CN104602340A - Positioning system and method based on ultra-wide band technology - Google Patents

Positioning system and method based on ultra-wide band technology Download PDF

Info

Publication number
CN104602340A
CN104602340A CN201410853898.7A CN201410853898A CN104602340A CN 104602340 A CN104602340 A CN 104602340A CN 201410853898 A CN201410853898 A CN 201410853898A CN 104602340 A CN104602340 A CN 104602340A
Authority
CN
China
Prior art keywords
positioning
msub
mrow
base stations
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410853898.7A
Other languages
Chinese (zh)
Inventor
熊丹
丁宁
吴晖
于练
张钦丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN KESONG ELECTRONIC CO Ltd
Original Assignee
SHENZHEN KESONG ELECTRONIC CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENZHEN KESONG ELECTRONIC CO Ltd filed Critical SHENZHEN KESONG ELECTRONIC CO Ltd
Priority to CN201410853898.7A priority Critical patent/CN104602340A/en
Publication of CN104602340A publication Critical patent/CN104602340A/en
Pending legal-status Critical Current

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The invention provides a positioning method. The positioning method is characterized by comprising enabling a terminal to be positioned to issue a positioning request; according to the positioning request, obtaining signal transmission data among the terminal to be positioned, a reference tag and multiple base stations; computing the estimated coordinate of the terminal to be positioned according obtained signals, performing multiple iterative convergence on the estimated coordinate to obtain the position coordinate of the terminal to be positioned. The positioning method can effectively improve the positioning precision. The invention also provides a positioning system.

Description

Positioning system and positioning method based on ultra-wideband technology
Technical Field
The present invention relates to the field of wireless communication technologies, and in particular, to a positioning system and a positioning method based on an ultra wideband technology.
Background
With the continuous development of human society, the requirements of people on wireless communication are continuously improved, and emerging wireless network technologies (such as WiFi, ZigBee, bluetooth, and Ultra Wide Band (UWB) technologies) are widely applied in the fields of offices, homes, factories, and the like. The UWB wireless positioning technology has the advantages of low power consumption, good multipath resistance, high security, low system complexity, real-time performance, expandability and the like, has a very high time resolution, can achieve centimeter-level positioning accuracy, has become a hot spot of the future wireless positioning technology, and is considered as one of the key technologies of the next generation of wireless communication.
In the prior art, UWB positioning can be accomplished by ranging and direction finding, and commonly used methods include a time of flight (TOF) method, a Received Signal Strength (RSS) method, an angle of arrival (AOA) method, a time of arrival/time difference of arrival (TOA/TDOA) method, and the like. The ranging method requires that a sending device and a receiving device are always synchronous, and the receiving device provides the transmission time of signals; the TOF method uses clock offsets to solve the synchronization problem; the RSS method depends on a path loss model, has the accuracy related to the node distance, is extremely sensitive to the channel environment and has low robustness; the AOA method needs to measure the arrival angle of the UWB signal, and has high requirements on the base station antenna, thereby increasing the equipment cost in the positioning system; in contrast, the TOA/TDOA method is based on the multipath arrival delay estimation theory, and can most embody the characteristic of high time resolution of the UWB signal. However, using TOA positioning requires that both parties are clock synchronized, so in practical UWB positioning systems, TDOA is a feasible way to locate both parties without clock synchronization, but the positioning method also has the problems of transmission signal delay and base station synchronization requirement.
In the prior art, the delay time of the transmitted signal is difficult to calculate, so the delay time is usually set as a fixed parameter according to an empirical value, but in actual use, due to the influence of environmental factors, temperature, hardware plate making and the like, the actual value of the delay time of the transmitted signal is different, measurement accuracy is inaccurate, and finally positioning deviation occurs; the time between the base stations is not uniform, which causes a large time deviation and further affects the positioning accuracy. In order to realize high-precision positioning, nanosecond-level time unification is required among base stations, and the cost of the base stations is greatly increased.
Disclosure of Invention
The invention aims to provide a positioning system and a positioning method based on an ultra-wideband technology, which are used for solving the technical problems of emission delay and non-uniform time among base stations in the existing positioning system and positioning method.
The embodiment of the invention provides a positioning method, which is characterized by comprising the following steps: a terminal to be positioned sends a positioning request; acquiring signal transmission data among the terminal to be positioned, the reference tag and the base stations according to the positioning request; and calculating the estimated coordinate of the terminal to be positioned according to the acquired signal transmission data, and performing iterative convergence on the estimated coordinate for multiple times to obtain the position coordinate of the terminal to be positioned.
Preferably, the step of acquiring signal transmission data between the terminal to be positioned, the reference tag, and the plurality of base stations according to the positioning request includes: acquiring positioning request data, wherein the positioning request data comprises the arrival time of a first positioning signal transmitted by the terminal to be positioned and the arrival time of a first reference signal used for carrying out time unification on the plurality of base stations receiving the first positioning signal; acquiring positioning assistance data, wherein the positioning assistance data comprises the arrival time of a reference positioning signal transmitted by the reference tag and the arrival time of a second reference signal used for unifying the time of the plurality of base stations receiving the reference positioning signal; and acquiring position information, wherein the position information comprises the reference label and the coordinate information of the plurality of base stations.
Preferably, the step of calculating the estimated coordinates of the terminal to be positioned according to the acquired signal transmission data includes: calculating a time difference of arrival of the first positioning signal and the reference positioning signal; calculating the distance difference between the terminal to be positioned and the plurality of base stations according to the calculated arrival time difference; and calculating the estimated coordinates of the terminal to be positioned by using a Fang algorithm according to the calculated distance difference.
Preferably, the step of calculating the time difference of arrival of the first positioning signal and the reference positioning signal comprises: calculating the time difference of the first positioning signal and the reference positioning signal reaching the kth base station; and respectively calculating the time difference between the arrival of the first positioning signal and the arrival of the reference positioning signal at two base stations in the plurality of base stations.
Preferably, the step of calculating the time difference between the arrival of the first positioning signal and the arrival of the reference positioning signal at two base stations of the plurality of base stations respectively comprises: calculating a first positioning time reference of the plurality of base stations according to the arrival time of the first reference signal, and calculating the time difference of the first positioning signal arriving at two base stations in the plurality of base stations according to the first positioning time reference; and calculating second positioning time references of the plurality of base stations according to the arrival time of the second reference signal, and calculating the time difference of the reference positioning signal arriving at two base stations in the plurality of base stations according to the second positioning time references.
Preferably, the method further comprises the following steps: and acquiring the position coordinates of the terminal to be positioned and the position coordinates of a target point, and controlling the terminal to be positioned to reach the target point.
Preferably, when performing two-dimensional positioning, the number of the plurality of base stations is 3; when three-dimensional positioning is carried out, the number of the base stations is 4
An embodiment of the present invention provides a positioning system, including: the positioning method comprises the following steps that a terminal to be positioned, a reference label, a plurality of base stations and a background server are arranged, wherein the terminal to be positioned comprises the positioning label, and a positioning request is sent out through the positioning label; the background server comprises an acquisition module and a calculation module; the acquisition module is used for acquiring signal transmission data among the terminal to be positioned, the reference tag and the base stations according to the positioning request; the calculation module is used for calculating the estimated coordinates of the terminal to be positioned according to the acquired signal transmission data, performing iterative convergence for multiple times by taking the estimated coordinates as an initial iterative position, and calculating the position coordinates of the terminal to be positioned.
Preferably, the obtaining module includes: a first obtaining unit, configured to obtain positioning request data, where the positioning request data includes arrival time of a first positioning signal transmitted by the terminal to be positioned and arrival time of a first reference signal used for performing time unification on the plurality of base stations that receive the first positioning signal; a second obtaining unit, configured to obtain positioning assistance data, where the positioning assistance data includes an arrival time of a reference positioning signal transmitted by the reference tag and an arrival time of a second reference signal used for time unification of the plurality of base stations that receive the reference positioning signal; a third obtaining unit, configured to obtain location information, where the location information includes the reference tag and coordinate information of the multiple base stations.
Preferably, the calculation module comprises: a first calculation unit for calculating a time difference of arrival of the first positioning signal and the reference positioning signal; a second calculating unit, configured to calculate distance differences between the terminal to be positioned and the base stations according to the calculated time difference of arrival; and the pre-estimation unit is used for calculating the pre-estimated coordinates of the terminal to be positioned by using a Fang algorithm according to the calculated distance difference.
Advantageously, the positioning method and the positioning system of the invention send a reference signal through the main base station, so that the system does not need to start the positioning clock accurately and synchronously, and can obtain the positioning information of the terminal to be positioned only by measuring the time interval between the reference signal and the positioning signal from the terminal to be positioned, thereby effectively improving the positioning precision, and in the actual demonstration, the positioning precision can reach 0.1m by using the positioning method for positioning. In addition, the node arrangement of the positioning method of the present invention includes 1 reference tag in addition to 4 base stations and 1 positioning tag, and such an arrangement can cancel the time delay of transmitting the UWB signal by the antenna of the mobile tag in the calculation. The 1 master base station transmits a reference signal to the 3 slave base stations, and the TDOA (time difference of arrival) is used for effectively avoiding the problem of base station time synchronization in the prior art.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the description of the embodiments or the prior art will be briefly described below, it is obvious that the drawings in the following description are only some embodiments of the present invention, and for those skilled in the art, other drawings can be obtained according to the drawings without creative efforts.
Fig. 1 is a schematic diagram of a node arrangement of a positioning system according to an embodiment of the present invention.
Fig. 2 is a schematic diagram of processing a delay difference of arrival of a received signal in a positioning system according to an embodiment of the present invention.
Fig. 3 is a specific flowchart of a positioning method according to an embodiment of the present invention.
Fig. 4 is a specific flowchart of a method for calculating estimated coordinates of a terminal to be positioned according to an embodiment of the present invention
Fig. 5 is a schematic structural diagram of a positioning system according to an embodiment of the present invention.
Fig. 6 is a schematic structural diagram of an acquisition module according to an embodiment of the present invention.
Fig. 7 is a schematic structural diagram of a computing module according to an embodiment of the present invention.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, the present invention is described in further detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
Fig. 1 is a schematic diagram of a node arrangement of a positioning system according to an embodiment of the present invention. Fig. 2 is a schematic diagram of processing a delay difference of arrival of a received signal in a positioning system according to an embodiment of the present invention. Specifically, there is a transmission delay when the positioning tag and the reference tag transmit UWB positioning signals through the antenna, and there is a reception delay when each base station receives positioning signals transmitted from the positioning tag and the reference tag through the base station antenna, in order to eliminate the transmission delay, as shown in fig. 1, unlike the conventional node arrangement for performing three-dimensional positioning, in the node arrangement of the positioning system provided according to an embodiment of the present invention, 4 base stations are used to perform three-dimensional positioning on the positioning tag, and 1 reference tag is added, and according to the time difference between the reference tag and the mobile tag reaching the kth base station, the transmission delay τ can be eliminatedk
In addition, to solve the problem of non-uniform time among base stations, in an embodiment of the present invention, the base stations in the node arrangement are divided into main base stations (e.g., BSs)1) With slave base stations (e.g. BS)2、BS3、BS4) Master base station BS1Upon receipt of a location tag transmissionAfter the first positioning signal and the reference positioning signal transmitted by the reference tag, waiting for T01At a time, a first reference signal and a second reference signal are transmitted from the base station BS2、BS3、BS4There is also a time delay D in receiving the reference signal12、D13、D14However, because the positions of the base stations are fixed, time delay can be obtained through calculation, and according to the time difference between the UWB positioning signals emitted by the positioning tags and k base stations, the distance difference between k groups of mobile tags and k base stations can be obtained, so that a hyperboloid intersection model is established to solve the position of the positioning tags.
Fig. 3 is a detailed flowchart of a positioning method 300 according to an embodiment of the invention. As shown in fig. 3, the positioning method 300 includes the following steps.
Step S302: and the terminal to be positioned sends a positioning request.
Step S304: and acquiring signal transmission data among the terminal to be positioned, the reference tag and the plurality of base stations according to the positioning request.
Specifically, in an embodiment of the present invention, first, positioning request data is obtained, where the positioning request data includes an arrival time of a first positioning signal transmitted by a terminal to be positioned and an arrival time of a first reference signal used for unifying time of a plurality of base stations receiving the first positioning signal; then, positioning auxiliary data is obtained, wherein the positioning auxiliary data comprises the arrival time of a reference positioning signal transmitted by a reference tag and the arrival time of a second reference signal used for carrying out time unification on a plurality of base stations receiving the reference positioning signal; and finally, acquiring position information, wherein the position information comprises the reference label and the coordinate information of the plurality of base stations.
Step S306: and calculating the estimated coordinate of the terminal to be positioned according to the acquired signal transmission data, and performing iterative convergence on the estimated coordinate for multiple times to obtain the position coordinate of the terminal to be positioned.
Preferably, this embodiment further includes the steps of:
and acquiring the position coordinates of the terminal to be positioned and the position coordinates of the target point, and controlling the terminal to be positioned to reach the target point.
Preferably, when performing two-dimensional positioning, the number of the plurality of base stations is 3; when three-dimensional positioning is carried out, the number of the plurality of base stations is 4.
Fig. 4 is a flowchart illustrating a method 400 for calculating estimated coordinates of a terminal to be positioned according to an embodiment of the present invention. As shown in fig. 4, the calculation method 400 includes the following steps.
Step S402: a time difference of arrival of the first positioning signal and the reference positioning signal is calculated.
Since there is a certain difference in the time display at the same time in different products (for example, there is a certain deviation between the time of the display of the watch and the time of the display of the computer), there is always a deviation between the time when the positioning terminal transmits the first positioning signal and the time when the reference tag transmits the reference positioning signal and the time when the plurality of base stations display.
Specifically, as shown in connection with fig. 2. Firstly, calculating the time difference of the arrival of a first positioning signal transmitted by a terminal to be positioned and a reference positioning signal transmitted by a reference label at a kth base station. As shown in FIG. 2, t0kAnd t1kThe arrival time of a first positioning signal transmitted by a terminal to be positioned and a reference positioning signal transmitted by a reference tag to a kth base station; dkAnd dk' is the distance between the terminal to be positioned and the reference tag and the kth base station, T0And T1Absolute time, Δ i, at which a first locating signal is transmitted for a terminal to be located and a reference locating signal is transmitted for a reference tag0kIs the time deviation between the initial time I of the terminal to be positioned and the initial time of the kth base station,. DELTA.i1kIs the time deviation of the initial time I of the reference label and the initial time of the kth base station, taukFor the transmission delay from the radio frequency front end (RF) of the terminal to be positioned and the reference tag to the kth base station, let τ bekRemain unchanged for a short time (e.g., a few microseconds); then there is
t0k=τk+dk/c+(T0+△i0k) (1)
t1k=τk+dk′/c+(T1+△i1k) (2)
△tk=t1k-t0k=dk′/c-dk/c+△T+△i1k-△i0k (3)
Wherein: t is1-T0,dkRepresenting the distance d 'between the terminal to be positioned and the kth base station'kDenotes the distance, Δ t, of the reference tag from the kth base stationkAnd the time difference between the first positioning signal transmitted by the terminal to be positioned and the arrival of the reference positioning signal transmitted by the reference tag at the kth base station is represented.
Assuming that there are 4 base stations (i.e., k is 4), then for all base stations:
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>&Delta;t</mi> <mn>1</mn> </msub> <mo>=</mo> <msup> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>&prime;</mo> </msup> <mo>/</mo> <mi>c</mi> <mo>-</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>/</mo> <mi>c</mi> <mo>+</mo> <mi>&Delta;T</mi> <mo>+</mo> <msub> <mi>&Delta;i</mi> <mn>11</mn> </msub> <mo>-</mo> <msub> <mi>&Delta;i</mi> <mn>01</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&Delta;t</mi> <mn>2</mn> </msub> <mo>=</mo> <msup> <msub> <mi>d</mi> <mn>2</mn> </msub> <mo>&prime;</mo> </msup> <mo>/</mo> <mi>c</mi> <mo>-</mo> <msub> <mi>d</mi> <mn>2</mn> </msub> <mo>/</mo> <mi>c</mi> <mo>+</mo> <mi>&Delta;T</mi> <mo>+</mo> <msub> <mi>&Delta;i</mi> <mn>12</mn> </msub> <mo>-</mo> <msub> <mi>&Delta;i</mi> <mn>02</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&Delta;t</mi> <mn>3</mn> </msub> <mo>=</mo> <msup> <msub> <mi>d</mi> <mn>3</mn> </msub> <mo>&prime;</mo> </msup> <mo>/</mo> <mi>c</mi> <mo>-</mo> <msub> <mi>d</mi> <mn>3</mn> </msub> <mo>/</mo> <mi>c</mi> <mo>+</mo> <mi>&Delta;T</mi> <mo>+</mo> <msub> <mi>&Delta;i</mi> <mn>13</mn> </msub> <mo>-</mo> <msub> <mi>&Delta;i</mi> <mn>03</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&Delta;t</mi> <mn>4</mn> </msub> <mo>=</mo> <msup> <msub> <mi>d</mi> <mn>4</mn> </msub> <mo>&prime;</mo> </msup> <mo>/</mo> <mi>c</mi> <mo>-</mo> <msub> <mi>d</mi> <mn>4</mn> </msub> <mo>/</mo> <mi>c</mi> <mo>+</mo> <mi>&Delta;T</mi> <mo>+</mo> <msub> <mi>&Delta;i</mi> <mn>14</mn> </msub> <mo>-</mo> <msub> <mi>&Delta;i</mi> <mn>04</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula (1), τ is delayed due to emissionkThe values easily affected by the environment such as temperature are different and the calculation amount is large, and the application of TDOA (time difference of arrival) can eliminate taukFor example, as shown in formula (3).
Then, time differences between the arrival of the first positioning signal and the reference positioning signal at two base stations in the plurality of base stations are respectively calculated. Due to the time deviation delta i of the terminal to be positioned, the reference label and the kth base station0k、△i1kThe positioning information of the terminal to be positioned can be obtained by measuring the time intervals of the reference signal, the first positioning signal from the terminal to be positioned and the reference positioning signal from the reference label without accurately and synchronously starting the positioning clock. The method comprises the following steps: calculating a first positioning time reference of the plurality of base stations according to the arrival time of the first reference signal, and calculating the time difference of the first positioning signal arriving at two base stations in the plurality of base stations according to the first positioning time reference; and calculating a second positioning time reference of the plurality of base stations according to the arrival time of the second reference signal, and calculating the time difference of the reference positioning signal arriving at two base stations in the plurality of base stations through the second positioning time reference.
Specifically, the signal processing procedure of the plurality of base stations is as shown in fig. 2, wherein the dark color is UWB transmission signal and the colorless color is UWB reception signal。t01、t02、t03、t04The arrival times t of the first positioning signals respectively transmitted by the terminal to be positioned at the plurality of base stations11、t12、t13、t14The arrival times of the reference positioning signals respectively transmitted by the reference tags to the plurality of base stations; waiting for T to ensure that a plurality of base stations receive the first positioning signal transmitted by the terminal to be positioned and the reference positioning signal transmitted by the reference label01After (being a fixed value), the master base station BS1Transmitting a first reference signal and a second reference signal to a slave base station BS, respectively2From the base station BS3From the base station BS4;S2、S'2、S3、S’3、S4、S'4Are respectively from the main base station BS1Arrives at the slave base station BS2From the base station BS3From the base station BS4The arrival time of (c); d12、D13、D14Is a main base station BS1And slave base station BS2From the base station BS3From the base station BS4Wherein the time delay D is due to the fixed position between the base stations12、D13、D14Is calculable. With a master base station BS1Receiving a first positioning signal transmitted by a terminal to be positioned, for example, a main base station BS1Wait for T01Transmitting a first reference signal, as indicated by the dashed box in fig. 2, (S)2-D12) For the slave base station BS2(ii) a positioning time reference of (S)3-D13) For the slave base station BS3(ii) a positioning time reference of (S)4-D14) For the slave base station BS4The positioning time reference of (2).
Therefore, in the whole positioning system, the plurality of base stations use the arrival time of the first reference signal as the timing starting time, and the time difference between the arrival of the first positioning signal transmitted by the terminal to be positioned and the plurality of base stations can be accurately calculated. Due to the fact that
T02=S2-D12-t02,T03=S3-D13-t03,T04=S4-D14-t04Then, the TDOA values between the terminal to be located and the base stations are calculated as follows:
T21=T01-T02=T01-(S2-D12-t02) (5)
T31=T01-T03=T01-(S3-D13-t03) (6)
T41=T01-T04=T01-(S4-D14-t04) (7)
wherein, TxyThe time difference between a first positioning signal transmitted by a terminal to be positioned to a base station X and a first positioning signal transmitted by a terminal to be positioned to a base station Y is shown, and the same principle can be known as T'xyThe time difference between the reference positioning signal transmitted by the reference tag to base station X and to base station Y is:
T′21=T01-T′02=T01-(S′2-D′12-t12) (8)
T′31=T01-T′03=T01-(S′3-D′13-t13) (9)
T′41=T01-T′04=T01-(S′4-D′14-t14) (10)
step S404: and calculating the distance difference between the terminal to be positioned and the plurality of base stations according to the calculated arrival time difference.
Specifically, equation (4) can be derived from the TDOA location algorithm:
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>d</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msup> <msub> <mi>d</mi> <mn>2</mn> </msub> <mo>&prime;</mo> </msup> <mo>-</mo> <msup> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>-</mo> <mi>c</mi> <mrow> <mo>(</mo> <msub> <mi>&Delta;t</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>&Delta;t</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>c</mi> <mrow> <mo>(</mo> <msub> <mi>&Delta;i</mi> <mn>12</mn> </msub> <mo>-</mo> <msub> <mi>&Delta;i</mi> <mn>02</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>c</mi> <mrow> <mo>(</mo> <msub> <mi>&Delta;i</mi> <mn>11</mn> </msub> <mo>-</mo> <msub> <mi>&Delta;i</mi> <mn>01</mn> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>d</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msup> <msub> <mi>d</mi> <mn>3</mn> </msub> <mo>&prime;</mo> </msup> <mo>-</mo> <msup> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>-</mo> <mi>c</mi> <mrow> <mo>(</mo> <msub> <mi>&Delta;t</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>&Delta;t</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>c</mi> <mrow> <mo>(</mo> <msub> <mi>&Delta;i</mi> <mn>13</mn> </msub> <mo>-</mo> <msub> <mi>&Delta;i</mi> <mn>03</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>c</mi> <mrow> <mo>(</mo> <msub> <mi>&Delta;i</mi> <mn>11</mn> </msub> <mo>-</mo> <msub> <mi>&Delta;i</mi> <mn>01</mn> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>d</mi> <mn>4</mn> </msub> <mo>-</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msup> <msub> <mi>d</mi> <mn>4</mn> </msub> <mo>&prime;</mo> </msup> <mo>-</mo> <msup> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>-</mo> <mi>c</mi> <mrow> <mo>(</mo> <msub> <mi>&Delta;t</mi> <mn>4</mn> </msub> <mo>-</mo> <msub> <mi>&Delta;t</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>c</mi> <mrow> <mo>(</mo> <msub> <mi>&Delta;i</mi> <mn>14</mn> </msub> <mo>-</mo> <msub> <mi>&Delta;i</mi> <mn>04</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>c</mi> <mrow> <mo>(</mo> <msub> <mi>&Delta;i</mi> <mn>11</mn> </msub> <mo>-</mo> <msub> <mi>&Delta;i</mi> <mn>01</mn> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
according to fig. 2, equation (11) can be converted into:
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>d</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msup> <msub> <mi>d</mi> <mn>2</mn> </msub> <mo>&prime;</mo> </msup> <mo>-</mo> <msup> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>-</mo> <mi>c</mi> <mo>[</mo> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>12</mn> </msub> <mo>-</mo> <msub> <mi>&Delta;i</mi> <mn>12</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>11</mn> </msub> <mo>-</mo> <msub> <mi>&Delta;i</mi> <mn>11</mn> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>02</mn> </msub> <mo>-</mo> <msub> <mi>&Delta;i</mi> <mn>02</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>01</mn> </msub> <mo>-</mo> <msub> <mi>&Delta;i</mi> <mn>01</mn> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>]</mo> <mo>=</mo> <mrow> <mo>(</mo> <msup> <msub> <mi>d</mi> <mn>2</mn> </msub> <mo>&prime;</mo> </msup> <mo>-</mo> <msup> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>-</mo> <mi>c</mi> <mrow> <mo>(</mo> <msubsup> <mi>T</mi> <mn>21</mn> <mo>&prime;</mo> </msubsup> <mo>-</mo> <msub> <mi>T</mi> <mn>21</mn> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>d</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msup> <msub> <mi>d</mi> <mn>3</mn> </msub> <mo>&prime;</mo> </msup> <mo>-</mo> <msup> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>-</mo> <mi>c</mi> <mo>[</mo> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>13</mn> </msub> <mo>-</mo> <msub> <mi>&Delta;i</mi> <mn>13</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>11</mn> </msub> <mo>-</mo> <msub> <mi>&Delta;i</mi> <mn>11</mn> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>03</mn> </msub> <mo>-</mo> <msub> <mi>&Delta;i</mi> <mn>03</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>01</mn> </msub> <mo>-</mo> <msub> <mi>&Delta;i</mi> <mn>01</mn> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>]</mo> <mo>=</mo> <mrow> <mo>(</mo> <msup> <msub> <mi>d</mi> <mn>3</mn> </msub> <mo>&prime;</mo> </msup> <mo>-</mo> <msup> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>-</mo> <mi>c</mi> <mrow> <mo>(</mo> <msubsup> <mi>T</mi> <mn>31</mn> <mo>&prime;</mo> </msubsup> <mo>-</mo> <msub> <mi>T</mi> <mn>31</mn> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>d</mi> <mn>4</mn> </msub> <mo>-</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msup> <msub> <mi>d</mi> <mn>4</mn> </msub> <mo>&prime;</mo> </msup> <mo>-</mo> <msup> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>-</mo> <mi>c</mi> <mo>[</mo> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>14</mn> </msub> <mo>-</mo> <msub> <mi>&Delta;t</mi> <mn>14</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>11</mn> </msub> <mo>-</mo> <msub> <mi>&Delta;i</mi> <mn>11</mn> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>04</mn> </msub> <mo>-</mo> <msub> <mi>&Delta;i</mi> <mn>04</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>01</mn> </msub> <mo>-</mo> <msub> <mi>&Delta;i</mi> <mn>01</mn> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>]</mo> <mo>=</mo> <mrow> <mo>(</mo> <msup> <msub> <mi>d</mi> <mn>4</mn> </msub> <mo>&prime;</mo> </msup> <mo>-</mo> <msup> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>-</mo> <mi>c</mi> <mrow> <mo>(</mo> <msubsup> <mi>T</mi> <mn>41</mn> <mo>&prime;</mo> </msubsup> <mo>-</mo> <msub> <mi>T</mi> <mn>41</mn> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
the distance difference formula can be obtained by substituting equation (12) with equation (5) to equation (10) above, and is:
d2-d1=(d2′-d1′)-c((S2-D12-t02)-(S′2-D′12-t12))
d3-d1=(d3′-d1′)-c((S3-D13-t03)-(S′3-D′13-t13)) (13)
d4-d1=(d4′-d1′)-c((S4-D14-t04)-(S′4-D′14-t14))
wherein c is 3 × 108m/s。
Step S406: and calculating the estimated coordinates of the terminal to be positioned by using a Fang algorithm according to the calculated distance difference.
In an embodiment of the invention, specifically, a three-dimensional coordinate system is first established, with the xoy plane parallel to the horizontal plane. The Oz axis is directed vertically upward from the xoy plane. Assuming that the initial position coordinates of the terminal to be positioned are (x, y, z), the coordinates of the reference tag are (x ', y', z '), and the coordinates of the plurality of base stations are (x', y ', z')i,yi,zi) (i ═ 1,2,3,4), then can be obtained from formula (13):
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msqrt> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>y</mi> <mo>-</mo> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>z</mi> <mo>-</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>-</mo> <msqrt> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>y</mi> <mo>-</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>z</mi> <mo>-</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>=</mo> <mrow> <mo>(</mo> <msup> <msub> <mi>d</mi> <mn>2</mn> </msub> <mo>&prime;</mo> </msup> <mo>-</mo> <msup> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>-</mo> <mi>c</mi> <mrow> <mo>(</mo> <msub> <mrow> <msubsup> <mi>T</mi> <mn>21</mn> <mo>&prime;</mo> </msubsup> <mo>-</mo> <mi>T</mi> </mrow> <mn>21</mn> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msqrt> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>y</mi> <mo>-</mo> <msub> <mi>y</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>z</mi> <mo>-</mo> <msub> <mi>z</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>-</mo> <msqrt> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>y</mi> <mo>-</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>z</mi> <mo>-</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>=</mo> <mrow> <mo>(</mo> <msup> <msub> <mi>d</mi> <mn>3</mn> </msub> <mo>&prime;</mo> </msup> <mo>-</mo> <msup> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>-</mo> <mi>c</mi> <mrow> <mo>(</mo> <msub> <mrow> <msubsup> <mi>T</mi> <mn>31</mn> <mo>&prime;</mo> </msubsup> <mo>-</mo> <mi>T</mi> </mrow> <mn>31</mn> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msqrt> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>y</mi> <mo>-</mo> <msub> <mi>y</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>z</mi> <mo>-</mo> <msub> <mi>z</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>-</mo> <msqrt> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>y</mi> <mo>-</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>z</mi> <mo>-</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>=</mo> <mrow> <mo>(</mo> <msup> <msub> <mi>d</mi> <mn>4</mn> </msub> <mo>&prime;</mo> </msup> <mo>-</mo> <msup> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>-</mo> <mi>c</mi> <mrow> <mo>(</mo> <msub> <mrow> <msubsup> <mi>T</mi> <mn>41</mn> <mo>&prime;</mo> </msubsup> <mo>-</mo> <mi>T</mi> </mrow> <mn>41</mn> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, the distance between the terminal to be positioned and the plurality of base stations is di(i ═ 1,2,3, 4). Terminal to be positioned and slave base station (slave base station BS)2From the base station BS3From the base station BS4) Distance between terminal to be positioned and main base station BS1Has a difference of di,1. A schematic diagram of the positioning of a terminal to be positioned is shown in fig. 1. The following relation exists according to the time difference positioning principle:
(x-xi)2+(y-yi)2+(z-zi)2=di 2 (15)
di,1=di-d1 (16)
wherein d isi,1Indicating the terminal to be positioned and the slave base station (slave base station BS)2From the base station BS3From the base station BS4) Distance between terminal to be positioned and main base station BS1C is 3 × 108m/s。
Order toFrom equation (15), it can be seen that
d i 2 = k i - 2 x i x - 2 y i y - 2 z i z + x 2 + y 2 + z 2 - - - ( 17 )
According to the distance difference d measured in step S404i,1And estimating the coordinate value of the node in the terminal to be positioned by using the Fang algorithm. The specific method comprises the following steps:
let i equal to 1, available d 1 2 = k 1 - 2 x 1 x - 2 y 1 y - 2 z 1 z + x 2 + y 2 + z 2 - - - ( 18 )
According to the formulae (17), (18) and (16),
d i , 1 2 + 2 d i , 1 d 1 = d i 2 - d 1 2 = k i - 2 x i , 1 x - 2 y i , 1 y - 2 z i , 1 z - k 1 - - - ( 19 )
wherein x isi,1=xi-x1,yi,1=yi-y1,zi,1=zi-z1When x, y, and z are regarded as unknown numbers, equation (19) becomes a linear equation system. And solving the values of x, y and z to obtain the position coordinates of the terminal to be positioned. Setting a main base station BS1Is (0, 0, 0), from the base station BS2From the base station BS3From the base station BS4Are respectively (x)2,0,0)、(x3,y3,0)、(x4,y4,z4) Then, thenFrom the formula (19)
- d 2,1 d 1 = d 2,1 2 - x 2 2 + 2 x 2 x - 2 d 3,1 d 1 = d 3,1 2 - ( x 3 2 + y 3 2 ) + 2 ( x 3 x + y 3 y ) - 2 d 4,1 d 1 = d 4,1 2 - ( x 4 2 + y 4 2 + z 4 2 ) + 2 ( x 4 x + y 4 y + z 4 z ) - - - ( 20 )
Elimination of d of formula (20)1The following results were obtained:
y=g×x+h (21)
z=k×x+l (22)
wherein:
g=((d3,1x2)/d2,1-x3)/y3
h = ( x 3 2 + y 3 2 - d 3,1 2 + d 3,1 d 2,1 ( 1 - ( x 2 / d 2,1 ) 2 ) ) / 2 y 3
k=(d4,1x2y3-d2,1x4y3-d3,1x2y4+d3,1x3y4)/(d2,1y3z4)
l = d 4,1 y 3 d 2,1 2 - d 4,1 y 3 x 2 2 - d 2,1 y 3 d 4,1 2 + d 2,1 y 3 ( x 4 2 + y 4 2 + z 4 2 ) - d 3,1 y 4 ( d 2,1 2 - x 2 2 ) - d 2,1 y 4 ( x 3 2 + y 3 2 + d 3,1 2 ) 2 d 2,1 y 3 z 4
the formula (21) and the formula (22) may be substituted for the formula (1) in the formula (20):
d×x2+e×x+f=0 (23)
wherein:
d = 4 d 2,1 2 + 4 d 2,1 2 g 2 + 4 d 2,1 2 k 2 - 4 x 2 2
e = 8 d 2,1 2 gh + 8 d 2,1 2 lk - 4 x 2 ( d 2,1 2 - x 2 2 )
f = 4 d 2,1 2 h 2 + 4 d 2,1 2 l 2 - ( d 2,1 2 - x 2 2 ) 2
solving a quadratic equation with one element can solve x, and can solve y and z in the same way. Thereby obtaining the positioning coordinates (x, y, z) of the terminal to be positioned.
Finally, in order to further improve the positioning accuracy, the positioning result obtained by the equation (23) is used as the estimated positionAnd performing initial iteration, wherein the iteration direction of each step is along the direction of descending of the current point function value. Converting a positioning model of the terminal to be positioned into:
η=ht-gt (24)
wherein, <math> <mrow> <mi>&delta;</mi> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>&Delta;x</mi> </mtd> </mtr> <mtr> <mtd> <mi>&Delta;y</mi> </mtd> </mtr> <mtr> <mtd> <mi>&Delta;z</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </math> which is indicative of the error in the position estimate, <math> <mrow> <msub> <mi>h</mi> <mi>t</mi> </msub> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>d</mi> <mn>2,1</mn> </msub> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>d</mi> <mi>&Lambda;</mi> </mover> <mn>2</mn> </msub> <mo>-</mo> <msub> <mover> <mi>d</mi> <mi>&Lambda;</mi> </mover> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>d</mi> <mn>3,1</mn> </msub> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>d</mi> <mi>&Lambda;</mi> </mover> <mn>3</mn> </msub> <mo>-</mo> <msub> <mover> <mi>d</mi> <mi>&Lambda;</mi> </mover> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>d</mi> <mrow> <mi>m</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>d</mi> <mi>&Lambda;</mi> </mover> <mi>m</mi> </msub> <mo>-</mo> <msub> <mover> <mi>d</mi> <mi>&Lambda;</mi> </mover> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math> representing the difference between the true value of the distance difference and the measured value, <math> <mrow> <msub> <mi>g</mi> <mi>t</mi> </msub> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mrow> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>&Delta;</mi> <msub> <mi>d</mi> <mn>1</mn> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> </mfrac> <mo>|</mo> </mrow> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mi>&Lambda;</mi> </mover> <mo>,</mo> <mover> <mi>y</mi> <mi>&Lambda;</mi> </mover> <mo>,</mo> <mover> <mi>z</mi> <mi>&Lambda;</mi> </mover> <mo>)</mo> </mrow> </msub> </mtd> <mtd> <msub> <mrow> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>&Delta;</mi> <msub> <mi>d</mi> <mn>1</mn> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> </mfrac> <mo>|</mo> </mrow> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mi>&Lambda;</mi> </mover> <mo>,</mo> <mover> <mi>y</mi> <mi>&Lambda;</mi> </mover> <mo>,</mo> <mover> <mi>z</mi> <mi>&Lambda;</mi> </mover> <mo>)</mo> </mrow> </msub> </mtd> <mtd> <msub> <mrow> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>&Delta;</mi> <msub> <mi>d</mi> <mn>1</mn> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <mi>z</mi> </mrow> </mfrac> <mo>|</mo> </mrow> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mi>&Lambda;</mi> </mover> <mo>,</mo> <mover> <mi>y</mi> <mi>&Lambda;</mi> </mover> <mo>,</mo> <mover> <mi>z</mi> <mi>&Lambda;</mi> </mover> <mo>)</mo> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>&Delta;</mi> <msub> <mi>d</mi> <mn>2</mn> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> </mfrac> <mo>|</mo> </mrow> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mi>&Lambda;</mi> </mover> <mo>,</mo> <mover> <mi>y</mi> <mi>&Lambda;</mi> </mover> <mo>,</mo> <mover> <mi>z</mi> <mi>&Lambda;</mi> </mover> <mo>)</mo> </mrow> </msub> </mtd> <mtd> <msub> <mrow> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>&Delta;</mi> <msub> <mi>d</mi> <mn>2</mn> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> </mfrac> <mo>|</mo> </mrow> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mi>&Lambda;</mi> </mover> <mo>,</mo> <mover> <mi>y</mi> <mi>&Lambda;</mi> </mover> <mo>,</mo> <mover> <mi>z</mi> <mi>&Lambda;</mi> </mover> <mo>)</mo> </mrow> </msub> </mtd> <mtd> <msub> <mrow> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>&Delta;</mi> <msub> <mi>d</mi> <mn>2</mn> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <mi>z</mi> </mrow> </mfrac> <mo>|</mo> </mrow> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mi>&Lambda;</mi> </mover> <mo>,</mo> <mover> <mi>y</mi> <mi>&Lambda;</mi> </mover> <mo>,</mo> <mover> <mi>z</mi> <mi>&Lambda;</mi> </mover> <mo>)</mo> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>&Delta;</mi> <msub> <mi>d</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> </mfrac> <mo>|</mo> </mrow> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mi>&Lambda;</mi> </mover> <mo>,</mo> <mover> <mi>y</mi> <mi>&Lambda;</mi> </mover> <mo>,</mo> <mover> <mi>z</mi> <mi>&Lambda;</mi> </mover> <mo>)</mo> </mrow> </msub> </mtd> <mtd> <msub> <mrow> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>&Delta;</mi> <msub> <mi>d</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> </mfrac> <mo>|</mo> </mrow> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mi>&Lambda;</mi> </mover> <mo>,</mo> <mover> <mi>y</mi> <mi>&Lambda;</mi> </mover> <mo>,</mo> <mover> <mi>z</mi> <mi>&Lambda;</mi> </mover> <mo>)</mo> </mrow> </msub> </mtd> <mtd> <msub> <mrow> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>&Delta;</mi> <msub> <mi>d</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <mi>z</mi> </mrow> </mfrac> <mo>|</mo> </mrow> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mi>&Lambda;</mi> </mover> <mo>,</mo> <mover> <mi>y</mi> <mi>&Lambda;</mi> </mover> <mo>,</mo> <mover> <mi>z</mi> <mi>&Lambda;</mi> </mover> <mo>)</mo> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mfrac> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>-</mo> <mover> <mi>x</mi> <mi>&Lambda;</mi> </mover> </mrow> <msub> <mover> <mi>d</mi> <mi>&Lambda;</mi> </mover> <mn>1</mn> </msub> </mfrac> <mo>-</mo> <mfrac> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>-</mo> <mover> <mi>x</mi> <mi>&Lambda;</mi> </mover> </mrow> <msub> <mover> <mi>d</mi> <mi>&Lambda;</mi> </mover> <mn>2</mn> </msub> </mfrac> </mtd> <mtd> <mfrac> <mrow> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>-</mo> <mover> <mi>y</mi> <mi>&Lambda;</mi> </mover> </mrow> <msub> <mover> <mi>d</mi> <mi>&Lambda;</mi> </mover> <mn>1</mn> </msub> </mfrac> <mo>-</mo> <mfrac> <mrow> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>-</mo> <mover> <mi>y</mi> <mi>&Lambda;</mi> </mover> </mrow> <msub> <mover> <mi>d</mi> <mi>&Lambda;</mi> </mover> <mn>2</mn> </msub> </mfrac> </mtd> <mtd> <mfrac> <mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>-</mo> <mover> <mi>z</mi> <mi>&Lambda;</mi> </mover> </mrow> <msub> <mover> <mi>d</mi> <mi>&Lambda;</mi> </mover> <mn>1</mn> </msub> </mfrac> <mo>-</mo> <mfrac> <mrow> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>-</mo> <mover> <mi>z</mi> <mi>&Lambda;</mi> </mover> </mrow> <msub> <mover> <mi>d</mi> <mi>&Lambda;</mi> </mover> <mn>2</mn> </msub> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>-</mo> <mover> <mi>x</mi> <mi>&Lambda;</mi> </mover> </mrow> <msub> <mover> <mi>d</mi> <mi>&Lambda;</mi> </mover> <mn>1</mn> </msub> </mfrac> <mo>-</mo> <mfrac> <mrow> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo>-</mo> <mover> <mi>x</mi> <mi>&Lambda;</mi> </mover> </mrow> <msub> <mover> <mi>d</mi> <mi>&Lambda;</mi> </mover> <mn>3</mn> </msub> </mfrac> </mtd> <mtd> <mfrac> <mrow> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>-</mo> <mover> <mi>y</mi> <mi>&Lambda;</mi> </mover> </mrow> <msub> <mover> <mi>d</mi> <mi>&Lambda;</mi> </mover> <mn>1</mn> </msub> </mfrac> <mo>-</mo> <mfrac> <mrow> <msub> <mi>y</mi> <mn>3</mn> </msub> <mo>-</mo> <mover> <mi>y</mi> <mi>&Lambda;</mi> </mover> </mrow> <msub> <mover> <mi>d</mi> <mi>&Lambda;</mi> </mover> <mn>3</mn> </msub> </mfrac> </mtd> <mtd> <mfrac> <mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>-</mo> <mover> <mi>z</mi> <mi>&Lambda;</mi> </mover> </mrow> <msub> <mover> <mi>d</mi> <mi>&Lambda;</mi> </mover> <mn>1</mn> </msub> </mfrac> <mo>-</mo> <mfrac> <mrow> <msub> <mi>z</mi> <mn>3</mn> </msub> <mo>-</mo> <mover> <mi>z</mi> <mi>&Lambda;</mi> </mover> </mrow> <msub> <mover> <mi>d</mi> <mi>&Lambda;</mi> </mover> <mn>3</mn> </msub> </mfrac> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>-</mo> <mover> <mi>x</mi> <mi>&Lambda;</mi> </mover> </mrow> <msub> <mover> <mi>d</mi> <mi>&Lambda;</mi> </mover> <mn>1</mn> </msub> </mfrac> <mo>-</mo> <mfrac> <mrow> <msub> <mi>x</mi> <mi>m</mi> </msub> <mo>-</mo> <mover> <mi>x</mi> <mi>&Lambda;</mi> </mover> </mrow> <msub> <mover> <mi>d</mi> <mi>&Lambda;</mi> </mover> <mi>m</mi> </msub> </mfrac> </mtd> <mtd> <mfrac> <mrow> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>-</mo> <mover> <mi>y</mi> <mi>&Lambda;</mi> </mover> </mrow> <msub> <mover> <mi>d</mi> <mi>&Lambda;</mi> </mover> <mn>1</mn> </msub> </mfrac> <mo>-</mo> <mfrac> <mrow> <msub> <mi>y</mi> <mi>m</mi> </msub> <mo>-</mo> <mover> <mi>y</mi> <mi>&Lambda;</mi> </mover> </mrow> <msub> <mover> <mi>d</mi> <mi>&Lambda;</mi> </mover> <mi>m</mi> </msub> </mfrac> </mtd> <mtd> <mfrac> <mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>-</mo> <mover> <mi>z</mi> <mi>&Lambda;</mi> </mover> </mrow> <msub> <mover> <mi>d</mi> <mi>&Lambda;</mi> </mover> <mn>1</mn> </msub> </mfrac> <mo>-</mo> <mfrac> <mrow> <msub> <mi>z</mi> <mi>m</mi> </msub> <mo>-</mo> <mover> <mi>z</mi> <mi>&Lambda;</mi> </mover> </mrow> <msub> <mover> <mi>d</mi> <mi>&Lambda;</mi> </mover> <mi>m</mi> </msub> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math> for the estimated target initial iteration positionDistance from each reference node. And solving the formula (24) by using a weighted least square method, wherein the coordinate deviation of the terminal to be positioned can be solved:
<math> <mrow> <mi>&delta;</mi> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>&Delta;x</mi> </mtd> </mtr> <mtr> <mtd> <mi>&Delta;y</mi> </mtd> </mtr> <mtr> <mtd> <mi>&Delta;z</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <msub> <mi>g</mi> <mi>t</mi> </msub> <mi>T</mi> </msup> <msup> <mi>Q</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msub> <mi>g</mi> <mi>t</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <msup> <msub> <mi>g</mi> <mi>t</mi> </msub> <mi>T</mi> </msup> <msup> <mi>Q</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msub> <mi>h</mi> <mi>t</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>25</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein Q is a covariance matrix of time delay estimated values between base stations.
Order toAs the initial value of the next iteration, the iteration process is repeated until Δ x, Δ y are small enough to satisfy the set threshold μ, wherein the estimated value (x ", y", z ") output after | + | Δ y | + | Δ z | ≦ μ is the position coordinate of the terminal to be positioned.
Fig. 5 is a schematic structural diagram of a positioning system based on ultra-wideband technology according to an embodiment of the present invention. As shown in fig. 5, the positioning system 500 includes a background server 510, a plurality of base stations 520 (base station 520-1 to base station 520-k) coupled to the background server 510, and a terminal to be positioned 530 and a reference tag 540 coupled to the plurality of base stations 520.
In an embodiment of the invention, the backend server 510 includes an acquisition module 512 and a calculation module 514 coupled to the acquisition module 512. Specifically, the obtaining module 512 is configured to obtain, according to a positioning request sent by the terminal to be positioned 530, signal transmission data among the terminal to be positioned 530, the reference tag 540, and the multiple base stations 520; the calculating module 514 is configured to calculate an estimated coordinate of the terminal 530 to be positioned according to the acquired signal transmission data, perform iterative convergence for multiple times by using the estimated coordinate as an initial iterative position, and calculate a position coordinate of the terminal 530 to be positioned.
In an embodiment of the present invention, the plurality of base stations 520 includes a master base station 520-1 and slave base stations 520-2 to 520-k, configured to receive a first positioning signal transmitted by a terminal 530 to be positioned and a reference positioning signal transmitted by a reference tag 540, where the slave base stations 520-2 to 520-k are further configured to receive a first reference signal and a second reference signal transmitted from the master base station 520-1. Wherein, 3 base stations are needed for two-dimensional positioning, and 4 base stations are needed for three-dimensional positioning.
In an embodiment of the present invention, the terminal to be located 530 includes a positioning tag 532, and the positioning tag 532 is used for sending out a positioning request, wherein, for enhancing the signal, an antenna of the positioning tag 532 is disposed outside the terminal to be located 530, and the position of the antenna changes with the movement of the terminal to be located 530.
In one embodiment of the present invention, the reference tag 540 is used for transmitting a reference positioning signal to a plurality of base stations 520, and the position of the reference positioning signal is fixed and not movable.
In an embodiment of the present invention, the positioning tag 532, the reference tag 540, and the plurality of base stations 520 are connected by wireless or wired connection, and the plurality of base stations 520 and the background server 510 may also be connected by wireless or wired connection.
Fig. 6 is a schematic structural diagram of the obtaining module 512 according to an embodiment of the present invention. As shown in fig. 6, the obtaining module 512 includes a first obtaining unit 610, a second obtaining unit 620 coupled to the first obtaining unit 610, and a third obtaining unit 630 coupled to the second obtaining unit 620.
Specifically, in an embodiment of the present invention, the first obtaining unit 610 is configured to obtain positioning request data, where the positioning request data includes an arrival time of a first positioning signal transmitted by the terminal 530 to be positioned and an arrival time of a first reference signal used for unifying time of a plurality of base stations 520 receiving the first positioning signal; the second obtaining unit 620 is configured to obtain positioning assistance data, where the positioning assistance data includes an arrival time of a reference positioning signal transmitted by the reference tag 540 and an arrival time of a second reference signal for performing time unification on the plurality of base stations 520 receiving the reference positioning signal; the third obtaining unit 630 is configured to obtain location information, where the location information includes coordinate information of the reference tag 540 and the plurality of base stations 520.
Fig. 7 is a schematic structural diagram of the calculation module 514 according to an embodiment of the present invention. As shown in fig. 7, the calculation module 514 includes a first calculation unit 710, a second calculation unit 720 coupled to the first calculation unit 710, and an estimation unit 730 coupled to the second calculation unit 720.
Specifically, in an embodiment of the present invention, the first calculating unit 710 is configured to calculate a time difference of arrival between the first positioning signal and the reference positioning signal; the second calculating unit 720 is configured to calculate distance differences between the terminal to be positioned and the plurality of base stations according to the calculated arrival time differences; the pre-estimation unit 730 is configured to calculate pre-estimated coordinates of the terminal to be positioned according to the calculated distance difference by using a Fang algorithm.
It should be understood by those skilled in the art that the systems in fig. 5, 6 and 7 can be applied to the methods shown in fig. 3 and 4, and those skilled in the art can easily understand the operations of the systems in fig. 5, 6 and 7 after reading the above description, and therefore, for the sake of brevity, detailed descriptions of the specific implementation processes are omitted here.
Advantageously, the positioning method and the positioning system of the invention send a reference signal through the main base station, so that the system does not need to start the positioning clock accurately and synchronously, and can obtain the positioning information from the terminal to be positioned only by measuring the time interval between the reference signal and the positioning signal from the terminal to be positioned, thereby effectively improving the positioning precision, and in the actual demonstration, the positioning precision can reach 0.1m by using the positioning method for positioning. In addition, the node arrangement of the positioning method of the present invention includes 1 reference tag in addition to 4 base stations and 1 positioning tag, and such an arrangement can cancel the time delay of transmitting the UWB signal by the antenna of the mobile tag in the calculation. The 1 master base station transmits a reference signal to the 3 slave base stations, and the TDOA (time difference of arrival) is used for effectively avoiding the problem of base station time synchronization in the prior art.
The above description is only for the purpose of illustrating the preferred embodiments of the present invention and is not to be construed as limiting the invention, and any modifications, equivalents and improvements made within the spirit and principle of the present invention are intended to be included within the scope of the present invention.

Claims (10)

1. A method of positioning, comprising:
a terminal to be positioned sends a positioning request;
acquiring signal transmission data among the terminal to be positioned, the reference tag and the base stations according to the positioning request; and
and calculating the estimated coordinate of the terminal to be positioned according to the acquired signal transmission data, and performing iterative convergence on the estimated coordinate for multiple times to obtain the position coordinate of the terminal to be positioned.
2. The positioning method according to claim 1, wherein the step of obtaining the signal transmission data between the terminal to be positioned, the reference tag and the plurality of base stations according to the positioning request comprises:
acquiring positioning request data, wherein the positioning request data comprises the arrival time of a first positioning signal transmitted by the terminal to be positioned and the arrival time of a first reference signal used for carrying out time unification on the plurality of base stations receiving the first positioning signal;
acquiring positioning assistance data, wherein the positioning assistance data comprises the arrival time of a reference positioning signal transmitted by the reference tag and the arrival time of a second reference signal used for unifying the time of the plurality of base stations receiving the reference positioning signal; and
and acquiring position information, wherein the position information comprises the reference label and the coordinate information of the plurality of base stations.
3. The positioning method according to claim 2, wherein the step of calculating the estimated coordinates of the terminal to be positioned according to the acquired signal transmission data comprises:
calculating a time difference of arrival of the first positioning signal and the reference positioning signal;
calculating the distance difference between the terminal to be positioned and the plurality of base stations according to the calculated arrival time difference; and
and calculating the estimated coordinates of the terminal to be positioned by using a Fang algorithm according to the calculated distance difference.
4. The positioning method of claim 3, wherein the step of calculating the time difference of arrival of the first positioning signal and the reference positioning signal comprises:
calculating the time difference of the first positioning signal and the reference positioning signal reaching the kth base station; and
and respectively calculating the time difference between the arrival of the first positioning signal and the arrival of the reference positioning signal at two base stations in the plurality of base stations.
5. The method of claim 4, wherein the step of calculating the time difference between the arrival of the first positioning signal and the arrival of the reference positioning signal at two of the plurality of base stations respectively comprises:
calculating a first positioning time reference of the plurality of base stations according to the arrival time of the first reference signal, and calculating the time difference of the first positioning signal arriving at two base stations in the plurality of base stations according to the first positioning time reference; and
and calculating second positioning time references of the plurality of base stations according to the arrival time of the second reference signal, and calculating the time difference of the reference positioning signal arriving at two base stations in the plurality of base stations according to the second positioning time references.
6. The positioning method of claim 1, further comprising:
and acquiring the position coordinates of the terminal to be positioned and the position coordinates of a target point, and controlling the terminal to be positioned to reach the target point.
7. The positioning method according to any of claims 1-6, wherein the number of the plurality of base stations is 3 when performing two-dimensional positioning; and when the three-dimensional positioning is carried out, the number of the plurality of base stations is 4.
8. A positioning system, comprising: a terminal to be positioned, a reference label, a plurality of base stations and a background server, wherein,
the terminal to be positioned comprises a positioning label and sends a positioning request through the positioning label;
the background server comprises an acquisition module and a calculation module;
the acquisition module is used for acquiring signal transmission data among the terminal to be positioned, the reference tag and the base stations according to the positioning request;
the calculation module is used for calculating the estimated coordinates of the terminal to be positioned according to the acquired signal transmission data, performing multiple iterative convergence by taking the estimated coordinates as an initial iterative position, and calculating the position coordinates of the terminal to be positioned.
9. The positioning system of claim 8, wherein the acquisition module comprises:
a first obtaining unit, configured to obtain positioning request data, where the positioning request data includes arrival time of a first positioning signal transmitted by the terminal to be positioned and arrival time of a first reference signal used for performing time unification on the plurality of base stations that receive the first positioning signal;
a second obtaining unit, configured to obtain positioning assistance data, where the positioning assistance data includes an arrival time of a reference positioning signal transmitted by the reference tag and an arrival time of a second reference signal used for time unification of the plurality of base stations that receive the reference positioning signal;
a third obtaining unit, configured to obtain location information, where the location information includes the reference tag and coordinate information of the multiple base stations.
10. The positioning system of claim 9, wherein the calculation module comprises:
a first calculation unit for calculating a time difference of arrival of the first positioning signal and the reference positioning signal;
a second calculating unit, configured to calculate distance differences between the terminal to be positioned and the base stations according to the calculated time difference of arrival; and
and the pre-estimation unit is used for calculating the pre-estimated coordinates of the terminal to be positioned by using a Fang algorithm according to the calculated distance difference.
CN201410853898.7A 2014-12-31 2014-12-31 Positioning system and method based on ultra-wide band technology Pending CN104602340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410853898.7A CN104602340A (en) 2014-12-31 2014-12-31 Positioning system and method based on ultra-wide band technology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410853898.7A CN104602340A (en) 2014-12-31 2014-12-31 Positioning system and method based on ultra-wide band technology

Publications (1)

Publication Number Publication Date
CN104602340A true CN104602340A (en) 2015-05-06

Family

ID=53127739

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410853898.7A Pending CN104602340A (en) 2014-12-31 2014-12-31 Positioning system and method based on ultra-wide band technology

Country Status (1)

Country Link
CN (1) CN104602340A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104936144A (en) * 2015-06-18 2015-09-23 深圳市润安科技发展有限公司 Visualization system and visualization method for supervision place personnel movement
CN105050181A (en) * 2015-06-18 2015-11-11 深圳市润安科技发展有限公司 Method of positioning person under surveillance in supervision place and system thereof
CN105044664A (en) * 2015-06-18 2015-11-11 深圳市润安科技发展有限公司 Supervision-place forbidden zone management and control method and system
CN105095930A (en) * 2015-06-18 2015-11-25 深圳市润安科技发展有限公司 Method and system for managing supervision place materials
CN106231561A (en) * 2016-09-29 2016-12-14 京信通信技术(广州)有限公司 A kind of localization method and device
CN106454726A (en) * 2016-09-29 2017-02-22 京信通信技术(广州)有限公司 Method and device for reducing link time delay error in positioning process
CN106455052A (en) * 2016-09-29 2017-02-22 京信通信技术(广州)有限公司 Positioning method and device
CN106658700A (en) * 2015-10-29 2017-05-10 中兴通讯股份有限公司 Wireless positioning apparatus and wireless positioning method
CN106792516A (en) * 2016-12-02 2017-05-31 武汉理工大学 3-D positioning method based on radio communication base station
CN108235427A (en) * 2018-02-07 2018-06-29 南京邮电大学 A kind of method for measuring Tof and Toda
CN108344988A (en) * 2016-08-30 2018-07-31 李言飞 A kind of method, apparatus and system of ranging
CN108692726A (en) * 2018-04-08 2018-10-23 四川省靓固智能科技有限公司 A kind of UWB indoor orientation methods
CN108711199A (en) * 2018-05-10 2018-10-26 成都精位科技有限公司 Automatic punch card method, device, electronic equipment and readable storage medium storing program for executing
CN108737964A (en) * 2018-04-08 2018-11-02 四川省靓固智能科技有限公司 A kind of UWB indoor locating systems and its localization method
CN108732535A (en) * 2018-05-24 2018-11-02 清华大学 A kind of localization method, device and equipment
CN108882147A (en) * 2018-06-13 2018-11-23 桂林电子科技大学 A kind of wireless location system and fast pulldown method based on ultra wideband location techniques
CN109085789A (en) * 2017-06-13 2018-12-25 郑州联睿电子科技有限公司 The intelligent management system positioned based on ultra wide band and iBeacon high-precision three-dimensional
CN109696653A (en) * 2017-10-23 2019-04-30 深圳市优必选科技有限公司 Base station coordinate calibration method and device
CN109920228A (en) * 2019-01-11 2019-06-21 北京天地玛珂电液控制系统有限公司 A kind of fully-mechanized mining working remote control device with close to perceptional function
CN110113764A (en) * 2019-04-29 2019-08-09 深圳前海微众银行股份有限公司 Localization method, device, equipment and the computer readable storage medium of terminal device
CN110730417A (en) * 2019-09-02 2020-01-24 四川北斗云联科技有限公司 Gun positioning system
CN111493849A (en) * 2020-04-28 2020-08-07 Oppo(重庆)智能科技有限公司 Health monitoring method and related device
CN112788743A (en) * 2019-11-11 2021-05-11 北京京邦达贸易有限公司 Positioning method and device based on ultra-wideband technology
CN114222362A (en) * 2021-12-15 2022-03-22 武汉乾阳智能科技有限公司 Positioning method and positioning device
WO2022109804A1 (en) * 2020-11-24 2022-06-02 华为技术有限公司 Location method and communication apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050080355A (en) * 2004-02-09 2005-08-12 엘지전자 주식회사 A method and a apparatus of peristalsis gps with radar for positioning terminal
CN103344942A (en) * 2013-06-17 2013-10-09 清华大学 Control node, method and system for asynchronous positioning
CN104219761A (en) * 2014-10-09 2014-12-17 中国石油大学(华东) Ultra-wideband wireless positioning method based on maximum slope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050080355A (en) * 2004-02-09 2005-08-12 엘지전자 주식회사 A method and a apparatus of peristalsis gps with radar for positioning terminal
CN103344942A (en) * 2013-06-17 2013-10-09 清华大学 Control node, method and system for asynchronous positioning
CN104219761A (en) * 2014-10-09 2014-12-17 中国石油大学(华东) Ultra-wideband wireless positioning method based on maximum slope

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
牟孝龙: "《中国海洋大学硕士学位论文 超宽带无线定位算法性能分析 》", 27 December 2012 *
黄冬艳: "直接时差提取UWB标签定位系统的研究与实现", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105050181A (en) * 2015-06-18 2015-11-11 深圳市润安科技发展有限公司 Method of positioning person under surveillance in supervision place and system thereof
CN105044664A (en) * 2015-06-18 2015-11-11 深圳市润安科技发展有限公司 Supervision-place forbidden zone management and control method and system
CN105095930A (en) * 2015-06-18 2015-11-25 深圳市润安科技发展有限公司 Method and system for managing supervision place materials
CN104936144A (en) * 2015-06-18 2015-09-23 深圳市润安科技发展有限公司 Visualization system and visualization method for supervision place personnel movement
CN106658700A (en) * 2015-10-29 2017-05-10 中兴通讯股份有限公司 Wireless positioning apparatus and wireless positioning method
CN108344988B (en) * 2016-08-30 2022-05-10 李言飞 Distance measurement method, device and system
CN108344988A (en) * 2016-08-30 2018-07-31 李言飞 A kind of method, apparatus and system of ranging
CN106455052A (en) * 2016-09-29 2017-02-22 京信通信技术(广州)有限公司 Positioning method and device
CN106454726A (en) * 2016-09-29 2017-02-22 京信通信技术(广州)有限公司 Method and device for reducing link time delay error in positioning process
CN106231561A (en) * 2016-09-29 2016-12-14 京信通信技术(广州)有限公司 A kind of localization method and device
CN106455052B (en) * 2016-09-29 2020-06-23 京信通信系统(中国)有限公司 Positioning method and device
CN106454726B (en) * 2016-09-29 2020-06-19 京信通信系统(中国)有限公司 Method and device for reducing link delay error in positioning process
CN106231561B (en) * 2016-09-29 2020-01-14 京信通信系统(中国)有限公司 Positioning method and device
CN106792516A (en) * 2016-12-02 2017-05-31 武汉理工大学 3-D positioning method based on radio communication base station
CN106792516B (en) * 2016-12-02 2019-11-08 武汉理工大学 3-D positioning method based on radio communication base station
CN109085789A (en) * 2017-06-13 2018-12-25 郑州联睿电子科技有限公司 The intelligent management system positioned based on ultra wide band and iBeacon high-precision three-dimensional
CN109696653A (en) * 2017-10-23 2019-04-30 深圳市优必选科技有限公司 Base station coordinate calibration method and device
CN108235427A (en) * 2018-02-07 2018-06-29 南京邮电大学 A kind of method for measuring Tof and Toda
CN108737964B (en) * 2018-04-08 2020-11-06 四川省靓固智能科技有限公司 UWB indoor positioning system and positioning method thereof
CN108692726A (en) * 2018-04-08 2018-10-23 四川省靓固智能科技有限公司 A kind of UWB indoor orientation methods
CN108737964A (en) * 2018-04-08 2018-11-02 四川省靓固智能科技有限公司 A kind of UWB indoor locating systems and its localization method
CN108711199A (en) * 2018-05-10 2018-10-26 成都精位科技有限公司 Automatic punch card method, device, electronic equipment and readable storage medium storing program for executing
CN108732535B (en) * 2018-05-24 2020-06-23 清华大学 Positioning method, device and equipment
CN108732535A (en) * 2018-05-24 2018-11-02 清华大学 A kind of localization method, device and equipment
CN108882147A (en) * 2018-06-13 2018-11-23 桂林电子科技大学 A kind of wireless location system and fast pulldown method based on ultra wideband location techniques
CN109920228A (en) * 2019-01-11 2019-06-21 北京天地玛珂电液控制系统有限公司 A kind of fully-mechanized mining working remote control device with close to perceptional function
CN110113764A (en) * 2019-04-29 2019-08-09 深圳前海微众银行股份有限公司 Localization method, device, equipment and the computer readable storage medium of terminal device
CN110730417A (en) * 2019-09-02 2020-01-24 四川北斗云联科技有限公司 Gun positioning system
CN110730417B (en) * 2019-09-02 2021-10-22 四川北斗云联科技有限公司 Gun positioning system
CN112788743A (en) * 2019-11-11 2021-05-11 北京京邦达贸易有限公司 Positioning method and device based on ultra-wideband technology
CN111493849A (en) * 2020-04-28 2020-08-07 Oppo(重庆)智能科技有限公司 Health monitoring method and related device
WO2022109804A1 (en) * 2020-11-24 2022-06-02 华为技术有限公司 Location method and communication apparatus
CN114222362A (en) * 2021-12-15 2022-03-22 武汉乾阳智能科技有限公司 Positioning method and positioning device
CN114222362B (en) * 2021-12-15 2024-03-15 武汉乾阳智能科技有限公司 Positioning method and positioning device

Similar Documents

Publication Publication Date Title
CN104602340A (en) Positioning system and method based on ultra-wide band technology
CN110099354B (en) Ultra-wideband communication two-dimensional positioning method combining TDOA and TOF
EP3541126B1 (en) Positioning method and positioning system
CN107113762B (en) Positioning method, positioning server and positioning system
US9983292B2 (en) Method and system for multipath reduction for wireless synchronizing and/or locating
CN103344942B (en) Controlling vertex, asynchronous tracking method and system
CN1981206B (en) Positioning system using ultrasonic waves and method for controlling the same
US9658309B2 (en) Precision location method and system
CN109001675B (en) Positioning method for measuring distance difference based on phase difference
EP3348099B1 (en) Fingerprint positioning for mobile terminals
Wang et al. Prototyping and experimental comparison of IR-UWB based high precision localization technologies
Chiasson et al. Asynchronous hyperbolic UWB source-localization and self-localization for indoor tracking and navigation
CN114019450A (en) UWB-based indoor mobile robot positioning method
CN107765216B (en) Target position and timing parameter combined estimation method in unsynchronized wireless networks
Li et al. Decimeter level indoor localization using hybrid measurements of a distributed single receiver
Lu et al. A robust UWB array localization scheme through passive anchor assistance
CN105548962A (en) Wireless range finding positioning method under asynchronous base station system and system thereof
CN108093474B (en) Method and system for realizing indoor positioning by utilizing virtual time synchronization
Wei et al. Joint positioning technique based on TOF and TDOA
CN110658491A (en) Direction finding system, direction finding method, positioning system and positioning method
CN113671441B (en) Indoor passive real-time positioning method based on ultra-wideband technology
CN103969620A (en) Non-cooperative location method for wireless network system on basis of signal arrival time
Le Minh et al. Applying Kalman filter to UWB positioning with DS-TWR method in LOS/NLOS scenarios
KR101911503B1 (en) Wireless positioning system and method based on probabilistic approach in indoor environment
CN106257956A (en) A kind of user facility positioning method based on Dual base stations

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 518000 Guangdong province Shenzhen City Guangming Street million Daiheng high tech Industrial Park No. 5 Building 5 floor

Applicant after: Shenzhen City Zhongzhi Kechuang Robot Co., Ltd.

Address before: 518000 Guangdong province Shenzhen City Guangming Street million Daiheng high tech Industrial Park No. 5 Building 5 floor

Applicant before: Shenzhen Kesong Electronic Co., Ltd.

COR Change of bibliographic data
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150506