CN104529038A - 燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理工艺及系统 - Google Patents

燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理工艺及系统 Download PDF

Info

Publication number
CN104529038A
CN104529038A CN201410852359.1A CN201410852359A CN104529038A CN 104529038 A CN104529038 A CN 104529038A CN 201410852359 A CN201410852359 A CN 201410852359A CN 104529038 A CN104529038 A CN 104529038A
Authority
CN
China
Prior art keywords
heat exchanger
effect
water
flash tank
waste water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410852359.1A
Other languages
English (en)
Other versions
CN104529038B (zh
Inventor
黄皆斌
龙国庆
胡淼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Dega Power Environmental Protection Technology Co ltd
Original Assignee
De Jia Power Environment Protection Science And Technology Development Co Ltd Of Foshan City
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by De Jia Power Environment Protection Science And Technology Development Co Ltd Of Foshan City filed Critical De Jia Power Environment Protection Science And Technology Development Co Ltd Of Foshan City
Priority to CN201410852359.1A priority Critical patent/CN104529038B/zh
Publication of CN104529038A publication Critical patent/CN104529038A/zh
Application granted granted Critical
Publication of CN104529038B publication Critical patent/CN104529038B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/042Prevention of deposits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

本发明公开了一种燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理工艺及系统,该系统的第一效热交换器的浓液进口与废水输送管连接,其浓液出口依次通过第二效热交换器、第二效闪蒸罐、第三效热交换器、第三效闪蒸罐与结晶器的浓液进口连接;第三效闪蒸罐的二次蒸汽输出口之一通过机械蒸汽压缩机与第三效热交换器的蒸汽源输入口连接,其二次蒸汽输出口之二通过管道与第二效热交换器的蒸汽源输入口连接;所述第二效闪蒸罐的二次蒸汽输出口通过管道与第一效热交换器的蒸汽源输入口连接;本发明全流程采用低温蒸发,蒸汽流方向与浓液流方向“逆流布置”,能有效避免脱硫废水蒸发过程中的结垢问题,同时在高温段采用MVC技术,有效降低能耗。

Description

燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理工艺及系统
技术领域
本发明涉及一种蒸发结晶处理工艺及系统,具体涉及一种燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理工艺及系统。
背景技术
燃煤电厂湿法脱硫废水为有高浓度悬浮物、高氯根、高含盐、高浓度重金属废水,对环境污染性极强,处理难度也较大,也是电厂实现零排放的最大难点。目前,随着国家环保要求及节水要求的提高,国内燃煤电厂对脱硫废水一般考虑处理后回用,处理工序包括预处理和深度处理,预处理一般通过投加碱将废水中的重金属污染物转化难溶物,再通过絮凝反应沉淀除去重金属及悬浮固体,然后进入深度处理;深度处理一般采用蒸干浓缩结晶处理工艺。
燃煤电厂湿法脱硫废水经反应、絮凝、沉淀等预处理工序之后,主要水质指标如下表1。
表1 燃煤电厂脱硫废水预处理后水质
序号 项目 单位 指标
1 pH / 6~9
2 色度 / 40
3 化学需氧量(COD) mg/L 90
4 悬浮物(SS) mg/L 70
序号 项目 单位 指标
5 硫化物 mg/L 0.58
6 氟化物 mg/L 30
7 氨氮 mg/L 50
8 总汞(Hg) mg/L 0.05
9 总镉(Cd) mg/L 0.1
10 总铬(Cr) mg/L 1.5
11 总砷(As) mg/L 0.5
12 总铅(Pb) mg/L 1.0
13 总镍(Ni) mg/L 1.0
14 总锌(Zn) mg/L 2.0
15 氯根 mg/L 5000~18000
16 硫酸根 mg/L 3000-6000
17 含固率 2%~5%
18 钙(Ca2+) mg/L 800-1500
19 镁(Mg2+) mg/L 3500
20 Na++K+ mg/L 大于1000
21 HCO3- mg/L 200
22 SO32- mg/L 50-100
23 Si mg/L 70
24 NO3- mg/L 100-500
25 B(硼) mg/L 10-400
从表1中可知,燃煤电厂湿法脱硫废水中CaSO4含量很高,而CaSO4在水中的溶解度在40℃时溶解度最大,随着温度升高,其溶解度逐步降低,高于80℃后,CaSO4极易从水中析出而形成钙结垢,同样HCO3-受到高温时易分解形成CO32+,与Ca2+、Mg2+结合成难溶物形成结垢。
对于燃煤电厂湿法脱硫废水的蒸干浓缩结晶处理工艺,常规的处理工艺如下:
1、多效立管降膜蒸发系统与结晶系统相结合的工艺:
多效立管降膜蒸发系统是比较传统的工艺,一般为3效到5效,以一套3效系统为例,其设计一般是将锅炉蒸气,供到最浓的蒸发效(第三效),把该效的废水,蒸到最终浓度再排到结晶系统进一步作结晶处理。而产生的再生蒸气送到中间的效(即第二效)作为能量来源,如此类推,第二效的再生蒸气也向前送到第一效作为能量来源。最终第一效的再生蒸气送到主冷凝器,用河水或冷却塔供来的冷却水冷凝最后的再生蒸气,而不凝气体由真空系统抽走。立管降膜技术,主要将脱硫废水从设备主体顶部引入,连同再生蒸汽从管内流下以薄膜蒸发。液体在管内以接近均压和均温蒸发,因此在所有热交换面,蒸发温度保持均衡。由于废水腐蚀性强,需要贵重合金来处理浓盐水,立管降膜可通过减少热交换面积,达到降低系统制造成本的效果。
多效立管降膜蒸发系统的主要技术特点与不足:再生蒸气走立管外,浓液走立管内,立管较高,有的高达30米。管束必需经过严格垂直调校,否则浓液不易在管内分布均匀成下降薄膜;不均匀会引起干燥点,这样下降的水膜会形成旁路,造成管内积垢,而管内积垢很难清理,如果操作不当,可能会造成管内完全堵塞。上方管头必需用分水器均匀地分配浓水到每一根管,布水不均匀可以引至管内积垢,所以一般多效立管降膜蒸发系统只用在积垢率低的液体。必需要每效配置适当的蒸气/水雾分离箱,否则会影响蒸馏水水质。系统操作严格,否则起动时各效不易平衡;管束很高,观察检测不易,有时管内即使积垢也不易察觉,而且清垢非常困难。需要冷却水及真空系统排气,冷却水的流量和温度变化会影响其稳定性,遇上任何系统的密封漏气也会影响其稳定性。一般为高温蒸发,蒸发温度大于80℃。此工艺处理燃煤电厂湿法脱硫废水,极易结垢,影响热交换效果。
2、Na2CO3软化、多效立管降膜蒸发、结晶系统相互结合的工艺:
蒸发结晶系统分“不加晶种”和“加晶种”两种。如果废液的积垢率低,可以采用不加晶种。但如果预期会积垢,尤其如果使用多效立管降膜蒸发,则必需采用“加晶种”。让结晶体生长在晶种上,以降低积垢率,否则结垢在蒸发管内很难清理。
先软化后蒸发、结晶工艺的主要特点与不足:软化处理后,废水为饱和碳酸钙(CaCO3)溶液;溶液中还有NaCl、Na2SO4溶液及其他离子,例如SiO2、残余的CaCl2和CaSO4等。蒸发时CaCO3立即从饱和溶液中释出晶体,其物质也有机会存在和释出。在没有晶种的情况下,会积垢在热交换管内壁,一般强酸例如HNO3,可以清CaCO3,但酸洗对SiO2没有作用,SiO2要碱洗,残余的CaCl2,CaSO4等更需要特殊清洗液,增加运营费用。软化工艺一般应用于废水流量不大的处理方案,否则相对耗药量会很高,且所产生的NaCl和NaSO4的混合盐利用价值不高,不具备经济效益。脱硫废水的钙(Ca2+)离子浓度不会很稳定,浓度可以介乎5000ppm到28000ppm以上。采用软化工艺要求运行时随时检测钙(Ca2+)离子的浓度,否则容易耗药过多,而药量不足又易引起积垢。软化改性过程中产生CaCO3湿泥需要作固废处理,增加了处理费用。一般为高温蒸发,蒸发温度大于80℃。
3、Na2CO3软化、立管降膜/MVC蒸气压缩蒸发系统、结晶系统相结合的工艺:
该工艺的蒸发工艺为立管降膜/MVC蒸气压缩工艺,废水走蒸发管内,在流下管腔时被管外的蒸汽加热。在这种MVC的系统里再生蒸汽被压缩机再压缩,送到主体外壳,主体外壳有板块,引导再生蒸汽,冷凝和排出不可以冷凝的气体,而在过程中把本身热能经管壁从外传到管内蒸发中的盐水,最后冷凝下来的蒸汽从主体外壳收集成为冷凝水。该工艺采用蒸气压缩工艺,降低了耗能,一般为高温蒸发,蒸发温度大于80℃,无法根本解决立管降膜蒸发器积垢发生率高的难题。
发明内容
针对现有技术的不足,本发明的目的在于提供一种燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理工艺,能够有效避免脱硫废水蒸发过程中的结垢问题,同时能够有效降低能耗、提高蒸发效率。
本发明的第二个目的是为了提供一种燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理系统,能够有效避免脱硫废水蒸发过程中的结垢问题,同时能够有效降低能耗、提高蒸发效率。
实现本发明的第一个目的可以通过采取如下技术方案达到:
一种燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理工艺,其特征在于,包括以下工艺步骤:
1)将废水进行预加热处理;
2)将经过步骤1)处理后的废水送入第一效热交换器中进行热交换后,直接蒸发,得到第一效浓液、第一效二次蒸汽;第一效热交换器的温度控制在56℃-60℃,真空压力控制在-0.07MPa∽-0.08Mpa;
3)将第一效浓液依次送入第二效热交换器、第二效闪蒸罐,第二效热交换器、第二效闪蒸罐采用分开布置模式,并在第二效热交换器与第二效闪蒸罐之间设置强制循环泵,保证第一效浓液在第二效热交换器内的流速大于3m/s,让第一效浓液能够快速通过第二效热交换器,防止浓液在热交换器内出现结垢,并快速进入第二效闪蒸罐,进行第二效蒸发处理,得到第二效浓液、第二效二次蒸汽;其中,控制第二效闪蒸罐的温度在66℃-70℃,真空压力控制在-0.06MPa∽-0.07MPa;将第二效二次蒸汽送入步骤2)的第一效热交换器的换热管中作为热交换的蒸汽源;
4)将第二效浓液依次送入第三效热交换器、第三效闪蒸罐,第三效热交换器、第三效闪蒸罐采用分开布置模式,并在第三效热交换器与第三效闪蒸罐之间设置强制循环泵,保证第二效浓液在第三效热交换器内的流速大于3m/s,让第二效浓液快速通过第三效热交换器,防止浓液在热交换器内出现结垢,并快速进入第三效闪蒸罐,进行第三效蒸发处理,得到第三效浓液、第三效二次蒸汽;其中,控制第三效闪蒸罐的温度在76℃-80℃,真空压力控制在-0.05MPa∽-0.06MPa;将第三效二次蒸汽分成两部分,一部分送入第二效热交换器中作为热交换的蒸汽源,一部分进入机械蒸汽压缩机(MVC)进行升温升压,提升能量后进入第三效的热交换器中作为热交换的蒸汽源;
5)将第三效浓液送入结晶器进行结晶处理。
作为优选,在步骤1)中,将废水依次送入汽水换热器、水水换热器进行预热处理,将废水温度升高至45℃;同时,将步骤2)中得到的第一效二次蒸汽送入步骤1)的汽水换热器中作为热交换的加热蒸汽源;将由第一效热交换器、第二效热交换器、第三效热交换器产生的冷凝水分别输送到水水换热器中作为热交换的加热水源。
作为优选,在步骤1)中,废水通过一个冷凝器与汽水换热器连接,将由第一效热交换器、第二效热交换器、第三效热交换器产生不凝气分别输送到冷凝器中作为热交换的加热气源,所述冷凝器的排气口与真空泵连接。
作为优选,由于第一效蒸发温度相对较低,结垢问题并不突出,所述第一效热交换器采用卧式喷淋热交换器,即热交换与蒸发一体化设备;卧式喷淋热交换器包括卧式壳体、沿轴向设置在卧式壳体内的换热管、设置在卧式壳体内位于换热管上部的喷淋装置;其中,换热管与蒸汽源相连通,使得蒸汽在换热管内运行;喷淋装置与废水输送管道相连通,使得废水经过喷淋装置喷淋在换热管外壁上,废水与换热管之间经过热交换后蒸发;所述第二效热交换器和第三效热交换器均为卧式热交换器。在第一效热交换器中还设置有在线冲洗系统,以减少可能存在的少量结垢。
作为优选,在步骤4)中,需要将新鲜蒸汽补充到第三效热交换器中,作为启动蒸汽或补充蒸汽。
作为优先,在步骤5)中,在结晶处理过程中,不必加入晶种。
实现本发明的第二个目的可以通过采取如下技术方案达到:
一种燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理系统,其特征在于,包括废水输送管、第一效热交换器、第二效热交换器、第二效闪蒸罐、第三效热交换器、第三效闪蒸罐、结晶器、机械蒸汽压缩机;
所述第一效热交换器的浓液进口通过管道与废水输送管连接,其浓液出口依次通过第二效热交换器、第二效闪蒸罐、第三效热交换器第、三效闪蒸罐与结晶器的浓液进口连接;
所述第三效闪蒸罐的二次蒸汽输出口之一通过机械蒸汽压缩机与第三效热交换器的蒸汽源输入口连接,其二次蒸汽输出口之二通过管道与第二效热交换器的蒸汽源输入口连接;所述第二效闪蒸罐的二次蒸汽输出口通过管道与第一效热交换器的蒸汽源输入口连接;
所述第二效热交换器、第二效闪蒸罐采用分开布置模式,并在第二效热交换器与第二效闪蒸罐之间还设置强制循环泵;
所述第三效热交换器、第三效闪蒸罐采用分开布置模式,并在第三效热交换器与第三效闪蒸罐之间还设置强制循环泵。
作为优选,所述废水输送管依次通过汽水换热器、水水换热器与第一效热交换器的浓液进口连接;所述第一效热交换器的二次蒸汽输出口通过管道与汽水换热器的加热蒸汽源输入口连接;所述第一效热交换器、第二效热交换器、第三效热交换器的冷凝水输出口分别通过管道与水水换热器的加热水源输入口连接。
作为优选,所述废水输送管通过一个冷凝器与汽水换热器的浓液进口连接,所述第一效热交换器、第二效热交换器、第三效热交换器的不凝气输出口分别通过管道与冷凝器的加热气源输入口连接,所述冷凝器的排气口与真空泵连接。
作为优选,所述第一效热交换器采用卧式喷淋热交换器,卧式喷淋热交换器包括卧式壳体、沿轴向设置在卧式壳体内的换热管、设置在卧式壳体内位于换热管上部的喷淋装置;其中,换热管与蒸汽源相连通,使得蒸汽在换热管内运行;喷淋装置与废水输送管道相连通,使得废水经过喷淋装置喷淋在换热管外壁上,废水与换热管之间经过热交换后蒸发;所述第二效热交换器和第三效热交换器均为卧式热交换器,浓液在卧式热交换器的换热管内运行,蒸汽在卧式热交换器的换热管外运行。
本发明的有益效果在于:
1、本发明针对燃煤电厂湿法脱硫废水中“CaSO4含量很高、CaSO4在水中的溶解度随着温度升高,其溶解度逐步降低,高于80℃后,CaSO4极易从水中析出而形成钙结垢”的特点,全部蒸发工艺采用低温蒸发,最高蒸发温度不超过80℃,以降低CaSO4的结垢;本发明全程采用低温蒸发,蒸汽流方向与浓液流方向“逆流布置”,降低能耗的同时,尽可能提高蒸发效率,又避免结垢。经过三效蒸发后,浓液进入结晶装置后,由于经过三效蒸发,浓液浓缩4-5倍,CaSO4由于自身溶解度较小,已经析出,形成晶体,因此,无需添加晶种。
2、本发明的第二效热交换器、第二效闪蒸罐采用分开布置模式,并在第二效热交换器与第二效闪蒸罐之间设置强制循环泵,保证第一效浓液在第二效热交换器内的流速大于3m/s,让第一效浓液能够快速通过第二效热交换器,防止浓液在热交换器内出现结垢;第三效热交换器、第三效闪蒸罐采用分开布置模式,并在第三效热交换器与第三效闪蒸罐之间设置强制循环泵,保证第二效浓液在第三效热交换器内的流速大于3m/s,让第二效浓液快速通过第三效热交换器,防止浓液在热交换器内出现结垢。
3、本发明将废水依次送入汽水换热器、水水换热器进行预热处理,同时,将步骤2)中得到的第一效二次蒸汽送入步骤1)的汽水换热器中作为热交换的加热蒸汽源;将由第一效热交换器、第二效热交换器、第三效热交换器产生的冷凝水分别输送到水水换热器中作为热交换的加热水源,能够进一步降低能耗,提供资源的利用效率。
综上所述,本发明全流程低温蒸发,并在高温段采取“卧式热交换器与闪蒸罐分开布置模式+设置强制循环泵+保证浓液在卧式热交换器内流速大于3m/s+快速进入闪蒸罐+低温真空蒸发”等一系列工艺手段,能有效避免脱硫废水蒸发过程中的结垢问题,同时在高温段采用MVC技术,有效降低能耗。
附图说明
图1为本发明所述的燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理系统的结构框图。
其中,1、废水输送管;2、第一效热交换器;3、第二效热交换器;4、第二效闪蒸罐;5、第三效热交换器;6、第三效闪蒸罐;7、结晶器;8、机械蒸汽压缩机;9、强制循环泵;10、汽水换热器;11、水水换热器;12、冷凝器;13、真空泵;14、收集装置。
具体实施方式
下面,结合具体实施方式,对本发明做进一步描述:
实施例1:
参照图1,本实施例所述的燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理系统,包括废水输送管1、第一效热交换器2、第二效热交换器3、第二效闪蒸罐4、第三效热交换器5、第三效闪蒸罐6、结晶器7、机械蒸汽压缩机8;
所述第一效热交换器2的浓液进口通过管道与废水输送管1连接,其浓液出口依次通过第二效热交换器3、第二效闪蒸罐4、第三效热交换器第5、三效闪蒸罐6与结晶器7的浓液进口连接;
所述第三效闪蒸罐6的二次蒸汽输出口之一通过机械蒸汽压缩机8与第三效热交换器5的蒸汽源输入口连接,其二次蒸汽输出口之二通过管道与第二效热交换器3的蒸汽源输入口连接;所述第二效闪蒸罐4的二次蒸汽输出口通过管道与第一效热交换器2的蒸汽源输入口连接;
所述第二效热交换器3、第二效闪蒸罐4采用分开布置模式,并在第二效热交换器3与第二效闪蒸罐4之间还设置强制循环泵9;
所述第三效热交换器5、第三效闪蒸罐6采用分开布置模式,并在第三效热交换器5与第三效闪蒸罐6之间还设置强制循环泵9。
所述废水输送管1依次通过汽水换热器10、水水换热器11与第一效热交换器1的浓液进口连接;所述第一效热交换器2的二次蒸汽输出口通过管道与汽水换热器10的加热蒸汽源输入口连接;所述第一效热交换器2、第二效热交换器3、第三效热交换器5的冷凝水输出口分别通过管道与水水换热器11的加热水源输入口连接。
所述废水输送管1通过一个冷凝器12与汽水换热器10的浓液进口连接,所述第一效热交换器2、第二效热交换器3、第三效热交换器5的不凝气输出口分别通过管道与冷凝器12的加热气源输入口连接,所述冷凝器12的排气口与真空泵13连接。
所述第一效热交换器2采用卧式喷淋热交换器,卧式喷淋热交换器包括卧式壳体、沿轴向设置在卧式壳体内的换热管、设置在卧式壳体内位于换热管上部的喷淋装置;其中,换热管与蒸汽源相连通,使得蒸汽在换热管内运行;喷淋装置与废水输送管道相连通,使得废水经过喷淋装置喷淋在换热管外壁上,废水与换热管之间经过热交换后蒸发;所述第二效热交换器3和第三效热交换器5均为卧式热交换器,浓液在卧式热交换器的换热管内运行,蒸汽在卧式热交换器的换热管外运行。还设置收集装置14集中收集由冷凝器、汽水换热器、水水换热器所产生的冷凝水。
本实施例所述的燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理工艺,包括以下工艺步骤:
1)将温度为35℃,浓度为2%-3%的废水依次送入汽水换热器、水水换热器进行预热处理,将废水温度升高至45℃。
2)将经过步骤1)处理后的废水送入第一效热交换器中进行热交换后,直接蒸发,得到第一效浓液、第一效二次蒸汽;第一效热交换器的温度控制在56℃,真空压力控制在-0.07MPa;在第一效热交换器中还设置有在线冲洗系统,以减少可能存在的少量结垢。
3)将第一效浓液依次送入第二效热交换器、第二效闪蒸罐,第二效热交换器、第二效闪蒸罐采用分开布置模式,并在第二效热交换器与第二效闪蒸罐之间设置强制循环泵,保证第一效浓液在第二效热交换器内的流速大于3m/s,让第一效浓液能够快速通过第二效热交换器,防止浓液在热交换器内出现结垢,并快速进入第二效闪蒸罐,进行第二效蒸发处理,得到第二效浓液、第二效二次蒸汽;其中,控制第二效闪蒸罐的温度在66℃,真空压力控制在-0.06MPa;将第二效二次蒸汽送入步骤2)的第一效热交换器的换热管中作为热交换的蒸汽源;
4)将第二效浓液依次送入第三效热交换器、第三效闪蒸罐,第三效热交换器、第三效闪蒸罐采用分开布置模式,并在第三效热交换器与第三效闪蒸罐之间设置强制循环泵,保证第二效浓液在第三效热交换器内的流速大于3m/s,让第二效浓液快速通过第三效热交换器,防止浓液在热交换器内出现结垢,并快速进入第三效闪蒸罐,进行第三效蒸发处理,得到第三效浓液、第三效二次蒸汽;其中,控制第三效闪蒸罐的温度在76℃,真空压力控制在-0.05MPa;将第三效二次蒸汽分成两部分,一部分送入第二效热交换器中作为热交换的蒸汽源,一部分进入机械蒸汽压缩机(MVC)进行升温升压,提升能量后进入第三效的热交换器中作为热交换的蒸汽源;需要将新鲜蒸汽补充到第三效热交换器中,作为启动蒸汽或补充蒸汽。第三效浓液的浓度为12%-15%。
5)将第三效浓液送入结晶器进行结晶处理,在结晶处理过程中,不必加入晶种。
在步骤1)中,将步骤2)中得到的第一效二次蒸汽送入步骤1)的汽水换热器中作为热交换的加热蒸汽源;将由第一效热交换器、第二效热交换器、第三效热交换器产生的冷凝水分别输送到水水换热器中作为热交换的加热水源。
在步骤1)中,废水通过一个冷凝器与汽水换热器连接,将由第一效热交换器、第二效热交换器、第三效热交换器产生不凝气分别输送到冷凝器中作为热交换的加热气源,所述冷凝器的排气口与真空泵连接。
实施例2:
本实施例的特点是:燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理系统与实施例1相同,区别在于燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理工艺中的控制参数不同,具体如下:
1)将温度为35℃,浓度为2%-3%的废水依次送入汽水换热器、水水换热器进行预热处理,将废水温度升高至45℃。
2)控制第一效热交换器的温度在60℃,真空压力控制在-0.08Mpa。
3)控制第二效闪蒸罐的温度在70℃,真空压力控制在-0.07MPa;;
4)控制第三效闪蒸罐的温度在80℃,真空压力控制在-0.06MPa;得到的第三效浓液的浓度为12%-15%。
实施例3:
本实施例的特点是:燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理系统与实施例1相同,区别在于燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理工艺中的控制参数不同,具体如下:
1)将温度为35℃,浓度为2%-3%的的废水依次送入汽水换热器、水水换热器进行预热处理,将废水温度升高至45℃。
2)控制第一效热交换器的温度在58℃,真空压力控制在-0.075Mpa。
3)控制第二效闪蒸罐的温度在68℃,真空压力控制在-0.065MPa;;
4)控制第三效闪蒸罐的温度在78℃,真空压力控制在-0.055MPa;得到的第三效浓液的浓度为12%-15%。
其他与具体实施例1相同。
对于本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及变形,而所有的这些改变以及变形都应该属于本发明权利要求的保护范围之内。

Claims (10)

1.燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理工艺,其特征在于,包括以下工艺步骤:
1)将废水进行预加热处理;
2)将经过步骤1)处理后的废水送入第一效热交换器中进行热交换后,直接蒸发,得到第一效浓液、第一效二次蒸汽;第一效热交换器的温度控制在56℃-60℃,真空压力控制在-0.07MPa∽-0.08Mpa;
3)将第一效浓液依次送入第二效热交换器、第二效闪蒸罐,第二效热交换器、第二效闪蒸罐采用分开布置模式,并在第二效热交换器与第二效闪蒸罐之间设置强制循环泵,保证第一效浓液在第二效热交换器内的流速大于3m/s,让第一效浓液能够快速通过第二效热交换器,并快速进入第二效闪蒸罐,进行第二效蒸发处理,得到第二效浓液、第二效二次蒸汽;其中,控制第二效闪蒸罐的温度在66℃-70℃,真空压力控制在-0.06MPa∽-0.07MPa;将第二效二次蒸汽送入步骤2)的第一效热交换器的换热管中作为热交换的蒸汽源;
4)将第二效浓液依次送入第三效热交换器、第三效闪蒸罐,第三效热交换器、第三效闪蒸罐采用分开布置模式,并在第三效热交换器与第三效闪蒸罐之间设置强制循环泵,保证第二效浓液在第三效热交换器内的流速大于3m/s,让第二效浓液快速通过第三效热交换器,并快速进入第三效闪蒸罐,进行第三效蒸发处理,得到第三效浓液、第三效二次蒸汽;其中,控制第三效闪蒸罐的温度在76℃-80℃,真空压力控制在-0.05MPa∽-0.06MPa;将第三效二次蒸汽分成两部分,一部分送入第二效热交换器中作为热交换的蒸汽源,一部分进入机械蒸汽压缩机进行升温升压,然后进入第三效的热交换器中作为热交换的蒸汽源;
5)将第三效浓液送入结晶器进行结晶处理。
2.根据权利要求1所述的燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理工艺,其特征在于:在步骤1)中,将废水依次送入汽水换热器、水水换热器进行预热处理,将废水温度升高至45℃;同时,将步骤2)中得到的第一效二次蒸汽送入步骤1)的汽水换热器中作为热交换的加热蒸汽源;将由第一效热交换器、第二效热交换器、第三效热交换器产生的冷凝水分别输送到水水换热器中作为热交换的加热水源。
3.根据权利要求2所述的燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理工艺,其特征在于:在步骤1)中,废水通过一个冷凝器与汽水换热器连接,将由第一效热交换器、第二效热交换器、第三效热交换器产生不凝气分别输送到冷凝器中作为热交换的加热气源,所述冷凝器的排气口与真空泵连接。
4.根据权利要求1所述的燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理工艺,其特征在于:所述第一效热交换器采用卧式喷淋热交换器,即热交换与蒸发一体化设备;卧式喷淋热交换器包括卧式壳体、沿轴向设置在卧式壳体内的换热管、设置在卧式壳体内位于换热管上部的喷淋装置;其中,换热管与蒸汽源相连通,使得蒸汽在换热管内运行;喷淋装置与废水输送管道相连通,使得废水经过喷淋装置喷淋在换热管外壁上,废水与换热管之间经过热交换后蒸发;所述第二效热交换器和第三效热交换器均为卧式热交换器。
5.根据权利要求1所述的燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理工艺,其特征在于:在步骤4)中,需要将新鲜蒸汽补充到第三效热交换器中,作为启动蒸汽或补充蒸汽。
6.根据权利要求1所述的燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理工艺,其特征在于:在步骤5)中,在结晶处理过程中,不必加入晶种。
7.燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理系统,其特征在于:包括废水输送管、第一效热交换器、第二效热交换器、第二效闪蒸罐、第三效热交换器、第三效闪蒸罐、结晶器、机械蒸汽压缩机;
所述第一效热交换器的浓液进口通过管道与废水输送管连接,其浓液出口依次通过第二效热交换器、第二效闪蒸罐、第三效热交换器第、三效闪蒸罐与结晶器的浓液进口连接;
所述第三效闪蒸罐的二次蒸汽输出口之一通过机械蒸汽压缩机与第三效热交换器的蒸汽源输入口连接,其二次蒸汽输出口之二通过管道与第二效热交换器的蒸汽源输入口连接;所述第二效闪蒸罐的二次蒸汽输出口通过管道与第一效热交换器的蒸汽源输入口连接;
所述第二效热交换器、第二效闪蒸罐采用分开布置模式,并在第二效热交换器与第二效闪蒸罐之间还设置强制循环泵;
所述第三效热交换器、第三效闪蒸罐采用分开布置模式,并在第三效热交换器与第三效闪蒸罐之间还设置强制循环泵。
8.根据权利要求7所述的燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理系统,其特征在于:所述废水输送管依次通过汽水换热器、水水换热器与第一效热交换器的浓液进口连接;所述第一效热交换器的二次蒸汽输出口通过管道与汽水换热器的加热蒸汽源输入口连接;所述第一效热交换器、第二效热交换器、第三效热交换器的冷凝水输出口分别通过管道与水水换热器的加热水源输入口连接。
9.根据权利要求8所述的燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理系统,其特征在于:所述废水输送管通过一个冷凝器与汽水换热器的浓液进口连接,所述第一效热交换器、第二效热交换器、第三效热交换器的不凝气输出口分别通过管道与冷凝器的加热气源输入口连接,所述冷凝器的排气口与真空泵连接。
10.根据权利要求7所述的燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理系统,其特征在于:所述第一效热交换器采用卧式喷淋热交换器,卧式喷淋热交换器包括卧式壳体、沿轴向设置在卧式壳体内的换热管、设置在卧式壳体内位于换热管上部的喷淋装置;其中,换热管与蒸汽源相连通,使得蒸汽在换热管内运行;喷淋装置与废水输送管道相连通,使得废水经过喷淋装置喷淋在换热管外壁上,废水与换热管之间经过热交换后蒸发;所述第二效热交换器和第三效热交换器均为卧式热交换器。
CN201410852359.1A 2014-12-26 2014-12-26 燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理工艺及系统 Expired - Fee Related CN104529038B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410852359.1A CN104529038B (zh) 2014-12-26 2014-12-26 燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理工艺及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410852359.1A CN104529038B (zh) 2014-12-26 2014-12-26 燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理工艺及系统

Publications (2)

Publication Number Publication Date
CN104529038A true CN104529038A (zh) 2015-04-22
CN104529038B CN104529038B (zh) 2015-12-02

Family

ID=52844732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410852359.1A Expired - Fee Related CN104529038B (zh) 2014-12-26 2014-12-26 燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理工艺及系统

Country Status (1)

Country Link
CN (1) CN104529038B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104803535A (zh) * 2015-05-06 2015-07-29 广州新普利节能环保科技有限公司 一种从脱硫废水中回收盐的回收系统及回收工艺
CN105254104A (zh) * 2015-11-06 2016-01-20 江苏京源环保股份有限公司 一种低运行成本的电厂脱硫废水零排放处理工艺
CN105502791A (zh) * 2016-01-21 2016-04-20 厦门嘉戎技术股份有限公司 一种煤化工废水盐分提取方法及设备
CN106745427A (zh) * 2016-12-16 2017-05-31 华北电力大学 一种低温低压脱硫废水蒸发处理装置及工艺
CN107335328A (zh) * 2016-04-29 2017-11-10 通用电器技术有限公司 用于蒸发废水且减少酸性气体排放的仪器和方法
CN113008017A (zh) * 2021-04-23 2021-06-22 徐州无废城市技术研究院有限公司 一种燃煤电厂固废与废水协同处理系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3926739A (en) * 1973-08-15 1975-12-16 Hitachi Ltd Multiple-effect multi-stage flash evaporation process and apparatus for demineralizing water
CN101525197A (zh) * 2008-04-15 2009-09-09 昆明冶金研究院 高浓度湿法冶金工艺废水的低能耗处理方法
CN101851041A (zh) * 2010-04-27 2010-10-06 中国海诚工程科技股份有限公司 一种脱硫废水深化处理实现零排放的方法和装置
CN102616973A (zh) * 2012-04-17 2012-08-01 常州光辉生物科技有限公司 高含盐有机废水的处理方法及其处理装置
CN204356186U (zh) * 2014-12-26 2015-05-27 佛山市德嘉电力环保科技开发有限公司 燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3926739A (en) * 1973-08-15 1975-12-16 Hitachi Ltd Multiple-effect multi-stage flash evaporation process and apparatus for demineralizing water
CN101525197A (zh) * 2008-04-15 2009-09-09 昆明冶金研究院 高浓度湿法冶金工艺废水的低能耗处理方法
CN101851041A (zh) * 2010-04-27 2010-10-06 中国海诚工程科技股份有限公司 一种脱硫废水深化处理实现零排放的方法和装置
CN102616973A (zh) * 2012-04-17 2012-08-01 常州光辉生物科技有限公司 高含盐有机废水的处理方法及其处理装置
CN204356186U (zh) * 2014-12-26 2015-05-27 佛山市德嘉电力环保科技开发有限公司 燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理系统

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104803535A (zh) * 2015-05-06 2015-07-29 广州新普利节能环保科技有限公司 一种从脱硫废水中回收盐的回收系统及回收工艺
CN105254104A (zh) * 2015-11-06 2016-01-20 江苏京源环保股份有限公司 一种低运行成本的电厂脱硫废水零排放处理工艺
CN105254104B (zh) * 2015-11-06 2017-09-19 江苏京源环保股份有限公司 一种低运行成本的电厂脱硫废水零排放处理工艺
CN105502791A (zh) * 2016-01-21 2016-04-20 厦门嘉戎技术股份有限公司 一种煤化工废水盐分提取方法及设备
CN105502791B (zh) * 2016-01-21 2018-08-07 厦门嘉戎技术股份有限公司 一种煤化工废水盐分提取方法及设备
CN107335328A (zh) * 2016-04-29 2017-11-10 通用电器技术有限公司 用于蒸发废水且减少酸性气体排放的仪器和方法
CN106745427A (zh) * 2016-12-16 2017-05-31 华北电力大学 一种低温低压脱硫废水蒸发处理装置及工艺
CN106745427B (zh) * 2016-12-16 2023-04-21 华北电力大学 一种低温低压脱硫废水蒸发处理装置及工艺
CN113008017A (zh) * 2021-04-23 2021-06-22 徐州无废城市技术研究院有限公司 一种燃煤电厂固废与废水协同处理系统及方法
CN113008017B (zh) * 2021-04-23 2023-12-26 徐州无废城市技术研究院有限公司 一种燃煤电厂固废与废水协同处理系统及方法

Also Published As

Publication number Publication date
CN104529038B (zh) 2015-12-02

Similar Documents

Publication Publication Date Title
CN104529038B (zh) 燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理工艺及系统
CN103657122A (zh) 一种六效蒸发装置
CN105036223A (zh) 一种高效节能的污水处理方法及装置
CN105217702A (zh) 一种脱硫废水处理系统
CN105585198A (zh) 高效经济火电厂末端脱硫废水软化、蒸发处理系统及方法
CN111439882A (zh) 一种利用电厂烟气余热的脱硫废水零排放系统
CN104341072A (zh) 一种节能的废水连续蒸发结晶系统
CN203591603U (zh) 一种六效蒸发装置
CN204356186U (zh) 燃煤电厂湿法脱硫废水的防结垢蒸发结晶处理系统
CN204151180U (zh) 一种高效机械蒸汽再压缩海水淡化装置
CN105060601A (zh) 一种专门针对火电厂零排放的综合处理系统
CN205115086U (zh) 一种处理脱硫废水的装置
CN205061601U (zh) 一种高效节能的污水处理装置
CN204848322U (zh) 高盐水处理系统
CN104671315B (zh) 一种全厂废水零排放的方法及系统
CN110404281A (zh) 一种双效外循环蒸发器
CN107973357B (zh) 一种废水处理系统、多路处理系统及多级处理系统
CN212403827U (zh) 一种利用电厂烟气余热的脱硫废水零排放系统
CN105129890A (zh) 蒸发结晶器
CN213294703U (zh) 一种含氯化钾盐的飞灰脱盐系统
CN204151181U (zh) 一种mvr集成化海水淡化装置
CN209685495U (zh) 一种采用余热驱动的脱硫废水回收及结晶盐提纯系统
CN208454723U (zh) 危废焚烧烟气洗涤废水在线除盐及回用系统
CN206828125U (zh) 湿冷机组乏汽蒸发脱硫废水处理装置
CN207024682U (zh) 多效蒸发结晶器

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: 528000, Shunde District, Guangdong, Foshan Province town, Qi Xing neighborhood committee, Xing Long Road, Shun Bao garden, B District 29, 1 ladder 101

Patentee after: GUANGDONG DEGA POWER ENVIRONMENTAL PROTECTION TECHNOLOGY Co.,Ltd.

Address before: 528000, Shunde District, Guangdong, Foshan Province town, Qi Xing neighborhood committee, Xing Long Road, Shun Bao garden, B District 29, 1 ladder 101

Patentee before: FOSHAN DEGA POWER ENVIRONMENTAL PROTECTION TECHNOLOGY DEVELOPMENT CO.,LTD.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151202