CN104527078B - A three-dimensional printing of the printable acquisition method and system - Google Patents

A three-dimensional printing of the printable acquisition method and system Download PDF

Info

Publication number
CN104527078B
CN104527078B CN201510033285.3A CN201510033285A CN104527078B CN 104527078 B CN104527078 B CN 104527078B CN 201510033285 A CN201510033285 A CN 201510033285A CN 104527078 B CN104527078 B CN 104527078B
Authority
CN
China
Prior art keywords
node
dimensional
printability
dimensional printing
printing
Prior art date
Application number
CN201510033285.3A
Other languages
Chinese (zh)
Other versions
CN104527078A (en
Inventor
王士玮
刘利刚
王康
杨周旺
Original Assignee
合肥阿巴赛信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥阿巴赛信息科技有限公司 filed Critical 合肥阿巴赛信息科技有限公司
Priority to CN201510033285.3A priority Critical patent/CN104527078B/en
Publication of CN104527078A publication Critical patent/CN104527078A/en
Application granted granted Critical
Publication of CN104527078B publication Critical patent/CN104527078B/en

Links

Abstract

本发明公开了一种三维打印的可打印性获取方法及系统,包括:获取打印物体的三维网格模型,获取三维网格模型上任意一个节点的支撑参数值,根据预设的临界参数值与支撑参数值获取该节点的可打印性。 The present invention discloses a printing method and a system of acquisition of three-dimensional printing, comprising: obtaining a three-dimensional mesh model of the printing object, obtaining the parameter values ​​supported on a three-dimensional mesh model of any node, according to a predetermined critical parameter value and supporting the node parameter values ​​acquired printability. 本发明中,通过为物体的三维网格模型上的每个节点赋予一个支撑参数用于衡量节点的支撑稳定性,根据能量传递思想来获取三维网格模型上所有节点的支撑参数值,再根据预设的打印临界值和获取的支撑参数值之间的关系用于判断该节点是否具有可打印性,可以精确地获取三维打印系统的可打印性。 In the present invention, by imparting a support parameters for each node on the 3D mesh model for supporting the object to measure the stability of nodes to obtain the parameter values ​​of all nodes supporting the transfer of energy according to the three-dimensional mesh model thought, then in accordance with the relationship between the threshold value and the printing support preset parameter values ​​acquired for determining whether the node printability having printability, can be accurately obtain the three-dimensional printing system.

Description

一种三维打印的可打印性获取方法及系统 A three-dimensional printing of the printable acquisition method and system

技术领域 FIELD

[0001] 本发明涉及三维打印技术领域,尤其涉及一种三维打印的可打印性获取方法及系统。 [0001] The present invention relates to 3D printing, and in particular relates to a three-dimensional printing of the printable acquisition method and system.

背景技术 Background technique

[0002] 三维打印,即快速成型技术的一种,它是一种以数字模型文件为基础,运用液状、 粉状或片状的金属、塑料等材料,通过自下而上逐层打印的方式来构造物体的技术。 [0002] The three-dimensional printing, i.e., a technique of rapid prototyping, which is a file-based digital model, the use of a liquid, powder or flake metals, plastic and other materials, by a bottom-up manner layer by layer printing technology to construct the object.

[0003] 三维打印通常是采用数字技术材料打印机来实现的,常在模具制造、工业设计等领域被用于制造模型,后来逐渐用于一些产品的直接制造,当前已经有使用这种三维打印技术打印而成的零部件。 [0003] The three dimensional printing technology is typically a digital printer to achieve material often is used to make a mold manufacturing model, and industrial design, then gradually for direct manufacture of some products, currently have to use this three-dimensional printing technique print made parts. 三维打印技术在珠宝、鞋类、工业设计、建筑、工程和施工(AEC)、汽车,航空航天、牙科和医疗产业、教育、地理信息系统、土木工程、枪支以及其他领域都有所应用。 3D printing in jewelry, footwear, industrial design, architecture, engineering and construction (AEC), automotive, aerospace, dental and medical industries, education, geographic information systems, civil engineering, guns and other fields have the applications.

[0004] 在三维打印的设计过程中,先通过计算机建模软件建模,再将建成的三维物体模型“分区”成逐层的截面,即切片,从而指导打印机进行逐层打印;打印机通过读取横截面信息,采用液状、粉状或片状的材料将这些截面逐层地打印出来,再将各层截面以各种方式粘合起来从而制造出一个实体。 [0004] In the design process the three-dimensional printing, by computer modeling software to model three-dimensional object model and then into the "partition" cross section into a layer by layer, i.e. slice, layer by layer printing in order to guide the printer; printer by reading take the cross-section information, using a material in liquid, powder or flake of these cross-sectional printed layer by layer, and then a cross-sectional layers bonded together in various ways to produce an entity. 三维打印技术的特点在于其几乎可以造出任何形状的物体。 3D printing characteristics that it can create virtually any shape object.

[0005] 在实际打印过程中,对于存在悬空部分的三维物体模型,由于材料粘滞特性的问题,现有的三维打印方式无法正常地支撑并打印整个模型,即不可打印;因此,对于不可打印的部分需要为三维物体模型增加额外的支撑以保证可打印性。 [0005] In the actual printing process, the three-dimensional object model for the presence of the overhanging portions, the viscous properties of a material due to a problem, conventional three-dimensional printing methods can not properly support the entire model and print unprintable; Thus, for unprintable partial three-dimensional object model need additional support to ensure printability. 因此,获取三维物体模型的可打印性是三维打印过程中的关键问题。 Thus, obtaining the three-dimensional object model is the key problem to print three-dimensional printing process.

发明内容 SUMMARY

[0006] 基于背景技术存在的技术问题,本发明提出了一种三维打印的可打印性获取方法及系统,可以精确地获取三维打印系统的可打印性。 [0006] Based on the background art technical problem, the present invention proposes a method of obtaining printability and system can accurately acquire the three-dimensional printing system to print of a three-dimensional printing.

[0007] 本发明提出的一种三维打印的可打印性获取方法,包括: [0007] The printability of printing a three-dimensional acquisition method proposed by the present invention, comprising:

[0008] Sl、获取打印物体的三维网格模型; [0008] Sl, acquires 3D mesh model of the printing object;

[0009] S2、获取三维网格模型上任意一个节点的支撑参数值,其公式如下: [0009] S2, obtaining the parameter values ​​supported on a three-dimensional mesh model of any node, which formula is as follows:

[0010] (I)P(A) =PmaxjAes= {AIHA=HminI ; [0010] (I) P (A) = PmaxjAes = {AIHA = HminI;

[0011] (Π) P (A) =max {P ⑶-Lab XI Θαβ IX α}, [0011] (Π) P (A) = max {P ⑶-Lab XI Θαβ IX α},

[0012] AeSi= {A|HA>Hmin} ,BeS2= {B|Hb<Ha}; [0012] AeSi = {A | HA> Hmin}, BeS2 = {B | Hb <Ha};

[0013] 其中,P㈧、P⑶为三维网格模型上节点A、节点B的支撑参数值,Ha、Hb为节点A、节点B在三维网格模型上的高度,Lab为连接节点A与节点B的边AB的长度,ΘΑΒ为边AB与水平面之间的夹角,α为能量传递系数,Pmax为支撑参数值的最大值,Hmin为三维网格模型上节点高度的最小值; [0013] wherein P㈧, P⑶ support node parameter values ​​A, the node B of the 3D mesh model, Ha, Hb is the height of the node A, the node B in the three-dimensional mesh model, Lab is connected to nodes A and B length of side AB, ΘΑΒ between the side AB and the horizontal angle, α is the energy transfer coefficient, Pmax is the maximum parameter value is supported, Hmin is the minimum height of the node on the 3D mesh model;

[0014] S3、根据预设的临界参数值Q与支撑参数值P㈧获取节点A的可打印性。 [0014] S3, obtaining printability of the node A according to a predetermined critical parameter value Q and the parameter value P㈧ support.

[0015] 优选地,在S3中,根据预设的临界参数值Q与支撑参数值P 获取节点A的可打印性,具体包括:当P (A)多Q时,节点A可打印;当P (A) <Q时,节点A不可打印。 [0015] Preferably, at S3, the acquisition of the node A can be printed according to a predetermined critical parameter value and the Q value of the parameter P is supported, comprises: when a P (A) multi-Q, node A may print; when P (A) <Q, then the node A can not be printed.

[0016] 优选地,能量传递系数α与三维打印材料的粘滞特性相关;优选地,能量传递系数α 还与三维打印机的功能参数和/或打印参数相关;能量传递系数α还与打印经验值相关;优 [0016] Preferably, the energy transfer coefficient α related to the viscosity properties of three-dimensional printing material; Preferably, the energy transfer coefficient α related to the functional parameters further three-dimensional printer and / or print parameters; energy transfer coefficient α value and also printing experience related; excellent

Figure CN104527078BD00051

[0017] 优选地,临界参数值Q与三维打印材料的粘滞特性相关;优选地,临界参数值Q还与三维打印机的功能参数和/或打印参数相关;优选地,临界参数值Q还与打印经验值相关;优 [0017] Preferably, Q critical parameter value associated with the characteristic three-dimensional viscous printing material; preferably, Q is also critical parameter value associated with the three-dimensional printer function parameters and / or print parameters; preferably, also with the critical parameter value Q print experience correlation; excellent

Figure CN104527078BD00052

[0018] 优选地,获取支撑参数值的公式如下: [0018] Preferably, the parameter value obtaining support the following formula:

[0019] (Π) P (A) =max {Ρ ⑶-Lab XI Θαβ IX α}, [0019] (Π) P (A) = max {Ρ ⑶-Lab XI Θαβ IX α},

[0020] BGS2US3,S3= {B|Lab彡2C},其中,C为三维打印层的层厚; [0020] BGS2US3, S3 = {B | Lab San 2C}, where, C is the three dimensional printing layer, the layer thickness;

[0021] 和/或, [0021] and / or,

Figure CN104527078BD00053

[0022] [0022]

[0023] [0023]

[0024] 本发明提出的一种三维打印的可打印性获取模块,包括: [0024] The present invention proposes a three-dimensional printing printability acquisition module, comprising:

[0025] 网格模型获取模块,用于获取打印物体的三维网格模型; [0025] The grid model acquiring module, for acquiring a three-dimensional mesh model of the printing object;

[0026] 支撑参数获取模块,用于获取三维网格模型上任意一个节点的支撑参数值,其公式如下: [0026] support parameter obtaining module, configured to obtain the parameter values ​​is supported on a three-dimensional mesh model of any node, which formula is as follows:

[0027] (I)P(A) =Pmax, Ae S= {A| HA = HminI ; [0027] (I) P (A) = Pmax, Ae S = {A | HA = HminI;

[0028] (Π) P (A) =max {P ⑶—Lab XI Θαβ IX α}, [0028] (Π) P (A) = max {P ⑶-Lab XI Θαβ IX α},

[0029] Ae Si = {AI HA>Hmin},B e S2 = {BI Ηβ<Ηα}; [0029] Ae Si = {AI HA> Hmin}, B e S2 = {BI Ηβ <Ηα};

[0030] 其中,P㈧、P⑶为三维网格模型上节点A、节点B的支撑参数值,Ha、Hb为节点A、节点B在三维网格模型上的高度,Lab为连接节点A与节点B的边AB的长度,ΘΑΒ为边AB与水平面之间的夹角,α为能量传递系数,Pmax为支撑参数值的最大值,Hmin为三维网格模型上节点高度的最小值; [0030] wherein P㈧, P⑶ support node parameter values ​​A, the node B of the 3D mesh model, Ha, Hb is the height of the node A, the node B in the three-dimensional mesh model, Lab is connected to nodes A and B length of side AB, ΘΑΒ between the side AB and the horizontal angle, α is the energy transfer coefficient, Pmax is the maximum parameter value is supported, Hmin is the minimum height of the node on the 3D mesh model;

[0031] 可打印性获取模块,用于根据预设的临界参数值Q与支撑参数值P㈧获取节点A的可打印性。 [0031] printability acquisition module, the support for the Q parameter values ​​acquired node A P㈧ printability according to a predetermined critical parameter value.

[0032] 优选地,可打印性获取模块具体用于:当P (A)时,节点A可打印;当P (A) <Q时, 节点A不可打印。 [0032] Preferably, printability obtaining module is used: When P (A), node A may print; when P (A) <Q, then the node A can not be printed.

[0033] 优选地,在支撑参数获取模块中,获取支撑参数值的公式如下: [0033] Preferably, the support parameter obtaining module, the acquisition parameters of the support the following formula:

[0034] (Π) P (A) =max {P ⑶-Lab XI Θαβ IX α}, [0034] (Π) P (A) = max {P ⑶-Lab XI Θαβ IX α},

[0035] BGS2US3,S3= {B|Lab彡2C},其中,C为三维打印层的层厚; [0035] BGS2US3, S3 = {B | Lab San 2C}, where, C is the three dimensional printing layer, the layer thickness;

[0036] 和/或, [0036] and / or,

[0037] (Π) P (A) =max {P ⑶-Lab XI Θαβ IX α}, [0037] (Π) P (A) = max {P ⑶-Lab XI Θαβ IX α},

[0038] [0038]

Figure CN104527078BD00061

[0039] 优选地,在支撑参数获取模块中,能量传递系数α与三维打印材料的粘滞特性相关;优选地,能量传递系数α还与三维打印机的功能参数和/或打印参数相关;能量传递系数 [0039] Preferably, the parameter acquisition module in the support, the energy transfer coefficient α related to the viscosity properties of three-dimensional printing material; Preferably, the energy transfer coefficient α related to the functional parameters further three-dimensional printer and / or print parameters; energy transfer coefficient

Figure CN104527078BD00062

[0040] 优选地,在可打印性获取模块中,临界参数值Q与三维打印材料的粘滞特性相关; 优选地,临界参数值Q还与三维打印机的功能参数和/或打印参数相关;优选地,临界参数值Q还与打印经验值相关;优选地, [0040] Preferably, the acquisition module printability, Q critical parameter value associated with the characteristic three-dimensional viscous printing material; preferably, Q is also critical parameter value associated with the three-dimensional printer function parameters and / or print parameters; preferably , the critical parameter value Q is also related to the print experience; preferably,

Figure CN104527078BD00063

[0041] 本发明中,通过为物体的三维网格模型上的每个节点赋予一个支撑参数用于衡量节点的支撑稳定性,根据能量传递思想来获取三维网格模型上所有节点的支撑参数值,再根据预设的打印临界值和获取的支撑参数值之间的关系用于判断该节点是否具有可打印性,可以精确地获取三维打印系统的可打印性。 [0041] In the present invention, the support to obtain the parameter values ​​of all the nodes on the 3D mesh model by imparting a support parameters for each node on the 3D mesh model for supporting the object to measure the stability of the nodes, the energy transfer thinking , then the relationship between the printing support and the preset threshold parameter values ​​acquired for determining whether the node having printability, can be accurately obtain the three-dimensional printing system printability.

附图说明 BRIEF DESCRIPTION

[0042] 图1为本发明提出的一种三维打印的可打印性获取方法的流程示意图。 [0042] FIG. 1 is a three-dimensional present invention provides a printable printing acquired a schematic flow chart of a method.

[0043] 图2为本发明提出的一种三维打印的可打印性获取模块的结构原理图。 Printability [0043] FIG. 2 of the present invention provides a three-dimensional printing acquisition module configuration diagram.

具体实施方式 Detailed ways

[0044] 在三维打印过程中,由于三维打印是自下而上逐层进行打印的,对于新打印的一层,其会被它下方的一层所支撑。 [0044] In three-dimensional printing, the three-dimensional printing because printing is performed layer by layer from the bottom up, a new layer for printing, which is supported by a layer below it. 当三维打印机打印到某一个点时,如果该点的正下方有已经打印好的实体点,那么该点就能被正下方的实体点所支撑,能够成功地被打印;如果该点的正下方没有实体点,而该点附近斜下方有实体点,那么该点能否被斜下方的实体点所支撑,与打印材料的粘滞特性以及倾斜参数相关。 When the three-dimensional printer to a point, the point has been printed entity, then the entity is supported can point directly below the point, can successfully be printed if there is just below the point; if the point directly below no physical point, and the vicinity of the point obliquely downward entities point, that point can be the point obliquely downward entity is supported, the printing characteristics associated with viscous material, and tilt parameter.

[0045] 根据上述三维打印的工作原理,在实现本申请的过程中,通过为物体的三维网格模型上的每个节点赋予一个支撑参数用于衡量节点的支撑稳定性,三维网格模型上节点的支撑参数值是通过该节点下方并与其相邻节点的支撑参数值通过传递而产生的,因此可以根据能量传递思想来获取三维网格模型上所有节点的支撑参数值,再根据预设的打印临界值和获取的支撑参数值之间的关系就可以判断该节点是否具有可打印性。 [0045] The working principle of the three-dimensional printing, in the process of implementing the present application, by each node on the 3D mesh model of an object to impart a parameter support node for supporting a measure of stability, the 3D mesh model the support node is a parameter value and the parameter values ​​supported by the lower adjacent node of the node is generated by transfer, it is possible to obtain the energy transfer thought parameter values ​​of all nodes supporting the 3D mesh model, then according to a preset the relationship between the threshold value and the support print parameter values ​​obtained can determine whether the node having printability.

[0046] 参照图1,图1为本发明提出的一种三维打印的可打印性获取方法的流程示意图。 [0046] Referring to FIG. 1, FIG. 1 of the present invention provides a three-dimensional printing can print a schematic flow chart of the method for obtaining.

[0047] 如图1所示,本发明实施例提出的一种三维打印的可打印性获取方法,包括: [0047] As shown, a three-dimensional printing provided by the embodiments of the present invention is a method for obtaining printability, comprising:

[0048] Sl、获取打印物体的三维网格模型; [0048] Sl, acquires 3D mesh model of the printing object;

[0049] S2、获取三维网格模型上任意一个节点A的支撑参数值P㈧,其公式如下: [0049] S2, the parameter value obtaining support P㈧ any node on the 3D mesh model A, the formula is as follows:

[0050] (I)P(A) =Pmax, Ae S= {AI HA = HminI ; [0050] (I) P (A) = Pmax, Ae S = {AI HA = HminI;

[0051] (Π) P (A) =max {P ⑶-Lab XI Θαβ IX α}, [0051] (Π) P (A) = max {P ⑶-Lab XI Θαβ IX α},

[0052] Ae Si = {AI HA>Hmin},B e S2 = {BI Ηβ<Ηα}; [0052] Ae Si = {AI HA> Hmin}, B e S2 = {BI Ηβ <Ηα};

[0053] 其中,P㈧、P⑶为三维网格模型上节点A、节点B的支撑参数值,Ha、Hb为节点A、节点B在三维网格模型上的高度,Lab为连接节点A与节点B的边AB的长度,ΘΑΒ为边AB与水平面之间的夹角,α为能量传递系数,Pmax为支撑参数值的最大值,Hmin为三维网格模型上节点高度的最小值; [0053] wherein P㈧, P⑶ support node parameter values ​​A, the node B of the 3D mesh model, Ha, Hb is the height of the node A, the node B in the three-dimensional mesh model, Lab is connected to nodes A and B length of side AB, ΘΑΒ between the side AB and the horizontal angle, α is the energy transfer coefficient, Pmax is the maximum parameter value is supported, Hmin is the minimum height of the node on the 3D mesh model;

[0054] 在S2中,对于三维网格模型上任意一个节点Α,为了获取节点A的支撑参数值P㈧, 根据能量传递思想,选取节点A下方的节点B的支撑参数值P⑶进行计算(Ηβ<Ηα),基于满足Ηβ<Ηα的节点B的数量为一个或者多个,根据公式(1)进行运算时取其最大值作为节点A的支撑参数值P (A)。 [0054] In S2, the three-dimensional mesh model for any node [alpha], in order to acquire the parameter values ​​P㈧ support node A, the energy transfer thought, a Node B supporting P⑶ parameter values ​​below the selected node A is calculated (Ηβ < Ηα), based on meeting Ηβ <Ηα number of the node B is one or more, whichever is the maximum value of the parameter as a supporting node a P (a) (1) calculates according to the formula.

[0055] 当节点A处于三维打印层的最底层时,节点A下方为打印平台,在三维打印过程中节点A直接置于打印平台上,节点A可打印,可以理解为节点A的高度Ha=Hmin,节点A下方支撑在打印平台上,即节点B的高度Ηβ = 0,在满足上述条件的节点Α,定义节点A的支撑参数值P㈧为支撑参数值的最大值Pmax。 [0055] When the node A at the bottom layer of the three-dimensional printing, the node A is below the printing platform, the three-dimensional printing process in node A is directly placed on the printing platform, the node A may print, the node A can be understood as a height Ha = hmin, supported on the bottom of the node a printing platform, i.e. the node height Ηβ B = 0, Α nodes satisfying the above conditions, the value of the parameter support node a P㈧ defined as the maximum value Pmax of the parameter value is supported. 具体地,可以设置支撑参数值的最大值Pmax=l。 In particular, the support may be provided parameter values ​​the maximum value Pmax = l.

[0056] 当节点A不处于三维打印层的最底层时,HA>Hmin,根据公式⑴和边界条件⑴就可以得出节点A的支撑参数值P㈧。 [0056] When the node A is not at the bottom layer of the three-dimensional printing, HA> Hmin, according to the equation and the boundary conditions ⑴ ⑴ parameter values ​​can be drawn support node A P㈧.

[0057] 其中,在能量传递系数α的设置过程中,能量传递系数α与三维打印材料的粘滞特性相关,能量传递系数α还与三维打印机的功能参数(例如三维打印机的型号)和/或打印参数相关,能量传递系数α还与打印经验值相关。 [0057] wherein, in the energy transfer process of setting the coefficient α, the coefficient α related to the energy transfer characteristics of the three-dimensional viscous printing material, energy transfer coefficient α and the three-dimensional printer further functional parameters (e.g., three-dimensional printer model), and / or print parameter related to the energy transfer coefficient α is also related to the print experience.

[0058] 在实际应用过程中,可以根据三维打印材料的粘滞特性、三维打印机的功能参数、 三维打印机的打印参数、经验值的组合来确定能量传递系数α,例如,在本发明实施例中, [0058] In actual applications, according to the viscous properties of the three-dimensional printing material, functional parameters three-dimensional printer, the printing parameters of the three-dimensional printer, a combination of empirical values ​​to determine the energy transfer coefficient [alpha], for example, in the embodiment of the present invention, ,

Figure CN104527078BD00071

[0059] S3、根据预设的临界参数值Q与支撑参数值P (A)获取节点A的可打印性,具体包括: 当P (A)时,节点A可打印;当P (A) <卩时,节点A不可打印。 [0059] S3, according to a predetermined critical parameter value and the Q value of the parameter support P (A) of the node A obtaining printability, comprises: when a P (A), node A may print; when P (A) < when Jie, node A unprintable.

[0060] 其中,临界参数值Q与三维打印材料的粘滞特性相关,临界参数值Q还与三维打印机的功能参数和/或打印参数相关,临界参数值Q还与打印经验值相关。 [0060] wherein Q critical parameter value associated with the characteristic three-dimensional viscous printing material, Q is also critical parameter value associated with the functional parameters of the three-dimensional printer and / or print parameters, Q is also critical parameter value related to the print experience.

[0061] 在实际应用过程中,可以根据三维打印材料的粘滞特性、三维打印机的功能参数、 三维打印机的打印参数、经验值的组合来确定临界参数值Q,例如,在本发明实施例中, [0061] In actual applications, according to the viscous properties of the three-dimensional printing material, functional parameters three-dimensional printer, the printing parameters of the three-dimensional printer, a combination of empirical values ​​determined critical parameter value Q, for example, in the embodiment of the present invention, ,

Figure CN104527078BD00072

[0062] 在本发明实施例中,在三维打印过程中自下而上逐层进行打印,在获取节点A的支撑参数值P (A)时,优选地按照自下而上的顺序,逐层依次获取节点A的支撑参数值P (A)。 [0062] In an embodiment of the present invention, the three dimensional printing process for printing the bottom up layer by layer, the support node A acquires a parameter value P (A), preferably the bottom-up order, layer by layer a support node sequentially acquiring the parameter value P (a).

[0063] 在本发明实施例中,在S2中,根据公式(Π)获取三维网格模型上节点A的支撑参数值P (A)时,基于边界条件Sl和S2的前提下,还可以进一步为公式(Π)设置边界条件S3, When [0063] In an embodiment of the present invention, in S2, the value of the parameter support node A acquires the 3D mesh model P (A) according to the formula ([pi), the boundary conditions based on the premise of Sl and S2, may further equation set ([pi) boundary condition S3,

[0064] BeS2US3,S3= {B|LAB彡2C},其中,C为三维打印层的层厚; [0064] BeS2US3, S3 = {B | LAB San 2C}, where, C is the three dimensional printing layer, the layer thickness;

[0065] 根据上述设置,根据公式(Π)并结合边界条件S1、S2和S3求解节点A的支撑参数值P㈧: [0065] According to the above arrangement, according to the formula ([pi) in combination with the boundary conditions S1, S2 and S3 P㈧ solving support node A parameter value:

[0066] (Π) P (A) =max {P ⑶-Lab XI Θαβ IX α}, [0066] (Π) P (A) = max {P ⑶-Lab XI Θαβ IX α},

[0067] A ε Si = {AI HA〉Hmin}, [0067] A ε Si = {AI HA> Hmin},

[0068] BeS2US3, [0068] BeS2US3,

[0069] S2= {B|Hb<Ha}, [0069] S2 = {B | Hb <Ha},

[0070] S3= {B|Lab彡2C}。 [0070] S3 = {B | Lab San 2C}.

[0071] 在本发明实施例中,在S2中,根据公式(Π)获取三维网格模型上节点A的支撑参数值P㈧时,基于边界条件Sl和S2的前提下,还可以进一步为公式(Π)设置边界条件S4, When [0071] In an embodiment of the present invention, in S2, obtaining the parameter values ​​P㈧ support node A three-dimensional mesh model according to formula ([pi), the boundary conditions based on the premise of Sl and S2, may further as Equation ( Π) set the boundary conditions S4,

Figure CN104527078BD00081

[0073] 根据上述设置,根据公式(Π)并结合边界条件S1、S2和S4求解节点A的支撑参数值P㈧: [0073] According to the above arrangement, according to the formula ([pi) in combination with the boundary conditions S1, S2 and S4 P㈧ solving support node A parameter value:

Figure CN104527078BD00082

[0079] 在进一步实施例中,根据公式(Π)并结合边界条件SI、S2、S3、S4求解节点A的支撑参数值P (A): [0079] In a further embodiment, according to the formula ([pi) in combination with the boundary conditions SI, S2, S3, S4 support solving node A parameter value P (A):

Figure CN104527078BD00083

[0086] 在上述实施例中,通过设置多个边界条件,对节点A下方的节点B进一步进行了限定,在确保计算准确性的前提下可以简化运算。 [0086] In the above embodiment, by providing the plurality of boundary conditions, node B below the node A is further defined, in the premise of ensuring the accuracy of the calculation can be simplified calculation.

[0087] 参照图2,图2为本发明提出的一种三维打印的可打印性获取模块的结构原理图。 [0087] Referring to FIG. 2, FIG. 2 of the present invention proposed a three-dimensional printing obtaining module configuration diagram of printability.

[0088] 如图2所示,本发明实施例提出的一种三维打印的可打印性获取模块,包括: [0088] 2, a three-dimensional printing provided by the embodiments of the present invention can print acquisition module, comprising:

[0089] 网格模型获取模块,用于获取打印物体的三维网格模型; [0089] The grid model acquiring module, for acquiring a three-dimensional mesh model of the printing object;

[0090] 支撑参数获取模块,用于获取三维网格模型上任意一个节点的支撑参数值,其公式如下: [0090] support parameter obtaining module, configured to obtain the parameter values ​​is supported on a three-dimensional mesh model of any node, which formula is as follows:

[0091] (I)P(A) =Pmax, Ae S= {AI HA = HminI ; [0091] (I) P (A) = Pmax, Ae S = {AI HA = HminI;

[0092] (Π) P (A) =max {P ⑶-Lab XI Θαβ IX α}, [0092] (Π) P (A) = max {P ⑶-Lab XI Θαβ IX α},

[0093] Ae Si = {AI HA>Hmin},B e S2 = {BI Ηβ<Ηα}; [0093] Ae Si = {AI HA> Hmin}, B e S2 = {BI Ηβ <Ηα};

[0094] 其中,P (A)、P⑶为三维网格模型上节点A、节点B的支撑参数值,Ha、Hb为节点A、节点B在三维网格模型上的高度,Lab为连接节点A与节点B的边AB的长度,ΘΑΒ为边AB与水平面之间的夹角,α为能量传递系数,Pmax为支撑参数值的最大值,Hmin为三维网格模型上节点高度的最小值; [0094] wherein, P (A), P⑶ support node parameter values ​​A, the node B of the 3D mesh model, Ha, Hb is the height of the node A, the node B in the three-dimensional mesh model, Lab to connecting node A and the length of the side AB node B, ΘΑΒ between the side AB and the horizontal angle, α is the energy transfer coefficient, Pmax is the maximum parameter value is supported, Hmin is the minimum height of the node on the 3D mesh model;

[0095] 可打印性获取模块,用于根据预设的临界参数值Q与支撑参数值P㈧获取节点A的可打印性;当P(A) 时,节点A可打印;当P(A) <〇时,节点A不可打印。 [0095] printability acquiring module, for a predetermined critical parameter value and the Q value of the parameter support node A P㈧ acquired according printability; when P (A), node A may print; when P (A) < when the square, the node A unprintable.

[0096] 其中,在支撑参数获取模块中,获取支撑参数值的公式如下: Formula [0096] wherein a support parameter obtaining module, the acquisition parameters of the support as follows:

Figure CN104527078BD00091

[0101] 其中,在支撑参数获取模块中,在能量传递系数α的设置过程中,能量传递系数α与三维打印材料的粘滞特性相关,能量传递系数α还与三维打印机的功能参数(例如三维打印机的型号)和/或打印参数相关,能量传递系数α还与打印经验值相关。 [0101] wherein, the parameter obtaining module in the support, the energy transfer coefficient α is set during the energy transfer coefficient α related to the viscosity properties of three-dimensional printing material, energy transfer coefficient α and the three-dimensional printer further functional parameters (e.g., three-dimensional printer model) and / or parameters related to printing, energy transfer coefficient α is also related to the print experience.

[0102] 在实际应用过程中,可以根据三维打印材料的粘滞特性、三维打印机的功能参数、 三维打印机的打印参数、经验值的组合来确定能量传递系数α,例如,在本发明实施例中, [0102] In actual applications, according to the viscous properties of the three-dimensional printing material, functional parameters three-dimensional printer, the printing parameters of the three-dimensional printer, a combination of empirical values ​​to determine the energy transfer coefficient [alpha], for example, in the embodiment of the present invention, ,

Figure CN104527078BD00092

[0103] 其中,在可打印性获取模块中,临界参数值Q与三维打印材料的粘滞特性相关,临界参数值Q还与三维打印机的功能参数和/或打印参数相关,临界参数值Q还与打印经验值相关。 [0103] wherein, in the acquisition module printability, Q critical parameter value associated with the characteristic three-dimensional viscous printing material, Q is also critical parameter value associated with the functional parameters of the three-dimensional printer and / or print parameters, also critical parameter value Q related to the print experience.

[0104] 在实际应用过程中,可以根据三维打印材料的粘滞特性、三维打印机的功能参数、 三维打印机的打印参数、经验值的组合来确定临界参数值Q,例如,在本发明实施例中, [0104] In actual applications, according to the viscous properties of the three-dimensional printing material, functional parameters three-dimensional printer, the printing parameters of the three-dimensional printer, a combination of empirical values ​​determined critical parameter value Q, for example, in the embodiment of the present invention, ,

Figure CN104527078BD00093

[0105] 本发明中,通过为物体的三维网格模型上的每个节点赋予一个支撑参数用于衡量节点的支撑稳定性,根据能量传递思想来获取三维网格模型上所有节点的支撑参数值,再根据预设的打印临界值和获取的支撑参数值之间的关系用于判断该节点是否具有可打印性,可以精确地获取三维打印系统的可打印性。 [0105] In the present invention, the support to obtain the parameter values ​​of all the nodes on the 3D mesh model by imparting a support parameters for each node on the 3D mesh model for supporting the object to measure the stability of the nodes, the energy transfer thinking , then the relationship between the printing support and the preset threshold parameter values ​​acquired for determining whether the node having printability, can be accurately obtain the three-dimensional printing system printability.

[0106] 以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。 [0106] The above are only the preferred specific embodiments of the invention, but the scope of the present invention is not limited thereto, any skilled in the art in the art within the technical scope disclosed by the present invention, according to the present invention its aspect of the inventive concept changes or equivalent replacements to be, shall fall within the scope of the present invention.

Claims (18)

1. 一种三维打印的可打印性获取方法,其特征在于,包括: 51、 获取打印物体的三维网格模型; 52、 获取三维网格模型上任意一个节点的支撑参数值,其公式如下: (I)P(A) =Pmax,AeS,S= {AI HA = HmiJ ; (Π) P (A) =max {P ⑶-Lab XI Θαβ IX α}, AeSi,Si= {A|HA>Hmin} ,BeS2^S2= {B|Hb<Ha}; 其中,P㈧、P⑶为三维网格模型上节点A、节点B的支撑参数值,Ha、Hb为节点A、节点B在三维网格模型上的高度,Lab为连接节点A与节点B的边AB的长度,ΘΑΒ为边AB与水平面之间的夹角,α为能量传递系数,Pmax为支撑参数值的最大值,Hmin为三维网格模型上节点高度的最小值; 53、 根据预设的临界参数值Q与支撑参数值P (A)获取节点A的可打印性,其具体包括:当P㈧彡Q时,节点A可打印;当P㈧<Q时,节点A不可打印。 Printable 1. A method of obtaining a three-dimensional printing, which is characterized by comprising: 51 to acquire the three-dimensional mesh model of the printing object; 52, obtaining the parameter values ​​supported on a three-dimensional mesh model of any node, which formula is as follows: (I) P (A) = Pmax, AeS, S = {AI HA = HmiJ; (Π) P (A) = max {P ⑶-Lab XI Θαβ IX α}, AeSi, Si = {A | HA> Hmin }, BeS2 ^ S2 = {B | Hb <Ha}; wherein P㈧, P⑶ parameter support node a, the node B on the 3D mesh model, Ha, Hb node a, the node B in the 3D mesh model height, Lab is the length of the side AB is connected to node a and node B, ΘΑΒ between the side AB and the horizontal angle, α is the energy transfer coefficient, Pmax is the maximum parameter value is supported, Hmin is the 3D mesh model the minimum height of the node; 53, according to a predetermined critical parameter value and the Q value of the parameter support P (a) of the node a obtaining printability, which comprises: when P㈧ San Q, node a may print; when P㈧ when <Q, the node A unprintable.
2. 根据权利要求1所述的三维打印的可打印性获取方法,其特征在于,能量传递系数α 与三维打印材料的粘滞特性相关。 2. The method of obtaining printability three-dimensional printing according to claim 1, characterized in that the energy transfer coefficient α related to the viscosity properties of three-dimensional printing material.
3. 根据权利要求1所述的三维打印的可打印性获取方法,其特征在于,能量传递系数α 还与三维打印机的功能参数和/或打印参数相关;能量传递系数α还与打印经验值相关。 Printability acquisition method according to claim 1, wherein said three-dimensional printing, which is characterized in that the energy transfer coefficient α related to the functional parameters further three-dimensional printer and / or print parameters; energy transfer coefficient α is also related to the print experience .
4. 根据权利要求1所述的三维打印的可打印性获取方法,其特征在于 Printability acquisition method according to claim 1, wherein said three-dimensional printing, which is characterized in that
Figure CN104527078BC00021
5. 根据权利要求1-4中任一项所述的三维打印的可打印性获取方法,其特征在于,临界参数值Q与三维打印材料的粘滞特性相关。 5. The method for obtaining printability 1-4 a three-dimensional printing according to claim, wherein Q critical parameter value associated with the characteristic three-dimensional viscous printing material.
6. 根据权利要求1-4中任一项所述的三维打印的可打印性获取方法,其特征在于,临界参数值Q还与三维打印机的功能参数和/或打印参数相关。 6. The method for obtaining printability 1-4 a three-dimensional printing according to claim, wherein Q is also critical parameter value associated with the functional parameters of the three-dimensional printer and / or print parameters.
7. 根据权利要求1-4中任一项所述的三维打印的可打印性获取方法,其特征在于,临界参数值Q还与打印经验值相关。 7. The method for obtaining printability 1-4 a three-dimensional printing according to claim, wherein Q is also critical parameter value related to the print experience.
8. 根据权利要求1-4中任一项所述的三维打印的可打印性获取方法,其特征在于, 8. printability acquisition method according to any one of the three-dimensional printing according to claim 1 to 4, characterized in that,
Figure CN104527078BC00022
9. 根据权利要求1-4中任一项所述的三维打印的可打印性获取方法,其特征在于,获取支撑参数值的公式如下: (Π) P (A) =max {Ρ ⑶-Lab XI Θαβ IX α}, BeS2US3,S3= {B|LAB彡2C},其中,C为三维打印层的层厚; 和/或, Printability obtaining three dimensional printing method according to claim any one of claims 1-4, characterized in that the supporting parameter values ​​acquired following formula: (Π) P (A) = max {Ρ ⑶-Lab XI Θαβ IX α}, BeS2US3, S3 = {B | LAB San 2C}, where, C is the thickness of the layer of three-dimensional printing; and / or,
Figure CN104527078BC00023
10. —种三维打印的可打印性获取模块,其特征在于,包括: 网格模型获取模块,用于获取打印物体的三维网格模型; 支撑参数获取模块,用于获取三维网格模型上任意一个节点的支撑参数值,其公式如下: (I) P (A) =Pmax,Ae S= {AI HA = HminI ; (Π) P (A) =max {P ⑶-Lab XI Θαβ IX α}, AeSi= {A|HA>Hmin} ,BeS2= {B|Hb<Ha}; 其中,P㈧、P⑶为三维网格模型上节点A、节点B的支撑参数值,Ha、Hb为节点A、节点B在三维网格模型上的高度,Lab为连接节点A与节点B的边AB的长度,ΘΑΒ为边AB与水平面之间的夹角,α为能量传递系数,Pmax为支撑参数值的最大值,Hmin为三维网格模型上节点高度的最小值; 可打印性获取模块,用于根据预设的临界参数值Q与支撑参数值P (A)获取节点A的可打印性,其具体用于:当P (A)多Q时,节点A可打印;当P (A) <Q时,节点A不可打印。 10. - three kinds of printing the printable acquisition module comprising: a mesh model acquiring module, for acquiring a three-dimensional mesh model of the printing object; support parameter obtaining module, configured to acquire the 3D mesh model of any a support parameter values ​​of the nodes, which formula is as follows: (I) P (a) = Pmax, Ae S = {AI HA = HminI; (Π) P (a) = max {P ⑶-Lab XI Θαβ IX α}, AeSi = {a | HA> Hmin}, BeS2 = {B | Hb <Ha}; wherein P㈧, P⑶ 3D mesh model of the node a, the value of the parameter support node B, Ha, Hb node a, the node B height on the three-dimensional mesh model, Lab is the length of the side AB is connected to node a and node B, ΘΑΒ side AB is the angle between the horizontal plane, [alpha] is the energy transfer coefficient, the maximum value Pmax of the parameter values ​​supported, Hmin is a three-dimensional mesh node minimum height; printability obtaining module, configured to support the parameters Q and P (a) of the node a acquires printability according to a predetermined critical parameter value, which is specifically configured to: when the P (A) multi-Q, node A may print; when P (A) <Q, the node A unprintable.
11. 根据权利要求10所述的三维打印的可打印性获取模块,其特征在于,在支撑参数获取模块中,获取支撑参数值的公式如下: (Π) P (A) =max {P ⑶-Lab XI Θαβ IX α}, BeS2US3,S3= {B|LAB彡2C},其中,C为三维打印层的层厚; 和/或, Printability three dimensional printing according to claim 10, wherein the acquisition module, wherein, the parameter obtaining module in the support, the acquisition parameters of the support the following formula: (Π) P (A) = max {P ⑶- Lab XI Θαβ IX α}, BeS2US3, S3 = {B | LAB San 2C}, where, C is the thickness of the layer of three-dimensional printing; and / or,
Figure CN104527078BC00031
12. 根据权利要求10或11所述的三维打印的可打印性获取模块,其特征在于,在支撑参数获取模块中,能量传递系数α与三维打印材料的粘滞特性相关。 12. The three dimensional printing printability of claim 10 or claim 11 acquisition module, wherein, the parameter obtaining module in the support, the energy transfer coefficient α related to the viscosity properties of three-dimensional printing material.
13. 根据权利要求10或11所述的三维打印的可打印性获取模块,其特征在于,能量传递系数α还与三维打印机的功能参数和/或打印参数相关;能量传递系数α还与打印经验值相关。 Printability acquisition module 13. The three dimensional printing according to claim 10 or claim 11, characterized in that the energy transfer coefficient α related to the functional parameters further three-dimensional printer and / or print parameters; energy transfer coefficient α and further printing experience value-related.
14. 根据权利要求I 0或I 1所述的三维打印的可打印性获取模块,其特征在于, 14. I 0 or the three-dimensional printing according to claim 1 I printability obtaining module, wherein,
Figure CN104527078BC00032
15. 根据权利要求10或11所述的三维打印的可打印性获取模块,其特征在于,在可打印性获取模块中,临界参数值Q与三维打印材料的粘滞特性相关。 15. printability three dimensional printing according to claim 10 or claim 11 acquisition module, wherein the acquisition module printability, the critical parameter value associated with the Q-dimensional viscous properties of the printed material.
16. 根据权利要求10或11所述的三维打印的可打印性获取模块,其特征在于,临界参数值Q还与三维打印机的功能参数和/或打印参数相关。 16. printability three dimensional printing according to claim 10 or claim 11 acquisition module, wherein Q is also critical parameter value associated with the functional parameters of the three-dimensional printer and / or print parameters.
17. 根据权利要求10或11所述的三维打印的可打印性获取模块,其特征在于,临界参数值Q还与打印经验值相关。 17. printability three dimensional printing according to claim 10 or claim 11 acquisition module, wherein Q is also critical parameter value related to the print experience.
18. 根据权利要求10或11所述的三维打印的可打印性获取模块,其特征在于, Printability acquisition module 18. The three dimensional printing according to claim 10 or claim 11, characterized in that,
Figure CN104527078BC00033
CN201510033285.3A 2015-01-22 2015-01-22 A three-dimensional printing of the printable acquisition method and system CN104527078B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510033285.3A CN104527078B (en) 2015-01-22 2015-01-22 A three-dimensional printing of the printable acquisition method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510033285.3A CN104527078B (en) 2015-01-22 2015-01-22 A three-dimensional printing of the printable acquisition method and system

Publications (2)

Publication Number Publication Date
CN104527078A CN104527078A (en) 2015-04-22
CN104527078B true CN104527078B (en) 2017-05-24

Family

ID=52842798

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510033285.3A CN104527078B (en) 2015-01-22 2015-01-22 A three-dimensional printing of the printable acquisition method and system

Country Status (1)

Country Link
CN (1) CN104527078B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105014966B (en) * 2015-06-26 2017-07-07 上海珺维信息科技有限公司 For the vacant pre-detection method and system for 3d printing Model
CN106156406A (en) * 2016-06-23 2016-11-23 佛山市晗宇科技有限公司 Method and system for automatic typesetting of 3D printed models

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103568325A (en) * 2013-11-08 2014-02-12 中国科学技术大学 Three-dimensional printing method
CN103777911A (en) * 2014-01-14 2014-05-07 浙江大学 Self-adaptive layering method in 3D (three-dimensional) printing
CN103895226A (en) * 2014-03-24 2014-07-02 浙江大学 3D-printing-based machining method of three-dimensional micro-fluidic chip and printing device
CN104063894A (en) * 2014-06-13 2014-09-24 中国科学院深圳先进技术研究院 Point cloud three-dimensional model reestablishing method and system
CN104191621A (en) * 2014-08-28 2014-12-10 北京智谷技术服务有限公司 3D printing assisting method and device as well as 3D printer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT411888T (en) * 2002-12-03 2008-11-15 Objet Geometries Ltd Print Method and apparatus for three-dimensional

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103568325A (en) * 2013-11-08 2014-02-12 中国科学技术大学 Three-dimensional printing method
CN103777911A (en) * 2014-01-14 2014-05-07 浙江大学 Self-adaptive layering method in 3D (three-dimensional) printing
CN103895226A (en) * 2014-03-24 2014-07-02 浙江大学 3D-printing-based machining method of three-dimensional micro-fluidic chip and printing device
CN104063894A (en) * 2014-06-13 2014-09-24 中国科学院深圳先进技术研究院 Point cloud three-dimensional model reestablishing method and system
CN104191621A (en) * 2014-08-28 2014-12-10 北京智谷技术服务有限公司 3D printing assisting method and device as well as 3D printer

Also Published As

Publication number Publication date
CN104527078A (en) 2015-04-22

Similar Documents

Publication Publication Date Title
Bauer et al. Transient 3D analysis of borehole heat exchanger modeling
Bathe et al. A mesh adaptivity procedure for CFD and fluid-structure interactions
Mettu et al. Momentum and heat transfer from an asymmetrically confined circular cylinder in a plane channel
Lawrence et al. Characterization of preform permeability in the presence of race tracking
Yang et al. A finite volume scheme with preconditioned Lanczos method for two-dimensional space-fractional reaction–diffusion equations
Le et al. Adaptive element-free Galerkin method applied to the limit analysis of plates
Schelle et al. Analysis of the Agreement of Soil Hydraulic Properties Obtained from Multistep-Outflow and Evaporation MethodsAll rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher.
Pekkan et al. Hemodynamic performance of stage-2 univentricular reconstruction: Glenn vs. hemi-Fontan templates
Bonyár et al. Characterization of rapid PDMS casting technique utilizing molding forms fabricated by 3D rapid prototyping technology (RPT)
Thompson et al. Low-Reynolds-number wakes of elliptical cylinders: from the circular cylinder to the normal flat plate
Wu et al. A convex variational level set model for image segmentation
Iurlaro et al. Refined Zigzag Theory for laminated composite and sandwich plates derived from Reissner’s Mixed Variational Theorem
CN103279627B (en) A heat based on finite element - mechanical - Wear Numerical Simulation Coupling
Costa et al. Thermal conditions affecting heat transfer in FDM/FFE: a contribution towards the numerical modelling of the process: This paper investigates convection, conduction and radiation phenomena in the filament deposition process
Dag et al. Computation of thermal fracture parameters for orthotropic functionally graded materials using Jk-integral
Cui et al. Metal forming analysis using the edge-based smoothed finite element method
Joseph et al. On-chip porous media: Porosity and permeability measurements
Sulochana et al. Stagnation point flow and heat transfer behavior of Cu–water nanofluid towards horizontal and exponentially stretching/shrinking cylinders
Valipour et al. Numerical modeling of flow around and through a porous cylinder with diamond cross section
Cleary et al. Three-dimensional smoothed particle hydrodynamics simulation of high pressure die casting of light metal components
Trias et al. Turbulent flow around a square cylinder at Reynolds number 22,000: A DNS study
Xu et al. An adaptive gradient smoothing method (GSM) for fluid dynamics problems
Heller et al. Effects of extrudate swell and nozzle geometry on fiber orientation in Fused Filament Fabrication nozzle flow
GB2538410A (en) Generating three-dimensional objects
Jin et al. Turbulent flow and heat transfer in channels with shark skin surfaces: Entropy generation and its physical significance

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
CB03
GR01