CN104542197A - Wireless intelligent control system and method for alternative irrigating - Google Patents

Wireless intelligent control system and method for alternative irrigating Download PDF

Info

Publication number
CN104542197A
CN104542197A CN 201510006199 CN201510006199A CN104542197A CN 104542197 A CN104542197 A CN 104542197A CN 201510006199 CN201510006199 CN 201510006199 CN 201510006199 A CN201510006199 A CN 201510006199A CN 104542197 A CN104542197 A CN 104542197A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
irrigation
module
sensor
system
control
Prior art date
Application number
CN 201510006199
Other languages
Chinese (zh)
Other versions
CN104542197B (en )
Inventor
马道坤
姜明梁
Original Assignee
中国农业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds, or the like
    • A01G25/16Control of watering
    • A01G25/167Control by humidity of the soil itself or of devices simulating soil or of the atmosphere; Soil humidity sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/22Improving land use; Improving water use or availability; Controlling erosion
    • Y02A40/23Improving water use or availability; Controlling erosion
    • Y02A40/235Improving water use or availability; Controlling erosion in irrigated agriculture
    • Y02A40/237Efficient irrigation techniques, e.g. drip irrigation, sprinkler or spray irrigation
    • Y02A40/238Irrigation information systems

Abstract

The invention relates to wireless intelligent control system and method for alternative irrigating. The system comprises a microprocessor module, a sensor module, a solenoid valve driving module, a man-computer interaction module, a wireless communication module and a power module. The system is on the basis of the essential concept of local and regional alterative irrigating of crops; a pressure flow sensor, a soil water and temperature sensor, a rainfall sensor, a leaf temperature sensor and a leaf humidity sensor and other sensors are utilized to obtain rich irrigating information, so that the intelligent crop irrigation control degree and control precision are improved. Compared with the existing irrigation technology, the system has the advantages of being high in intelligent degree, high in man-computer interaction performance, and high in automatic fault diagnosis; the system is applicable to a farmland irrigation control system using the alternative irrigating technology and can be also used for irrigating of a greenhouse; the type of the crops can be adjusted on site or remotely adjusted, so that the irrigating requirements of maize, cotton, vegetable and other crops can be met.

Description

一种无线交替灌溉智能控制系统及方法 A wireless alternative method of irrigation and Intelligent Control System

技术领域 FIELD

[0001] 本发明涉及地面灌溉技术领域,特别是涉及一种智能式作物局部根区交替灌溉控制方法及系统。 [0001] The present invention relates to the field of surface irrigation technology, particularly to a smart local Crop Root alternate control method and system for irrigation.

背景技术 Background technique

[0002] 康绍忠等于1997年基于节水灌溉技术原理与作物感知缺水的根源信号理论提出了一种根系分区交替灌溉技术,该技术主动控制作物根区土壤在水平或垂直剖面的某个区域的水分状况,使作物根区始终有一部分生长在干燥或较为干燥的环境中,限制该部分的根系吸水,同时通过人工控制使根系在水平或垂直剖面的干燥区域交替出现,使干燥区的根系产生水分胁迫信号传递到叶气孔从而有效调节气孔运动,而处于湿润区的根系从土壤中吸收水分以满足作物的生命健康需水,使对作物的伤害保持在临界限度以内。 [0002] TRANSACTIONS signal equal to 1997 based on the root of the theoretical principles and crop water saving irrigation technology presents a perceived lack of water efficient irrigation technology that active control of soil root zone of crops in an area of ​​the horizontal or vertical section water condition, so that root zone is always a part grown in a dry or relatively dry environment, limiting root water uptake of the portion, while the roots by the manual control appear alternately in the horizontal or vertical cross section of the drying zone, so that roots drying zone is generated water stress signal to the leaf stomata to effectively regulate stomatal movement, while in the root zone moist absorb water from the soil to meet the health needs of the crop water life, the damage to crops remain within critical limits. 同时由于表层土壤总是仅有部分区域湿润,既可减少棵间全部湿润时的无效蒸发损失和总的灌溉用水量,也可降低土壤机械强度、改善土壤的通透性,促进根系的补偿生长,提高根系对水分、养分的利用率,提高矿质养分的有效性,以达到不牺牲作物的光合作用累积而大量节水的目的。 And because only a partial region of the surface soil is always moist, it can reduce evaporation losses on soil void and total wet all irrigation water will also reduce the mechanical strength of the soil, to improve soil permeability, promote root growth compensation to improve the utilization of the roots of water, nutrients, improve the effectiveness of mineral nutrients, to achieve the objective without sacrificing crop photosynthesis accumulation of a large number of water saving.

[0003] 传统的地面灌溉技术存在劳动强度大、施肥粗放和水分养分浪费严重等问题,而滴灌、微喷灌等先进的节水灌溉技术虽然节省劳动力而且节水节肥效果显著,但同时又存在易于堵塞、盐分累积、造价较高以及管理复杂等缺陷。 The presence of [0003] the traditional labor-intensive surface irrigation technology, water and nutrient fertilization extensive and serious waste problem, and drip irrigation, micro spray irrigation and other advanced water-saving irrigation technology, while saving labor and fertilizer saving effect is remarkable, but at the same time there is prone to clogging, salt accumulation, higher cost and complexity of management and other defects. 结合田间现有供水系统实施根系分区交替灌溉改造是一种节水、高效、简便易行的方式,而且进一步挖掘了作物自身的生理节水潜力并人为创造了一个高效用水的局部环境,是现代节水农业发展的新方向。 And Field embodiment existing water irrigation on the transformation is a water-saving, efficient, simple manner, and further tap water saving potential crop their physiological and artificially create a local environment of water efficient, modern the new direction of development of water-saving agriculture.

[0004] 现有的地面灌溉技术仍然存在以下几个方面的问题:一是已有的根系分区交替灌溉装置需要借助其他实验观测资料判断作物根区的实际含水情况,确定是否需要灌水以及何时需要交替灌水,严重影响了控制的精度,往往会错过作物需水的关键期而造成减产;二是已有的根系分区交替灌溉装置还停留在手动控制阶段,需通过机械或连杆的操作实现作物局部根区的交替灌溉,自动化程度较低,没有实现人机交互和基于土壤水分实时监测的智能控制,费时费力,响应速度较慢。 [0004] The conventional surface irrigation technology is still the following problems: First, the conventional apparatus requires efficient irrigation water by means of the actual determination of other experimental observations of the root zone, and when determining whether Irrigation alternative irrigation required, seriously affecting the accuracy of the control, often miss the key of crop production caused by water; two irrigation on an existing apparatus still in the stage of manual control, to be achieved by operation of the mechanical linkage or partial root zone alternative irrigation of crops, low degree of automation, not to achieve human-computer interaction and intelligent control based on real-time monitoring of soil moisture, time-consuming, slow to respond.

发明内容 SUMMARY

[0005] 针对现有技术中存在的上述问题,本发明提供一种无线交替灌溉智能控系统及方法,用于提高作物局部根区交替灌溉的自动化程度及控制精度,适合于采用交替灌溉技术的大田灌溉控制系统,也可以进行温室灌溉。 [0005] In view of the above problems in the prior art, the present invention provides an intelligent control system and method for a wireless irrigation, to improve the automation of the local Crop Root alternative irrigation control accuracy and is suitable for use Alternative Irrigation Technology field irrigation control system, can also be greenhouse irrigation.

[0006] 为了实现上述目的,本发明采用以下技术方案: [0006] To achieve the above object, the present invention employs the following technical solution:

[0007] 一种无线交替灌溉智能控制系统,包括:微处理器模块,传感器模块,电磁阀驱动模块,人机交互模块,无线通信模块,电源模块。 [0007] A wireless alternative irrigation intelligent control system, comprising: a microprocessor module, a sensor module, a solenoid valve drive module, interactive module, a wireless communication module, the power module. 其中, among them,

[0008] 微处理器模块,是系统的控制中心,根据传感器模块输入的信息,完成交替灌溉智能控制算法,输出控制信号至电磁阀驱动模块驱动电磁阀的开闭,实现灌溉智能控制。 [0008] The microprocessor module, the control center of the system, according to input information from the sensor module, alternative irrigation intelligent control algorithm is completed, outputs a control signal to the electromagnetic valve driving module drives the shutter solenoid valve, irrigation realize the intelligent control.

[0009] 传感器模块,用于实时采集灌溉水压、流量、土壤水分温度、雨量、叶面温湿度等信息数据,并送至微处理器模块。 [0009] Sensor module for real-time acquisition irrigation pressure, flow, soil moisture and temperature, rainfall, temperature and humidity leaf information data, and sent to the microprocessor module.

[0010] 电磁阀驱动模块,包括继电器和隔离电路。 [0010] solenoid valve drive module, and an isolation circuit comprises a relay. 继电器输入端与微处理器模块一个控制输出端相连。 Relay input module and a microprocessor connected to a control output. 首先通过继电器将微处理器模块省电模式下的电压转换为电磁阀标准供电电压,然后采用隔离电路驱动两个水压电磁阀的开闭。 By first converting the voltage relay in the power saving mode to the microprocessor module solenoid valves standard supply voltage, then the use of isolation circuit for driving two hydraulic solenoid valve opening and closing.

[0011] 人机交互模块,包括键盘、显示器和转换接口,用于进行参数设置、实时显示系统的数据和状态,实现系统与上位机的串行通信。 [0011] interactive modules including a keyboard, a display and conversion interface for parameter setting, and display data in real status of the system, serial communication with the host computer system.

[0012] 无线通信模块,与微处理器模块相连,用于实现与中央控制系统的远程通信。 [0012] The wireless communication module, a module is connected with the microprocessor, for remotely communicating with the central control system is implemented.

[0013] 电源模块,为系统提供直流供电电源。 [0013] The power supply module, provides power to the DC power system.

[0014] 进一步地,所述传感器模块包括以下传感器: [0014] Further, the sensor module comprising a sensor:

[0015] 压力流量传感器,安装在水阀前端,用于测量灌溉水压、流量; [0015] The pressure flow sensor, mounted on the distal valve, irrigation for measuring pressure, flow rate;

[0016] 土壤水分温度传感器,传感器的三个探针分别埋在地面以下不同同深度处,用于测量土壤水分温度; [0016] The three probes soil moisture and temperature sensors that are buried below ground with different depths, for measuring soil moisture and temperature;

[0017] 雨量传感器,竖直安装,用于测量降雨量; [0017] The rain sensor, mounted vertically, for measuring rainfall;

[0018] 叶面湿度传感器,安装在作物叶片附近,用于测量叶面湿度信息; [0018] foliar humidity sensor, mounted near the crop foliage, the foliage for measuring the humidity information;

[0019] 叶面温度传感器,探头垂直于作物叶面进行安装,用于测量叶面温度信息。 [0019] The leaf temperature sensor probe is installed perpendicular to the crop foliage, the foliage for measuring the temperature information.

[0020] 进一步地,所述传感器模块还包括A/D转换器,用于将传感器输出的模拟量转化为数字量后送至微处理器模块。 [0020] Further, the sensor module comprises a further A / D converter for converting the output of the analog sensor into digital data to the microprocessor module.

[0021] 更进一步地,所述传感器模块还包括电池开启控制电路,用于在微处理器模块输出的控制信号作用下,控制传感器电源的开闭,选择是否给某个传感器供电,达到省电的目的。 [0021] Furthermore, the sensor module further includes a battery control circuit is turned on, under the control signal for the microprocessor module output, the power control opening and closing sensor, whether to select a sensor power supply, to conserve power the goal of.

[0022] 更进一步地,所述传感器模块还包括传感器工作状态监测电路,通过监测传感器管脚的电压大小判断该传感器的工作状态:如果所述管脚电压为高电平,说明管脚悬空,传感器处于未接入电路状态;如果所述管脚电压为低电平,说明传感器正常工作。 [0022] Furthermore, the sensor module further comprises a sensor operating state monitoring circuit, the operating state of the sensor is determined by the magnitude of the voltage monitoring sensor pins: pin if the voltage is high, indicating pin is floating, sensor is not connected to a circuit state; if the pin voltage is low, indicating that the sensor is working properly.

[0023] 应用所述智能控制系统进行无线交替灌溉的智能控制方法,包括以下步骤: Intelligent control method [0023] Application of the intelligent control system of the wireless alternative irrigation, comprising the steps of:

[0024] 当存在土壤水分下限的根区时,控制电磁阀开始启动,对该根区进行灌水,直至根区的土壤水分达到灌溉作物的土壤水分上限; [0024] When there is a lower limit of the root zone soil moisture, started control solenoid valve, for the root zone irrigation, soil moisture until the root zone reaches the upper limit of the soil moisture for crop irrigation;

[0025] 当所有待灌溉根区的土壤水分均不低于该根区的土壤水分下限时,进一步判断各侧根区的土壤水分的差值是否低于各侧根区的水分差异交替阈值,若是,控制电磁阀开始启动,对土壤水分相对较低的根区灌水;在对水分较低侧灌水时,如果降雨量大于一定值时,则可认为此时不需要灌水,停止灌水;如果流量传感器测得的流量大于灌水量,认为已经进行过灌水,不必再进行检测根区水分是否达到灌水上限,直接停止灌溉过程;当灌水至该根区的土壤水分达到灌溉作物的土壤水分上限时,则停止灌水过程;否则,判断土壤水分相对较低的根区的土壤水分是否低于灌溉作物的土壤水分上限,若是,控制电磁阀开始启动,对土壤水分相对较低的根区灌水,直至该根区的土壤水分达到灌溉作物的土壤水分上限。 [0025] When all irrigated soil moisture to be not less than the root zone of the soil moisture in the root zone of the lower limit, the respective lateral soil moisture is further determined whether the difference is less than the area of ​​water each lateral zone alternating difference threshold, if yes, solenoid valve control started, the soil water of relatively low root zone irrigation; in the lower side of the irrigation water, if the rainfall is greater than a certain value, this case does not need to be considered irrigation, irrigation is stopped; if the measured flow rate sensor have a flow rate greater than the amount of irrigation that has been subjected to irrigation, no longer detects the root zone of water reaches irrigation limit, directly stopping the irrigation process; when irrigation to the soil water content of the root zone reaches the limit on the soil moisture for crop irrigation is stopped irrigation process; otherwise, determining the root zone soil moisture is relatively low soil moisture in the soil is lower than the upper limit crop irrigation water, if the control solenoid valve started, by the relatively low moisture soil root zone irrigation until the root zone soil moisture reaches the upper limit of soil moisture irrigate crops.

[0026] 进一步地,所述方法还包括定时交替控制与远程遥控:通过人机交互或远程通信方式,设置灌溉程序的定时时间,所述系统自动定时运行;通过无线通信接口,在手机或电脑上通过互联网实现远程手动控制,弥补定时灌溉的不足。 [0026] Preferably, the method further comprises a timing control and remote control alternately: or by remote interactive communication, set the timer time irrigation programs, the system clock is running; via a wireless communication interface, in a mobile phone or computer the remote manual control via the Internet, to make up for lack of regular irrigation.

[0027] 进一步地,所述方法还包括故障智能诊断和状态分析:自动诊断是否有缺水源、阀门异常启闭和传感器接入异常现象发生,发现故障后通过无线通讯报警,提醒系统维护人员进行维修;同时自动分析设备能量和通讯成功率。 [0027] Preferably, the method further comprises a fault diagnosis and intelligent state analysis: whether self diagnosis water source, and a sensor access opening and closing the valve abnormality abnormal phenomenon, and found fault alarm by wireless communication, alert system maintenance personnel maintenance; while automatically analyzing energy equipment and communication success rate.

[0028] 更进一步地,所述故障智能诊断的方法是:采集监测点信号,根据监测点信号幅度是否在可接受的范围内,判断是否有硬件故障发生;如果是硬件故障,删除故障所在任务;否则,检查信号幅度是否超过设定的传感器的上下限值,如果超过上下限,进行报警,停止所运行程序,检查数据设置及当地环境情况,进行系统故障排查。 [0028] Furthermore, the method of diagnosis is the intelligent fault: monitoring point signal acquisition, according to the monitoring point signal amplitude is within an acceptable range, it is determined whether a hardware fault occurs; if a hardware failure, the fault Delete Task ; otherwise, check whether the upper and lower limits of the signal amplitude exceeds the set sensor exceeds the lower limit, alarm, stop running the program, the inspection data set and local environmental conditions, system troubleshooting.

[0029] 与现有技术相比,本发明具有以下优点: [0029] Compared with the prior art, the present invention has the following advantages:

[0030] 本发明基于作物局部分区交替灌溉的基础理论,通过采用压力流量传感器、土壤水分温度传感器、雨量传感器、叶面温度传感器和叶面湿度传感器等多种传感器获得丰富的灌溉信息,提高了作物灌溉控制的智能化程度和控制精度。 [0030] The present invention is based on the basic theory of alternating local partition crop irrigation, for extensive irrigation pressure sensor using a variety of information flow sensors, soil moisture and temperature sensor, a rain sensor, a temperature sensor and leaf leaf humidity sensor, improved intelligent control and precision control of crop irrigation. 与现有灌溉技术相比,本发明具有智能化程度高、人机交互性好和故障诊断自动化程度高等优点,适合于采用交替灌溉技术的大田灌溉控制系统,也可以进行温室灌溉。 Compared with the prior art irrigation, the present invention has a high degree of intelligence, human-computer interaction and good degree of fault diagnosis advantages of automation, suitable for field irrigation control system using alternative irrigation techniques, may be performed greenhouse irrigation. 通过现场或远程调整作物类型,可以满足玉米、棉花、蔬菜等作物的灌溉要求。 Adjust the irrigation requirements of a crop types, to meet corn, cotton, vegetables and other by-site or remotely.

附图说明 BRIEF DESCRIPTION

[0031]图1是本发明所涉及的无线交替灌溉智能控制系统组成框图; [0031] FIG. 1 is a block diagram of the present invention is a wireless alternative irrigation intelligent control system;

[0032]图2是实施例的无线交替灌溉智能控制系统的硬件组成框图; [0032] FIG. 2 is an alternate embodiment of a wireless intelligent irrigation hardware block diagram of the control system;

[0033] 图3是实施例的智能式作物交替灌溉的方法流程图; [0033] FIG. 3 is a method for intelligent crop irrigation alternate embodiment of a flow diagram;

[0034]图4是实施例的智能式作物交替灌溉的故障诊断流程图。 [0034] FIG. 4 is a flowchart illustrating a fault diagnosis intelligent crop irrigation alternate embodiment.

具体实施方式 Detailed ways

[0035] 下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。 [0035] The following embodiments and the accompanying drawings, specific embodiments of the present invention will be further described in detail. 以下实施例用于说明本发明,但不用来限制本发明的范围。 The following examples serve to illustrate the present invention but are not intended to limit the scope of the present invention.

[0036] 一种无线交替灌溉智能控制系统,如图1、2所示,包括:微处理器模块1,传感器模块2,电磁阀驱动模块3,人机交互模块4,无线通信模块5,电源模块6。 [0036] A radio intelligent control system alternately irrigation, 1 and 2, comprising: a microprocessor module, a sensor module 2, the solenoid valve drive module 3, module 4 interactive wireless communication module 5, power supply module 6. 其中, among them,

[0037] 微处理器模块1,采用jennic公司生产的JN5139型微处理器。 [0037] The microprocessor module 1, using microprocessors jennic JN5139 produced. 该芯片集成了一个32位16MHz主频的RISC处理器,代码效率、代码大小方面高度优化,其内置的193KB的ROM存储器集成了点对点通信和网状网通信的完整协议栈,96KB的RAM存储器可以支持网状路由和控制器功能,而不需要外部扩展任何的存储器空间。 The chip integrates a 32-bit RISC processor clocked at 16MHz, the code efficiency, highly optimized code size, its built-in ROM memory of 193KB and complete integration of point to point communication protocols mesh network communication stack, may be 96KB RAM memory support mesh routing and control functions, without the need for any external expansion memory space. 同时,它拥有4路12位的模拟量输入,2路11位的模拟量输出,2个比较器,温度传感器,2个应用程序定时器,3个系统定时器,2个UART异步串口( 一个用于系统调试),SPI接口以及2线串行接口,21个可用的1引脚。 Meanwhile, it has four 12-bit analog inputs, 11 analog outputs 2, 2 comparators, a temperature sensor, two application timers, system timer 3, two asynchronous serial port UART (a a system for debugging), 2-wire interface and the SPI serial interface, a pin 21 is available.

[0038] 传感器模块2,包括传感器、12位的A/D转换器和外围电路。 [0038] The sensor module 2 includes a sensor, 12-bit A / D converter and a peripheral circuit. 采用SMC16系列的传感器提取灌溉水压、流量、土壤水分温度、雨量、叶面温湿度等信息数据的模拟量。 SMC16 series extraction using irrigation pressure sensors, analog traffic, soil moisture and temperature, rainfall, temperature and humidity leaf information data. 通过12位的A/D转换器将模拟量转化为数字量,将数据传入微处理器处理。 12 by the A D converter transforming the analog / digital value, processing the data into the microprocessor. 外围电路包括:电池开启控制电路和传感器管脚电压监测电路,电池开启控制电路可以实现控制传感器的电源的开闭,选择是否给某个传感器供电,达到节电的作用。 Peripheral circuit comprising: a battery control circuit is turned on and the sensor pin voltage monitoring circuit, the battery control circuit may turn on the power control to achieve the opening and closing sensor, whether to select a sensor power supply, to achieve energy-saving effect. 传感器管脚电压监测电路监测具体某个传感器管脚的电压大小,如果电压为高电平,则管脚悬空,即传感器处于未接入电路状态,不能工作,而管脚为低电平,则传感器能正常工作。 Sensor pin voltage monitoring circuit monitors the voltage magnitude of a particular sensor pin, if the voltage is high, the pin is floating, ie not connected to a circuit state sensor is not working, and the pin is low, then sensors to work properly.

[0039] 电磁阀驱动模块3,包括继电器和隔离电路。 [0039] The solenoid valve drive module 3, and an isolation circuit comprises a relay. 首先通过SN74ALV164继电器将省电模式下的3.6V电压转换为5.0V的电磁阀标准供电电压,采用MC33143的IRF530N或IRFP250N的隔离电路驱动两个水压电磁阀进行开闭,水压的大小不小于0.9MPa。 Converting the first voltage 3.6V in the power saving mode to the standard solenoid supply voltage of 5.0V, using the MC33143 or IRFP250N IRF530N isolation circuit for driving two hydraulic solenoid valves to open and close the relay SN74ALV164, pressure is not less than the size of 0.9MPa.

[0040] 人机交互模块4,包括键盘、显示器和RS232转换接口。 [0040] The interactive module 4, includes a keyboard, a display and an interface RS232 converter. 键盘可供管理员操作,输入设置不同作物的参数,和控制电磁阀的开闭。 Administrator operating keyboard for the input of different crops set parameters, and control opening and closing of the solenoid valve. 显示器选用LCM128645ZK系列的IXD,实时显示系统的数据和状态,包括灌溉水压、流量、土壤水分温度、雨量、叶面温湿度等信息数据,还设置有报警灯的闪烁和蜂鸣器的鸣响,提醒故障的发生。 Display selection LCM128645ZK series IXD, real time data and status display system, comprising irrigation pressure, flow, soil moisture and temperature, rainfall, temperature and humidity leaf information data, further provided with a buzzer sounds and flashing of the alarm lamp remind failure has occurred. RS232转换接口采用SP3223E,通过串口通信,实现数据的传输、程序的下载等功能。 RS232 converter interface uses SP3223E, by serial communication, realize the transmission of data, the download functions.

[0041] 无线通信模块5,采用的是SM公司生产的GPRS/3G无线通信模块SM4100,进行远距离点对点的数据传输。 [0041] The wireless communication module 5, using the SM produced GPRS / 3G wireless communication module SM4100, point to point data transmission distance. SIM4100是一款双模TD-SCDMA模块解决方案,在TD-SCDMA模式下,工作频率为2010-2025MHz。 SIM4100 is a TD-SCDMA dual-mode module solutions, in the TD-SCDMA mode, the operating frequency of 2010-2025MHz. 在GSM模式下,工作频率为三频900/1800/1900MHz。 In the GSM mode, the operating frequency of the tri-band 900/1800 / 1900MHz.

[0042] 电源模块6,为微处理器模块1、传感器模块2、电磁阀驱动模块3供电。 [0042] The power supply module 6, a microprocessor module, a sensor module 2, module 3 solenoid valve driving power. 电池采用的是3.6V、1.5W的太阳能锂电池。 Battery uses 3.6V, 1.5W solar lithium battery.

[0043] 交替灌溉智能控制方法的流程如图3所示,具体包括以下步骤: [0043] Alternate Irrigation intelligent process control method shown in Figure 3, includes the following steps:

[0044] (I)如果任意作物任一侧根区水分小于灌水下限,选择转动阀门选择灌溉区域,准备灌水;否则,比较作物任一侧根区水分差值和交替阀值。 [0044] (I), if either side of any crop root zone irrigation water is less than the lower limit, the valve is rotated to select selection area to be irrigated, irrigation preparation; otherwise, compare the difference between the crop to any water side of the root zone and alternating threshold.

[0045] (2)若作物任一侧根区水分大于灌水下限,则停止灌水过程;否则,转动阀门选择灌溉区域,准备灌溉量。 [0045] (2) If the crop on either side of the root zone irrigation water is greater than the lower limit, the irrigation process stops; otherwise, turn the valve selected area to be irrigated, ready irrigation volume.

[0046] (3)在准备灌水之前,计算灌溉量,灌溉量计算方法为: [0046] (3) before preparing irrigation, irrigation calculation amount, calculated as the amount of irrigation:

[0047] 灌溉量=灌溉面积X作物根系活动层深度X水分变化值 [0047] Irrigation amount = X crop area irrigated root zone of water depth variation value X

[0048] 之后启动交替灌溉设备,对水分较低侧灌水。 [0048] After the start alternate irrigation equipment, irrigation water on the lower side.

[0049] (4)如果降雨量大于15mm,此时不需要进行灌水,灌水达到上限过程后有一个缓冲延时过程。 [0049] (4) If the rainfall is greater than 15mm, this case does not require irrigation, irrigation reached the maximum buffer delay during a procedure. 此时为了节水,可停止灌溉过程。 For this time-saving, stop the irrigation process.

[0050] (5)接着比较流量和灌水量,如果流量大于灌水量,则此时认为灌水已达到要求,不再需要灌水,停止灌溉过程。 [0050] (5) and then compared irrigation flow, if the flow is greater than the amount of irrigation, irrigation at this time is considered to meet the requirements, it is no longer needed irrigation, the irrigation process is stopped.

[0051] (4)、(5)两个步骤是为了更好地进行节水而设计的,对灌水达到上限后的延时起到一定的保护作用。 [0051] (4), (5) two steps for saving and better designed for the irrigation reached the maximum delay play a protective role.

[0052] (6)在以上条件满足之后,一直进行灌水,直到该作物该侧根区水分超过灌水上限后,结束灌水过程。 [0052] (6) After the above condition is satisfied, irrigation has been performed, the lateral area of ​​the crop until the irrigation water over the upper limit, the end of the irrigation process.

[0053] 本发明实施例的智能式作物交替灌溉的故障诊断流程如图4所示,故障诊断主要判断是有缺水源、阀门异常启闭和传感器接入异常等现象,若有将会通过无线报警,提醒系统维护人员进行维修。 [0053] Intelligent crop alternate embodiment of the present invention, the fault diagnosis process shown in Figure 4 for irrigation, fault diagnosis is determined mainly water source, and a sensor access opening and closing the valve abnormality abnormal phenomena, if the wireless will alarm to alert maintenance personnel to repair the system. 同时自动分析设备能量和通讯成功率,便于设备维护。 While the automatic analysis of energy equipment and communication success rate, ease of maintenance. 具体包括以下步骤: It includes the following steps:

[0054] (I)如果传感器管脚电压出现高电平,即可认为管脚处于悬空状态;如果管脚电压大于4.5V,则确定为传感器电路接入异常,需要进行故障排查和报警,提醒管理员进行维修。 [0054] (I) If the sensor pin voltage is high, the pin can be considered in a floating state; if the pin voltage is greater than 4.5V, it is determined that the sensor circuit access exception, require troubleshooting and alarms, reminders administrator for maintenance.

[0055] (2)如果检测到的通信信号强度<120dBm,说明信号较弱,这时需要调整天线,更换功率更大的发送模块。 [0055] (2) If the detected signal strength of communication <120dBm, described signal is weak, then you need to adjust the antenna, the power transmission to replace a larger module.

[0056] (3)如果这时检测到的电池电压〈1.5V,更换电池或充电。 [0056] (3) In this case, if the detected battery voltage <1.5V, replace or recharge.

[0057] (4)检测水压大小,如果水压在设备开启的状态下〈0.6MPa,则可判断为无水源,要求工作人员寻找水源。 [0057] (4) detecting the water pressure, if the pressure in the open state of the device <0.6MPa, it can be judged without water, it requested to seek water.

[0058] (5)电磁阀打开的情况下,如果流量<6L/s ;或电磁阀没有打开的情况下,如果流量>0.lL/s,则可判断为电磁阀异常关闭,这时可能是人工开阀,或者电磁阀出现了故障,需要维修或更换。 [0058] in the case (5) of the solenoid valve is opened, if flow <6L / s; or a case where the solenoid is not open, if the flow rate of> 0.lL / s, it can be judged abnormal closed solenoid valve, this time may artificial valve opening, the solenoid valve or faulty, repair or replacement.

[0059] (6)故障信息通过无线通信模块5远程传给中央系统,在中央系统的IXD屏幕上进行查看,并报警。 [0059] (6) the failure information to the central system through a remote wireless communication module 5, IXD be viewed on the screen of the central system, and an alarm.

Claims (9)

  1. 1.一种无线交替灌溉智能控制系统,其特征在于,所述系统包括: 微处理器模块(I),传感器模块(2),电磁阀驱动模块(3),人机交互模块(4),无线通信模块(5),电源模块(6);其中, 微处理器模块(1),是所述系统的控制中心;根据传感器模块(2)输入的信息,完成交替灌溉智能控制算法,输出控制信号至电磁阀驱动模块(3)驱动电磁阀的开闭,实现灌溉智能控制; 传感器模块(2),用于实时采集灌溉水压、流量、土壤水分温度、雨量、叶面温湿度信息数据,并送至微处理器模块(I); 电磁阀驱动模块(3),包括继电器和隔离电路;继电器输入端与微处理器模块(I)的一个控制输出端相连,首先通过继电器将微处理器模块(I)省电模式下的电压转换为电磁阀标准供电电压,然后采用隔离电路驱动两个水压电磁阀的开闭; 人机交互模块(4),包括键盘、显示器和转换接口,用 A wireless alternative irrigation intelligent control system, characterized in that, the system comprising: a microprocessor module (the I), the sensor module (2), a solenoid valve drive module (3), human-computer interaction module (4), the wireless communication module (5), the power supply module (6); wherein the microprocessor module (1), is the control center of the system; information inputted sensor module (2), alternative irrigation intelligent control algorithm is completed, the output control signal (3) driven to drive the solenoid valve module opening and closing the solenoid valve, to realize the intelligent control of irrigation; sensor module (2) for real-time acquisition irrigation pressure, flow, soil moisture and temperature, rainfall, temperature and humidity information data leaf, and to the microprocessor module (I); a solenoid valve drive module (3), and an isolation circuit includes a relay; is connected to the relay input terminal of the microprocessor module (I) is a control output, the relay is first microprocessor the voltage converter module (I) the power saving mode to the standard supply voltage of the solenoid valve, and isolation circuit using two hydraulic drives the shutter solenoid valve; interactive module (4) including a keyboard, a display and conversion interface, with 于进行参数设置、实时显示系统的数据和状态,实现系统与上位机的串行通信; 无线通信模块(5),与微处理器模块(I)相连,用于实现与中央控制系统的远程通信; 电源模块(6),为系统提供直流供电电源。 Remote communication wireless communication module (5) connected to the microprocessor module (the I), for realizing centralized control system; in the parameter setting, the display data and the real-time status of the system, serial communication with the host computer system ; power supply module (6), to provide DC power supply to the system.
  2. 2.根据权利要求1所述的无线交替灌溉智能控制系统,其特征在于,所述传感器模块(2)包括以下传感器: 压力流量传感器,安装在水阀前端,用于测量灌溉水压、流量; 土壤水分温度传感器,传感器的三个探针分别埋在地面以下不同深度处,用于测量土壤的水分和温度,所述水分用土壤的容积含水量表示; 雨量传感器,竖直安装,用于测量降雨量; 叶面湿度传感器,安装在作物叶片附近,用于测量叶面湿度信息; 叶面温度传感器,探头垂直于作物叶面进行安装,用于测量叶面温度信息。 2. The radio according to claim 1 alternative irrigation intelligent control system, characterized in that the sensor module (2) comprises the following sensors: a pressure flow sensor, mounted on the distal valve, irrigation for measuring pressure, flow rate; soil moisture and temperature sensor, the sensor probes are three buried at different depths below the surface, for measurement of soil moisture and temperature, said water volume indicated by the water content of the soil; rain sensor, mounted vertically, for measuring rainfall; leaf humidity sensor, mounted near the crop foliage, the foliage for measuring the humidity information; leaf temperature sensor probe is installed perpendicular to the crop foliage, the foliage for measuring the temperature information.
  3. 3.根据权利要求1所述的无线交替灌溉智能控制系统,其特征在于,所述传感器模块(2)还包括A/D转换器,用于将传感器输出的模拟量转化为数字量后送至微处理器模块。 The radio according to claim 1 alternately irrigation intelligent control system, wherein the sensor module (2) comprises a further A / D converter for converting the analog sensor outputs into digital data supplied to the microprocessor module.
  4. 4.根据权利要求1所述的无线交替灌溉智能控制系统,其特征在于,所述传感器模块(2)还包括电池开启控制电路,用于在微处理器模块(I)输出的控制信号作用下,控制传感器电源的开闭。 The radio according to claim 1 alternately irrigation intelligent control system, wherein the sensor module (2) further comprises a battery control circuit is turned on, a control signal is applied to the microprocessor module (I) for the next output controlling opening and closing of the power sensor.
  5. 5.根据权利要求1〜4中任意一项所述的无线交替灌溉智能控制系统,其特征在于,所述传感器模块(2)还包括传感器工作状态监测电路,用于在故障诊断中通过监测传感器管脚的电压大小判断传感器的工作状态:如果所述管脚电压为高电平,说明管脚悬空,传感器处于未接入电路状态;如果所述管脚电压为低电平,说明传感器正常工作。 According to any one of claims 1 ~ 4 alternative wireless intelligent control system for irrigation, characterized in that the sensor module (2) further comprises a sensor operating state monitoring circuit for fault diagnosis by monitoring sensor as claimed in claim magnitude of the voltage determines the operating state of the sensor pins: pin if the voltage is high, indicating pin is floating, the sensor is not connected to a circuit state; if the pin voltage is low, normal operation of the sensor described .
  6. 6.一种应用权利要求1所述系统进行无线交替灌溉智能控制的方法,其特征在于包括以下步骤: 当存在土壤水分下限的根区时,控制电磁阀开始启动,对该根区进行灌水,直至根区的土壤水分达到灌溉作物的土壤水分上限; 当所有待灌溉根区的土壤水分均不低于该根区的土壤水分下限时,进一步判断各侧根区的土壤水分的差值是否低于各侧根区的水分差异交替阈值,若是,控制电磁阀开始启动,对土壤水分相对较低的根区灌水; 在对水分较低侧灌水时,如果降雨量大于设定的阈值,认为此时不需要灌水,停止灌水; 如果流量传感器测得的流量大于灌水量,认为已经进行过灌水,不必再进行检测根区水分是否达到灌水上限,直接停止灌溉过程; 当灌水至该根区的土壤水分达到灌溉作物的土壤水分上限时,则停止灌水过程;否则,判断土壤水分相对较 1 6. A system as claimed in claim Application alternative irrigation method of wireless intelligent control, characterized by comprising the steps of: when there is a lower limit of the root zone soil moisture, the solenoid valve control started, for irrigation of the root zone, soil moisture in the root zone reaches up to the upper limit of the soil moisture for crop irrigation; when all irrigated soil moisture to be not less than the root zone soil moisture in the root zone of the lower limit, the respective lateral soil moisture is further determined whether the difference is less than the area water differences of lateral zone alternating threshold, if yes, control solenoid valve started, by the relatively low moisture soil root zone irrigation; in the lower side of the water irrigation if rainfall is greater than the threshold set at this time is not that needed irrigation, stopping irrigation; if the flow sensor measures the flow rate is greater than the amount of irrigation that has been subjected to irrigation, no longer detects the root zone of water reaches irrigation limit, directly stopping the irrigation process; when irrigation to the soil water content of the root zone reaches soil moisture for crop irrigation upper limit, stop irrigation process; otherwise, determine soil moisture is relatively 的根区的土壤水分是否低于灌溉作物的土壤水分上限,若是,控制电磁阀开始启动,对土壤水分相对较低的根区灌水,直至该根区的土壤水分达到灌溉作物的土壤水分上限。 Soil moisture in the root zone of the soil is lower than the upper limit crop irrigation water, if the control solenoid valve started, by the relatively low moisture soil root zone irrigation, soil moisture until it reaches the root zone soil moisture limit crop irrigation.
  7. 7.根据权利要求6所述的方法,其特征在于,所述方法还包括定时交替控制与远程遥控:通过人机交互或远程通信方式,设置灌溉程序的定时时间,所述系统自动定时运行;通过无线通信模块(5),在手机或电脑上通过互联网实现远程手动控制,弥补定时灌溉的不足。 7. The method according to claim 6, wherein said method further comprises a timing control and remote control alternately: or by remote interactive communication, set the timer time of irrigation programs, the automatic timing system operation; through the wireless communication module (5), on the phone or remote manual control computer via the Internet, make up the timing of irrigation.
  8. 8.根据权利要求6或7所述的方法,其特征在于,所述方法还包括故障智能诊断和状态分析:自动诊断是否有缺水源、阀门异常启闭和传感器接入异常现象发生,发现故障后通过无线通讯报警,提醒系统维护人员进行维修;同时自动分析设备能量和通讯成功率。 The method according to claim 6 or claim 7, wherein said method further comprises a fault diagnosis and intelligent state analysis: whether self diagnosis water source, and a sensor access opening and closing the valve abnormality abnormal phenomenon, find fault while the automatic analysis of energy equipment and communication success rate; after the adoption of wireless communication alarm to alert maintenance personnel to repair the system.
  9. 9.根据权利要求8所述的方法,其特征在于,所述故障智能诊断的方法是:采集监测点信号,根据监测点信号幅度是否在可接受的范围内,判断是否有硬件故障发生;如果是硬件故障,删除故障所在任务;否则,检查信号幅度是否超过设定的传感器的上下限值,如果超过上下限,进行报警,停止所运行程序,检查数据设置及当地环境情况,进行系统故障排查。 9. The method according to claim 8, characterized in that the method of the fault diagnosis are intelligent: acquisition and monitoring point signal, is within an acceptable range, it is determined whether a hardware fault occurs in accordance with the signal amplitude monitoring point; if hardware failure, delete the task failures; otherwise, check whether the upper and lower limits of the sensor signal amplitude exceeds a set, and if it exceeds the limit, alarm, stop running the program, check the data set and the local environmental conditions, system troubleshooting .
CN 201510006199 2015-01-06 2015-01-06 A wireless alternative method of irrigation and Intelligent Control System CN104542197B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201510006199 CN104542197B (en) 2015-01-06 2015-01-06 A wireless alternative method of irrigation and Intelligent Control System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201510006199 CN104542197B (en) 2015-01-06 2015-01-06 A wireless alternative method of irrigation and Intelligent Control System

Publications (2)

Publication Number Publication Date
CN104542197A true true CN104542197A (en) 2015-04-29
CN104542197B CN104542197B (en) 2017-05-17

Family

ID=53060135

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201510006199 CN104542197B (en) 2015-01-06 2015-01-06 A wireless alternative method of irrigation and Intelligent Control System

Country Status (1)

Country Link
CN (1) CN104542197B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104855247A (en) * 2015-04-27 2015-08-26 山东棉花研究中心 Cotton water-saving irrigation management consultancy and decision system
CN104880984A (en) * 2015-05-28 2015-09-02 阳信鼎信橡胶制品有限公司 Remote intelligent irrigation control system
CN104885886A (en) * 2015-06-29 2015-09-09 赵增国 Automatic remote water-saving irrigation control system based on MODBUS communication
CN105028140A (en) * 2015-08-24 2015-11-11 桂林电子科技大学 Intelligent irrigating and fertilizing system and method
CN105052688A (en) * 2015-08-02 2015-11-18 华中农业大学 Irrigation control system suitable for greenhouse single crop
CN105183056A (en) * 2015-10-08 2015-12-23 北方民族大学 Automatic irrigation system
CN105223938A (en) * 2015-10-26 2016-01-06 阿拉尔石大国利科技有限公司 Irrigation measurement and control apparatus, system and method
CN105323321A (en) * 2015-11-16 2016-02-10 清华大学 Water networking system
CN105379608A (en) * 2015-12-02 2016-03-09 中山市厚源电子科技有限公司 Automatic drip irrigation system
CN105638064A (en) * 2016-01-05 2016-06-08 中国农业大学 Remotely-metering water and fertilizer coupling regulation and control system of cotton drip irrigation under mulch
CN105715856A (en) * 2016-04-07 2016-06-29 上海理工大学 Wireless metering method of flow of faucet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020010516A1 (en) * 2000-07-07 2002-01-24 John Addink Irrigation controller using regression model
CN101300945A (en) * 2008-07-04 2008-11-12 山东农业大学 Orchard interlaced alternative irrigation method
CN101574053A (en) * 2009-05-21 2009-11-11 中国农业大学 Intelligent method and system for controlling alternate irrigation of local root zone of crops
CN101911905A (en) * 2010-08-04 2010-12-15 扬州大学 Gentle dry-wet alternate irrigation method for rice at whole growth periods
CN102550372A (en) * 2011-12-13 2012-07-11 中国农业大学 Alternate partial root-zone irrigation controller and alternate partial root-zone irrigation system
US20130093592A1 (en) * 2011-10-14 2013-04-18 Zehua Lan Internet of Things Based Farm Greenhouse Monitor and Alarm Management System
US20140326801A1 (en) * 2013-05-02 2014-11-06 The Regents Of The University Of California System and methods for monitoring leaf temperature for prediction of plant water status

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020010516A1 (en) * 2000-07-07 2002-01-24 John Addink Irrigation controller using regression model
CN101300945A (en) * 2008-07-04 2008-11-12 山东农业大学 Orchard interlaced alternative irrigation method
CN101574053A (en) * 2009-05-21 2009-11-11 中国农业大学 Intelligent method and system for controlling alternate irrigation of local root zone of crops
CN101911905A (en) * 2010-08-04 2010-12-15 扬州大学 Gentle dry-wet alternate irrigation method for rice at whole growth periods
US20130093592A1 (en) * 2011-10-14 2013-04-18 Zehua Lan Internet of Things Based Farm Greenhouse Monitor and Alarm Management System
CN102550372A (en) * 2011-12-13 2012-07-11 中国农业大学 Alternate partial root-zone irrigation controller and alternate partial root-zone irrigation system
US20140326801A1 (en) * 2013-05-02 2014-11-06 The Regents Of The University Of California System and methods for monitoring leaf temperature for prediction of plant water status

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104855247A (en) * 2015-04-27 2015-08-26 山东棉花研究中心 Cotton water-saving irrigation management consultancy and decision system
CN104880984A (en) * 2015-05-28 2015-09-02 阳信鼎信橡胶制品有限公司 Remote intelligent irrigation control system
CN104885886A (en) * 2015-06-29 2015-09-09 赵增国 Automatic remote water-saving irrigation control system based on MODBUS communication
CN105052688A (en) * 2015-08-02 2015-11-18 华中农业大学 Irrigation control system suitable for greenhouse single crop
CN105028140A (en) * 2015-08-24 2015-11-11 桂林电子科技大学 Intelligent irrigating and fertilizing system and method
CN105183056A (en) * 2015-10-08 2015-12-23 北方民族大学 Automatic irrigation system
CN105223938A (en) * 2015-10-26 2016-01-06 阿拉尔石大国利科技有限公司 Irrigation measurement and control apparatus, system and method
CN105323321A (en) * 2015-11-16 2016-02-10 清华大学 Water networking system
CN105379608A (en) * 2015-12-02 2016-03-09 中山市厚源电子科技有限公司 Automatic drip irrigation system
CN105638064A (en) * 2016-01-05 2016-06-08 中国农业大学 Remotely-metering water and fertilizer coupling regulation and control system of cotton drip irrigation under mulch
CN105715856A (en) * 2016-04-07 2016-06-29 上海理工大学 Wireless metering method of flow of faucet

Also Published As

Publication number Publication date Type
CN104542197B (en) 2017-05-17 grant

Similar Documents

Publication Publication Date Title
CN101040581A (en) Remote and intelligent irrigation and fertilization system
CN1994056A (en) Solar automatic irrigation system for afforestation
CN2819268Y (en) Real-time collecting and long-distance managing device of environmental parameter in cotton field
CN101167436A (en) Intelligent irrigation system and method based on wireless detector
CN102541030A (en) System for intelligently monitoring and controlling crop pests and diseases
CN101849495A (en) Best water-saving irrigation method for radio monitoring soil moisture
CN203773279U (en) Light-simple-type agricultural intelligent fertigation control system based on ARM
CN201828814U (en) Greenhouse remote control device based on wireless communication technology
CN102499028A (en) Wireless intelligent irrigation system
CN202453340U (en) Remote monitoring system for mountain land irrigation area environment and soil moisture content
CN203219782U (en) Wireless solar farm irrigation system
CN104460582A (en) Fuzzy-control-based internet of things intelligent irrigation and fertilization control method and system
CN102461447A (en) Manuring irrigation system with automatic control function
CN101349914A (en) Valve controller based on ZigBee communication technology and control method thereof
CN103718728A (en) Water and fertilizer integrated precision management system
CN201004880Y (en) Multi-user long-range controlled automatic irrigation device
CN101663991A (en) Vegetative detection and nutrient solution control system and control method thereof
CN203416688U (en) Orchard drop irrigation automatic control device based on ZigBee transmission technology
CN201508618U (en) Wireless sensor networks automatic monitoring system Greenhouse Environment
CN202310773U (en) Automatic irrigation system based on time and humidity control
CN203087143U (en) Intelligent solar trickle irrigation control system
CN203226108U (en) Automatic irrigation system
CN203226110U (en) Solar water-saving automatic greening watering system
CN202565866U (en) Intelligent greenhouse control device based on FPGA (field programmable gate array) and RF (radio frequency)
CN201630094U (en) Irrigation control system for crop garden

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
GR01