CN104701889A - 风电场群风能时空分布差异性定量评价方法 - Google Patents

风电场群风能时空分布差异性定量评价方法 Download PDF

Info

Publication number
CN104701889A
CN104701889A CN201510112283.3A CN201510112283A CN104701889A CN 104701889 A CN104701889 A CN 104701889A CN 201510112283 A CN201510112283 A CN 201510112283A CN 104701889 A CN104701889 A CN 104701889A
Authority
CN
China
Prior art keywords
wind
power
sigma
output
wind energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510112283.3A
Other languages
English (en)
Other versions
CN104701889B (zh
Inventor
严干贵
穆钢
郑旭东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Electric Power University
Original Assignee
Northeast Dianli University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Dianli University filed Critical Northeast Dianli University
Priority to CN201510112283.3A priority Critical patent/CN104701889B/zh
Publication of CN104701889A publication Critical patent/CN104701889A/zh
Application granted granted Critical
Publication of CN104701889B publication Critical patent/CN104701889B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/16Energy services, e.g. dispersed generation or demand or load or energy savings aggregation

Landscapes

  • Wind Motors (AREA)

Abstract

本发明是一种风电场群风能时空分布差异性定量评价方法,其特点是,它通过计算风能时空分布差异性所对应的风电场群总发电差异量占总发电量的份额,定量刻画风能时空分布差异所对应的风力发电量在总发电量中的占比情况,从能量的角度宏观反映风电场群风能时空分布的差异性,风电场群风能时空分布差异性越大,风电功率汇聚效应显著。具有科学合理,能够定量分析,实用价值高等优点。

Description

风电场群风能时空分布差异性定量评价方法
技术领域
本发明涉及风电场技术领域,是一种风电场群风能时空分布差异性定量评价方法。
背景技术
由于风能的间歇性及其空间分布的差异性,导致各风电机的输出功率不尽相同,同理,对于风电机组、风电场甚至风电场群的输出功率也不相同,对于已建成的风电场,地形地貌及机组布置方式都已确定,其空间分布的差异性影响通过风电功率的大小体现,即风电机组、风电场输出功率本身蕴含了上述因素信息。通过风电功率波动特性分析来探究由于风能空间分布差异性而造成的风电场、风电场群发电出力差异性,是风电领域亟待解决的问题。
风电场群输出功率汇聚后总输出功率波动相对平缓,风电功率汇聚特性定量描述关键点是风能时空分布差异性所对应的风电功率占比定量描述,如果能够定量评价风能时空分布差异性所对应的风电功率占比情况,则将推动对风电功率波动特性的深入认识。
发明内容
本发明所要解决的技术问题是,提供一种科学合理,能够定量分析,具有实用价值的风电场群风能时空分布差异性定量评价方法。
解决其技术问题采取的技术方案是:一种风电场群风能时空分布差异性定量评价方法,其特征是,通过计算风能时空分布差异性所对应的风电场群总发电差异量占总发电量的份额,定量刻画风能时空分布差异所对应的风力发电量在总发电量中的占比情况,从能量的角度宏观反映风电场群风能时空分布的差异性,它包括的内容是:
在一个风电场群内,若风况全部相同,那么各风电场输出功率应该相同,即参考输出功率Pref.n为:
P ref . n = P wind . Σ * P R . n P R . Σ - - - ( 1 )
其中,风电场群总发电功率为Pwind.∑,PR.n为第n个风电场的额定功率,PR.∑为n个风电场总额定功率,n=1,2,…,N,
实际上,各风电场的输出功率不尽相同,其实际输出功率与参考输出功率的差值为各风电场的偏差功率ΔPn为:
ΔPn=Pwind.n-Pref.n    (2)
其中,Pwind.n为第n个风电场实际输出功率,n=1,2,…,N,偏差功率反映了风电场输出功率的差异性;
偏差功率所对应的发电量为:
En=∫|ΔPn|dt    (3)
即为因风能时空分布差异性所对应的风电场发电差异量;
由此可知,风电场群总发电差异量为:
ΔE Σ = Σ n = 1 N E n = Σ n = 1 N ∫ | ΔP n | dt = ∫ ( Σ n = 1 N | ΔP n | ) dt - - - ( 4 )
风电场群总发电量为:
EΣ=∫|Pwind.Σ|dt    (5)
故风能时空分布差异性所对应的风电场群总发电差异量占总发电量的份额为:
η E = Δ E Σ E Σ = Σ n = 1 N | ΔP n | | P wind . Σ | = Σ n = 1 N | ΔP n | P wind . Σ - - - ( 6 )
ηE越大,表明风电场群风能时空分布差异性越大,风电功率汇聚效应显著。
附图说明
图1为1号风电机组实际输出功率曲线与平均输出功率曲线;
图2为2号风电机组实际输出功率曲线与平均输出功率曲线;
图3为1号风机实际出力与参考值的偏差功率;
图4为1号风机实际出力与参考值的偏差功率;
图5为2台风电机组输出功率差异分量绝对值与总输出功率对比曲线;
图6为2台风电机组输出功率差异分量占总输出功率比例曲线;
图7为30台风电机组输出功率差异分量绝对值与总输出功率对比曲线;
图8为30台风电机组输出功率差异分量占总输出功率比例曲线;
图9为57台风电机组输出功率差异分量绝对值与总输出功率对比曲线;
图10为57台风电机组输出功率差异分量占总输出功率比例曲线;
图11为风电场群输出功率差异分量绝对值与场群(495MW)总输出功率对比曲线;
图12为6个风电场输出功率差异分量所占总输出功率比例曲线;
图13为风电场群输出功率差异分量绝对值与场群(1194MW)总输出功率对比曲线;
图14为8个风电场输出功率差异分量所占总输出功率比例曲线。
具体实施方式
下面利用附图和实施例对本发明作进一步说明。
本发明的一种风电场群风能时空分布差异性定量评价方法,通过计算风能时空分布差异性所对应的风电场群总发电差异量占总发电量的份额,定量刻画风能时空分布差异所对应的风力发电量在总发电量中的占比情况,从能量的角度宏观反映风电场群风能时空分布的差异性,它包括的内容是:
在一个风电场群内,若风况全部相同,那么各风电场输出功率应该相同,即参考输出功率Pref.n为:
P ref . n = P wind . Σ * P R . n P R . Σ - - - ( 1 )
其中,风电场群总发电功率为Pwind.∑,PR.n为第n个风电场的额定功率,PR.∑为n个风电场总额定功率,n=1,2,…,N,
实际上,各风电场的输出功率不尽相同,其实际输出功率与参考输出功率的差值为各风电场的偏差功率ΔPn为:
ΔPn=Pwind.n-Pref.n    (2)
其中,Pwind.n为第n个风电场实际输出功率,n=1,2,…,N,偏差功率反映了风电场输出功率的差异性;
偏差功率所对应的发电量为:
En=∫|ΔPn|dt    (3)
即为因风能时空分布差异性所对应的风电场发电差异量;
由此可知,风电场群总发电差异量为:
ΔE Σ = Σ n = 1 N E n = Σ n = 1 N ∫ | ΔP n | dt = ∫ ( Σ n = 1 N | ΔP n | ) dt - - - ( 4 )
风电场群总发电量为:
EΣ=∫|Pwind.Σ|dt    (5)
故风能时空分布差异性所对应的风电场群总发电差异量占总发电量的份额为:
η E = Δ E Σ E Σ = Σ n = 1 N | ΔP n | | P wind . Σ | = Σ n = 1 N | ΔP n | P wind . Σ - - - ( 6 )
ηE越大,表明风电场群风能时空分布差异性越大,风电功率汇聚效应显著。
下面结合大规模风电场聚合接入实际工程背景构建了一算例系统,分析风电机组、风电场输出功率差异性,以揭示风电机场输出功率的差异程度。各风电机组、各风电场装机额定容量分别如表1、表2所示。
表1各风电机组额定容量
表2各风电场额定容量
算例1:风电机群输出功率差异性分析。
首先以两台机组差异性为例,某日1号风电机组实际输出功率曲线与参考输出功率曲线如图1所示,某日2号风电机组实际输出功率曲线与参考输出功率曲线如图2所示,将各风电机组的出力Pwind.i与其参考输出功率Pref.i作差,得到各风电机组的偏差功率ΔPn如图3、图4所示,对|ΔPn|进行累加得到风电机组输出功率差异分量绝对值,与总输出功率对比如图5所示,风电机组输出功率差异分量占总输出功率比例如图6所示;
由图6可知,两台风电机组输出功率差异分量占总输出功率平均值为0.177,最大值为1,最小值为0。
30台机组间差异性分析,风电机组输出功率差异分量绝对值与总输出功率对比如图7所示,差异风量占总输出功率比例如图8所示;
由图8可知,30台风电机组输出功率差异分量占总输出功率平均值为0.439,最大值为0.755,最小值为0.103。
57台机组间差异性分析,风电机组输出功率差异分量绝对值与总输出功率对比如图9所示,差异风量占总输出功率比例如图10所示;
由图10可知,57台风电机组输出功率差异分量占总输出功率平均值为0.465,最大值为0.770,最小值为0.152。
当风电机组从2台逐渐汇聚到57台,机群的输出功率差异在总发电量中的占比逐渐增大,即风能时空分布的差异性逐渐增大。
算例2:风电场群输出功率差异性分析。
6个风电场(装机容量495MW)间差异性分析,风电场输出功率差异分量绝对值与总输出功率对比如图11所示,差异风量占总输出功率比例如图12所示;
由图12可知,6个风电场输出功率差异分量占总输出功率平均值为0.450,最大值为0.724,最小值为0.238。
8个风电场(装机容量1194MW)间差异性分析,风电场输出功率差异分量绝对值与总输出功率对比如图13所示,差异风量占总输出功率比例如图14所示;
由图14可知,8个风电场输出功率差异分量占总输出功率平均值为0.478,最大值为0.715,最小值为0.280。
当风电场从495MW逐渐汇聚到1194MW,场群的输出功率差异在总发电量中的占比逐渐增大,即风能时空分布的差异性逐渐增大。
本发明的实施算例仅是对本发明有效性的说明,其所选风电场装机及储能系统容量规模并不构成对专利要求保护范围的限制,本领域内的技术人员可以不经过创造性劳动就能够想到的其它实质上等同的替代,均在本发明保护范围内。

Claims (1)

1.一种风电场群风能时空分布差异性定量评价方法,其特征是,通过计算风能时空分布差异性所对应的风电场群总发电差异量占总发电量的份额,定量刻画风能时空分布差异所对应的风力发电量在总发电量中的占比情况,从能量的角度宏观反映风电场群风能时空分布的差异性,它包括的内容是:
在一个风电场群内,若风况全部相同,那么各风电场输出功率应该相同,即参考输出功率Pref.n为:
P ref . n = P wind . Σ * P R . n P R . Σ - - - ( 1 )
其中,风电场群总发电功率为Pwind.∑,PR.n为第n个风电场的额定功率,PR.∑为n个风电场总额定功率,n=1,2,…,N,
实际上,各风电场的输出功率不尽相同,其实际输出功率与参考输出功率的差值为各风电场的偏差功率ΔPn为:
ΔPn=Pwind.n-Pref.n    (2)
其中,Pwind.n为第n个风电场实际输出功率,n=1,2,…,N,偏差功率反映了风电场输出功率的差异性;
偏差功率所对应的发电量为:
En=∫|ΔPn|dt    (3)
即为因风能时空分布差异性所对应的风电场发电差异量;
由此可知,风电场群总发电差异量为:
Δ E Σ = Σ n = 1 N E n = Σ n = 1 N ∫ | Δ P n | dt = ∫ ( Σ n = 1 N | Δ P n | ) dt - - - ( 4 )
风电场群总发电量为:
E=∫|Pwind.∑|dt    (5)
故风能时空分布差异性所对应的风电场群总发电差异量占总发电量的份额为:
η E = ΔE Σ E Σ = Σ n = 1 N | Δ P n | | P wind . Σ | = Σ n = 1 N | ΔP n | P wind . Σ - - - ( 6 )
ηE越大,表明风电场群风能时空分布差异性越大,风电功率汇聚效应显著。
CN201510112283.3A 2015-03-16 2015-03-16 风电场群风能时空分布差异性定量评价方法 Expired - Fee Related CN104701889B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510112283.3A CN104701889B (zh) 2015-03-16 2015-03-16 风电场群风能时空分布差异性定量评价方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510112283.3A CN104701889B (zh) 2015-03-16 2015-03-16 风电场群风能时空分布差异性定量评价方法

Publications (2)

Publication Number Publication Date
CN104701889A true CN104701889A (zh) 2015-06-10
CN104701889B CN104701889B (zh) 2017-03-29

Family

ID=53348759

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510112283.3A Expired - Fee Related CN104701889B (zh) 2015-03-16 2015-03-16 风电场群风能时空分布差异性定量评价方法

Country Status (1)

Country Link
CN (1) CN104701889B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110727916A (zh) * 2019-08-20 2020-01-24 广州地理研究所 一种大规模海域风能长期预测方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103036251A (zh) * 2012-12-06 2013-04-10 东北电力大学 一种提高电网风电接纳能力的源网协调调度方法
WO2014002274A1 (ja) * 2012-06-29 2014-01-03 株式会社日立製作所 火力発電設備、自然エネルギー発電プラント及びその制御方法
CN103746396A (zh) * 2014-01-16 2014-04-23 东北电力大学 一种提高电力系统调度经济性的风电场储能容量配置方法
CN104037803A (zh) * 2014-06-09 2014-09-10 东北电力大学 区域风电场群时序电量的统计与分析方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002274A1 (ja) * 2012-06-29 2014-01-03 株式会社日立製作所 火力発電設備、自然エネルギー発電プラント及びその制御方法
CN103036251A (zh) * 2012-12-06 2013-04-10 东北电力大学 一种提高电网风电接纳能力的源网协调调度方法
CN103746396A (zh) * 2014-01-16 2014-04-23 东北电力大学 一种提高电力系统调度经济性的风电场储能容量配置方法
CN104037803A (zh) * 2014-06-09 2014-09-10 东北电力大学 区域风电场群时序电量的统计与分析方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
崔杨等: "风电功率波动的时空分布特性", 《电网技术》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110727916A (zh) * 2019-08-20 2020-01-24 广州地理研究所 一种大规模海域风能长期预测方法及系统
CN110727916B (zh) * 2019-08-20 2021-04-23 广东省科学院广州地理研究所 一种大规模海域风能长期预测方法及系统

Also Published As

Publication number Publication date
CN104701889B (zh) 2017-03-29

Similar Documents

Publication Publication Date Title
Peacock et al. Micro wind turbines in the UK domestic sector
Shata et al. Electricity generation and wind potential assessment at Hurghada, Egypt
Denholm et al. The potential for energy storage to provide peaking capacity in california under increased penetration of solar photovoltaics
Moraes Jr et al. Comparison of long-term wind and photovoltaic power capacity factor datasets with open-license
Li et al. Domestic application of micro wind turbines in Ireland: Investigation of their economic viability
Alfawzan et al. Wind energy assessment for NEOM city, Saudi Arabia
Mabel et al. Analysis on reliability aspects of wind power
Billinton Impacts of energy storage on power system reliability performance
Villada Duque et al. Effects of incentives for renewable energy in Colombia
Mabel et al. Adequacy evaluation of wind power generation systems
Ahmed Electricity generation from the first wind farm situated at Ras Ghareb, Egypt
Bishop et al. Linking energy policy, electricity generation and transmission using strong sustainability and co-optimization
CN105790261A (zh) 一种随机谐波潮流计算方法
CN104701889A (zh) 风电场群风能时空分布差异性定量评价方法
Costa et al. Capacity credit of microgeneration and microgrids
CN103368188B (zh) 电力系统为风电提供的agc调节容量的确定方法
Vieira et al. Energy savings resulting from energy management program using measurement and verification procedure
Bradbury The probability density distribution for the power output from arrays of wind turbines and the intermittent nature of wind power
CN104376195A (zh) 一种光伏电站暂态模型的验证方法
Qi et al. Identification of critical parameters affecting voltage stability in networks with renewable generations using sensitivity analysis methods
Braun et al. Value of PV energy in germany-benefit from the substitution of conventional power plants and local power generation
Dai et al. Reliability assessment of a power system with high penetration of wind and cascade hydropower plant considering wind correlation
CN110443471A (zh) 量化评估风光出力互补效应的方法及系统
Tan et al. Stochastic optimal power flow with wind generator based on stochastic response surface method (SRSM) and interior point methods
Apt et al. Smart integration of variable and intermittent renewables

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Yan Gangui

Inventor after: Mu Gang

Inventor after: Zheng Xudong

Inventor after: Li Junhui

Inventor before: Yan Gangui

Inventor before: Mu Gang

Inventor before: Zheng Xudong

COR Change of bibliographic data
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170329

CF01 Termination of patent right due to non-payment of annual fee