New! View global litigation for patent families

CN104679784A - O2B intelligent searching method and system - Google Patents

O2B intelligent searching method and system Download PDF

Info

Publication number
CN104679784A
CN104679784A CN 201310634240 CN201310634240A CN104679784A CN 104679784 A CN104679784 A CN 104679784A CN 201310634240 CN201310634240 CN 201310634240 CN 201310634240 A CN201310634240 A CN 201310634240A CN 104679784 A CN104679784 A CN 104679784A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
search
searching
method
words
intelligent
Prior art date
Application number
CN 201310634240
Other languages
Chinese (zh)
Inventor
周小伟
Original Assignee
上海博科资讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention discloses an O2B intelligent searching method and system and belongs to the technical field of computer. The O2B intelligent searching method includes that carrying out logic association on words, and building a mapping lexicon; acquiring search content input by a user; carrying out semantic analysis on the search content input by the user; carrying out quadratic search on the semantic analysis result to obtain associated words, and using the associated words as search words; reasoning the search words in a rule base, and obtaining the search result; outputting the research result. The O2B intelligent searching method and system have beneficial effects that the improved O2B intelligent searching method is provided for overcoming the disadvantage that an existing search engine cannot meet the real demand of a user, through semantic analysis and logic mapping, the complicated and changing language is simplified, and the real demand of the user is translated precisely to provide precise search service.

Description

一种02B智能搜索方法及系统 One kind of intelligent search method and system 02B

技术领域 FIELD

[0001] 本发明涉及计算机技术领域,尤其涉及一种02B智能搜索方法及系统。 [0001] The present invention relates to computer technologies, and particularly to a method and system for intelligent search 02B.

[0002] [0002]

背景技术 Background technique

[0003] 随着信息时代的不断发展,互联网也走进了人们生活的各个角落。 [0003] With the continuous development of the information age, the Internet has entered every corner of people's lives. 轻轻一点搜索引擎,人们往往足不出户就可以获取各种信息,信息的共享大大便利了人们的生活。 One click search engines, people tend to stay at home you can get all kinds of information, sharing of information greatly facilitated people's lives. 电子商务的蓬勃发展也为人们通过互联网获取各种服务提供了便利。 The booming e-commerce also provides convenience for people to obtain various services through the Internet. 但是,随着互联网用户群的不断增大,如何更准确的把握用户的真实意图,提供更快捷便利的服务,逐渐引起了服务提供商及中间商们的关注。 However, with the increasing Internet user base, how to more accurately grasp the true intentions of users, providing a more efficient and convenient services, gradually attracted service providers and brokers' attention.

[0004] 02B (Order To Business),即采购报价模式,是一种新型的电子商务模式。 [0004] 02B (Order To Business), ie purchase offer mode, is a new e-commerce model. 02B模式以订单信息精准有效匹配供应商为特色开展新一代贸易拓展服务。 02B mode to match the order information accurate and effective suppliers of next-generation features to carry out trade promotion services. 相较于传统的B2B、B2C模式,02B模式能够更为精准的为用户提供匹配其需求的各项服务。 Compared to the traditional B2B, B2C model, 02B model can provide users with a more precise matching of services to their needs.

[0005] 传统的搜索引擎通过关键字检索,从数据库中找到符合该关键词的相关网页索弓丨,并将结果按一定的排名规则最终呈现给搜索用户。 [0005] Traditional search engines through keyword search, find the relevant page matches the keyword search bow Shu from the database, and the results according to certain rules of the final ranking for searchers. 在实现本发明的过程中,发明人发现现有技术存在以下问题: During the implementation of the present invention, the inventors have found that the prior art has the following problems:

首先,现有的搜索引擎主要采取基于关键词的布尔表达式作为输入,这就造成了搜索引擎很难准确掌握隐含在关键词背后的用户的真实需求。 First, the existing major search engines based on keywords take boolean expressions as input, which resulted in a search engine is difficult to accurately grasp the real needs hidden behind the keyword of the user.

[0006] 其次,基于关键词的索引方式,造成现有的搜索方式较为机械,获取的搜索结果数量巨大且不加筛选。 [0006] Secondly, keyword-based indexing, resulting in a huge number of existing search methods are more mechanical, plus get search results without screening. “关键词全文检索”的结果就像扔给我们所有能获取的答案,毫无导向性。 "Keyword full-text search," the result is like throwing all the answers we can get, there is no oriented. 对于关键词指向不够明确的搜索,其效果不免差强人意。 For keyword search point is not clear, the effect is inevitably unsatisfactory. 例如一个用户搜索“我的冰箱坏了”,他得到的结果是包含有“我的冰箱坏了”这一句话的各种网页,而如果用户需要找到冰箱维修等解决方式,则需要输入更多的关键词,这无形中增加了对搜索引擎应用不熟悉的一类用户的负担。 For example, a user searches for "my fridge is broken," he was told the results contain "My refrigerator is broken" This sentence various web pages, and if you need to find the refrigerator maintenance solutions, you need to enter more keywords, which virtually increased the burden on the search engines are not familiar with the application of a class of users.

[0007] [0007]

发明内容 SUMMARY

[0008] 本发明的目的在于,克服现有搜索引擎不能满足用户真实需求的缺陷,提供一种改进的02B智能搜索方法,其通过语义分析与逻辑映射,将复杂多变的语言化繁为简,在所有零散的检索结果中“穿针引线”勾勒出我们所需要的真正有用的信息。 [0008] The object of the present invention is to overcome the defects existing search engines can not meet the real needs of the users, to provide an improved 02B intelligent search method, and a semantic analysis by a logic mapping, complex languages ​​simplify in all scattered in search results "go-between" outlines the truly useful information that we need. 准确翻译出用户的真实需求,进而提供精准的搜索服务。 Accurate translation of the real needs of users, thus providing accurate search service.

[0009] 本发明的目的还在于提供一种实现上述02B智能搜索方法的02B智能搜索系统。 [0009] The object of the present invention is to provide intelligent search system 02B 02B for realizing the intelligent search method.

[0010] 为实现上述发明目的之一,本发明提供一种02B智能搜索方法。 [0010] In order to achieve one of the above object, the present invention provides an intelligent search method 02B. 所述技术方案如下: The technical solutions are as follows:

一种02B智能搜索方法,包括以下步骤: 02B one kind of intelligent search method comprising the steps of:

词库建构步骤:将词汇进行逻辑关联,建立映射词库; 信息录入步骤:获取用户输入的搜索内容; Thesaurus construction step: the vocabulary associated logic to establish a mapping thesaurus; information into the steps of: obtaining a search user input;

语义分析步骤:对用户输入的搜索内容进行语义分析; Semantic Analysis step of: user input search semantic analysis;

二次检索步骤:将语义分析结果二次检索得出关联词,作为搜索词; Second retrieving step of: retrieving second semantic analysis result obtained related word, as a search word;

信息检索步骤:将所述搜索词在规则库中进行推理运算,并得到搜索结果; Information retrieving step: the search term inference operation performed in the rule base, and obtain search results;

信息反馈步骤:输出所述搜索结果。 Feedback steps of: outputting the search result.

[0011] 作为上述技术方案的优选,所述词库建构步骤包括: [0011] As a preferred embodiment of the above-described technique, comprising the step of constructing the lexicon:

词汇逻辑关联步骤:运用图模型处理特征词权重,将词汇进行逻辑关联,并以此建立映身寸关系; Vocabulary associated logic step: using word processing features heavy weighted graph model, the vocabulary associated logic, and to establish relationships reflect inch body;

保存映射信息步骤:将所述词汇映射关系存入所述词库。 Save mapping information steps: mapping relationship into the vocabulary of the thesaurus.

[0012] 作为上述技术方案的优选,所述语义分析步骤包括: [0012] As a preferred embodiment of the above-described technique, the semantic analysis step comprises:

分词处理步骤:利用分词技术对所述用户输入的搜索内容进行分词处理; Word processing steps of: using a contents search word segmentation of the user inputted word processing;

提取关键词步骤:根据分词主谓宾等中文语法特点查找关键词。 Extract keywords steps: Find keywords based on the characteristics of Chinese grammar word SVO and so on.

[0013] 作为上述技术方案的优选,所述二次检索步骤为对所述关键词进行相关度分析,根据特征词权重判断词汇关联度,获取与其在所述词库中关联度最高的信息,作为搜索词。 [0013] As a preferred embodiment of the above-described technique, the secondary keyword search step of the correlation analysis, the weight is determined according to the feature words of the vocabulary associated, therewith obtaining the highest degree of association information in the thesaurus, as a search word.

[0014] 作为上述技术方案的优选,所述信息检索步骤包括: [0014] As a preferred embodiment of the above-described technique, the information retrieving step comprises:

维度分析步骤:将所述搜索词进行维度分析,提取多维信息; Dimension analysis step: the search term for dimensional analysis, multi-dimensional information extracting;

规则运算步骤:使用规则引擎将所述搜索词结合所述多维信息在规则库中进行推理运算,并得到搜索结果。 The step of calculating rule: rules engine using the search term in conjunction with the multi-dimensional inference operation information in the rule base, and obtain search results.

[0015] 相应地,为实现上述另一目的,本发明还提供了一种02B智能搜索系统。 [0015] Accordingly, to achieve the above another object, the present invention also provides an intelligent search system 02B.

[0016] 一种02B智能搜索系统,包括: [0016] A 02B intelligent search system, including:

词库建构模块:用于将词汇进行逻辑关联,建立映射词库; Thesaurus Construction module: logic configured to associate words, a mapping thesaurus;

语义分析模块:用于对用户输入的搜索内容进行语义分析; Semantic analysis module: searching for user input semantic analysis;

二次检索模块:用于将语义分析结果二次检索得出关联词,作为搜索词; Secondary search module: used to retrieve the semantic analysis result obtained secondary related word, as a search word;

信息检索模块:用于将所述搜索词在规则库中进行推理运算,并得到搜索结果; Information retrieval module: for the search term inference operation performed in the rule base, and obtain search results;

数据交互模块:用于接收所述搜索内容,并输出所述搜索结果。 Data exchange module: receiving the search for content, and outputs the search result.

[0017] 作为上述技术方案的优选,所述词库建构模块包括: [0017] As a preferred embodiment of the above-described technique, the thesaurus building blocks comprising:

词汇逻辑关联单元:用于运用图模型处理特征词权重,将词汇进行逻辑关联,并以此建A映射关系; Vocabulary logical association unit: FIG model for use word processing feature weights, will logically associated vocabulary, and thus to build A mapping relationship;

词汇映射关系库:用于储存所述词汇映射关系。 Mapping relation vocabulary library: Vocabulary for storing the mapping relation.

[0018] 作为上述技术方案的优选,所述语义分析模块包括: [0018] As a preferred embodiment of the above-described technique, the semantic analysis module comprises:

分词处理单元:用于利用分词技术对所述用户输入的搜索内容进行分词处理; Word processing unit: searches for the word entered by the user using the word processing technology;

关键词提取单元:用于根据分词主谓宾等中文语法特点查找关键词。 Keyword extraction unit: keywords used to find grammatical features according to Chinese word SVO and so on.

[0019] 作为上述技术方案的优选,所述二次检索模块用于将所述关键词进行相关度分析,根据特征词权重判断词汇关联度,获取与其在所述词库中具有映射关系的信息,作为搜索词。 Information [0019] As a preferred aspect of the above, the secondary module for retrieving keywords related to the analysis based on the characteristic word vocabulary determines relevance weights, having acquired its mapping in the lexicon as a search term.

[0020] 作为上述技术方案的优选,所述信息检索模块包括: [0020] As a preferred aspect of the above, the information retrieval module comprising:

维度分析单元:用于将所述搜索词进行维度分析,提取多维信息; Analysis unit dimensions: the search for a dimension word analysis, multi-dimensional information extracting;

规则引擎:用于将所述搜索词结合所述多维信息在规则库中进行推理运算,并得到搜索结果。 The rules engine: searching for the word in conjunction with the multi-dimensional information inference operation in the rule base, and get the search results.

[0021] 与现有技术相比,本发明的有益效果是:02B智能搜索方法或02B智能搜索系统,通过对用户语词的分析解读,更准确的挖掘隐含在关键字背后的用户的真实需求,从而化繁为简,筛选出更符合用户要求的搜索结果。 [0021] Compared with the prior art, the beneficial effect of the invention is: 02B 02B intelligent search methods or intelligent search system, by analyzing the interpretation of the user's words, more accurate mining the real needs hidden in the back of the user's keywords so to simplify, filter out search results more in line with user requirements.

[0022] [0022]

附图说明 BRIEF DESCRIPTION

[0023] 图1是本发明一个实施例中02B智能搜索方法的流程图; [0023] FIG. 02B is a flowchart of an intelligent search method according to an embodiment of the present invention;

图2是本发明一个实施例中词库建构步骤的流程图; FIG 2 is a flowchart of steps in constructing a thesaurus embodiment of the present invention;

图3是本发明一个实施例中语义分析步骤的流程图; FIG 3 is a flow diagram of one embodiment of semantic analysis step embodiment of the present invention;

图4是本发明一个实施例中信息检索步骤的流程图; FIG 4 is a flowchart of an embodiment of the information retrieval step of the present invention;

图5是本发明一个实施例中02B智能搜索系统的结构示意图; FIG 5 is a schematic structural diagram of the intelligent search system 02B of the present embodiment of the invention;

图6是本发明一个实施例中词库建构模块包括的单元图; FIG 6 is a section view of the building blocks comprises a thesaurus of the present invention;

图7是本发明一个实施例中语义分析模块包括的单元图; FIG. 7 is a section view of the embodiment of semantic analysis module of the present invention comprises;

图8是本发明一个实施例中信息检索模块包括的单元图。 FIG 8 is a section view of the embodiment of the information retrieval module comprising the present invention.

[0024] [0024]

具体实施方式 detailed description

[0025] 为了更清楚地展示本发明的目的、技术方案和优点,下面将结合具体实施例及附图对本发明的实施方式作较为详细地描述。 [0025] In order to more clearly show the object of the present invention, technical solutions and advantages, and embodiments will now be described in conjunction with embodiments of the present invention will be more detail with reference to specific embodiments. 但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所轻易做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。 However, these embodiments do not limit the present invention, the present structure made of ordinary skill in the art readily accordance with these embodiments, method, function, or conversion are included in the scope of the present invention.

[0026] 如图1所示,本发明第一实施例提出了一种02B智能搜索方法,包括以下步骤: 词库建构步骤101、将词汇进行逻辑关联,建立映射词库; [0026] As shown in FIG 1, a first embodiment of the present invention proposes a 02B intelligent search method comprising the steps of: Thesaurus Construction step 101, the logic associated vocabulary, a mapping thesaurus;

信息录入步骤102、获取用户输入的搜索内容; Information input step 102, obtaining user input search;

语义分析步骤103、对用户输入的搜索内容进行语义分析; Semantic analysis step 103, the user input search semantic analysis;

二次检索步骤104、将语义分析结果二次检索得出关联词,作为搜索词; Second retrieving step 104, the semantic analysis result obtained secondary retrieved related word, as a search word;

信息检索步骤105、将所述搜索词在规则库中进行推理运算,并得到搜索果; Information retrieving step 105, the search word inference operation performed in the rule base, and obtain search results;

信息反馈步骤106、输出所述搜索结果。 Feedback step 106, the output of the search result.

[0027] 如图2所示,在本发明中,所述词库建构步骤101包括: [0027] As shown, in the present invention, the step 101 includes a thesaurus 2 Construction:

词汇逻辑关联步骤201、将词汇进行逻辑关联,建立映射关系。 Vocabulary logical association step 201, the logic associated vocabulary, a mapping relationship.

[0028] 具体的,此步骤利用图模型处理特征词权重,将词汇进行逻辑关联,并以此建立映射关系。 [0028] Specifically, this step utilizes the processing model of FIG words' weight, will logically associated vocabulary, and to establish the mapping relationship. 例如:“煤气”对应“灶头”、“冰箱”对应“家电”。 For example: "gas" corresponds to the "stove", "refrigerator" corresponding to the "home." 需要说明的是:这里的特征词权重以自动采集和人为干预的方式调整,因而针对一些网络新词汇也能较为迅速地获取。 It should be noted: the right word here feature weights to automatically collect and human intervention adjusted, and thus can more quickly access the network for some new vocabulary. 例如:“高帅富”对应“男性”。 For example: "High handsome rich" corresponding to "male."

[0029] 保存映射信息步骤202、将所述词汇映射关系存入所述词库。 [0029] mapping information stored in step 202, the mapping relationship stored in said word dictionary.

[0030] 如图3所示,在本发明中,所述语义分析步骤103包括: [0030] 3, in the present invention, the semantic analysis step 103 comprises:

分词处理步骤301、利用分词技术对所述用户输入的搜索内容进行分词处理。 Word processing step 301, using a binary search technique content word is the word the user input processing. 例如:用户输入“我的煤气坏了”,通过分词处理,被分割为:“我的,煤气,坏了”。 For example: the user enters "My gas is broken," by word processing, it is divided into: "My, gas, bad."

[0031] 提取关键词步骤302、根据分词主谓宾等中文语法特点查找关键词。 [0031] Step 302 extracts a keyword, find the keyword in accordance with the characteristics of Chinese grammar word SVO like. 例如:上述“我的煤气坏了”关键词为“煤气”。 For example: the aforementioned "My bad gas" key words "Gas."

[0032] 具体的,在本发明中,所述二次检索步骤104为对所述关键词进行相关度分析,获取与其在所述词库中关联度最高的信息,作为搜索词。 [0032] Specifically, in the present invention, the second step 104 to retrieve the keyword correlation analysis, obtain information associated with its highest degree in the thesaurus, as a search word. 例如:上述关键词“煤气”经过相关度分析,转换为与其具有映射关系的信息“灶头”,并将“灶头”作为搜索词。 For example: The above keyword "gas" After correlation analysis, converted to its information "stove" has a mapping relation, and "stove" as a search term.

[0033] 如图4所示,在本发明中,所述信息检索步骤105包括: [0033] As shown, in the present invention, the information retrieving step 1054 comprises:

维度分析步骤401、将所述用户输入的搜索内容进行维度分析,提取多维信息。 Dimensional analysis step 401, the user searches the inputted dimensional analysis, multi-dimensional information to extract. 例如:上述“我的煤气坏了”经过维度分析,“我的”可提取出隶属关系维度,“坏了”可提取出判定维度。 For example: the aforementioned "My bad gas" After-dimensional analysis, "my" can be extracted affiliation dimension, "bad" judgment can be extracted dimensions.

[0034] 规则运算步骤402、使用规则引擎将所述搜索词结合所述多维信息在规则库中进行推理运算,并得到搜索结果。 [0034] Rule calculating step 402, the rules engine using the search term in conjunction with the multi-dimensional inference operation information in the rule base, and obtain search results.

[0035] 如图5所不,本发明另一实施例提出了一种02B智能搜索系统,包括: [0035] FIG. 5 is not, a further embodiment of the present invention proposes an intelligent search system 02B, comprising:

词库建构模块501、用于将词汇进行逻辑关联,建立映射词库; Thesaurus construction module 501, the vocabulary for a logical association to establish a mapping thesaurus;

语义分析模块502、用于对用户输入的搜索内容进行语义分析; Semantic analysis module 502, the search for user input semantic analysis;

二次检索模块503、用于将语义分析结果二次检索得出关键词,作为搜索词; Secondary search module 503, configured to retrieve the semantic analysis result obtained secondary keyword as a search word;

信息检索模块504、用于将所述搜索词在规则库中进行推理运算,并得到搜索结果; 数据交互模块505、用于接收所述用户输入的搜索内容,并输出搜索搜索结果。 Information retrieval module 504, for the search term in the rule base inference operation, and obtain search results; data exchange module 505 searches for receiving the user input, and outputs Search results.

[0036] 如图6所示,在本发明中,所述词库建构模块501包括: [0036] As shown, in the present invention, the module 501 includes a thesaurus 6 Construction:

词汇逻辑关联单元601、用于将词汇进行逻辑关联,建立映射关系。 Vocabulary logical association unit 601, the vocabulary for a logical association, establishing mapping relationship.

[0037] 具体的,此单元利用图模型处理特征词权重,将词汇进行逻辑关联,并以此建立映射关系。 [0037] Specifically, the processing unit using the model of FIG words' weight, will logically associated vocabulary, and to establish the mapping relationship. 例如:“煤气”对应“灶头”、“冰箱”对应“家电”。 For example: "gas" corresponds to the "stove", "refrigerator" corresponding to the "home." 需要说明的是:这里的特征词权重以自动采集和人为干预的方式调整,因而针对一些网络新词汇也能较为迅速地获取。 It should be noted: the right word here feature weights to automatically collect and human intervention adjusted, and thus can more quickly access the network for some new vocabulary. 例如:“高帅富”对应“男性”。 For example: "High handsome rich" corresponding to "male."

[0038] 词汇映射关系库602、用于储存所述词汇映射关系。 [0038] Glossary mapping relationship database 602, for storing the lexical mappings.

[0039] 如图7所示,在本发明中,所述语义分析模块502包括: [0039] As shown in FIG 7, in the present invention, the semantic analysis module 502 comprises:

分词处理单元701、用于利用分词技术对所述用户输入的搜索内容进行分词处理。 Segmentation processing unit 701, searches for the user input processing is performed using the word segmentation techniques. 例如:用户输入“我的煤气坏了”,通过分词处理,被分割为:“我的,煤气,坏了”。 For example: the user enters "My gas is broken," by word processing, it is divided into: "My, gas, bad."

[0040] 关键词提取单元702、用于根据分词主谓宾等中文语法特点查找关键词。 [0040] The keyword extracting unit 702 is configured to search keywords according to the characteristics of Chinese grammar word SVO like. 例如:上述“我的煤气坏了”关键词为“煤气”。 For example: the aforementioned "My bad gas" key words "Gas."

[0041] 具体的,在本发明中,所述二次检索模块503用于对所述关键词进行相关度分析,获取与其在所述词库中关联度最高的信息,作为搜索词。 [0041] Specifically, in the present invention, the secondary module 503 for retrieving keywords related to the analysis, acquiring information associated therewith the highest degree of the thesaurus, as a search word. 例如:上述关键词“煤气”经过相关度分析,转换为与其具有映射关系的信息“灶头”,并将“灶头”作为搜索词。 For example: The above keyword "gas" After correlation analysis, converted to its information "stove" has a mapping relation, and "stove" as a search term.

[0042] 如图8所示,在本发明中,所述信息检索步骤504包括: [0042] As shown in FIG. 8, in the present invention, the information retrieving step 504 comprises:

维度分析单元801、用于将所述户输入的搜索内容进行维度分析,提取多维信息。 Dimension analysis unit 801, searches for the user to input a dimension analysis, multi-dimensional information to extract. 例如:上述“我的煤气坏了”经过维度分析,“我的”可提取出隶属关系维度,“坏了”可提取出判定维度。 For example: the aforementioned "My bad gas" After-dimensional analysis, "my" can be extracted affiliation dimension, "bad" judgment can be extracted dimensions.

[0043] 规则引擎802、用于将所述搜索词结合所述多维信息在规则库中进行推理运算,并得到搜索结果。 [0043] The rules engine 802, the search term for multi-dimensional information in conjunction with the inference operation in the rule base, and obtain search results.

[0044] 本发明实施例提供的上述技术方案的全部或部分可以通过程序指令相关的硬件来完成,所述程序可以储存在可读取的存储介质中,所述存储介质包括:R0M、RAM、磁盘、光盘等各种可以存储程序代码的介质。 [0044] All or part by a program instructing relevant hardware according to the above technical solutions provided by the embodiment of the present invention is complete, the program may be stored in a readable storage medium, said storage medium comprising: R0M, RAM, various disk, CD-ROM can store program code.

[0045] 上文所述仅为本发明的可行性实施例,并不用以限制本发明,凡未脱离本发明的精神和原则所作的任何等效实施方式或变更,均应包含在本发明的保护范围之内。 [0045] The above embodiment is only feasible embodiments of the present invention, not intended to limit the present invention and which do not departing from the spirit of the invention and any equivalent embodiments or changes made to the principle embodiment, the present invention should be included in the within the scope of protection.

Claims (10)

1.一种02B智能搜索方法,其特征在于,所述02B智能搜索方法包括以下步骤: a)词库建构步骤:将词汇进行逻辑关联,建立映射词库; b)信息录入步骤:获取用户输入的搜索内容; c)语义分析步骤:对用户输入的搜索内容进行语义分析; d) 二次检索步骤:将语义分析结果,二次检索得出关联词,作为搜索词; e)信息检索步骤:将所述搜索词在规则库中进行推理运算,并得到搜索结果; f)信息反馈步骤:输出所述搜索结果。 02B An intelligent search method, wherein said 02B intelligent search method comprising the steps of: a) Thesaurus Construction steps of: logically associated vocabulary, a mapping thesaurus; b) information input step of: acquiring a user input searches; c) the step of semantic analysis: user input search semantic analysis; D) second retrieving step: the semantic analysis result, the secondary retrieval results related word, as a search word; E) information retrieval steps of: the search term inference operation performed in the rule base, and obtain search results; F) feedback steps of: outputting the search result.
2.根据权利要求1所述的02B智能搜索方法,其特征在于,所述词库建构步骤包括: 词汇逻辑关联步骤:运用图模型处理特征词权重,将词汇进行逻辑关联,并以此建立映身寸关系; 保存映射信息步骤:将所述词汇映射关系存入所述词库。 The intelligent search method according 02B ​​as claimed in claim 1, wherein the step of constructing the lexicon comprising: a word associated logic steps of: using the word processing features weight weighted graph model, the vocabulary associated logic, and to establish enantiomer inch body relations; steps to save the mapping information: mapping relationship into the vocabulary of the thesaurus.
3.根据权利要求1所述的02B智能搜索方法,其特征在于,所述语义分析步骤包括: 分词处理步骤:利用分词技术对所述用户输入的搜索内容进行分词处理; 提取关键词步骤:根据分词主谓宾等中文语法特点查找关键词。 The intelligent search method according 02B ​​as claimed in claim 1, wherein said semantic analysis step comprises: word processing steps of: using a contents search word segmentation of the user inputted word processing; extracting keywords steps of: SVO word grammar and other Chinese characteristics to find keywords.
4.根据权利要求1所述的02B智能搜索方法,其特征在于,所述二次检索步骤为对所述关键词进行相关度分析,根据特征词权重判断词汇关联度,获取与其在所述词库中关联度最高的信息,作为搜索词。 The intelligent search method according 02B ​​as claimed in claim 1, wherein said secondary keyword search step of the correlation analysis, the weight is determined according to the feature words of the vocabulary associated, therewith obtaining the word library information with the highest degree of association, as a search word.
5.根据权利要求1所述的02B智能搜索方法,其特征在于,所述信息检索步骤包括: 维度分析步骤:将所述用户输入的搜索内容进行维度分析,提取多维信息; 规则运算步骤:使用规则引擎将所述搜索词结合所述多维信息在规则库中进行推理运算,并得到搜索结果。 The intelligent search method according 02B ​​as claimed in claim 1, characterized in that the information retrieving step comprises: dimension analysis step of: searching the contents of said user inputted dimensional analysis, multi-dimensional information extracting; regular expression Step: the rules engine combined with the multi-dimensional search word inference operation information in the rule base, and get the search results.
6.一种02B智能搜索系统,其特征在于,所述02B智能搜索系统包括: a)词库建构模块:用于将词汇进行逻辑关联,建立映射词库; b)语义分析模块:用于对用户输入的搜索内容进行语义分析; c) 二次检索模块:用于将语义分析结果,二次检索得出关联词,作为搜索词; d)信息检索模块:用于将所述搜索词在规则库中进行推理运算,并得到搜索结果; e)数据交互模块:用于接收所述用户输入的搜索内容,并输出所述搜索结果。 An intelligent search system 02B, which is characterized in that, the 02B intelligent search system comprising: a) Thesaurus Construction module: logic configured to associate words, a mapping thesaurus; b) Semantic analysis module: for search for user input semantic analysis; c) a secondary search module: for the semantic analysis result, the secondary retrieval results related word, as a search word; D) information retrieval module: for the search term in the rule base inference operation is performed, and obtain search results; E) interaction module data: means for receiving the user input to search for content, and outputs the search result.
7.根据权利要求7所述的02B智能搜索系统,其特征在于,所述词库建构模块包括: 词汇逻辑关联单元:用于运用图模型处理特征词权重,将词汇进行逻辑关联,并以此建A映射关系; 词汇映射关系库:用于储存所述词汇映射关系。 02B according to claim intelligent search system of claim 7, wherein said thesaurus building blocks comprising: a logical association unit vocabulary: a process model using FIG words' weight, will logically associated vocabulary, and thus A built mapping relationship; mapping relationship vocabulary library: Vocabulary for storing the mapping relation.
8.根据权利要求7所述的02B智能搜索系统,其特征在于,所述语义分析模块包括: 分词处理单元:用于利用分词技术对所述用户输入的搜索内容进行分词处理; 关键词提取单元:用于根据分词主谓宾等中文语法特点查找关键词。 02B according to claim intelligent search system of claim 7, wherein said semantic analysis module comprises: segmentation processing unit to: search for contents using a word segmentation of the user inputted word processing; keyword extracting unit : keywords for finding grammatical features according to Chinese word SVO and so on.
9.根据权利要求7所述的02B智能搜索系统,其特征在于,所述二次检索模块用于对所述关键词进行相关度分析,根据特征词权重判断词汇关联度,获取与其在所述词库中具有映射关系的信息,作为搜索词。 02B according to claim intelligent search system of claim 7, wherein said second module is configured to retrieve the keyword correlation analysis based on the characteristic word vocabulary relevance weighting is determined, therewith obtaining the lexicon has information mapping relationship, as a search word.
10.根据权利要求7所述的02B智能搜索系统,其特征在于,所述信息检索模块包括: 维度分析单元:用于将所述用户输入的搜索内容进行维度分析,提取多维信息;规则引擎:用于将所述搜索词结合所述多维信息在规则库中进行推理运算,并得到搜索结果。 02B according to claim intelligent search system of claim 7, wherein the information searching module comprises: an analysis unit dimensions: for searching for content to the user inputted dimensional analysis, multi-dimensional information extracting; rule engine: for the search term in connection with multi-dimensional inference operation information in the rule base, and obtain search results.
CN 201310634240 2013-12-03 2013-12-03 O2B intelligent searching method and system CN104679784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201310634240 CN104679784A (en) 2013-12-03 2013-12-03 O2B intelligent searching method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201310634240 CN104679784A (en) 2013-12-03 2013-12-03 O2B intelligent searching method and system

Publications (1)

Publication Number Publication Date
CN104679784A true true CN104679784A (en) 2015-06-03

Family

ID=53314839

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201310634240 CN104679784A (en) 2013-12-03 2013-12-03 O2B intelligent searching method and system

Country Status (1)

Country Link
CN (1) CN104679784A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6269361B1 (en) * 1999-05-28 2001-07-31 Goto.Com System and method for influencing a position on a search result list generated by a computer network search engine
CN1759392A (en) * 2003-03-08 2006-04-12 Nhn株式会社 Method for generating a search result list on a web search engine
CN101916294A (en) * 2010-08-27 2010-12-15 黄斌 Method for realizing exact search by utilizing semantic analysis
CN103064838A (en) * 2011-10-19 2013-04-24 阿里巴巴集团控股有限公司 Data searching method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6269361B1 (en) * 1999-05-28 2001-07-31 Goto.Com System and method for influencing a position on a search result list generated by a computer network search engine
CN1759392A (en) * 2003-03-08 2006-04-12 Nhn株式会社 Method for generating a search result list on a web search engine
CN101916294A (en) * 2010-08-27 2010-12-15 黄斌 Method for realizing exact search by utilizing semantic analysis
CN103064838A (en) * 2011-10-19 2013-04-24 阿里巴巴集团控股有限公司 Data searching method and device

Similar Documents

Publication Publication Date Title
Kowalski et al. Information storage and retrieval systems: theory and implementation
Kishida Technical issues of cross-language information retrieval: a review
US20090089047A1 (en) Natural Language Hypernym Weighting For Word Sense Disambiguation
Pons-Porrata et al. Topic discovery based on text mining techniques
Chowdhury Natural language processing
US20120254143A1 (en) Natural language querying with cascaded conditional random fields
US20120136649A1 (en) Natural Language Interface
Morato et al. Wordnet applications
Andrenucci et al. Automated question answering: Review of the main approaches
CN101634983A (en) Method and device for text classification
CN101246492A (en) Full text retrieval system based on natural language
CN101059806A (en) Word sense based local file searching method
Cantador et al. Enriching ontological user profiles with tagging history for multi-domain recommendations
CN101373532A (en) FAQ Chinese request-answering system implementing method in tourism field
CN101901249A (en) Text-based query expansion and sort method in image retrieval
CN101251841A (en) Method for establishing and searching feature matrix of Web document based on semantics
Berger et al. An adaptive information retrieval system based on associative networks
CN101414310A (en) Method and apparatus for searching natural language
Kostoff Database tomography: Origins and duplications
CN102087669A (en) Intelligent search engine system based on semantic association
CN102110174A (en) Keyword-based WEB server expansion search method
Gholamrezazadeh et al. A comprehensive survey on text summarization systems
Zheng et al. A survey of faceted search
Trillo et al. Using semantic techniques to access web data
Sudeepthi et al. A survey on semantic web search engine

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination