技术,在此不赘述。 In the present embodiment, the etching method of the semiconductor layer 402 and silicon dioxide layer 403 is an inductively coupled plasma method (the ICP), the method of the prior art, is not described herein. 在采用感应耦合等离子体方法刻蚀半导体层402及二氧化硅层403时,二氧化硅层403刻蚀速度慢于半导体层402,所以在二氧化硅层403覆盖的区域下逐渐形成锥形,直至二氧化硅层403消失,形成半导体针尖406,此时半导体层402并没有被完全刻蚀掉。 In the method using inductively coupled plasma etching the semiconductor layer 402, and when the silicon dioxide layer 403, silicon dioxide layer 403 is slower than the etching rate of the semiconductor layer 402, the gradually tapered area 403 covered by the silicon dioxide layer, until the disappearance of the silicon dioxide layer 403, a semiconductor tip 406, and at this time the semiconductor layer 402 is not etched away.

[0040] 参见图4G及图5G,参考步骤S320,在所述半导体针尖406表面沉积一金属薄膜407。 [0040] Referring to FIGS. 4G and FIG. 5G, with reference to step S320, the metal thin film 407 is deposited on a surface of the semiconductor tip 406. 所述沉积金属薄膜407的方法电子束蒸发的方法,所述金属薄膜407的材料可以为金属招。 The method of depositing the metal thin film 407 of the electron beam evaporation method, the metal thin film material 407 may be a metal strokes.

[0041] 参见图4H及图5H,参考步骤S321,将所述金属薄膜407刻蚀为两个相对设置的金属电极408,所述半导体针尖406与两个金属电极408形成用于将光信号转换为电信号的金属-半导体-金属光电探测器。 [0041] Referring to FIGS. 4H and FIG 5H, the step S321, the reference, etching the metal thin film 407 is disposed opposite the two metal electrodes 408, 406 of the semiconductor tip is formed with two metal electrodes 408 for converting an optical signal metal electrical signal - semiconductor - metal photodetector. 所述刻蚀金属电极408的方法为聚焦离子束的方法。 The method of etching the metal electrode 408 is a focused ion beam method. 进一步,在半导体针尖406的针尖尖端这一对金属电极408间具有一距离,所述距离可以为50〜100 nm。 Further, the needle tip of the semiconductor tip 406 having a distance the metal electrodes 408, the distance may be 50~100 nm.

[0042] 下面列举本发明于近场光学显微镜的探针的制备方法的实施例。 [0042] The present invention is exemplified in the following embodiment of a method of preparation of the near-field optical microscopy probe.

[0043] (a)在单晶Si的悬臂梁基底上用MOCVD方法生长I〜4 μ m的半导体层,例如,GaN薄膜层。 [0043] (a) growing a semiconductor layer I~4 μ m by the MOCVD method on the cantilever of the single-crystal Si substrate, e.g., GaN thin film layer. 这种生长方法属已有的公知技术,此处不再详细叙述。 This genus conventional growth method known technique, not described in detail here. 根据所探测的光的波长,必要时还在GaN薄膜层之上再生长10〜100 nm其它II1-族氮化物材料。 The wavelength of light detected, if necessary, re-growth of 10~100 nm II1- other nitride material on the GaN thin film layer.

[0044] (b)在所述半导体层表面使用PECVD方法生长300nm 二氧化硅层。 [0044] (b) growing a silicon dioxide layer using the PECVD method 300nm on a surface of the semiconductor layer.

[0045] (C)在所述二氧化硅层表面使用电子束蒸发方法沉积10〜100 nm厚的镍层。 [0045] (C) a nickel surface layer of the silicon dioxide layer is deposited using electron beam evaporation method in a thickness of 10~100 nm.

[0046] (d)在所述镍层表面旋涂PMMA光刻胶。 [0046] (d) the surface of the PMMA resist was spin-coated nickel layer.

[0047] (e)通过紫外线光刻去除大部分PMMA光刻胶,保留直径0.5〜I μπι圆盘状PMMA光刻胶。 [0047] (e) removal of most PMMA resist ultraviolet photolithography, disk-shaped retention 0.5~I μπι diameter PMMA photoresist.

[0048] (f)在三氯化铁溶液中湿法腐蚀镍层,去掉除了有PMMA光刻胶保护区域以外其它部分的镍层。 [0048] (f) a wet etching solution of ferric chloride in the nickel layer, the photoresist is removed in addition to PMMA protected region than other portions of the nickel layer.

[0049] (g) RIE方法刻蚀掉除了镍层保护的区域之外其它部分的二氧化硅层。 [0049] (g) RIE etching method other than the region away the nickel layer protects other portions of the silicon dioxide layer.

[0050] (h)在丙酮中浸泡去掉PMMA光刻胶圆盘,然后再在三氯化铁溶液中浸泡去掉原来在光刻胶下面的镍层。 [0050] (h) soaking in acetone to remove the PMMA photoresist disk, and then immersed in ferric chloride solution to remove the original nickel layer below the photoresist.

[0051] (i) ICP方法刻蚀半导体层,二氧化硅层圆盘也会被刻蚀,但是刻蚀速度慢于半导体层,在有二氧化硅层圆盘覆盖的区域下面会逐渐形成锥形。 [0051] (i) ICP etching method of a semiconductor layer, a silicon dioxide layer disc will be etched, but the etching speed is slower than the semiconductor layer in a region under the silicon dioxide layer covering the disk will gradually taper shape.

[0052] (j)刻蚀至半导体层圆盘消失,形成半导体针尖。 [0052] (j) etching the semiconductor layer to disappear disk, a semiconductor tip.

[0053] (k)在半导体针尖表面使用电子束蒸发方法镀50〜100 nm的Al膜。 [0053] (k) an Al film using electron beam evaporation plating 50~100 nm in the surface of the semiconductor tip.

[0054] (I)用聚焦离子束刻蚀的方法在半导体针尖表面将Al膜刻画成一对金属电极,在半导体针尖尖端这一对金属电极间的间距为50〜100 nm。 [0054] (I) by focused ion beam etching method of a semiconductor tip surface of the Al film to portray a pair of metal electrodes, the tip of the semiconductor tip distance between the metal electrodes 50~100 nm.

[0055] 以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。 [0055] The above are only preferred embodiments of the present invention, it should be noted that for those of ordinary skill in the art, without departing from the principles of the present invention is provided, can make various improvements and modifications, improvements and modifications of these also it is considered the scope of the present invention.

Claims (9)

  1. 1.一种用于近场光学显微镜的探针,其特征在于,包括悬臂梁基底、设置在所述悬臂梁基底上的半导体针尖,设置在半导体针尖上的两个金属电极,所述两个金属电极相对设置,所述半导体针尖与两个金属电极形成用于将光信号转换为电信号的金属-半导体-金属光电探测器,其中一个金属电极用于与一外部直流偏压加载装置连接,另一金属电极用于收集光电流并将光电流传输给近场光学显微镜的控制器。 1. A probe for a near-field optical microscope, characterized in that the cantilever tip including a semiconductor substrate, disposed on the cantilever substrate, two metal electrodes on the semiconductor tip, the two metal electrode disposed opposite the semiconductor tip is formed of metal and two metal electrodes for converting optical signals into electrical signals - semiconductor - metal photodetector, and wherein a metal electrode for connecting an external DC bias application means, another metal electrode for collecting light and the photoelectric current controller stream to near-field optical microscope.
  2. 2.根据权利要求1所述的用于近场光学显微镜的探针,其特征在于,所述半导体针尖的材料为in-族氮化物。 According to claim NSOM probe of claim 1, wherein said semiconductor material is a tip in- nitride.
  3. 3.根据权利要求2所述的用于近场光学显微镜的探针,其特征在于,所述II1-族氮化物包括氮化镓、氮化铝、氮化铟及其合金。 According to claim NSOM probe of claim 2, wherein said II1- comprising gallium nitride, aluminum nitride, indium nitride and their alloys.
  4. 4.一种权利要求1所述的用于近场光学显微镜的探针的制备方法,其特征在于,包括如下步骤:提供一悬臂梁基底;在所述悬臂梁基底上形成半导体针尖;在所述半导体针尖上形成两个相对设置的金属电极;所述半导体针尖与两个金属电极形成用于将光信号转换为电信号的金属-半导体-金属光电探测器。 Claim 4. A method for preparing a probe for a near-field optical microscope of claim 1, characterized by comprising the steps of: providing a cantilever substrate; forming a cantilever on the tip of the semiconductor substrate; in the said two metal electrodes are formed on a semiconductor tip disposed opposite; the semiconductor tip is formed of metal and two metal electrodes for converting optical signals into electrical signals - semiconductor - metal photodetector.
  5. 5.根据权利要求4所述的用于近场光学显微镜的探针的制备方法,其特征在于,所述在所述悬臂梁基底上形成半导体针尖的步骤进一步还包括如下步骤:在所述悬臂梁基底上依次生长半导体层、二氧化硅层及金属层;在所述金属层表面相对于悬臂梁基底上制作半导体针尖的位置涂覆光刻胶进行保护;依次去除没有光刻胶保护的金属层及二氧化硅层,使得在所述半导体层上形成一凸起,所述凸起的组成自半导体层依次为二氧化硅层、金属层及光刻胶;依次去除所述凸起上的光刻胶及金属层,形成仅包含二氧化硅层的凸起;刻蚀所述半导体层及二氧化硅层,至二氧化硅层消失,形成一半导体针尖,在所述半导体针尖所在位置之外暴露出悬臂梁基底。 The method of preparation according to claim NSOM probes for 4, wherein the step of further semiconductor tip further comprising the step of said cantilever is formed on the substrate: the cantilever beam sequentially grown on a substrate of the semiconductor layer, a silicon dioxide layer and the metal layer; relative to the surface of the metal layer is made of a semiconductor cantilever tip photoresist coated substrate protected position; sequentially removing metal not protected by photoresist layer and a silicon dioxide layer, such that a projection is formed on the semiconductor layer, the composition of the protrusions from the semiconductor layer are a silicon dioxide layer, a metal layer and a photoresist; sequentially removing the protrusions on the the photoresist and metal layer, forming silicon dioxide layer comprising only projections; etching the semiconductor layer and the silicon dioxide layer, a silicon dioxide layer to disappear forming a semiconductor tip, the needle tip location in said semiconductor cantilever substrate is exposed outside.
  6. 6.根据权利要求4所述的用于近场光学显微镜的探针的制备方法,其特征在于,所述在所述半导体针尖上形成两个相对设置的金属电极的步骤进一步还包括如下步骤:在所述半导体针尖表面沉积一金属薄膜;将所述金属薄膜刻蚀为两个相对设置的电极,所述半导体针尖与两个金属电极形成金属-半导体-金属光电探测器,所述金属-半导体-金属光电探测器用于将光信号转换为电信号。 The method of preparation according to claim NSOM probes for 4, wherein the step of two opposing metal electrodes disposed on the semiconductor forming the tip further comprises the step of: depositing a metal thin film on a surface of the semiconductor tip; etching the metal thin film is disposed opposite the two electrodes, the semiconductor tip and two metal electrodes forming a metal - semiconductor - metal photodetector, the metal - semiconductor - metal photodetector for converting an optical signal into an electric signal.
  7. 7.根据权利要求5所述的用于近场光学显微镜的探针的制备方法,其特征在于,在所述悬臂梁基底上生长半导体层后,生长二氧化硅层之前,进一步在所述半导体层上继续生长一与所述半导体层材料不同的另一半导体层。 A method according to claim preparing a probe for a near-field optical microscope of claim 5, wherein the semiconductor layer is grown on the cantilever substrate, prior to growth of a silicon dioxide layer, said further semiconductor continue to grow semiconductor layers of different material with a further layer of the upper semiconductor layer.
  8. 8.根据权利要求4所述的用于近场光学显微镜的探针的制备方法,其特征在于,所述半导体针尖的材料为in-族氮化物。 Production method according to claim NSOM probes for 4, wherein said material is a semiconductor tip in- nitride.
  9. 9.一种用于近场光学显微镜的探针,其特征在于,包括悬臂梁基底,形成于所述悬臂梁基底上的半导体针尖,以及形成于所述半导体针尖上的两个金属电极。 A probe for a near-field optical microscope, wherein the substrate comprises a cantilever beam, is formed in the semiconductor substrate on the tip of the cantilever, the two metal electrodes and forming on the semiconductor tip.
CN 201410036355 2014-01-26 2014-01-26 Probe for near-field optical microscopes and preparation method thereof CN104808017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201410036355 CN104808017A (en) 2014-01-26 2014-01-26 Probe for near-field optical microscopes and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201410036355 CN104808017A (en) 2014-01-26 2014-01-26 Probe for near-field optical microscopes and preparation method thereof

Publications (1)

Publication Number Publication Date
CN104808017A true true CN104808017A (en) 2015-07-29

Family

ID=53693022

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201410036355 CN104808017A (en) 2014-01-26 2014-01-26 Probe for near-field optical microscopes and preparation method thereof

Country Status (1)

Country Link
CN (1) CN104808017A (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618760A (en) * 1994-04-12 1997-04-08 The Board Of Trustees Of The Leland Stanford, Jr. University Method of etching a pattern on a substrate using a scanning probe microscope
US5838005A (en) * 1995-05-11 1998-11-17 The Regents Of The University Of California Use of focused ion and electron beams for fabricating a sensor on a probe tip used for scanning multiprobe microscopy and the like
JPH1166650A (en) * 1997-08-26 1999-03-09 Canon Inc Manufacture of protrusion having fine aperture, protrusion having fine aperture and probe or multiprobe therewith
JPH11250513A (en) * 1998-03-05 1999-09-17 Seiko Epson Corp Probe device and heating and positioning methods using the device
US6198300B1 (en) * 1997-07-08 2001-03-06 International Business Machines Corporation Silicided silicon microtips for scanning probe microscopy
JP2005146312A (en) * 2003-11-12 2005-06-09 Tokyo Institute Of Technology Method of forming film body having micropore, film body, method of forming mask for forming film body having micropore, and mask for forming film body having micropore
WO2005103604A2 (en) * 2004-04-15 2005-11-03 California Institute Of Technology Metallic thin film piezoresistive transduction in micromechanical and nanomechanical devices and its application in self-sensing spm probes
KR20060103299A (en) * 2006-08-11 2006-09-28 조진형 Half-metal cro2 coated atomic force microscope tip
DE102006020727A1 (en) * 2006-04-27 2007-10-31 Technische Universität Dresden Optical near field scanning microscope`s scanning arm, has insulator layer provided on scanning arm covered with metallic layer, spike of probe decomposing into light at plasmon mode and leaked light collected for optical detection
CN101169981A (en) * 2006-10-26 2008-04-30 三星电子株式会社;首尔国立大学校产学协力财团 Semiconductor probe possessing high resolution resistance tip and method for manufacturing same
CN101183567A (en) * 2007-12-14 2008-05-21 暨南大学 Method of producing probe of near-field optical microscope
US20110078835A1 (en) * 2007-03-19 2011-03-31 Intel Corporation Seek-scan probe (ssp) memory with sharp probe tips formed at cmos-compatible temperatures

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618760A (en) * 1994-04-12 1997-04-08 The Board Of Trustees Of The Leland Stanford, Jr. University Method of etching a pattern on a substrate using a scanning probe microscope
US5838005A (en) * 1995-05-11 1998-11-17 The Regents Of The University Of California Use of focused ion and electron beams for fabricating a sensor on a probe tip used for scanning multiprobe microscopy and the like
US6198300B1 (en) * 1997-07-08 2001-03-06 International Business Machines Corporation Silicided silicon microtips for scanning probe microscopy
JPH1166650A (en) * 1997-08-26 1999-03-09 Canon Inc Manufacture of protrusion having fine aperture, protrusion having fine aperture and probe or multiprobe therewith
JPH11250513A (en) * 1998-03-05 1999-09-17 Seiko Epson Corp Probe device and heating and positioning methods using the device
JP2005146312A (en) * 2003-11-12 2005-06-09 Tokyo Institute Of Technology Method of forming film body having micropore, film body, method of forming mask for forming film body having micropore, and mask for forming film body having micropore
WO2005103604A2 (en) * 2004-04-15 2005-11-03 California Institute Of Technology Metallic thin film piezoresistive transduction in micromechanical and nanomechanical devices and its application in self-sensing spm probes
DE102006020727A1 (en) * 2006-04-27 2007-10-31 Technische Universität Dresden Optical near field scanning microscope`s scanning arm, has insulator layer provided on scanning arm covered with metallic layer, spike of probe decomposing into light at plasmon mode and leaked light collected for optical detection
KR20060103299A (en) * 2006-08-11 2006-09-28 조진형 Half-metal cro2 coated atomic force microscope tip
CN101169981A (en) * 2006-10-26 2008-04-30 三星电子株式会社;首尔国立大学校产学协力财团 Semiconductor probe possessing high resolution resistance tip and method for manufacturing same
US20110078835A1 (en) * 2007-03-19 2011-03-31 Intel Corporation Seek-scan probe (ssp) memory with sharp probe tips formed at cmos-compatible temperatures
CN101183567A (en) * 2007-12-14 2008-05-21 暨南大学 Method of producing probe of near-field optical microscope

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘海涛 等: "微悬臂梁非致冷红外探测器的研制", 《红外与毫米波学报》 *
姜坤 等: "硅酸凝胶碳热还原氮化法制备氮化硅粉体的结构及形貌", 《机械工程材料》 *

Similar Documents

Publication Publication Date Title
Lambelet et al. Chemically etched fiber tips for near-field optical microscopy: a process for smoother tips
Lindquist et al. Engineering metallic nanostructures for plasmonics and nanophotonics
Choi et al. Fully rollable transparent nanogenerators based on graphene electrodes
Alda et al. Optical antennas for nano-photonic applications
Rosner et al. High-frequency near-field microscopy
US5770856A (en) Near field sensor with cantilever and tip containing optical path for an evanescent wave
Tang et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna
Stadler et al. Developments in and practical guidelines for tip-enhanced Raman spectroscopy
US5838005A (en) Use of focused ion and electron beams for fabricating a sensor on a probe tip used for scanning multiprobe microscopy and the like
Reddick et al. New form of scanning optical microscopy
Berthelot et al. Three-dimensional manipulation with scanning near-field optical nanotweezers
Kalkbrenner et al. A single gold particle as a probe for apertureless scanning near‐field optical microscopy
US7211795B2 (en) Method for manufacturing single wall carbon nanotube tips
US20090045720A1 (en) Method for producing nanowires using porous glass template, and multi-probe, field emission tip and devices employing the nanowires
Zwiller et al. Quantum optics with single quantum dot devices
Kim et al. Controlled AFM manipulation of small nanoparticles and assembly of hybrid nanostructures
Becker et al. Nanowires enabling signal‐enhanced nanoscale raman spectroscopy
Chen et al. On‐Chip Fabrication of Well‐Aligned and Contact‐Barrier‐Free GaN Nanobridge Devices with Ultrahigh Photocurrent Responsivity
Cheng et al. Surface states dominative Au Schottky contact on vertical aligned ZnO nanorod arrays synthesized by low-temperature growth
Scrymgeour et al. Polarity and piezoelectric response of solution grown zinc oxide nanocrystals on silver
Chen et al. Surface-enhanced Raman scattering of rhodamine 6G on nanowire arrays decorated with gold nanoparticles
Schell et al. A scanning probe-based pick-and-place procedure for assembly of integrated quantum optical hybrid devices
Martín-Palma et al. Replication of fly eyes by the conformal-evaporated-film-by-rotation technique
Kajita et al. Nanostructured black metal: Novel fabrication method by use of self-growing helium bubbles
Wolny et al. Iron-filled carbon nanotubes as probes for magnetic force microscopy

Legal Events

Date Code Title Description
C06 Publication
EXSB Decision made by sipo to initiate substantive examination