CN104525072A - Surface features in microprocess technology - Google Patents

Surface features in microprocess technology Download PDF


Publication number
CN104525072A CN 201410454998 CN201410454998A CN104525072A CN 104525072 A CN104525072 A CN 104525072A CN 201410454998 CN201410454998 CN 201410454998 CN 201410454998 A CN201410454998 A CN 201410454998A CN 104525072 A CN104525072 A CN 104525072A
Prior art keywords
surface features
Prior art date
Application number
CN 201410454998
Other languages
Chinese (zh)
Original Assignee
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US11/089,440 priority Critical patent/US8124177B2/en
Priority to US69790005P priority
Priority to US72712605P priority
Priority to US73159605P priority
Application filed by 维罗西股份有限公司 filed Critical 维罗西股份有限公司
Publication of CN104525072A publication Critical patent/CN104525072A/en



    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00822Metal
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00824Ceramic
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00835Comprising catalytically active material
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00837Materials of construction comprising coatings other than catalytically active coatings
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00873Heat exchange
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00891Feeding or evacuation
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00905Separation
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00993Design aspects
    • B01J2219/00995Mathematical modeling
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/086Passive control of flow resistance using baffles or other fixed flow obstructions
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/088Passive control of flow resistance by specific surface properties


This invention relates to surface features in microprocess technology, and a method of fluid processing in a microchannel with such surface features. The method comprises: flowing fluid through the microchannel at a Reynold's number Re of more than 100, wherein the microchannel comprises the surface features; and performing a unit operation on the fluid in the surface features, wherein the unit operation comprises one or more unit operation selected from the group consisting of chemical reaction, vaporization, compression, chemical separation, distillation, condensation, heating, and cooling.


微型工艺技术中的表面特征 Wherein the surface of the micro-technology

[0001] 本申请是国际申请号为PCT/US2006/011198,国际申请日为2006年3月23日的PCT国际申请进入中国国家阶段后的申请,申请号为200680017580. 9,发明名称为"微型工艺技术中的表面特征"的发明专利申请的分案申请。 [0001] This application is an International Application No. PCT / US2006 / 011198, International PCT international application filing date March 23, 2006 to enter the national phase application after Chinese Patent Application No. 200680017580.9, entitled "Miniature divisional application surface feature "technology in invention patent application.

[0002] 相关申请 [0002] RELATED APPLICATIONS

[0003] 本申请是2005年3月23日提交的美国专利申请顺序号第11/089, 440号的部分继续申请。 [0003] The present application is a 11/089, part of US Patent Application Serial No. 2005, No. 440, filed March 23 continue to apply. 另外,根据35U.SC第119(e)条,本申请要求以下美国临时申请的优先权: 2005年7月8日提交的第60/697, 900号,2005年10月13日提交的第60/727, 126号,以及2005年10月27日提交的第60/731,596号。 Further, according to 35U.SC section 119 (e) article, the present application claims priority U.S. Provisional Application: first 60/697, No. 900, October 13, 2005, filed July 8, 2005 No. 60 / 727, 126, and No. 2005, October 27 No. 60 / 731,596.

技术领域 FIELD

[0004] 本发明涉及微通道设备,其包括具有用来改善流动的内表面特征(feature)的微通道;本发明还涉及使用所述微通道结构的方法,以及具有这些特征的设备的制造方法。 [0004] The present invention relates to a microchannel apparatus comprising a microchannel having an inner surface to improve flow characteristics (feature); the invention further relates to the use of the method of the microchannel structure, and a method of manufacturing a device of these features .

背景技术 Background technique

[0005] 近年来,在工业和学术方面对微型设备表现出了极大的兴趣。 [0005] In recent years, the industrial and academic aspects of the micro device shown great interest. 人们之所以产生这些兴趣是因为微技术包括以下的优点:尺寸减小、生产能力提高、能按大小排列具有任意所需能力的系统(即〃增加(number up) 〃通道的数目)、提高传热和提高传质。 It arises because the interest in microtechnology comprising the following advantages: reduction in size, increase production capacity, the system can have any desired capacity by size (i.e., increase the number of 〃 (number up) 〃 channel) to improve the transmission increase heat and mass transfer. Gavrilidis 等已提供了涉及微型反应器(微通道设备部分)的一些成果的评论,参见《微型工艺反应器的技术和应用(Technology And Applications Of Microengineered Reactors)》Trans. IchemE,第80卷,A部分,第3-30页(2002年I月)。 Gavrilidis etc., have provided comments relates to some results microreactors (microchannel apparatus portion), see "Technology and Application of micro-process reactor of (Technology And Applications Of Microengineered Reactors)" Trans. IchemE, Vol. 80, A portion , pp. 3-30 (in 2002 I month).

[0006] 表面特征已被用于微通道内进行混合。 [0006] surface features have been used for the mixing microchannel. 现有技术在微流体应用中使用表面特征来增强极低雷诺数下两股流体流的混合。 The prior art to enhance the mixing of fluid flow at very low Reynolds number bifurcated surface features used in microfluidic applications. 通常雷诺数的数值小于1〇〇,更常约为0.1-10。 Reynolds number is less than the value generally 1〇〇, more usually about 0.1 to 10. 良好的混合器定义为:离开所述微混合器的物料在横截面上的物质组成差异很小。 Mixer defined as well: the material leaving the micromixer in the material cross section of the small differences in the composition. 另外,现有技术提出:在低雷诺数下使用表面特征是特别有效的,但是随着雷诺数增大超过10或100,混合效率会降低。 Further, the prior art proposed: it is particularly effective to use a surface feature at a low Reynolds number, but as the Reynolds number increases beyond 10 or 100, mixing efficiency is reduced.

[0007] Svasek在1996首先讨论了基于使用具有凹槽或凹入角(recessed angle)的壁的现有技术微混合器,其中将一系列有角度的凹槽(每个特征具有一种固定角度的斜凹槽) 置于一壁中,用来将碘蓝淀粉溶液与照相定影液混合。 [0007] Svasek discussed first in 1996 based on the use of a groove having a wall angle or concave (recessed angle) of the prior art micromixer, in which a series of angled grooves (each having a fixed-angle characteristic diagonal grooves) disposed in the wall, fixing solution for mixing photographic iodine blue starch solution. 描述了与平坦的通道相比,混合获得提高,目标是通过使得流体在主通道中弯曲而进行混合,使得主流动通道中的两种液体的扩散距离减小,扩散可完成最终的混合。 Described in comparison with a flat channel, to obtain improved mixing, mixing objective is performed by bending such that the fluid in the main channel, so that the diffusion distance of the two liquids in the main flow passage is reduced, the diffusion can be accomplished final mixing. 凹槽深度与通道间隙之比为〇. 25。 And the ratio of the groove depth of the square passage gap 25.

[0008] Johnson, Ross和Locascio在2001年12月在网上又描述了使用具有凹槽的表面, 他们描述了使用使用四种斜凹槽(每个特征具有一种固定的斜凹槽)来增强微混合器主通道中的混合。 [0008] Johnson, Ross and Locascio in December 2001, describes the use of the Internet and has a grooved surface, they describe the use of using four oblique groove (each feature has a fixed oblique groove) to enhance micromixer main channel mixing. 作者描述了对于所有评价的情况,在较低流速或较低雷诺数下都改进了混合。 The authors describe the case for all evaluations, at lower flow rates or low Reynolds numbers have improved the mix. 他们还描述了在四个重复的同样凹槽的区之后对斜凹槽增加不同的角度。 They are also described in the same groove after repeated four regions of different angles oblique to increase grooves. 尽管性能获得提高,但是随着雷诺数的增大,混合性能会降低。 Although the performance was improved, but with the increase of Reynolds number, mixing performance will be reduced. 凹部或凹槽的深度与通道间隙之比为2. 74。 Recesses or grooves than the depth of the passage gap is 2.74.

[0009] 在2002年1月,Strook等在Science中描述了两种凹槽通道微混合器的使用,该具有固定的斜角凹槽和第二图案的微混合器被称为交错人字形混合器(SHM),其中所述有角度的特征连续六个特征后就发生变化。 [0009] In January 2002, Science Stroock the like described using two micro-groove channel mixer, the mixer having a micro-bevel groove and a second fixed pattern is called mixed interleaved herringbone device (SHM), wherein the change in angular characteristics after continuous six features. 该工作的中心是改进通过所述微通道的两种低雷诺数(小于100)物流的液体的混合。 The center of the work is improved by the two low Reynolds number microchannel mixing liquid stream (less than 100). 作者描述了混合长度随着皮克里特准数的对数值线性增大。 The authors describe the mixing length linearly with the logarithm of the number of authorized Pike Li increases. 所述皮克里特准数定义为速度X通道间隙+扩散系数。 The speed is defined as the number of authorized Pike Li X + diffusion coefficient passage gap. 在较高的速度下,所需的混合长度增大,表示不利于混合。 At higher speeds, the required mixing length increases, represents not facilitate mixing. 对于SHM,凹槽深度与通道间隙之比的最大值为0.6。 Than the maximum value of SHM, and the passage gap of the groove depth is 0.6.

[0010] 同样在2002年,Strook等在Analytical Chemistry中描述了一系列类似的具有固定角度的斜角,用来混合雷诺数为的流体混合物,所述凹槽深度与通道间隙之比的最大值为1. 175。 [0010] Also in 2002, Strook described in Analytical Chemistry, etc. In a similar series of fixed angle has a bevel, to mix the Reynolds number of the fluid mixture, the ratio of the maximum groove depth of the passage gap to 1.175. 该作者描述了流动为螺旋形,这与旋转流体物流的螺距有关。 The authors describe a spiral flow, which is related to the pitch of the rotating fluid stream. 作者声称交错的人字形混合器将会通过在低雷诺数下产生拉格朗日混乱而加速微流体器件中的混合。 The authors claim staggered herringbone mixer will accelerate hybrid microfluidic devices by creating Lagrangian chaos at low Reynolds numbers.

[0011] Johnson和Locascio在2002年6月描述了一种微混合器,其具有四种连续的倾斜凹槽,以增强总体流动通道中的混合。 [0011] Johnson and Locascio in June 2002, describes a micro-mixer, which has four successive oblique grooves, to enhance mixing of the bulk flow channel. 作者声称当凹部或凹槽深度增大到高达50微米时, 通道中的液体传递获得提高,而超过该深度时,则不提高。 When the authors claim a recess or groove depth increases to up to 50 microns, obtained in the liquid delivery channel to improve, while when it exceeds the depth is not increased. 更深的深度被称为死区区域,流体或分子可能会被俘获在该区域内而不是混合。 Deeper depth is called the dead zone area, or fluid molecules could be trapped in the region rather than mixing. 雷诺数小于1。 Reynolds number is less than 1. 作者还声称具有凹部或凹槽的通道的轴向分散高于平坦的或无凹部的壁的轴向分散。 OF also claims axial recesses or grooves having a passage of the dispersion above the flat or non-concave axial wall portion of the dispersion. 凹槽深度与通道间隙之比为0.32-2. 74。 And the ratio of the groove depth of the passage gap 0.32-2. 74. 作者提到当比值超过1.6时,不会有进一步的改进。 When the authors mentioned ratio exceeds 1.6, no further improvement. 在所有的情况下,图表显示混合流体几乎没有进入凹槽的内壁。 In all cases, the chart shows the fluid mixture into the inner wall of the recess little.

[0012] Strook 和Whitesides 在2003 年在Accounts of Chemical Research 中讨论了使用交错的人字形混合器,通过以规律的间隔或周期改变凹槽的取向,使主通道中的流体拉伸和弯曲。 [0012] Strook and Whitesides in 2003 of Chemical Research discussed in a staggered herringbone mixer Accounts, by changing at regular intervals or periods alignment groove, the fluid in the main channel stretching and bending. 对于雷诺数小于1的情况,使用的凹槽深度与通道间隙之比为0.44。 For the case where the Reynolds number is less than 1, the ratio of the groove depth of the gap channels used is 0.44. 作者声称混合长度与流速的对数值成正比,这是因为交错的人字形混合器(SHM)促进了主流动通道中的混乱的平流。 The authors claim mixing length is proportional to the flow rate of value, because the staggered herringbone mixer (SHM) to promote the chaotic advection main flow channel. 在未混合的通道中,混合长度与流速成正比。 In unmixed channels, mixing length is proportional to flow rate. 作者还声称SHM减小了微通道中的泊萧叶流动的分散。 The authors also claimed that SHM reduces the dispersion Poiseuille microchannel flow.

[0013] 在2003 年,Aubin 等在Chemical Engineering Technology 中描述了斜向混合器,该斜向混合器会产生极少的对流混合,这是因为围绕通道的边缘产生了强的螺旋流,但是并没有包括通道的中央流。 [0013] In 2003, Aubin et al. Describe in Chemical Engineering Technology in the oblique mixer, the mixer will produce oblique little convective mixing, this is because the strong spiral flow produced around the edge of the channel, but does It does not include a central flow channel. 与之相反,SHM产生了极好的通道内混合。 In contrast, SHM produces the excellent mixing passage. 在此研究中,凹槽深度与通道间隙之比小于0.6。 In this study, the ratio of the groove depth is less than 0.6 and the passage gap. 雷诺数为2。 Reynolds number is 2. 作者声称,发现在通道凹槽中流体变形(表示流体伸展或运动)的程度最低,但是这可能不是用来对混合性能进行量化的良好的度量。 On the claims found in the fluid passage recess deformation (stretching or movement of the fluid represented) minimally, but this may not be used to quantify good mixing performance metric.

[0014] Wang等在2003年7月,在J. Micromech. Microeng中公开了大量对带具有图案的凹槽的微通道的研究。 [0014] Wang et July 2003, discloses a large number of studies with a pattern of microchannels in the recess J. Micromech. Microeng in. 凹槽深度与通道间隙之比为0.1-0. 86。 And the ratio of the groove depth of the passage gap is 0.1-0. 86. 所用的雷诺数为0.25-5。 Reynolds used to 0.25-5. 该图案由一系列同样的斜角凹槽组成,每个凹槽具有固定的角度。 The pattern consists of a series the same angle grooves, each groove having a fixed angle. 作者声称凹槽的高宽比(aspect ratio)是混合最重要的变量,该高宽比为0. 86时要优于高宽比为0. 1的情况。 The authors claim groove aspect ratio (aspect ratio) is a mixture of the most important variable, the aspect ratio is 0.86 when the aspect ratio is better than the case of 0.1. 在主通道中的流动图案似乎是单一的涡流。 Flow pattern in the main channel seems to be a single vortex. 从图中可以看出,当雷诺数增大时,剪切速率或定义的螺旋性的幅度更低。 As can be seen from the figure, when the Reynolds number increases, the lower the amplitude of the helical or defined shear rate. 循环中的平均剪切或螺旋性似乎与雷诺数无关。 The average shear or helicity cycle appears to be independent Reynolds number. 作者声称对于该种几何结构不存在混乱的平流。 The authors claim to this kind of geometry chaotic advection does not exist. 作者声称微通道中具有图案的凹槽产生了死体积,但是较深的特征也可改进混合和缩短混合的通道长度。 OF claimed microchannel pattern produces a recess having a dead volume, but the deeper features may improve mixing and shorten the length of the mixing channel. 据称这些混合器可以在较低的流速(Re〈5) 下工作,这减小了压降。 These mixers can be said to operate at lower flow rates (Re <5), which reduces the pressure drop.

[0015] Bennett和Wiggins在2003年,在网上公开了SHM的各种几何结构的对比。 [0015] Bennett and Wiggins in 2003, published online comparison of various geometries of the SHM. 具体来说,除去了短支段(short leg),将凹槽的深度减半和加倍。 Specifically, to remove the segment of short (short leg), the depth of the groove to be halved and doubled. 雷诺数小于0.1。 Reynolds number less than 0.1. 发现除去短支段时,使用深度加倍的凹槽比原来的SHM改进混合;凹槽的深度减半则混合略逊于原来的SHM。 Removing the segment of the short found, using the improved hybrid double groove depth than the original SHM; half depth of the groove is slightly lower than the original mixed SHM. 作者声称混合器的效果是由于沟道混合造成的,一些流体在凹槽或沟道中,在通道内往复运动,为流体增加了额外的剪切,从而增强了混合。 The authors claim the mixer effect is due to the mixing caused by the channel, some of the fluid in the recess or channel, within the channel reciprocates, adds additional fluid shear, thereby enhancing the mixing. 由于提出了这种机理,作者认为可以除去SHM的短支段而几乎没有影响-从而产生仅有一个角度的特征。 Because of this proposed mechanism, the authors believe may be removed short branch segments of SHM little effect - resulting in only one angle characteristics. 作者还声称有凹槽的通道的压降小于简单的无凹槽的通道,这是因为凹槽的开口有效地发挥作用,削弱无滑动边界条件。 The authors also claim to have a pressure drop passage groove is less than the channel without recess simple, since the opening of the groove is to function effectively, no-slip boundary condition weakened. 最后,作者讨论了混合长度随着Pe的对数值增大的函数关系。 Finally, the authors discuss the function of mixing length With the increase in the value Pe. 也即混合长度随着速度或扩散距离的增大而增大或随着质量扩散系数的减小而增大。 I.e. diffusion or mixing length as the speed increases the distance increases or decreases the quality of the diffusion coefficient increases.

[0016] Kim等在2004年4月公开了嵌入障碍的混乱微混合器的使用,所述障碍置于主流动通道内,该主流动通道内还具有一系列有角度的凹槽的阵列,每个特征包括一个角度。 [0016] Kim et al April 2004 discloses the use of embedded micromixer confusion disorder, the disorder is disposed within the main flow channel, the flow of the main passage further having a series array of angled grooves, each features include an angle. 作者声称特征可以在通道的顶部和底部形成图案,可以获得更强的螺旋流动。 OF claims wherein the pattern may be formed on the top and bottom of the channel, may be obtained more spiral flow. 作者声称更强的螺旋流动将会产生更高级别的混合。 The authors claim a stronger spiral flow will produce a higher level of mixing. 凹槽深度与通道间隙之比为0.15。 And the ratio of the groove depth of the passage gap of 0.15. 障碍高度为40 微米,延伸入60微米的微通道间隙中。 The barrier height of 40 micrometers, 60 micrometers extending into the microchannel gap. 雷诺数在0.228-2. 28范围内变化。 Reynolds number in the range of 0.228-2 changes. 28. 作者显示,在微通道内的特定长度内(21毫米),混合强度随着雷诺数的增大而减小,混合长度随着雷诺数的增大而呈对数关系增大。 On the display, in a particular length of the microchannel (21 mm), mixing intensity decreases with increasing Reynolds number, with increasing length of the mixing Reynolds number relationship increases logarithmically.

[0017] 另外,在2004年4月,Schonfeld和Hardt公开了关于微通道中螺旋流动的工作。 [0017] In addition, in April 2004, discloses Schonfeld and Hardt work on the spiral flow in the microchannel. 他们声称从通道壁的传热获得提高,在通道内传递的浓度示踪物的流体动力分散减小。 They claim to obtain improved heat transfer from the walls of the channel, the hydrodynamic delivery of tracer concentration within the channel dispersion is reduced. 他们从数值上评价了一种表面特征图案,该图案在微通道的任意一个或两个壁上具有斜角凹槽,凹槽深度与通道间隙之比为〇. 02-6. 3。 They numerically evaluated from a surface feature pattern, the pattern has a recess at a random angle or two walls of the microchannel, and the ratio of the groove depth of the passage gap is square. 02-6. 3. 作者声称,在凹槽凹部中,表面特征内平面的y (通道宽度)方向和χ(通道长度)方向的横向速度矢量的平均比从-1线性地增大到-0. 4,而且在主要通道流动路径中以指数关系增大,直至在通道中心线上0处变平,即在总体流动通道中,基本没有净横向通道流动。 OF claimed in the groove recess, the mean plane y wherein the inner surface (channel width) direction and a lateral velocity vector [chi] (channel length) direction ratio increases linearly from -1 to -0. 4, but in the main channel flow path to increase exponentially, until the center line of the channel becomes 0 level, i.e., in the bulk flow path, substantially no net lateral flow channel. 横向通道流矢量大体上以相同的速率来回运动。 Flow vector transverse channel substantially at the same rate back and forth motion. 作者声称通过两个壁,待混合的两股流体流之间的层流缠结增加,从而产生了增大的边界间表面区域,用于主通道内的扩散混合。 OF claimed by two walls, the entanglement between two laminar fluid flows to be mixed is increased, resulting in an increased surface area of ​​the boundary between the diffusion within the main passage for mixing. 作者分析了相对横向速度对雷诺数的依赖性,报道了他们发现依赖性惊人地弱。 The authors analyzed the relative lateral velocity dependence on the Reynolds number, they reported that they found surprisingly weak dependence. 当雷诺数从1变化到1000时,斜脊内的绝对横向速度会增大,该结构之上的相对横向速度仅受到极小的影响。 When the Reynolds number from 1 to 1000, the absolute velocity in the lateral oblique ridges increases, the relative lateral speed of the above structure is subjected to only a minimal effect. 对于所述的情况,跨越微通道的间隙, 主通道内平均y速度和X速度之比约为0。 For the case described, the microchannels across the gap, in the main channel than the average speed X and speed y is about 0. 随着雷诺数增大,在宽度方向上跨越主通道的流体相对速度不变。 As the Reynolds number is increased across the main channel in the width direction of the fluid is relatively constant velocity.

[0018] Locascio在2004年5月公开了微流体混合的综述。 [0018] Locascio in May 2004 discloses review microfluidic mixing. 她声称混合是由于流体通过通道底部的特征之上时发生的流体转动或弯曲而造成的。 She claimed that due to the fluid mixing occurs when the rotation of the channel bottom above features or caused by bending. 在通道的底部几乎无流体运动。 At the bottom of the channel almost no fluid movement. 通过扩散混合在凹槽通道器件中发生混合,通过弯曲作用减小了两种流体之间的扩散长度, 从而增强了所述扩散混合。 Mixing occurs by diffusion in the groove channel mixing device, reducing the diffusion length between the two fluids through a bending action, thereby enhancing the diffusion mixing.

[0019] 而且在2004年5月,Kang和Kwon公开了对倾斜凹槽微混合器(所有的特征具有一种角度),SHM和障碍嵌入微混合器的比较。 [0019] Also in 2004, Kang and Kwon discloses a comparison of the inclined groove micromixer (all features have a different perspective), SHM embedded micromixer and disorders. 各种微混合器的凹槽深度与通道间隙之比为0. 1765。 Micromixer ratios of the various groove depth of the passage gap is 0.1765. 各种微混合器包括24个连续的特征,所述SHM包括两组的12个特征,具有两种角度的特征的顶点从通道的一侧移动到另一侧。 Various micro mixer comprising 24 contiguous features, the SHM 12 includes two sets of features, characteristics of the two angles having a vertex moved from one side to the other side of the channel. 据描述雷诺数约为0.01。 It is described that the Reynolds number is about 0.01. 据描述,倾斜凹槽混合器是很差的混合器,SHM是最佳的混合器。 It is described that the inclined groove is poor mixer blender, mixer SHM is optimal. 通道内流动图案显示,在主流动通道中, 流体发生弯曲和混合。 Show the flow pattern within the channel, the main flow passage, curved and fluid mixing occurs.

[0020] Liu, Kim和Sung在2004年7月公开了评价有凹槽的微混合器的研究。 [0020] Liu, Kim and Sung in July 2004 discloses a study evaluating fluted micro mixer. 将Strook 在Science上的文章中所述的尺寸成比例放大,保持恒定的高宽比,以评价水力直径为200 微米与111微米的通道。 The Strook proportional to the size of the article in Science in the amplification, maintaining a constant aspect ratio, to evaluate the hydraulic diameter of 200 microns and 111 microns channel. 所得的凹槽深度与通道间隙之比为0. 23。 The resulting groove depth than the gap of the channel is 0.23. 当雷诺数为1时的混合性能略优于雷诺数为10的情况。 When the mixing Reynolds number is slightly better than the performance of 1 where the Reynolds number is 10. 作者声称,在较高雷诺数时,由于流体在混合器内停留时间显著缩短,造成混合性能变差。 The authors claim, at higher Reynolds numbers, due to the significantly shorter stay in the fluid mixers time, resulting in a mixed performance deteriorated.

[0021] Strook和McGraw在2004年3月公开了一种简单的盖驱动(lid-driven)空穴流模型,以将混合图案与实际实验定性地进行比较。 [0021] Strook McGraw and in March 2004, discloses a simple lid driver (lid-driven) hole flow model, a pattern to be mixed with the actual experiments compared qualitatively. 该模型以〇. 9毫米的总表面特征重复单元长度考察SHM。 In this model, the total square surface features. 9mm length of the repeating unit SHM investigated. 凹槽深度与通道间隙之比为0.44。 And the ratio of the groove depth of the channel gap 0.44. 在模型中使用雷诺数接近0的斯托克斯流,与Re = 0. 01的流动相比较。 Reynolds numbers in the model Stokes flow near zero, as compared with Re = 0. 01 flow. 该模型定性地描述了试验的结果,特别是描述了一种"流体瓣(lobe of fluid)"以从右至左的瓣和从左至右的瓣流过SHM凹槽的运动。 This model depicts the results of qualitative tests, in particular, describes a "fluid lobe (lobe of fluid)" right-to-left movement of the flap and the groove SHM valve flows from left to right. 但是, 模型斯托克斯流将其归入非惯性流,在非惯性流中流的惯性无法与动量扩散相竞争。 However, Stokes flow model be classified as non-inertial flow, inertial flow in non-inertial flow can not compete with momentum spread.

[0022] Sato等在2004年11月公开了一项在三个壁上具有倾斜单角特征的研究。 [0022] Sato et al November 2004 discloses a study of three single wall has an inclination angle of the characteristics. 作者描述产生了密集的螺旋流。 The authors describe produced a dense spiral flow. 凹槽深度与通道间隙之比为0.3。 And the ratio of the groove depth of the passage gap is 0.3. 作者声称,当两个侧壁上的特征有位移,其中一排5个倾斜凹槽位于一个侧壁上,然后中断,同时一排5个倾斜凹槽在相对的侧面上开始,然后中断,以此类推,这时可以获得较好的结果。 OF claims, wherein when the displacement of the two side walls, wherein a row of five oblique groove on one side wall, then discontinued, while a row of five tilted grooves on the opposite sides of the start, and then interrupted to such a push, then you can get better results. 在此研究工作中,雷诺数小于10。 In this study, the Reynolds number less than 10.

[0023] Howell等在2005年4月公开了一项研究,其中在微通道的顶部和底部设置有凹槽。 [0023] Howell et al April 2005 discloses a study in which a groove is provided at the top and bottom of the microchannel. 所述凹槽由以下形式组成:一组4个倾斜单角凹槽,然后是四个人字形凹槽,然后又是4 个单角凹槽,以此类推。 The recess comprising the following forms: a set of four single angle inclined groove-shaped recess then four, then a single angle grooves 4, and so on. 凹槽深度与通道间隙之比为〇. 24-0. 74。 And the ratio of the groove depth of the passage gap is square. 24-0. 74. 研究的雷诺数为0. 06-10。 Reynolds studied 0. 06-10. 流体主要在主流动路径中拉伸和弯曲,产生更密间隔的薄层用于扩散混合。 Stretching and bending the main fluid flow path in the main, to produce a thin layer of a more dense spacing for dispersive mixing. 作者声称,他们发现在整个被研究的雷诺数范围内,未观察到流动图案发生显著变化。 The authors claim that they found in the whole range of Reynolds numbers studied, no significant change was observed flow patterns occur.

[0024] Yang, Huang和Lin在2005年8月公开了一项几何结构对流体在有凹槽的微混合器中混合的影响的研究。 [0024] Yang, Huang and Lin in August 2005. A study of the geometry of the mixing effect of the fluid in the micro-mixer of a recess in a disclosed. 据描述,所述流体也发生弯曲和拉伸,以减小混合的扩散长度。 It is described that the fluid is also bent and stretched to decrease the diffusion length of the mixing. 凹槽深度与通道间隙之比为0.15-0. 44。 And the ratio of the groove depth of the passage gap 0.15-0. 44. 雷诺数为10。 Reynolds number is 10. 作者声称压力损失和混合指数之间没有显著的相关性。 The authors claim there is no significant correlation between the pressure drop and the composite index. 作者评价了具有以下形式的SHM :先是成排的6个一组的同样特征,然后改变接下来6个一组同样特征的顶点沿主通道宽度的位置。 Evaluation of the SHM has the following form: first row of a group of six of the same characteristics, and then change the position of the vertex in the main channel width of the next six same set of features. 认为凹槽中的流量与主通道中流量的比值是混合的很重要的度量。 That the groove in the flow rate of the main flow passage is important to measure the ratio of mixing. 凹槽中最大流速与主通道中流速之比为8. 9%。 The flow velocity and the maximum recess in the main channel than was 8.9%.

[0025] 参考文献表 [0025] Reference Table

[0026] [0026]

Figure CN104525072AD00071

Figure CN104525072AD00081


[0028] 在本发明中,可以使用微通道中的表面特征,随着雷诺数的增大提高单元操作。 [0028] In the present invention, the surface features may be used in the microchannel, the Reynolds number increases with the increase of unit operations. 在本发明中,所述表面特征可有益地用于Re等于或大于100的情况,在一些实施方式中, Re等于或大于200、等于或大于100,在一些实施方式中Re为300-2200。 In the present invention, the surface features may be beneficially used to Re equal to or greater than 100, in some embodiments, Re is equal to or greater than 200, greater than or equal to 100, in some embodiments, Re is 300-2200. 另外,通过使用表面特征,还对湍流状态(turbulent regime)提供了额外的惊人的提高。 Further, by using a surface feature, also turbulent (turbulent regime) provides additional surprising improvement.

[0029] 在本发明的许多方面中,很重要的组成部分是流体分子与"活性表面"的相互作用。 [0029] In many aspects of the present invention, a very important part of the interaction with the fluid molecules "active surface". 如果在一个表面上发生物质交换或热量交换,则认为该表面是活性的。 If the substance exchange or heat exchange occurs on a surface, the surface is considered to be active. 所述表面包括凹槽的底面和侧面,以及特征之间的脊。 Said surface comprising a bottom surface and a side surface of the recess, and a ridge between features. 〃脊〃是连接至少两个开放表面特征,并对主流动通道开放的壁或表面。 〃 〃 ridges connecting the at least two open surface feature, and the main flow channel opening wall or surface. 当流体与活性表面的相互作用数量增加,单元操作的性能进一步提高。 When increasing the number of interacting with the active surface of the fluid, the operating performance of the unit is further improved. 对于化学反应器,可将非均相催化剂置于表面特征内、微通道的顶部或脊上、或者平坦区域内,任选沿所有表面或选定的表面设置。 For chemical reactors, a heterogeneous catalyst may be placed within the surface features, the top of the ridge or microchannel, or a flat region, provided in all optionally selected surface or surfaces. 扩散并非是唯一的使反应物质向活性壁运动的推动力,平流或对流成为使反应物快速运动到催化壁和将产物从壁移到总体流动流的主要推动力。 Diffusion of the reaction is not the only substance to become a driving force, or convection advection wall motion activity of the reactants to the catalyst wall and the rapid movement of the main driving force to move the product from the wall of the overall flow stream. 例如,如果仅有扩散作为将物流从整体运动到活性催化壁的主要推动力,则对于总接触时间为数毫秒至数十毫秒操作的气相化学反应器来说,特征时间可能约为数毫秒至数十毫秒。 For example, if only the diffusion from the stream as the main driving force of the global motion activity of the catalyst to the wall, the total contact time of several milliseconds to several tens of milliseconds gas phase chemical reactor operation, the characteristic time may be about a few milliseconds to a few tens millisecond. 对于850°C、1. 0巴的1毫米通道内的甲烷和空气流,扩散系数约为2. 2厘米V秒,离通道间隙中心的扩散距离(假设催化剂设置在微通道间隙两侧的活性表面特征上)约为〇. 5毫米。 For methane and air flow inside the passage 1 mm 850 ° C, 1. 0 bar, the diffusion coefficient of about 2.2 cm V s, (assuming an active catalyst disposed on both sides of the microchannel gap diffusion distance from the center of the passage gap wherein the upper surface) is approximately square. 5 millimeters. 结果扩散的特征时间约为1毫秒。 Results characteristic diffusion time is approximately 1 millisecond.

[0030] 对于高速度和高层流雷诺数实施例(对于850°C、1大气压、空气中的稀甲烷流,Re 约为700),主通道中的特征平均速度为100米/秒。 [0030] Example embodiments for high speed and high Reynolds number (for 850 ° C, 1 atm, dilute methane stream of air, Re of about 700), wherein the average speed of the main channel is 100 m / sec. 对于纯层流,在此速度下,中心线速度是平均值的1. 5倍,总共为150米/秒。 For pure laminar, at this speed, the center line of speed is 1.5 times the average, a total of 150 m / sec. 在长10厘米的通道中,沿通道间隙的中心线流动的分子在通道中平均大约需要耗时0. 7毫秒。 10 cm long channel, the molecules along the center line of the flow passage gap in the channels require time-consuming an average of about 0.7 milliseconds. 因此,单通过扩散很可能不足以使这些反应分子碰撞活性催化剂壁。 Thus, it might not be sufficient single reactor wall collisions active catalyst by diffusion. 即使主通道中的速度小到十分之一,对于雷诺数小于100的情况,平均速度为10米/秒,中心线分子(表示通道间隙中心附近的分子)的停留时间将升高到7毫秒。 Even if the speed of the main channel is very small one, for the Reynolds number is less than 100, the average speed of 10 m / sec, the centerline molecules (represented molecules near the center of the gap passage) will rise to the residence time of 7 ms . 本质上来说,仅凭扩散,中心线反应分子与活性催化剂壁的平均碰撞次数将少于十次。 Essentially, diffusion alone, the number average molecular collision with the center line of the reaction activity of the catalyst will be less than the wall ten times.

[0031] 将此性能与活性表面特征(推力和拉力迫使流体和反应物进入表面特征)的情况相比较。 [0031] The performance of this case compared with the active surface features (the push and pull force fluid into the reactant and surface features). 模型结果显示,对相应的平坦通道,在X方向和y方向(Z为流动方向,X和y分别为侧向(一侧到另一侧)和横向(顶部到底部)的流动方向)的流速不会超过z方向的平均流速,而是约为长度方向平均流速的1%,或5%,10%,20%或更高。 Model results show that the respective flat channels in the X-direction and the y direction (Z-direction of flow, X and y are the lateral (side to side) and transverse (top in the end portion) of the flow direction) at a flow rate z-direction does not exceed an average flow rate, but the mean velocity about the longitudinal direction of 1% or 5%, 10%, 20% or more. 相应地,对于此实施例,y方向(微通道的顶部到底部,或者假定活性壁设置在两个表面上,则为活性表面特征壁之间)的平均速度至少为1米/秒。 Accordingly, for this embodiment, y direction (the top in the end portion of the microchannel, or that their activity is provided on both surfaces of the wall, for the wall between the active surface features), the average speed of at least 1 m / sec. 在此速度下,反应分子向活性表面特征壁平流的特征时间小于〇. 5毫秒,即小于扩散所需时间的一半。 At this speed, the reaction surface of the active molecules to the characteristic features of the wall is less than advection billion. 5 msec, i.e. less than half the time required for diffusion. 随着y方向流速进一步增加,平流的特征时间相应地缩短。 With further increase in the y direction flow characteristic time advection shortened correspondingly.

[0032] 仅对流和扩散之间的时间差异是一部分的优点,但是并不是全部优点。 [0032] The time difference between the flow and diffusion are only part of the advantages, but not all of the advantages. 活性表面特征的其它优点是物质分散减少,使得来自主间隙中的总体流动的分子与活性表面特征壁的接触次数高得多。 Other advantages of the active substance is dispersed wherein the surface is reduced, so that the number of contacts wherein the main walls of the bulk flow from the gap of the active surface of the molecule is much higher. 另外,一旦分子进入了活性表面特征凹槽,它们离开了总体流动路径, 不易发生使分子离开活性表面特征凹槽或向下游运动的相同的平流。 Further, once the surface features of the active molecules into the groove, they leave the bulk flow path, molecules less likely to occur away from the active surface features or grooves downstream advection same movement. 通过这种方式,通过允许分子在活性表面特征中停留更长的时间,减少了典型的Taylor-Aris分散,以促进所需的单元操作。 In this way, by allowing the molecules in the active surface features stay longer, reducing the typical Taylor-Aris dispersion, to facilitate the required unit operations.

[0033] 现有技术的表面特征中的催化剂设置将仅能产生普通的提高作用,这是因为现有技术的器件的目标是允许分子在总体流动通道中混合,而不是使其与活性表面特征壁发生活性碰撞或相互作用。 [0033] The catalyst is provided in the surface characteristics of the prior art will only produce the normal increase, and this is because certain prior art devices is to allow molecular mixing in the bulk flow path, characterized in that it rather than the active surface wall or collision occurrence of the interaction activity. 对于本发明,为了获得良好的性能,需要中心线分子与活性表面特征壁碰撞至少1次,或者2次或3次或更多次。 For the present invention, in order to obtain good performance, it requires centerline molecules collide with active surface wherein the wall at least once, or twice or three times or more. 另外,有利的是进入包括至少一个表面特征区的至少一个通道的全部质量中的至少30%的流体进入表面特征区中的至少一个表面特征至少一次。 Further, it is advantageous to enter at least one comprises at least 30% of the total mass of the fluid entering the at least one channel in a surface region of the surface features characteristic of the at least one surface region of at least one feature. 〃表面特征区〃定义为沿微通道的流动长度、在壁内具有小间隔的连续的表面特征系列。 〃 〃 surface feature region is defined as the flow length along the microchannel, the surface features having a continuous series of small intervals in the wall. 在本发明的方法中,"表面特征区"表示一种区域,在此区域内,在两个特征之间,流动基本不会缓和成层流抛物线流型。 In the method of the present invention, "surface feature region" means a region, in this region, between the two features, does not substantially flow into a laminar parabolic flow relaxation pattern. 在本发明的一些优选的实施方式中,进入通道的质量中的至少50%、更优选至少70%、更加优选至少90%的流体进入表面特征区中的至少一个活性表面特征。 In some preferred embodiments of the present invention, the passage into the mass of at least 50% of, more preferably at least 70%, even more preferably at least 90% of the fluid entering the at least one active surface region of the surface morphology.

[0034] 对于包括均相化学反应和热交换器的单元操作,总体流动物质与活性表面特征壁之间的相互作用也有益于将热量传递到相邻的传热室。 [0034] For homogeneous unit operation comprises a chemical reaction and the heat exchanger, the interaction between the active material and bulk flow wherein the wall surface is also beneficial to transfer heat to the adjacent heat transfer chamber. 与现有技术的微混合器不同,需要使总体流运动到壁附近或通过壁,而不必完全均匀地混合总体流动流。 Micromixer different prior art, the movement required so that the overall flow through the wall or near the wall, without having to completely uniformly mixed bulk flow stream. 使更多新鲜的流体运动到活性表面附近和通过活性表面的活性表面特征壁,将比主要混合总体流的结构更加优选。 So that more fresh fluid movement near the surface activity of a surfactant by an active wall surface characteristics, the structure is preferably more than the main stream of the overall mixture.

[0035] 对于这些应用,在较高雷诺数下性能获得提高,而不是在较高雷诺数下不利于性能提高,这是因为高动量物流以重复的旋转流动图案运动,使得总体流动弯曲通过活性表面特征,基本不会停止物流的旋转并试图使其以相反方向转回。 [0035] For these applications, the performance was improved at higher Reynolds numbers, rather than at higher Reynolds numbers not conducive to performance improvement, because the high momentum stream rotational flow pattern in a repeating motion, such that the overall flow through the curved activity surface characteristics, without stopping the rotation of the basic stream and trying to make it back in the opposite direction. 一旦物流在活性表面特征中开始以固定的方向旋转,其以相同的方向持续旋转,从而证实涡量高,这样流体向活性表面特征壁的流动获得加强。 Once the stream starts to rotate in a fixed direction wherein the active surface, which is continuously rotated in the same direction, thus confirming high vorticity, so that the fluid flows to a strengthening wall surface active properties. 随着在较高雷诺数下动量的增加,使得流体旋转的相对涡量或角向力(angle force)也随之增大,这样与活性表面特征壁或在其附近接触或碰撞的次数也随之增加。 With the increase in momentum at higher Reynolds number, so that the force (angle force) fluids relative angular rotation or vorticity also increased, so that the active surface features near walls or in the number of contact or collision also with of the increase. 但是对于这些情况,涡量不是唯一的因素。 But for these cases, the vorticity is not the only factor. 仅使得流体在总体流动路径中旋转的图案,例如通过跨越微通道壁宽度的单角斜向特征凹槽形成的图案,无法做到将中心流动物流拉入活性表面特征。 Such that rotation of the fluid only in the overall flow path pattern, for example by a single angle across the width of the microchannel wall recesses formed obliquely pattern features, do not pull the central flow stream into the active surface features. 在本发明中,活性表面特征壁图案的几何结构可设计成增强与活性表面特征"接触"(定义为分子穿破活性表面特征凹槽的平面,进入凹陷的具有角度的凹槽中)。 In the present invention, the geometry of the active surface of the wall pattern features may be designed to enhance "in contact" with the active surface features (defined as molecules planar active surface features rupturing groove, the groove having an angle into the recess in). 优选的活性表面特征在微通道至少一个壁的宽度上具有一种以上的角度。 Preferred active surface having one or more features in the angular width of the at least one microchannel wall. 〃 至少一种角度"意味着斜率改变-特征不是直线,而是包括弯曲形状;所述特征优选是邻接的,例如为人字形或锯齿形;但是在一些实施方式中,如果特征的组成部分对齐,则具有"至少一种角度的"表面特征可以是不连续的,因此除了间隙以外,凹陷或凸起将会连接-一个例子是具有缺顶的人字形结构。 〃 least one angle "means the change in slope - features not straight, but includes a curved shape; preferably wherein said contiguous, e.g. herringbone or zigzag-shaped; in some embodiments, if the characteristic part is aligned, having the "at least one angle" surface feature may be discontinuous, so in addition to the gap, depressions or projections will be connected - an example of a herringbone structure having top missing.

[0036] 对于现有技术的例子,常规分子在表面特征内花费的时间与在通道内花费的平均停留时间的相对比约小于10%,而在本发明中,常规分子在活性表面特征中花费的时间与在通道内花费的平均停留时间的相对比优选约大于15%,更优选大于20%,更优选约大于30%。 [0036] For the example of the prior art, the time spent in a conventional molecular surface features and an average residence time spent within the channel relative ratio of less than about 10%, whereas in the present invention, conventional molecular spent in active surface features the relative ratio of the time spent within the channel preferably has an average residence time of greater than about 15%, more preferably greater than 20%, more preferably greater than about 30%. 分子在活性表面特征中花费的时间定义为分子破坏表面特征平面并已从总体流动路径中移出后所花费的时间。 Time spent in active molecules defined surface features molecular damage the surface plane and wherein the time from the removal of bulk flow paths takes. "总体流动路径"从入口到出口是基本连续的,所述活性表面特征通常沿流动路径的长度开始和停止。 "Bulk flow path" from the inlet to the outlet is substantially continuous, generally the active surface features along the length of the start and stop of the flow path.

[0037] 对于本发明,随着停留时间的缩短,所述活性表面特征相对于对应的无特征或平面的或平滑的壁的性能提高通常会获得改进。 [0037] For the present invention, with the shorter residence time, with respect to the active surface features or smooth featureless corresponding planar or generally improve the performance of the wall for improved. 无特征的壁由微通道限定,该微通道的间隙不包括凹陷特征的深度,且具有相同的宽度和长度。 Featureless walls defined by a microchannel, the microchannel gap does not include the depth of recessed features, and has the same width and length. 随着雷诺数的增加,惯性作用力的重要性随之增大。 As the Reynolds number increases, the importance of the inertial force increases. 对于较高的惯性或动量的物流,将动量保持在单一的初始方向而不是使方向颠倒或改变,能更容易使物流保持旋转。 For high inertia or momentum of the stream, the momentum will be maintained in a single direction rather than the initial direction reversed or otherwise varied, it can more easily stream keeps rotating. 当物流保持旋转时,其保持使越来越多的物流或分子流入活性表面特征中,它们可以在所述活性表面特征中与交换热量或物质或此二者的壁相互作用。 When the stream keeps rotating, holds more and more of the stream flowing into the active molecule or surface features, which may be the heat exchange wall, or both, or a substance interacting in the active surface features.

[0038] 在一个方面,本发明提供了微通道设备,该设备包括:包括表面特征的微通道;所述微通道的至少一段的特征为特征进口长度大于10 ;所述段的长度至少为1厘米;所述段包括多个类似的重复表面特征;所述类似的重复表面特征在每个类似的表面特征中包括至少一种角度。 [0038] In one aspect, the invention provides microchannel apparatus, the apparatus comprising: a microchannel comprising surface features; wherein at least a section of the microchannel is characterized inlet length greater than 10; the length of the segment is at least 1 cm; the segments comprises a plurality of repeating similar surface features; repeating the similar surface feature comprises at least one angle of each surface feature analogous. 较佳的是,微通道的大部分周边具有表面特征;例如,矩形微通道的相对面。 Preferably, the majority of the perimeter of the microchannel surface features; e.g., rectangular surface opposing microchannels.

[0039] 另一方面,本发明提供了微通道设备,该设备包括:由至少三个微通道壁限定的微通道;所述微通道的至少一段的特征是特征进口长度数(feature entrance length number)大于10 ;所述段至少为1厘米长;所述段包括多个类似的重复表面特征;所述类似的重复表面特征在每个类似的表面特征中包括至少一种角度。 [0039] In another aspect, the invention provides microchannel apparatus, the apparatus comprising: at least three defined by a microchannel wall microchannel; wherein at least a section of the microchannel length is the number of inlet characteristic (feature entrance length number ) greater than 10; said segment is at least 1 cm long; the segments comprises a plurality of repeating similar surface features; repeating the similar surface feature comprises at least one angle of each surface feature analogous.

[0040] 另一方面,本发明提供了微通道设备,该设备包括:微通道,该微通道包括具有表面特征的微通道壁;所述表面特征包括增大所述微通道壁的表面积的亚图案结构(sub-patterning);还包括至少设置在所述包括亚图案结构的表面特征上的催化剂组合物。 [0040] another aspect, the invention provides microchannel apparatus, the apparatus comprising: a microchannel, the microchannel comprising a microchannel wall having surface features; the surface characteristic comprises increasing the surface area of ​​the microchannel wall alkylene pattern structure (sub-patterning); further comprises at least the catalyst composition comprises an upper sub-surface features of the pattern structure.

[0041] 另一方面,本发明提供了微通道设备,该设备包括:微通道,该微通道包括具有超过15个类似的重复表面特征的微通道壁。 [0041] another aspect, the invention provides microchannel apparatus, the apparatus comprising: a microchannel, the microchannel comprising a microchannel wall having more than 15 repeats similar surface features. 在每个类似的表面特征中,所述类似的重复表面特征包括至少一种角度。 Similar to the surface of each feature, the surface feature analogous repeat comprises at least one angle.

[0042] 本发明任一方面的特征还包括本文所述的任意特征。 Wherein any one of the invention [0042] This further comprising any of the features described herein. 例如,在优选的实施方式中,所述微通道具有两个相对的主壁,所述相对的主壁包括表面特征,其中所述表面特征深度与通道间隙之比大于0.3。 For example, in a preferred embodiment, the microchannel has two opposing main walls, opposing the main wall comprises a surface feature, wherein said surface wherein the gap ratio of the depth of the channel greater than 0.3. 在优选的实施方式中,微通道并联操作,并通过歧管连接。 In a preferred embodiment, the microchannels parallel operation, through the manifold and pipe connection. 流向并联微通道的流量分布优选是均匀分布,每个通道中的质量流量之差小于35% (25%,10% )。 Flow distribution is preferably parallel flow microchannel is uniformly distributed, the difference between the mass flow rate of each channel is less than 35% (25%, 10%).

[0043] 对于包括非均相催化或者在高于100的Re下的传热的工艺,本发明的设备可表现出优良的结果。 [0043] For comprises heterogeneously catalyzed or heat transfer process at higher than 100 Re, the apparatus of the present invention can exhibit excellent results.

[0044] 另一方面,本发明提供了微通道设备,该设备包括:微通道,其包括微通道壁,所述微通道壁包括交错人字形混合器(SHM)结构的表面特征,所述SHM具有在有角度的表面特征之间的间隔;和位于该间隔内的填充特征。 [0044] another aspect, the invention provides microchannel apparatus, the apparatus comprising: a microchannel comprising a microchannel wall, the microchannel wall comprises interleaved herringbone mixer (SHM) of surface features, the SHM having a space between the angled surface features; and positioned within the gap filling characteristics.

[0045] 再一方面,本发明提供了一种在微通道中进行流体处理的方法,该方法包括,提供微通道设备,所述微通道设备包括微通道;所述微通道包括两个相对的微通道壁以及位于所述两个相对的微通道壁之间的间隙;所述微通道壁中的至少一个包括至少10个连续的类似的表面特征;所述类似的表面特征各自包括至少一种角度,表面特征深度与通道间隙之比至少为0. 4 ;在大于100的Re下,使流体流过所述微通道。 [0045] In another aspect, the present invention provides a method of fluid processing in a microchannel, the method comprising, providing a microchannel apparatus, the microchannel apparatus comprises a microchannel; the microchannel comprises two opposing microchannel walls and the gap is located between the two opposing microchannel wall; the microchannel wall of at least one comprising at least 10 contiguous similar surface features; similar to each of the surface features comprise at least one angle, and surface characteristics than the channel depth of the gap is at least 0.4; Re at greater than 100, the fluid flow through the microchannel.

[0046] 在一些优选的实施方式中,存在设置在表面特征上的催化剂或吸着剂。 [0046] In some preferred embodiments, the presence of a catalyst or sorbent disposed on the surface features. 在一些优选的实施方式中,存在与所述包括一系列类似的表面特征的微通道壁接触的散热器或热源。 In some preferred embodiments, the presence of the heat sink or source comprise a series of similar features of the microchannel wall surfaces in contact. 在许多优选的实施方式中,本发明的方法在短接触时间和/或高雷诺数(Re)和/或高Pe (皮克里特准数)的条件下操作。 In many preferred embodiments, the method of the present invention is operated at short contact times and / or high Reynolds number (Re) and / or conditions of high Pe (Peclet number) of.

[0047] 另一方面,本发明提供了一种在微通道中进行流体处理的方法,该方法包括:在大于100的雷诺数Re下使流体流过微通道;所述微通道包括表面特征;在所述表面特征中对所述流体进行单元操作。 [0047] another aspect, the present invention provides a method of fluid processing in a microchannel, the method comprising: flowing a fluid through the microchannel at a Reynolds number Re is greater than 100; the microchannel comprises surface features; means for operation of the fluid in the surface features. 所述单元操作可以是本文讨论的任何单元操作,但是不是单独的混合(尽管混合通常与其它单元操作一起发生)。 The operation unit may be any unit operation discussed herein, but it is not a separate mixing (mixing typically occurs although with other unit operations).

[0048] 另一方面,本发明提供了一种在微通道中进行流体处理的方法,该方法包括:使流体通过通道进口进入微通道;所述微通道在至少一个表面特征区内包括表面特征;超过30% (更优选至少50 % ,75 %或90%)的进入质量的流体进入所述表面特征区中至少一个表面特征的体积之内;在所述表面特征区内对流体进行单元操作。 [0048] another aspect, the present invention provides a method of fluid processing in a microchannel, the method comprising: a fluid inlet through the passage into the microchannel; microchannel said at least one surface area feature comprises a surface feature ; more than 30% (more preferably at least 50%, 75% or 90%) of the mass into the surface features of fluid into the inner volume of the at least one region of the surface feature; unit operation on the fluid surface feature region . 进入所述表面特征的流体的质量是根据本文提供的方法和描述确定的。 The surface features into the mass of the fluid according to the method described herein provided and determined.

[0049] 另一方面,本发明提供了在微通道中进行流体处理的方法,该方法包括:提供包括微通道的微通道设备;所述微通道包括表面特征;在各个表面特征中,所述表面特征包括至少一种角度;散热器或热源与所述活性表面特征热接触。 [0049] another aspect, the present invention provides a method of fluid processing in a microchannel, the method comprising: providing a microchannel apparatus comprising a microchannel; the microchannel comprises surface features; In various surface features, the surface feature comprises at least one angle; contact with the heat sink or source heat active surface features. 流体在大于100的Re下通过所述微通道,结果是热量传递到微通道中流动的流体或从所述流体传走热量。 Re is greater than the fluid through the microchannel 100, the result is heat transfer to the fluid flowing in the microchannel or transfer heat away from the fluid. 较佳的是, 所述散热器或热源包括热交换器,该热交换器优选包括微通道。 Preferably, the heat sink or heat source comprises a heat exchanger preferably comprises a microchannel.

[0050] 另一方面,本发明提供了一种在微通道中进行流体处理的方法,该方法包括:提供包括微通道的微通道设备;所述微通道包括微通道壁,该微通道壁包括一个区,该区包括与热源或散热器热接触的表面特征;使流体流过所述微通道,通过至少一个微通道壁,在流体和热源或散热器之间进行热交换;在包括表面特征的区产生压降;在该区中传递的热量除以在相同条件下、在没有特征的区中传递的热量(h SF/\)所得的数值,至少是该区中的压降除以相同条件下没有特征的区中的压力(CIPsfMP cj)所得数值的I. 1倍。 [0050] another aspect, the present invention provides a method of fluid processing in a microchannel, the method comprising: providing a microchannel apparatus comprising a microchannel; said microchannel comprising a microchannel wall, the wall comprising a microchannel a region, which includes a surface in contact with a heat source or features heat radiator; flowing a fluid through the microchannels, heat exchange between the fluid and the heat source or a heat sink through the at least one microchannel wall; surface features comprising the pressure drop zone; heat transfer in this region is divided under the same conditions, the values ​​of heat transfer area is not characteristic of (h SF / \) resulting, at least in the area of ​​the pressure drop divided by the same no characteristic values ​​obtained under the conditions of a pressure zone (CIPsfMP cj) of I. 1 times. 〃无特征的区〃 不是同一器件内没有特征的另一区,而是(通过实验或计算)模拟的与所述区相同、但是用壁代替所述特征的器件。 〃 〃 not featureless area no other zone features within the same device, but (through experiments or calculations) of the simulated zone the same, but with a wall instead of the device characteristics. 本发明还包括一些设备,其特征是通过本文所述的技术测得的该设备的传热获得提高。 The present invention also includes apparatus wherein the heat transfer is obtained by improving the apparatus measured the technique described herein.

[0051] 另一方面,本发明提供了一种在微通道中进行流体处理的方法,该方法包括:提供包括微通道的微通道设备;所述微通道包括第一区和第二区;所述第一区包括第一系列的表面特征;所述第二区包括第二系列的表面特征;使流体通过所述微通道,使得流体在所述第一和第二区中混合,但是在这些区之间基本缓和成抛物线型流。 [0051] another aspect, the present invention provides a method of fluid processing in a microchannel, the method comprising: providing a microchannel apparatus comprising a microchannel; the microchannel comprises a first region and a second region; the wherein said surface comprises a first region of a first series; said second region comprises a second series of surface features; fluid through the microchannel, such that fluid mixing in said first and second region, but in these to alleviate substantially parabolic flow between regions. 在一个优选的实施方式中,所述第一系列表面特征的特性不同于第二系列(例如不同的平均特征深度-但是可选择本文所述的任意特性)。 In a preferred embodiment, the surface features of said first series a second series of characteristic different (e.g. different average feature depth - although any selectable characteristic of the herein). 在一些实施方式中,第一单元操作在所述第一区中进行,不同的单元操作在所述第二区中进行。 , The first unit operation in said first zone, in some embodiments, the different units in the second region.

[0052] 另一方面,本发明提供了一种制造层叠的微通道制品的方法,该方法包括:将具有看穿(see through)表面特征的第一片材与包括微通道的片材相邻叠置,使得所述看穿表面特征置于微通道的一侧上;将包括空穴的第二片材与所述第一片材相邻叠置,使得所述第二片材上的空穴与所述第一片材上至少一个看穿特征相邻。 [0052] another aspect, the present invention provides a method of manufacturing a laminated microchannel article, the method comprising: having a see-through (see through) the surface characteristics of the first sheet and the sheet stack adjacent microchannel comprises position, characterized in that the surface disposed on the side seen through the micro channel; the second hole comprises the first sheet and adjacent sheets are stacked, so that the holes on the second sheet and said first sheet adjacent the at least one see-through feature. 所述空穴可以是看穿特征。 The hole may be a see-through feature. 本发明还包括通过本文所述的任意技术制造的设备。 The present invention further includes a device manufactured by any of the techniques described herein.

[0053] 在再一个方面中,本发明提供了一种对微通道涂敷遮盖涂层(washcoating)的方法,该方法包括:提供包括多个类似的重复表面特征的微通道,在各个类似的表面特征中,所述类似的重复表面特征具有至少一种角度;在所述多个类似的重复表面特征上施涂遮盖涂层。 [0053] In a further aspect, the present invention provides a method of applying the cover coating microchannel (washcoating), the method comprising: providing a microchannel comprising a plurality of repeating similar surface features, each similar in surface features, the surface features having similar repeating at least one angle; on the plurality of surface features similar repeating hiding coating layer is applied.

[0054] 本发明人发现通过使用较深的特征可以改进性能。 [0054] The present inventors have found that the performance can be improved by using the deeper features. 例如,特征的深度至少为相对的微通道表面之间间隙距离的20%;在一些实施方式中至少为30%,在一些实施方式中为相对的微通道表面之间间隙距离的20至约100%。 E.g., wherein the depth of at least 20% of the gap distance between the opposing surface of the microchannel; in some embodiments at least 30%, in some embodiments, the gap distance between the opposing surface of the microchannel 20 to about 100 %. 在一些实施方式中,所述表面特征的深度大于所述间隙距离的1〇〇%,最高可达间隙的500%。 In some embodiments, the depth of the surface features is greater than the distance of the gap 1〇〇%, up to 500% of the gap. 一些优选实施方式的另一发明特征是,所述表面特征的行程(run)宽度与通道间隙的尺寸比。 Another feature of the invention, some preferred embodiments, the surface features of the travel (run) than the width dimension of the passage gap.

[0055] 本发明可用的应用包括但不限于:非均相催化反应(例如固体催化剂被设置在微通道壁上的情况);均相催化反应;均相非催化反应;蒸馏;乳液形成;改进的传热;混合; 气液反应;吸收,吸附和其它气-液分离或液-液分离。 [0055] Applications of the present invention can be used include but are not limited to: heterogeneously catalyzed reactions (e.g. in the case of the solid catalyst is disposed in the wall of a microchannel); heterogeneous catalytic reaction; non-homogeneous catalytic reaction; distillation; emulsion formation; improving heat transfer; mixing; gas-liquid reaction; absorption, adsorption, and gas-liquid separation or other liquid - liquid separation. 本发明还可用于其它可通过分子与活性壁的碰撞促进的应用。 The present invention may also be used in other applications may be facilitated by molecules colliding with the active wall. 例如,可将传感器或检测器表面优先置于活性表面特征之内,使得更多的本体溶质可以与活性表面碰撞,从而活化所述活性表面。 For example, sensors or detectors may be preferentially placed within the surface features of the active surface, so that more solute may collide with the body active surface, thereby activating the active surface. 这对于流体中的稀释剂可以是特别有用的。 This may be particularly useful for fluid diluent. 本发明还可用来当流体中稀释的或浓缩的废料分子流过设置在活性表面特征内的表面上的活性转化剂或分离剂时,破坏这些废料分子。 When the fluid of the present invention can also be used diluted or concentrated waste flows through the active molecule transforming agent or separating agent on a surface disposed within the active surface features, such waste destruction molecules. 本发明还可用于酶促反应或生物反应器,同样优选使反应分子与催化剂碰撞,所述催化剂是生物催化剂, 也可以不是,例如为酶或更多的常规非均相催化剂。 The present invention is also useful enzymatic reaction or a bioreactor, is also preferable that the reactive molecules collide with the catalyst, the catalyst is a biological catalyst, or may not, for example, an enzyme or more conventional heterogeneous catalysts. 如果催化剂被固定或附着在表面上,但是仍然部分延伸到表面之上,以产生更多的表面积,则本发明可进一步获得提高。 If the catalyst is fixed or adhered to the surface, but still partly extends above the surface to produce more surface area, the present invention can be further improved is obtained. 延伸的表面或者固定的催化剂或者固定的活性试剂(例如吸着剂)或其它能够与溶质分子发生化学或物理相互作用的表面均可将表面特征总深度的一小部分延伸到壁以上(〈10% ),或者可以将表面特征总深度的显著部分延伸到壁以上(10% -100% )。 Extending surface or immobilized or fixed catalyst active agents (e.g. sorbent) or other chemical or physical surface interaction with solute molecules capable of surface features may be a fraction of the total depth of the wall extending to the above (<10% ), or it may be a significant portion of the total depth of the surface features extending over the wall (10% -100%). 在一些本发明的方法中, 延伸的表面或固定的部分(tether)可延伸入总体流动路径中。 In some methods of the present invention, the surface portion extending in or fixed (tethered) may extend into the bulk flow path. 所述固定的部分可以是刚性的,不会随着流体在表面特征或总体流动路径中的剪切而运动,或者所述固定的部分可以随着流体的剪切而运动。 The fixed portion may be rigid, not as the fluid shear surface features or overall flow path moves, or the fixed portion may be cut with the movement of the fluid. 对于非刚性固定部分的情况,这种次级运动可能会在流体流场中产生另外的空间或瞬时梯度,或造成所述固定部分自身的运动。 In the case of non-rigid fixing portion, which may produce additional secondary movements or transient spatial gradients in the fluid flow field, or cause movement of the fixing portion itself. 后者可能更加有益于进一步减小流体分子和活性试剂之间的传质限制,所述活性试剂设置在活性表面特征壁上, 或者其上连接的固定的延伸部分上。 The latter may be more conducive to mass transfer limitations further decrease between the fluid molecules and active agent, the active agent is provided in a wall surface active characteristics, or on a fixed extension portion connected thereto.

[0056] 本发明还包括用于催化化学转化的方法(例如均相乙烯形成或非均相蒸汽甲烷转化),该方法包括使反应物流体组合物流入微通道中,在该微通道中存在催化剂,或者催化剂可与所述反应物一起加入,在所述微通道中使所述反应物流体组合物反应形成所需一种或多种产物。 [0056] The present invention also includes methods for catalytic chemical conversion (e.g., heterogeneous or homogeneous ethylene forming a steam methane reformer), which comprises reacting a reactant fluid composition into a microchannel stream, in the presence of a catalyst in the microchannel, or the catalyst may be added together with the reactants, the microchannel manipulation in the reaction stream react to form the desired composition one or more products. 本发明还包括使用本文所述的任何设备进行单元操作的方法。 The present invention further includes the use of any device described herein, a method for unit operation.

[0057] 本发明包括预先结合的片材的叠层,以及结合的器件。 [0057] The present invention comprises a sheet pre-bonded laminate, and the binding device. 结合表示通过任意方式连接,这些方式包括:扩散结合,铜焊,焊接,胶合,反应结合,以及其它方法。 It represents binding by any means connected to these means comprising: diffusion bonding, binding brazing, welding, gluing, reaction, and other methods. 所述结合的工具可包括位于具有图案的区域之上和/或具有图案的区域的凹陷之内的涂层(例如催化剂涂层),也可不包括这些涂层。 The binding tool may include a coating (e.g. catalyst layer) in the region above the recess having a pattern and / or having a pattern of regions or may not include such coatings. 本发明还包括在本文所述的任意设备中进行的化学方法。 The present invention further comprises a chemical process carried out in any apparatus described herein.

[0058] 在其它方面中,本发明提供了一种化学处理的方法,该方法包括:将流体通入本文所述的任意设备中。 [0058] In other aspects, the present invention provides a method of chemical treatment, the method comprising: passing fluid into any of the apparatus described herein. 本发明包括使用能增强混合的表面特征的设备和方法。 The invention includes an apparatus and method to enhance surface characteristics of the mixing. 还通过混合流过微通道的流体(例如实施例中的任意混合种类)对本发明进行描述。 A fluid (e.g., optionally mixed type embodiment) flowing through the microchannel mixing of the present invention will be described.

[0059] 所用术语的词汇表 [0059] The glossary of terms used in

[0060] 〃表面特征〃是从微通道壁凸出或凹入微通道壁的结构,它们能够改进微通道中的流动。 [0060] wherein 〃 〃 surface is convex or concave configuration from the microchannel wall microchannel wall, they can improve the fluidity of the microchannel. 如果特征顶部的面积与特征底部的面积相等,或者前者大于后者,则该特征可看作是凹陷的。 If the area of ​​the top area and the bottom of the features equal to or former than the latter, the recessed features may be considered. 如果特征底部的面积超过了特征顶部的面积,则可认为其为凸出的(下文讨论的CRF除外)。 If the feature exceeded the area of ​​the bottom area of ​​the top of the feature, it can be considered (except CRF discussed below) which is convex. 对于非圆形表面特征,表面特征具有深度、宽度,和长度。 For non-circular surface features, surface features have a depth, width, and length. 表面特征可包括圆形、椭圆形、正方形、矩形、对号(check)形、人字形、锯齿形等,它们凹陷入主通道的壁内。 Surface features may include circular, oval, square, rectangular, checkmark (Check) type, herringbone, serrated, etc., which entered the wall of the passage recess. 表面特征可包括亚特征,所述第一凹陷特征的主壁还包括较小的特征,这些较小的特征可以为凹口、波浪形、凹痕、孔穴、毛口、对号、扇形等的形式。 Surface features may include sub-features, wherein said first recess further comprises a main wall smaller features, these features may be smaller recess, wavy, indentations, voids, burrs, pigeon, fan-like form. 图Id中显示了表面特征周边的一些非限制性例子。 FIG. Id shows some non-limiting examples of the peripheral surface characteristics.

[0061] A"空穴〃是壁或片材中的部分或完全的特征,其可为活性表面特征,狭缝,孔穴, 不规则或规则的形状,或者流体流能够在特征中发生扩散或平流或两者的其它体积。 [0061] A "part of the wall is a hole or 〃 sheet or complete feature, which may be characterized as active surface, diffusion shape of the slit, a hole, a regular or irregular, or can occur in the fluid flow characteristics or advection or both volumes other.

[0062] 〃紧密凹陷特征(Compact recessed features) 〃是主通道中的凹陷。 [0062] 〃 tightly recessed feature (Compact recessed features) 〃 main passage recess. 紧密凹陷特征(CRF)除了主通道以外无流动出口。 Wherein the recess close (CRF) in addition to a main outlet flow passage no. 各CRF在与主间隙的边界处具有一个或多个封闭的周边,各周边封闭的表面在各处都与主通道中的总体流动方向正交,在与主通道的边界处由所有凹陷特征的周边封闭的总面积占主通道中给定壁的壁面积的50%以上。 In each of CRF having one or more closed outside the boundary of the main gap, the peripheral surface of each closure are perpendicular to the general flow direction in the main channel in the entire boundary in the main channel by all of the recessed feature peripherally closed more than 50% of the total area of ​​the main channel in the wall of a given wall area. CRF不具有在不重新进入主通道的条件下从一个特征到下一个特征的连续流动路径。 CRF does not have a continuous flow path from one feature to the next feature without re-enter the main channel. 凸出不是凹陷的特征或CRF。 Not projecting or recessed feature CRF.

[0063] 对于两个特征,如果其中一个特征至少50% (优选至少80% )的周边(该周边是表面特征和主通道之间的边界)可以通过沿着主通道中总体流动方向的长度平移而在另一种特征的周边之内重叠(各特征周边的旋转小于20度(或者优选不进行旋转)),另一特征至少50% (优选至少80%)的周边(该周边是表面特征和主通道之间的边界)可以通过沿着主通道中总体流动方向的长度平移而在所述前一特征的周边之内重叠(各特征周边的旋转小于20度(或者优选不进行旋转)),则称这两个特征是"类似的特征"或"同样的特征"。 [0063] wherein for both, if the periphery of a feature wherein at least 50% (preferably at least 80%) (which is a boundary between the peripheral surface of the main channel and features) can be translated by the length along the general flow direction in the main channel overlap the inner periphery of the other features (the periphery of each feature less than 20 degrees of rotation (or preferably not rotated)), further characterized in at least 50% (preferably at least 80%) of the periphery (the peripheral surface, and wherein the boundary between the main channel) can overlap (peripheral rotation of each feature less than 20 degrees (or preferably not rotated)) in the front inner periphery of a feature translates along longitudinal direction of the bulk flow in the main passage, these two features are called "similar characteristics" or "the same characteristics." 如果限定表面特征和主通道之间边界的周边不平坦,则应使用各周边的正交(即与主通道中总体流动方向正交)投影确定特征是否为同样特征。 If the peripheral surface defining a boundary between the main channel and wherein the unevenness of the peripheral should be used in the orthogonal (i.e., perpendicular to the main passage and the general flow direction) wherein the projection is determined whether the same characteristics.

[0064] 表面特征的长度和宽度依照与微通道相同的方式定义。 The length and width [0064] In accordance with the definition of the surface features of the micro-channel in the same manner. 深度是特征陷入微通道表面的距离;其方向与微通道高度和微通道间隙相同。 Wherein the depth is the distance into the surface of the microchannel; microchannel height direction thereof and the same microchannel gap. 在一个优选的实施方式中,包括层叠和结合的器件,该器件在片材表面上具有表面特征,所述表面特征深度对应于层叠的方向。 In a preferred embodiment, the device includes a stacked and bonded, the device having a surface feature on a surface of the sheet, the surface features of a depth corresponding to the direction of lamination. 这些表面特征的尺寸表示特征的最大尺寸;例如圆形凹槽的深度表示最大深度,即凹槽底部的深度。 These represent the maximum size of the surface features of the dimensional characteristics; for example circular recess depth represents the depth of the maximum depth, i.e. the bottom of the recess.

[0065] 特征的深度:从表面特征与主通道相交的平面到表面特征底部(底部是与表面特征边缘相切的平面,该平面离表面特征与主通道相交的平面最远,并且与之平行)的平均距离。 Depth [0065] wherein: the surface features from a plane intersecting the main channel and wherein the bottom surface (bottom plane is tangent to the edge of the surface features, wherein the planar surface away from the plane intersecting the main channel furthest, and parallel thereto ) the average distance.

[0066] 特征的宽度或跨距:表面特征与主通道相交的平面内、表面特征最短的尺寸的标称值,或者从表面特征边缘到表面特征边缘的距离。 [0066] The width or span features: a plane surface intersecting the main channel and wherein surface features of the shortest dimension of the nominal value, or the distance from the edge of the surface features to the surface feature edge.

[0067] 特征支段(leg)的行程长度(run length):表面特征与主通道相交的平面内、表面特征支段的最长尺寸的标称值。 [0067] wherein the segment of (leg) stroke length (run length): wherein the planar surface intersects with the main path, the longest dimension of the surface feature segment supporting nominal value.

[0068](表面)特征支段:沿着相对于主通道平均总体流动方向的行程长度、斜率没有不连续或变化的一部分特征。 [0068] (surface) characteristics branched group: wherein along a part of the stroke length with respect to the direction of the main channel mean bulk flow, the slope without discontinuity or change.

[0069] 重复特征的间距:在垂直于特征支段的行程长度的方向、重复特征之间的平均距离。 Pitch [0069] repeating features: in the direction perpendicular to the stroke length of the branch segment characteristic, repeating the average distance between features.

[0070] 特征角度:表面特征支段的行程长度方向与垂直于主通道中平均总体流动方向的平面之间的夹角。 [0070] wherein angles: the angle between the plane of the mean bulk flow direction is perpendicular to the stroke direction of the longitudinal surface features in the segment of the main channel. 表面特征优选具有一种以上的角度。 Surface features preferably have more than one angle. 该角度可从大于〇的角度变至小于〇的角度。 The angle may vary from an angle greater than the angle to less than the square of the square. 该角度可以沿着所述特征以连续的方式或不连续的方式变化。 The angle may be varied in a continuous manner or in a discontinuous manner along the feature.

[0071] 特征的取向:一个区的重复表面特征相对于主通道内相邻的或相对的壁上的相同特征的取向。 Orientation [0071] Characteristics: repeating a surface feature relative to the adjacent region of the main channel or the same alignment characteristics opposite wall.

[0072] 相对于特征的流动取向:主通道中平均总体流动相对于主通道中特定壁内凹陷的特征取向的方向。 [0072] with respect to the flow orientation wherein: the main channel mean bulk flow direction of the recess with respect to the inner wall of the main channel a particular feature orientation. 用标号A表示主通道中的平均总体流动方向,具有两个支段的表面特征的各个支段的行程长度倾向于沿着主通道平均总体流动方向会聚或互相靠近。 A reference numeral denotes the mean direction of bulk flow in the main channel, the stroke length of each branched segment having surface features two branches or segments tend to converge toward each other along the main channel mean bulk flow direction. 用标号B 表示相对于表面特征相反的流动方向。 It indicates the flow direction opposite to surface features with a reference numeral B. 对于具有两个以上支段的特征,A取向表示相对于平均流动方向,会聚情况大于发散情况的平均或净特征行程长度。 For having the features of two or more branched segments, A represents the orientation with respect to the average flow direction, the case of converging or greater than the average run length of Net diverging condition. 相反地,B取向表示相对于平均流动方向,发散情况大于会聚情况的平均或净特征行程长度。 Conversely, B denotes the orientation with respect to the average flow direction, the divergence is greater than the case wherein the average run length or net convergence conditions.

[0073] 〃毛细管特征〃是与用来保持液体物质的微通道相关的特征。 [0073] wherein 〃 〃 capillary microchannel is maintained for the liquid substance and the related features. 它们在微通道壁内凹陷,或者从微通道的壁凸出到与该微通道壁相邻的流动路径中。 They recess in the microchannel wall, or projecting from the wall of the microchannel into the microchannel adjacent the wall of the flow path. 该特征形成的间隔小于2毫米,更优选等于或小于1毫米,更加优选等于或小于500微米。 The features formed spaced less than 2 mm, more preferably equal to or less than 1 mm, more preferably equal to or less than 500 microns. 所述特征的至少一个尺寸小于其位于的微通道的任意尺寸。 Wherein said at least one dimension smaller than any dimension of the microchannel located. 所述毛细管特征可以为任意角度的狭缝类结构,或者为孔穴的阵列,或者为任意其它的用来通过毛细管作用力保持液体的凹陷的或凸出的结构。 Wherein the capillary tube may be slit at any angle class structure, or an array of apertures, or any other recess for holding liquid or convex configuration by capillary force.

[0074] 〃催化剂材料〃是能够催化所需反应的材料。 [0074] 〃 〃 catalyst material is a material capable of catalyzing the desired reaction. 催化剂材料的非限制性例子包括金属、金属氧化物和酸性位点。 Non-limiting examples of catalyst materials include metals, metal oxides, and acidic sites.

[0075] "催化剂金属"是优选的催化剂材料的形式,是能够催化所需反应的金属形式的材料。 [0075] "catalyst metal" is preferably in the form of catalyst material capable of catalyzing the desired reaction in the form of a metal material. 特别优选的催化剂金属是Pd, Rh, Re, Ir和Pt。 A particularly preferred catalyst metals are Pd, Rh, Re, Ir and Pt.

[0076] 〃化学单元操作〃包括反应、分离、加热、冷却、蒸发、冷凝和混合。 [0076] 〃 〃 unit operation comprises a chemical reaction, separation, heating, cooling, evaporation, condensation and mixing.

[0077] 〃邻接的微通道〃是被一个或多个不具有明显的裂口或开口的微通道壁封闭的微通道-这意味着在具有开口的情况下,开口(如果存在)的量不大于微通道壁面积的20% (在一些实施方式中不大于5%,在一些实施方式中没有任何开口)。 [0077] 〃 〃 microchannel is adjacent one or more non-obvious break or opening in the wall of the microchannel closed microchannel - which means that the amount in the case having an opening, the opening (if present) is no greater than 20% of the area of ​​the microchannel wall (in some embodiments, less than 5%, there is no opening in some embodiments).

[0078] 〃内部微通道〃表示在所有侧面被一个或多个微通道壁限制的微通道,但是具有进口和出口,还任选具有沿着微通道长度的连接孔,例如多孔隔板或孔口,例如燃料通道和氧化剂通道之间的连接孔口。 [0078] Internal 〃 〃 represents a microchannel on all sides or a plurality of microchannel walls limiting microchannel, but having an inlet and an outlet, optionally further having a connecting hole along the length of the microchannel, e.g. pores or a porous separator mouth, such as connecting orifices between a fuel channel and an oxidant channel.

[0079] 〃歧管〃是连接多个平行的微通道的头部(header)或足部(footer),与所述设备整合成一体。 [0079] 〃 〃 manifold head is connected to a plurality of parallel microchannels (header) or foot (footer), integral with the device integration.

[0080] 〃微通道〃是一种通道,其中至少一个内部尺寸(壁至壁,不计催化剂)等于或小于1厘米,优选等于或小于2毫米(在一些实施方式中约等于或小于I. 0毫米)且大于100纳米(优选大于1微米),在一些实施方式中为50-500微米。 [0080] 〃 〃 microchannel is a channel in which the at least one internal dimension (wall to wall, not counting catalyst) is equal to or less than 1 cm, preferably equal to or less than 2 mm (approximately equal to or in some embodiments less than I. 0 mm) and greater than 100 nm (preferably greater than 1 micron), in some embodiments, 50 to 500 microns. 微通道还可由存在远离至少一个出口的至少一个进口来定义。 Microchannels may also be defined by the presence of at least one of the at least one outlet remote from the inlet. 微通道不仅仅是通过沸石或中孔材料的通道。 Zeolite channels or micro-channels not only by a mesoporous material. 微通道的长度对应于流过微通道的流动方向。 It corresponds to the length of the microchannel flow through the flow direction of the microchannel. 微通道的高度和宽度基本垂直于流过通道的流动方向。 Height and width of the microchannel is substantially perpendicular to the flow direction through the flow passage. 对于微通道具有两个主表面的层叠器件的情况(例如,通过将片材层叠和结合而形成的表面),高度是从主表面到主表面的距离,宽度垂直于高度。 For having a microchannel (for example, the surface is formed by laminating and binding the sheets), the height is the distance from major surface to major surface, a width perpendicular to the height of the stacked two main surfaces of the device. 表面特征的〃深度〃与微通道的"高度"方向相同。 〃 〃 depth of the microchannel surface features "height" in the same direction.

[0081] 〃进入表面特征的流体的质量〃定义为位于表面特征区的进口处、进入表面特征区中的至少一个表面特征的物质的量,进入表面特征意味着所述流体分子破坏所述凹陷的表面特征的平面,运动离开总体流动通道。 An amount of at least one surface feature substance mass 〃 Definitions [0081] 〃 features into the surface of the fluid inlet is located at the area of ​​the surface features, the surface features into the region, wherein the entrance surface of said recess means fluid molecules to disrupt planar surface feature, the movement away from the bulk flow path. 应当用计算流体动力学(CFD)编码(code)评价进入表面特征区中的至少一个表面特征内的物质的百分量,这允许对通过表面特征区的流体流动轨迹线(path line)的说明和示踪进行评价。 It (CFD) coding (code) Evaluation of surface features into the region with at least a one hundred computational fluid dynamic component of the substance in the surface features, which allows the flow of fluid through the description of the trajectory line (path line) and a surface region characterized tracer evaluated. 表面特征区中应当在深度和长度方向离散最少6体积的网格(cell),以获得合理的流动离散化(discretization),主直通道离散了按比例设定尺寸的网格,保持在与表面特征相邻的通道中以及位于表面特征之间的间隙中的网格尺寸连续性。 Wherein the surface area should be at least six discrete volume in the depth and longitudinal directions mesh (Cell), to obtain reasonable flow discretization (discretization), the main straight channel discrete sized scaled grid held at the surface and wherein the adjacent channel located between the mesh size of the gap discontinuity in the surface features. 应将正确的流体动力学模型用于进口物流速度和横截面。 The correct hydrodynamic model should be used and the inlet cross section of stream velocity. 溶液应当良好地会聚,进口质量流速的总和与总出口质量流速之差应在±0.0001%以内,进入系统的能量必须与离开体系的能量相平衡,其误差在±1%以内。 Solution should converge satisfactorily, the mass flow rate difference between the inlet and the sum of the total mass flow rate of the outlet should be within ± 0.0001%, the energy entering the system must be balanced with the energy leaving the system, the error is within 1% ±. 在通道的进口处,CFD 编码应当在通道的横截面上均匀地分布至少100条轨迹线。 At the inlet of the channel, CFD coding should be uniformly distributed at least trace 100 in cross section of the channel. 进入至少一个表面特征的轨迹线的百分数又代表了进入至少一个表面特征的质量百分数。 Percent into at least one surface feature of the trajectory line and represents the percentage by mass into at least one surface feature.

[0082] 主通道:总体流动的开放路径 [0082] the main channel: the bulk flow path is open

[0083](主)通道宽度:矩形主通道横截面的最大尺寸。 [0083] (primary) channel width: the maximum size of the rectangular cross section of the main channel.

[0084] (主通道)间隙:主通道横截面的最小尺寸。 [0084] (main channel) gap: a main passage cross section of the minimum size.

[0085] 主通道平均总体流动方向:沿着从进口流向出口的一部分主通道的流动平均方向。 [0085] The main channel mean bulk flow direction: the direction of the average flow from the inlet toward the outlet portion of the main channel.

[0086] 雷诺数,Re是常用的通过通道中的流动观察到的惯量对粘性作用力之比。 [0086] Reynolds number, Re is commonly observed by the inertia in the flow passage than the viscous force. 其定义为质量通量速率(G) X水力直径(D) +动态粘度(μ ), Which is defined as the mass flux rate (G) X hydraulic diameter (D) + dynamic viscosity (μ),

Figure CN104525072AD00161

[0088] 雷诺数的数值描述了物流的流动状况。 [0088] The value of the Reynolds number describes the flow conditions of the stream. 尽管依赖于雷诺数的流动状况是通道横截面形状和尺寸的函数,但是对通道通常使用以下范围:层流:Re〈2000至2200 ;过渡:2000-2200〈Re〈4000-5000 ;湍流:Re>4000-5000。 Although the situation depends on the Reynolds number is a function of the flow channel cross-sectional shape and size, but generally the channel following range: Laminar: Re <2000 to 2200; Transition: 2000-2200 <Re <4000-5000; Turbulent: Re > 4000-5000.

[0089] 〃单元操作〃表示化学反应、蒸发、压缩、化学分离、蒸馈、冷凝、混合、加热或冷却。 [0089] 〃 〃 represented chemical reaction unit operation and evaporated, compression, chemical separation, feeding steam condensation, mixing, heating or cooling. 尽管流体输送经常与单元操作一起进行,但是〃单元操作〃不仅仅表示流体输送。 Although the fluid delivery is often carried out together with the operation unit, the operation unit 〃 〃 but not expressed fluid delivery. 在一些优选的实施方式中,单元操作不仅仅是混合。 In some preferred embodiments, the unit operation just mixed.


[0090] 图Ia显示了具有交替的连续特征的表面特征图案,这些特征用来改变通过微通道的流动。 [0090] FIG. Ia shows a characteristic pattern of surface features having a continuous alternating These features for changing the flow through the microchannel.

[0091] 图Ib显示了表面特征图案中同样特征的系列。 [0091] Fig Ib shows a characteristic pattern of surface features in the same series.

[0092] 图Ic显示了一些通过使表面特征相对而形成的图案的选择方案。 [0092] FIG. Ic shows some of the options relative to the pattern formed by the surface features.

[0093] 图Id显示了表面特征的一些可能的形状。 [0093] FIG. Id show some possible shapes of the surface features.

[0094] 图2a_2e显示了毛细管/表面特征的各种图案。 [0094] FIG 2a_2e shows various patterns of the capillary / surface features.

[0095] 图3a-3k显示了表面特征的各种图案。 [0095] FIGS. 3a-3k illustrate various features of the pattern surface.

[0096] 图4a是以相邻的层叠置而形成层状表面特征的不同表面特征图案的俯视图。 [0096] FIG 4a is a plan view of different features of the pattern adjacent to the surface layer are stacked to form a layer of the surface features.

[0097] 图4b是三维表面特征的前视图,凹陷的人字形与总体流动微通道相邻,在其后面在不同的深度和位置具有另外的不同形状的特征。 [0097] FIG. 4b is a front view of a three-dimensional surface features, recessed chevron adjacent to the bulk flow microchannel, having additional features of different shapes and at different depths in its rear position.

[0098] 图5说明了用来增大表面积的在表面特征上的亚图案结构。 [0098] Figure 5 illustrates the structure of a pattern on a sub-surface features to increase the surface area.

[0099] 图6显示了在例子中分析的表面特征图案。 [0099] Figure 6 shows the analysis of the pattern of surface features in the example.

[0100] 图7说明了由图6的表面特征图案得到的传热提高。 [0100] FIG. 7 illustrates the improved heat transfer obtained by the surface feature pattern of FIG.

[0101] 图8显示了表面特征与无表面特征情况相比、甲烷转化率提高。 [0101] Figure 8 shows the surface characteristics compared with the case where no surface features, improved methane conversion.

[0102] 图9说明了包括和不包括表面特征的情况下的压降。 [0102] FIG. 9 illustrates the case where the pressure drop with and without surface features.

[0103] 图10说明了包括和不包括表面特征的情况下,压降和雷诺数的关系。 [0103] FIG. 10 illustrates a case with and without surface features, the relationship between pressure drop and Reynolds number.

[0104] 图11是对于预期的有45度接触角的液体表面和完全充满遮盖涂层液体的毛细管特征(全部凹槽),比较测量和预测的每一涂层的负载量(uptake)。 [0104] FIG. 11 is intended for a 45 degree contact angle of the liquid surface and wherein the capillary is completely filled with the liquid coating covers (all grooves), comparing each measured and predicted loading of the coating (uptake).

[0105] 图12图示比较在平坦的试件(FC)上与在具有5密耳(127微米)、3密耳(76微米)或1密耳(25微米)深的毛细管特征的试件上的催化剂负载量。 [0105] FIG. 12 illustrates a comparison on a flat test piece (FC) and having a 5 mil (127 microns), 3 mils (76 microns) or 1 mil (25 microns) capillary depth of the test piece features the catalyst loading on.

[0106] 图13图示测试器件主体和插入试件的组合件。 [0106] FIG. 13 illustrates a testing assembly of the device body and the insertion of the specimen.

[0107] 图14是一个例子的附图,显示传热系数增加与压降增加之比随雷诺数而变化。 [0107] FIG. 14 is an example of the figures, show the heat transfer coefficient increases with the increase of the ratio of the pressure drop varies with Reynolds number.

[0108] 图15说明了一实施例的粒子释放位置。 [0108] FIG. 15 illustrates the position of a particle release embodiment.

具体实施方式 Detailed ways

[0109] 〃表面特征〃是微通道壁中的凹陷(或者在不大优选的实施方式中,从微通道壁中凸出),其能够帮助流体沿着不同于通过微通道的净流动方向(即不同于微通道长度的方向)取向或产生流体旋转。 [0109] 〃 〃 surface feature is a recess in the wall of the microchannel (or microchannels projecting from the wall in less preferred embodiments), which can help the flow of fluid along a direction different from the net by a microchannel ( i.e., a direction different from the length of the microchannel) orientation or rotation of the fluid is generated. 该特征增大了表面积,产生了对流,使得流体通过平流而非扩散流向微通道壁。 This feature increases the surface area, generating convection, so that the flow of fluid through the advection diffusion rather microchannel wall. 流动图案可以涡流,旋转,翻转,或者具有其它不规则的或混乱的图案, 但是流动图案并不要求是混乱的,在一些情况下,可以是非常规则的图案。 Vortex flow pattern may rotate, flip, or have other irregular or chaotic pattern, the flow pattern is not required but is confusing, in some cases, it may be a very regular pattern. 流动图案是随时间稳定的,但是也可进行次级瞬变旋转(secondary transient rotation)。 Flow pattern is stable over time, but may also be a secondary transient rotation (secondary transient rotation). 表面特征优选具有倾斜角,既不平行于通过表面的净流动方向,也不垂直于该方向。 A preferred surface has an inclined angle, not parallel to the direction of the net flow through the surface, nor perpendicular to this direction. 表面特征可以与流动方向正交,即成90度角,但是优选具有角度。 Surface features may be orthogonal to the flow direction, Serve 90 degrees, but preferably has an angle. 所述活性表面特征还优选至少在一个轴向位置、沿着微通道的宽度,由一种以上角度所限定。 The active surface is preferably further characterized in at least one axial position along the width of the microchannel, defined by more than one angle. 所述表面特征的两个或更多个侧面可以是物理连接的或不连接的。 The two or more sides of the surface features may be physically connected or disconnected. 沿着所述微通道宽度的一种或多种角度优选用来将流体推出和拉出所述直的层状流线(stream line)。 A micro-channel is used along the width of the angle or more and preferably the fluid out of the line drawn straight laminar flow (stream line). 对于需要与平坦通道比较传热的实施方式,所有的表面特征均可规定为凹陷的。 The need for comparison with the flat heat transfer channel embodiment, all surface features may be defined as recessed.

[0110] 〃跨越间隙混合〃表示在微通道中,在垂直于总体流动的方向混合物流;在具有矩形横截面的通道中,该术语表示跨越间隙、在两个主表面之间混合。 [0110] 〃 〃 mixed across the gap in the micro channel, mixing stream flowing in the direction generally vertical; the channel has a rectangular cross-section, the term represents across the gap, mixing between the two main surfaces. 这是通过在微通道的两个主表面上设置表面特征而完成的。 This is characterized by providing a surface on both main surfaces of the microchannel accomplished. 达到这种混合的设计原则包括:(1)在相对于主通道中总体流动的平均方向的表面特征行程长度方向提供基本具有角度的分量(component)。 Design principles to achieve such mixing comprises: (1) providing a component having a basic angle (Component) on the surface in the stroke direction with respect to the longitudinal direction of the main channel mean bulk flow of. 各表面特征支段的上游端附近主通道内的速度将会高于各表面特征支段下游端附近的速度。 Speed ​​within the vicinity of the upstream end of the main channel of each surface feature segment will support a speed higher than the vicinity of the downstream end of each branch segment surface features. 顶部壁和底部壁中表面特征图案之间的配合可以用来增大速度矢量的垂直分量,从而在侧向混合不是重要的因素时,具有更大的减小外部传质阻力的作用。 When the top wall and the bottom wall between the mating surface feature patterns may be used to increase the vertical component of the velocity vector, it is not an important factor to mix laterally, has a greater effect of reducing the external mass transfer resistance. 例如,通过凹陷入相对壁的表面特征,为了防止总体中形成一个或多个不容易扫入活性表面特征中的流动芯,使用"顺式"构型要比使用"反式"活性表面特征构型更加优选。 For example, the surface features of the opposite walls of the recess, in order to prevent the formation of one or more of the population is not easily swept into the flow of the active core surface features, surface active use of "cis" configuration than using the "trans" configuration wherein type is more preferable. (2)提供足够数量的相邻特征,使得流体运动通过整个通道间隙。 (2) providing a sufficient number of adjacent features, such fluid movement through the entire passage gap. 在各个表面特征中的更多的角度、弯曲、扭曲或其它方向变化将在通道中使流体运动或混合,但是对于增加特征在活性表面特征内花费的停留时间的分数方面可能不是优选的。 More angle of each surface features, bending, twisting or other movement or change in direction of the fluid mixing channel manipulation, but aspects of the score for a residence time spent increasing characteristic in the active surface features may not be preferred. 优选在至少一个轴向位置、沿微通道宽度的一个或多个表面特征内具有一种以上角度,所述跨越宽度的特征可以是物理连接的,也可不是。 Preferably at least one axial position, one or more surface features along the width of the microchannel having more than one angle, across the width of the feature may be physical connections or may not be. 所述相邻特征或内嵌的角的对齐也将用来将流体侧向拉过所述通道。 Wherein the angle of alignment of the embedded or adjacent to the fluid side will be pulled through the channel. (3)沿着流动长度,为任意给定的微通道壁提供多个重复的基本类似的或"同样的"特征。 (3) along the flow length, to provide a plurality of repeating any similar or substantially "the same" characteristics given microchannel wall. 所述类似的特征沿流动长度的重复使得当流体沿着通道长度向下流动时,在主通道中保持了非直线形的(即涡流形)的流动图案。 The similar feature along the length of the flow is repeated so that the fluid flows down along the channel length, to maintain the non-linear (i.e., vortex-shaped) pattern of flow in the main channel.

[0111] 在任意特定的微通道中可包括多种特征,包括以不同的深度凹陷入一个或多个微通道壁的特征。 [0111] In any particular microchannel may include a variety of features, including a recess at different depths into one or more microchannel wall features. 较佳的是,凹槽之间的间距为0.05-10毫米,更优选为0.1-1毫米。 Preferably, the spacing between the grooves from 0.05 to 10 mm, more preferably 0.1 to 1 mm. 所述表面特征可以处于整个微通道内,或处于其一部分之内。 The surface features may be in the whole microchannel, or within a portion of its. 具有表面特征的区域的部分可以是间断的,以促进设计的区域内所需的反应或单元操作。 Partial region having surface features may be intermittent, in order to facilitate the reaction or unit operation within the desired areas of the design. 例如,微通道的2. 5厘米的区可具有小间隔的表面特征阵列,然后是10厘米的平坦通道,然后是5厘米的较大间隔的表面特征区。 For example, a region of 2.5 cm microchannel may have an array of small spaced surface features, followed by 10 cm flat channel, and wherein the surface area of ​​the greater spacing of 5 cm. 较大间隔表示表面特征的间距、或特征与特征之间的距离大于表面特征行程宽度的五倍。 It represents the surface features greater spacing pitch, or the distance between the five times larger than the surface with the features in the stroke width.

[0112] 在一些实施方式中,所述表面特征基本上在微通道的长度上延伸(不包括任何流动分布或装歧管区)。 [0112] In some embodiments, the surface features extending substantially over the length of the microchannel (not including any flow distribution means or manifold region). 在一些实施方式中,微通道可以在等于或小于其长度的50%的范围内具有表面特征,在一些实施方式中为等于或小于其长度的20%的范围内,在一些实施方式中为微通道长度的10-100%的范围内。 In some embodiments, the microchannels may be equal to or less than the surface features within its length 50%, in some embodiments equal to or less than its length 20%, in some embodiments, a micro in the range of 10-100% of the length of the channel. 在一些实施方式中,优选在装歧管区或流动分布区中也包括表面特征,以便通过改善一些通道或区中的压降以调节流动分布,从而促进或调节传热或调节流动分布。 In some embodiments, preferably in a manifolded distribution or flow area also include surface features to adjust the flow distribution to some of the channels or by improving the pressure drop zone, to facilitate heat transfer or regulate or adjust the flow distribution.

[0113] 通过将跨越宽度混合特征与跨越间隙混合特征结合起来,可以在单元操作中获得优良的混合和性能。 [0113] By combining the mix across the width and across the gap wherein the mixing characteristic can be obtained and excellent mixing performance in the operation unit. 为了提供总体的混合,可以将这两种设计原则相互配合使用。 In order to provide a mixed overall, these two design principles can be used in conjunction with each other. 所需的特征包括:将表面特征置于相对的通道壁上;在任意一个面上形成特征,以允许流体跨越通道宽度来回运动;将一个面上的表面特征进口与相对的面上的表面特征进口对齐。 Desired characteristics comprising: a surface feature disposed opposing channel walls; characterized in that any one surface is formed to allow fluid to move back and forth across the width of the channel; and characterized in an inlet face of the surface and the surface opposite the surface characteristics imported alignment. 也就是说,优先使顶板和底板之间的特征相配合,使得两个面上的图案在取向上基本互相成" 顺式〃而非〃反式"。 That is, characteristics preferentially between cooperating top and bottom plates, such that the pattern of the two surfaces substantially "cis rather 〃 〃 trans" to each other in orientation.

[0114] 在一个优选的实施方式中,将具有人字形或对号图案的类似表面特征的阵列设置在一个壁上,类似的特征的类似阵列以相同的角度或基本翻转的角(180度变换)对齐, 产生了特别有用的图案,该图案可用来使流体和分子在活性表面特征内运动,随着雷诺数的增大,不成比例地延长在活性表面特征内花费的时间。 [0114] In a preferred embodiment, the surface features having similar or checkmark chevron pattern array is disposed on a wall, corner array similar features similar to or substantially the same flip angle (180 degrees conversion ) aligned produced particularly useful pattern which may be used to move the fluid within the active molecules and surface features, as the Reynolds number increases disproportionately extended time spent in the active surface features.

[0115] 优选沿着通道长度连续设置的同样特征的最小数量取决于通道间隙和表面特征深度。 The same minimum number of characteristics [0115] Preferably disposed along the channel length of the continuous gap and surface characteristics depending on the channel depth. 类似的或〃同样的〃特征沿着通道长度相互相邻地重复设置。 〃 same or similar features 〃 disposed adjacent to each other along the length of the channel repeatedly. 图Ib中显示了一个例子。 In FIG. Ib shows an example. 这些特征产生的流动图案并不被认为是湍流,尤其是在远离总体流动时。 These features produce a flow pattern is not considered to be turbulent, especially when the bulk flow away. 可以更好地将所述流动描述为〃有向(directed)层〃流。 The flow may be better described as directed 〃 (Directed) 〃 layer flow.

[0116] 所述表面特征可具有两个或更多个层,这些层互相在顶部叠置,或者以三维图案形式缠结。 The [0116] surface features may have two or more layers, which are stacked on top of each other or intertwined in a three-dimensional pattern form. 各独立的层中的图案可以是相同或不同的。 Each individual layer pattern may be the same or different. 流体可以在各个层中旋转或平流, 也可仅在一个层中旋转或平流。 Or the fluid can be rotated in the stratosphere various layers may also be rotated or only in one layer in the stratosphere. 亚层(定义为不与总体流动通道相邻)可仅用来产生另外的表面区域以沉积催化剂,其中流体在表面特征的第一层中旋转,以分子的形式扩散入第二亚层或更多的亚层中,以促进反应。 Sublayer (defined as not adjacent to the bulk flow path) may only be used to produce additional surface area to deposit a catalyst, wherein the fluid rotates in a first characteristic of the surface layer, diffusion into the second sub-layer in the form of molecules or more sublayers to promote reaction. 可通过金属浇注或其它方法制造三维特征,其中不同的图案可以插入离散的平面中,这些平面仿佛在彼此的顶部叠置。 Metal pouring or by other methods for producing three-dimensional features, different patterns can be inserted where discrete planes, these planes as if stacked on top of each other. 可以发现与总体流动通道相邻的三维不同表面特征,所述特征具有不同的深度、形状和位置,还伴有具有不同深度、形状和位置的图案的亚特征。 Different three-dimensional surface features can be found in the bulk flow channel adjacent the features have different depths, shapes and positions, accompanied by sub-features with patterns of varying depths, shapes and locations. 本发明的结构可有益地用于需要催化剂沉积、或蒸馏之类的化学分离的另外的表面区域的化学反应。 Further chemical reaction surface area of ​​the structure of the present invention may be advantageously used to require a catalyst deposition, or chemical separation by distillation or the like.

[0117] 图4b显示了一种三维表面特征结构,其中在与总体流动微通道相邻的边界处发现凹陷的人字形结构,在所述人字形结构之下具有一系列的三维结构(浅色的线(pale line)),这些三维结构同与总体流动路径相邻的特征相连,但是由具有混杂形状、深度和位置的结构制成。 [0117] Figure 4b shows a three-dimensional surface feature, wherein the recess is shaped structures found in people at a boundary adjacent to the bulk flow microchannel and has a series of three-dimensional structure (light below the chevron structure line (pale line)), the three-dimensional structure with the bulk flow path is connected to adjacent features, it is made of a structure having a hybrid shape, depth and location. 该结构还可有益地产生亚层通道,这些通道不是直接位于与总体流动微通道相邻的开放表面特征之下,而是通过一条或多条曲折二维或三维通道相连。 This configuration may be beneficial generating sublayer channels that are not directly below the bulk flow microchannel opening adjacent surface features, but are connected by one or more tortuous two-dimensional or three-dimensional channel. 该方法可有益地用来在需要得到更宽的或更窄的停留时间分布的反应器中产生设定的停留时间分布。 The method may advantageously be used to obtain the required residence time in the reactor is set to produce a wider or narrower distribution of residence time distribution.

[0118] 图2a显示了具有各种图案(轴向)和各种深度(侧向)的表面特征。 [0118] Figure 2a shows a patterns having various (axial) and various surface feature depth (lateral) of. 图2a所示的表面特征的图案在表面特征区内单独的表面特征内和/或任意两个表面特征之间引入空间变化的表面特征深度。 Figure 2a wherein a depth of the surface pattern of surface features shown in the individual surface area of ​​the surface morphology changes introduced into the space and / or between any two surface features. 对于一些应用,这可能是特别有益的,在所述应用中,表面特征内表面特征深度的变化可产生更多的流体旋转或涡量,使得流体之间或从流体到催化剂壁的外部传质阻力显著减小。 For some applications, it may be particularly advantageous in the application, the surface feature depth variation can produce more fluid rotary or vorticity inner surface features such that the external mass transfer between the fluid or the fluid resistance from the wall to the catalyst significantly reduced.

[0119] 图2b的图案可特别有益地作为下层表面图案,其位于至少一个或多个其它表面特征片之下,以增大催化剂或物质交换剂可用的表面积。 [0119] Figure 2b pattern may be particularly advantageous as a lower surface pattern, which is located below the at least one sheet or more other surface features, or to increase the catalyst surface area available for mass exchange agents. 图2c的图案显示了具有划格特征的表面特征。 Figure 2c shows the pattern of surface features having characteristic hatch.

[0120] 图2d的图案同时引入了具有角度的特征和水平特征。 [0120] FIG. 2d pattern while introducing the features and horizontal features having angle. 所述特征几何结构可以沿工艺通道的长度变化。 The feature geometry may vary along the length of the process path. 这种设计可以特别有益地作为下层表面图案片,该片用来固定更多的催化剂或物质交换剂,同时还能为具有角度的特征(其优选与该片相邻)产生更深的深度。 This design may be particularly advantageous as a lower surface of the patterned sheet, for fixing the sheet material or more catalyst exchangers, while a deeper depth to produce features having an angle (which is preferably adjacent to the sheet). 所述第二有角度的片与流动路径相邻,引起流体旋转。 The second angled piece adjacent the flow path, causing the fluid to rotate. 所述有角度的特征的不同的深度可以在流动路径中产生更多的湍流或明显的湍流。 The characteristic angles different depths may produce more turbulence or significant turbulence in the flow path.

[0121] 表面特征深度优选的范围是小于2毫米,更优选小于1毫米,在一些实施方式中为0.01-0. 5毫米。 [0121] depth of the surface features of the preferred range is less than 2 mm, more preferably less than 1 mm, in some embodiments of 0.01-0. 5 mm. 表面特征的侧向宽度的优选范围应足以几乎跨越微通道宽度(如人字形设计中所示),但是在一些实施方式中(例如填充特征中)能够跨越微通道宽度的60% 或更少,在一些实施方式中为40%或更少,在一些实施方式中约为10-50%。 The preferred range of the lateral width of the surface features should be sufficient to nearly span the microchannel width (as shown in the herringbone designs), but in some embodiments (e.g. filled features) can span the microchannel width of 60% or less, in some embodiments, 40% or less, about 10 to 50% in some embodiments. 在优选的实施方式中,所述表面特征图案中至少一个角相对于微通道宽度的取向角度为10°,优选为30°,或更大(90°是平行于长度方向,0°是平行于宽度方向)。 In a preferred embodiment, the surface feature pattern in at least one corner angle of orientation with respect to the microchannel width of 10 °, preferably 30 °, or more (90 ° parallel to the longitudinal direction, 0 ° is parallel to widthwise). 在与微通道宽度相同的方向测量侧向宽度。 Lateral width measured in the same microchannel width direction.

[0122] 所述表面特征的侧向宽度优选为0. 05毫米至100厘米,在一些实施方式中为0. 5 毫米至5厘米,在一些实施方式中为1-2厘米。 [0122] The lateral width of the surface features is preferably 0.05 to 100 mm, in some embodiments from 0.5 to 5 mm, in some embodiments 1-2 cm.

[0123] 微通道相对面上的凹陷的特征可以相配合,以显著增大传热和传质的水平。 [0123] wherein recessed microchannel opposite faces may cooperate to significantly increase the level of heat and mass transfer. 凹陷入微通道壁中的基本斜向的(相对于长度或流动方向)流动路径是用于本发明的促进流动图案的基本结构单元(building block),可以在相对的壁上配合,以便相对于仅在单个壁上的相同的或类似的图案提供惊人的优良的混合。 Recessed microchannel wall substantially oblique direction (with respect to the longitudinal or flow direction) of the flow path is a basic building block facilitate the flow pattern of the present invention (building block), may be fitted in the opposing walls, so that with respect to only an astonishing excellent mixing at the same or similar pattern of a single wall. 由于凹陷的流动路径的基本斜向的性质,凹陷的通道中的速度包括显著的平行于微通道中总体流动的平均方向、或与该方向成角度的分量,从而在所述凹陷的通道中引起显著的流动。 Since the basic nature of the oblique recess of the flow path, the speed of recessed channels comprises substantially parallel to the microchannels overall average direction of flow, or with the angled component, causing the recessed channel significant flow. 然而,当微通道一个主面上的凹陷通道中的斜向流动路径适当地与相对面上的流动路径相配合时,开放微通道中垂直于平均总体流动方向的流动会非常有效地得到促进。 However, when the flow path obliquely recessed microchannel in a main surface of the flow path is appropriately mated opposing surfaces of the open microchannels flowing within the mean bulk flow direction is perpendicular to obtain very effective promotion. 垂直流动能够特别有利于减少在层流微通道中存在的外部传质或传热限制。 Vertical flow can be particularly beneficial to reduce external mass or heat transfer limitations present in a laminar flow microchannel. 具体来说,垂直于总体流动方向的流动的平流速率使得流体流向微通道壁的速率要比仅通过扩散造成的传质速率大至少两倍或五倍或十倍或更多。 Specifically, the rate of advection of a flow to a vertical flow direction such that the overall rate of flow of fluid than the microchannel wall only by diffusion mass transfer rate due to at least two times or five or ten or more. 因此,由固定在微通道壁或与微通道壁相邻的载体结构上的催化剂推动的反应将具有更高的表面反应物浓度,从而具有更高的总反应速率。 Thus, it is driven by a fixed catalyst on a support structure adjacent the microchannel wall or walls of the microchannel reactor will have a higher concentration of the reaction surface, so as to have a higher overall reaction rate. 垂直平流和速度矢量也有利于传热,这是因为这增大了表面传热系数,减小了流体温度的边界层限制。 Advection and vertical velocity vectors are also conducive to heat transfer, since this increases the heat transfer coefficient, the boundary layer is reduced to limit the fluid temperature. 在一些优选的实施方式中,所引起的垂直流动可通过以下方式获得提高:(1)战略性地将能够将流体拉入一面上凹陷的通道内的特征置于一种位置,该位置对应于相对面上能够将流体拉入相对面上凹陷的通道的位置(即顺式构型),(2)将相对的壁保持足够近(保持微通道间隙足够窄),以使得相对的面之间发生相互作用。 In some preferred embodiments, the vertical flow caused by the increase may be obtained by the following ways: (1) the fluid can be strategically pulled on one side of the recessed features within a channel disposed A position, which position corresponds to the opposite faces of the fluid can be pulled into position on opposite sides of the recessed channel (i.e. the cis configuration), (2) the opposing walls held close enough (remains sufficiently narrow microchannel gap), between the opposing faces such that interaction.

[0124] 通常,如果需要侧向混合(跨越通道的宽度),则相对面上的特征应当用垂直于平均总体流动方向的平面内的基本斜向的分量促进流动。 [0124] Generally, if required mixing lateral (across the width of the channel), then the opposing surface features should facilitate the flow of substantially obliquely with a component in a plane generally perpendicular to the average flow direction. 在此情况下,所述特征应当配合以做到这一点。 In this case, the feature should cooperate to do this. 凹陷在开放微通道的壁内的基本斜向的特征具有在总体流动方向的长度分量,该长度分量优选等于或大于侧向(通道宽度方向)的分量,更优选至少是侧向分量的两倍。 An open recess in the wall of the microchannel having a characteristic substantially obliquely in the longitudinal direction of the bulk flow component, the component is preferably equal to or greater than the length of a lateral component (channel width direction), more preferably at least twice the lateral component .

[0125] 在一些优选的实施方式中,通过在整个通道中产生多个点来进一步促进混合,在这些点,流体首先被分裂(流动发散),然后在其它的位置与流体重新合并(流动会聚)。 [0125] In some preferred embodiments, by generating a plurality of points throughout the channel to further facilitate mixing, at these points, is first split fluid (divergent flow), and then recombined with the fluid in the other positions (converging flow ). 在本发明中,这可通过使用具有交替的发散和会聚结构的基本斜向的特征来完成。 In the present invention, this can be done by using the basic features obliquely with alternating converging and diverging structures. 例如,可以跨越通道侧向设置多个人字形结构或角度,而不是在微通道中固定的轴向位置设置一个点或角度或人字形结构。 For example, the channel provided laterally across a plurality of persons or angle-shaped structure, rather than a fixed axial position in the microchannel point or a set angle or chevron structure. 这些特征优选的发散和会聚的图案将利用上文列出的三个原则, 即相对的面上相对特征位置的配合,发散特征和会聚特征数量的平衡(流动方向上和宽度方向上,(即垂直于平均总体流动方向的方向,以及进入包括凹陷特征的面之间的微通道间隙的方向)),开放微通道中具有足够小的间隙(见上文所述的间隙尺寸)。 These preferred characteristics of diverging and converging pattern with three principles listed above, i.e., a surface facing opposite mating feature locations, and wherein the converging diverging balance the number of features (the flow direction and the width direction, (i.e. a direction generally perpendicular to the average flow direction, and enters the microchannel including a gap between the recessed surface features direction)), the open microchannel having a sufficiently small clearance (see gap dimension as described above). 在一些优选的实施方式中,使发散特征和会聚特征的数量最小,并重复基本类似的特征。 In some preferred embodiments, the characteristic that the diverging and converging characteristics of a minimum number, and repeats substantially similar features.

[0126] 图Ic显不了相对壁上的表面特征的一些重叠部分的选择方案。 [0126] FIG. Ic significant number of options not overlapped portion of the opposing walls of the surface features. 由于在图Ic中, 相对面上的特征基本是互相呈反式的,因此预期流动图案对于混合的效果不会像相对面上的特征为顺式构型时那样好。 Since in FIG. Ic, wherein opposing surfaces are substantially mutually trans form, it is expected that the flow pattern is not characterized as opposite sides of the cis configuration is as good as the mixing effect.

[0127] 本发明可在微通道的两个侧面上使用具有图案的表面,或者可仅在微通道的一个侧面上使用。 [0127] The present invention may be used in a surface having a pattern of microchannels on both sides, or may be used only on one side of the microchannel. 例如,表面可以用具有斜条纹(这些条纹优选是凹槽)的类似结构的垫片配对(在微通道的相对侧面上),所述斜条纹相对于相对面是对齐的、交错的或交叉的。 For example, the surface can be paired with a gasket having a similar structure diagonal stripes (fringes are preferably grooves) (on opposite sides of a microchannel), said oblique stripes are aligned with respect to the opposing surface, staggered or intersecting . 对于一些情况,配对所产生的混合效果要优于仅在一个主表面上的通道结构中混合的效果, 尤其当主通道的间隙增加到超过1毫米时。 For some applications, the mixing effect produced by paired superior effect only on one main surface of the channel structure mixed in, the main channel in particular when the gap is increased more than 1 mm. 在一些优选的实施方式中,所述图案结构主要由基本设置在微通道表面的整个宽度上的斜向凹槽组成。 In some preferred embodiments, the structure of the main oblique groove pattern over the entire width of a microchannel surface provided by the base composition. 壁的具有图案的表面区域可以占据微通道表面部分或全部的长度;在一些实施方式中,斜向凹槽设置在微通道表面至少10%,20%,50%,或至少80%的长度上。 A pattern having a surface area of ​​a wall may occupy part or all of the surface of the length of the microchannel; in some embodiments, the slanted recess provided on a surface of at least 10%, 20%, 50% of the microchannel, or at least 80% of the length . 在一些实施方式中,特征包括具有一种或多种相对于流动方向的角度的斜向特征(优选为凹槽,包括CRF)。 In some embodiments, the one or more features comprises a feature oblique angle with respect to the flow direction (preferably a groove, including CRF). 在一些优选的实施方式中, 所述特征在至少一个壁上具有两种或更多种相对于流动方向的角度。 In some preferred embodiments, wherein the at least one wall having two or more angles with respect to the flow direction. 这些角度可以在顶点或点处连接或不连接。 These angles may or may not be connected at the apex or point. 所述在至少一种轴向位置跨越微通道至少一个壁的宽度的不同角度用来在不同的方向推和拉流体,相对于其它的直的层状流线改进侧向和横向的流动。 Across the width of the different angles at least one microchannel axial position of at least one wall in a different direction for pushing and pulling a fluid, improved lateral and transverse flow relative to the other of a straight line of laminar flow. 当流体的侧向和横向流动增加时,其优选随着雷诺数增大而增大的倾向进入所述活性表面特征。 When increasing the lateral and transverse flow of the fluid, which preferably increases as the Reynolds number tends to enter the active surface features.

[0128] 另一方面,具有图案的表面包括层叠在彼此顶部的多种图案。 [0128] On the other hand, the surface having a pattern comprising a plurality of stacked on top of each other patterns. 在一个例子中,将孔的图案或阵列设置成与传热壁相邻,将第二图案(例如斜向或人字形的特征阵列)层叠在顶部并与用于流动的开放通道相邻。 In one example, the pattern or array of holes arranged adjacent to the heat transfer wall, the second pattern (e.g., diagonal or chevron array features) are stacked on top of and adjacent to the open channel flow. 与开放间隙相邻的片具有通过片厚度的图案结构, 使得流体可以通过所述片,进入下面的图案结构中。 Open gap and the adjacent sheet having a pattern structure through the thickness of the sheet, such that fluid can pass through the sheet structure into the underlying pattern. 可通过平流或扩散进行流动。 It can be flow through advection or diffusion. 例如, 具有通孔阵列的第一片可以置于传热壁上方,具有斜向通缝(through slot)或人字形结构的阵列的第二片设置在第一片上。 For example, an array of through-holes having a first side wall heat transfer sheet may be placed, having oblique slits through (through slot) or chevron array structure of the second sheet is disposed on the first sheet. 该优选的实施方式产生了更大的用来附着催化剂或包括吸着剂、芯等的其它活性试剂的表面区域。 This preferred embodiment produces a larger surface area for adhering a catalyst or sorbent comprises other active agents, and the like of the core. 在一些实施方式中,所述图案在微通道的至少一个另外的壁上重复。 In some embodiments, the pattern is repeated at least one further wall of the microchannel. 所述图案可以优选在相对壁上偏移。 The pattern may preferably offset in the opposite wall. 最内部的具有图案的表面(限定流动通道的表面)可包括斜向阵列之类的图案。 The innermost patterned surfaces (surface defining a flow channel) may comprise an array of inclined like pattern. 斜向阵列可以同时沿流动方向取向(顺式取向),或一侧沿流动方向取向,相对侧沿着与流动方向相反的方向取向(反式取向)。 Array may simultaneously flow along the obliquely oriented (cis orientation), or one side oriented in the flow direction, the opposite side (trans orientation) oriented in a direction opposite to the flow direction. 通过改变相对壁上的表面特征,可以在向下通过中心和开放间隙的流体中产生不同的流场和不同程度的涡量。 By modifying the surface characteristics of the opposite walls, can produce different flow vorticity field and varying degrees of fluid downwardly through the center and open gap.

[0129] 微通道壁之间的间隙(即无阻碍的总体流动路径)优选等于或小于10毫米,更优选等于或小于5毫米,在一些实施方式中,为0.05-2毫米。 [0129] gap between the microchannel wall (i.e., generally unobstructed flow path) is preferably equal to or less than 10 mm, more preferably equal to or less than 5 millimeters, in some embodiments, from 0.05 to 2 mm. 所述表面特征可以重复相同的形状或不同的形状。 The surface features may repeat the same shape or different shapes. 不同的特征改变了沿微通道长度的取向和/或形状和/或尺寸。 Different feature change the orientation and / or shape and / or size along the length of the microchannel. 例如,图案可包括人字形(或对号形)结构,其与流动方向对齐,然后与流动方向相反的方向对齐,然后对准或指向微通道的一侧,然后是对准或指向微通道的另一侧。 For example, the pattern may comprise a chevron (or checkmark shape) structure, which is aligned with the flow direction, and aligned opposite to the flow direction, and aimed or directed at the side of the microchannel and is aimed or directed microchannels The other side. 所述特征可以是随意设置的,或者可包括含有2或5或10或更多类似特征的小组,然后变为新的特征。 The features may be arbitrarily set or may include a group containing 2 or 5 or 10 or more such features, and then becomes the new features. 其优选具有位于主通道至少一个壁上的连续对齐的类似特征或一连串的许多特征,沿着主通道一个或多个壁的长度上,至少10个或20个或更多个类似的特征是连续的。 Preferably located in the main channel having at least one wall of continuous or aligned series of similar features The many features along the length of the main channel or a plurality of walls, at least 10 or 20 or more consecutive similar features of. 类似的特征基本上保持了总的总体流动方向,其定义为沿X方向或y方向的净正速度矢量(表面特征顶部和底部之间的流动,以及从微通道的侧面到侧面的流动),而不是在X或y坐标沿通道长度负向移动的净速度,对于流体在主流动通道中往复运动时便会出现后一情况。 Substantially similar features to maintain the overall general flow direction, which is defined as a net positive velocity vector in the X direction or the y direction (flow between the top and bottom surface feature, and the flow from the side to the side of the microchannel), not to the net speed of movement, for reciprocating movement in the main fluid flow path will appear in a case where the X or y coordinate along the length of the channel negative. 因此, 在微通道的宽度上,在所述至少两种角度的活性表面特征凹槽的第二种角度开始的位置, 类似的特征不会改变或者发生适度的变化。 Thus, the width of the microchannel, a second angular position of active surface wherein the at least two starting angular grooves, or similar features will not change the appropriate changes. 交错的人字形混合器中位移处的人字形结构不类似。 Staggered herringbone mixer herringbone structure displacement at dissimilar. 在各特征中,特征跨距或行程宽度可以有各自不同的变化,但是优选各特征之间的变化小于50%。 In each feature, the feature stroke or stride width may have different variations, but the variation between features is preferably less than 50%. 更优选小于30%,更加优选小于15%。 More preferably less than 30%, more preferably less than 15%. 还应注意,具有包括至少两种或更多种角度的不连续支段的特征仍应看作具有一个以上角度的特征。 It should also be noted that, having features include at least two or more supporting angle discontinuous segments should still believed to be characteristic of having more than one angle. 例如,考虑一种简单的人字形结构,其中具有不同角度的两条支段在有凹槽特征的顶部的顶点处连接。 For example, consider a simple herringbone structure, wherein two branch sections having different angles at the apex of the top of the connecting groove features. 所述凹槽的人字形结构的顶点可以被封闭,使得微通道沿着微通道的至少一个壁的宽度具有两种纯的单一角度特征。 The groove vertex of human-shaped structure may be closed, so that the microchannel has two pure single angle characteristic along the width of the at least one wall of the microchannel. 如果所述两个不连接的支段分隔的距离小于微通道宽度的20%,则所得的这种不连接的特征组的性能与连接的特征组基本类似。 If the two segments are not connected branches separated from less than 20% of the width of the microchannel, the performance characteristics of the connection group of the resulting set of features that are not connected to the substantially similar. 本质上,当微通道的至少一个壁具有沿着微通道宽度的至少两个具有角度的特征时,便可产生本发明描述的本发明的流动特性,而与所述特征是否物理连接无关。 Essentially, when the at least one wall of the microchannel has at least two features have angular widths along the microchannel, the flow characteristics can be produced according to the present invention described herein, and whether or not the feature independent of the physical connection. 另外,当基本类似的连接的或不连接的特征以斜角适当或最小变化的方式重复时,对于一连串至少15个特征,本发明的方法是有利的。 Further, when the connection is substantially similar or not connected properly or at an oblique angle characteristic repeated in varying ways minimal, at least for a series of features 15, the method of the present invention is advantageous.

[0130] 较佳的是,所述特征的行程宽度(凹槽内的内部壁到壁的距离;对于矩形特征,该宽度是直的,对于圆形特征,其为直径,对于作为随深度变窄的特征,其为最大的壁到壁的距离;对于可变的特征,其为平均的最大壁到壁距离)与通道间隙(通常为表面特征之间的最小距离或表面特征与相对的微通道壁之间的最小距离)的尺寸比约为0.25-10,所述表面特征的行程宽度优选至少为通道间隙的25%至高达通道间隙的10倍。 [0130] Preferably, the width of the feature stroke distance (the inner wall of the inner groove wall; for a rectangular feature, the width of a straight, circular features for its diameter, as for the variation with depth narrow features, the distance to the wall which is the maximum wall; variable characteristic for which the distance from the wall) and the average of the maximum passage gap wall (typically the minimum distance between the surface features or surface features of the micro opposite the minimum distance between the channel walls) a size ratio of about 0.25 to 10, the surface features of the stroke width is preferably at least 25% up to 10 times the channel gap passage gap. 更佳的是,所述尺寸比为0. 5-1,以产生足够的流动扰动。 More preferably, the ratio is 0. 5-1, to generate sufficient flow disturbances. 如果特征过窄,总体流动会掠过其顶部,受到最小的扰动。 If the feature is too narrow, the overall flow will sweep the top thereof, with the minimum of disturbance. 如果表面特征的行程宽度过宽,则总体流动会很容易膨胀填充新的通道间隙,会受到最小的流动扰动。 If the stroke width of the surface features is too wide, the overall flow will readily expands to fill the gap new channel, flow disturbance will be minimal. 流动扰动定义为不遵循常规的层状抛物线型、具有垂直或横向速度矢量的流动速度矢量。 Does not follow the flow disturbance is defined as the conventional laminar parabolic flow velocity vector having a vertical and lateral velocity vector. 当用于催化反应器时,需要对活性表面特征进行填充和排出,并将溶液催化剂保持在其上,因此还可能优选活性表面特征的行程宽度小于主通道间隙。 When used in the catalytic reactor, the need for a surface active filling and discharging characteristics, and the catalyst solution is held thereon, it is also possible to travel the width of the surface features is preferably smaller than the main channel clearance activity. 活性表面特征中的流体产生的毛细管作用力将用来在排液时保持流体,使其能够进行原位干燥和煅烧。 Capillary forces active surface features for holding the produced fluid at the fluid discharge, it can be dried and calcined in situ. 如果主通道间隙小于活性表面特征的行程宽度,其可用来在排液时将流体拉出所述活性表面特征,对于一些催化反应器的例子,例如无电镀膜之类的反应方法沉积催化剂的例子,所述后来在对通道排液的同时对特征进行的排液可能不是问题。 If the gap is smaller than the active surface of the main channel wherein the width of the stroke, which can be used when draining the fluid is pulled out of the active surface features, for some examples of the catalytic reactor, for example, electroless plating reaction catalyst such method for depositing an example a liquid discharge passage of said discharge later in the same time features may not be a problem.

[0131] 还惊人地发现,当将特征添加到雷诺数大于2200的流体流时,其工作性能优于同样在湍流状态下操作的平坦通道。 [0131] Also surprisingly been found that, when the flat channel will add features to the flow Reynolds number greater than 2200, its performance is superior to the same manner as in the turbulent flow state. 具体来说,具有表面特征的层流(Re〈2200)或具有表面特征的湍流(Re>2200)可获得优于具有相同雷诺数、但是在湍流状态中工作的平坦通道的改进的混合质量和/或传热。 Specifically, the surface features of the laminar flow (Re <2200), or turbulent (Re having surface characteristics> 2200) than can be obtained with the same Reynolds number, but an improved flat channel operating in a turbulent state, and the quality of mixing / or heat transfer. 表面特征增加了净的径向或横向速度分量,该分量比常规湍流通道中的不规则涡流产生的速度的径向或横向分量强。 Surface features increase the net radial or transverse velocity component, strong radial or transverse component of the velocity component generated turbulence than conventional irregular passage vortex. 实际上,所述表面特征的设计可以使得根据应用确定横向速度与垂直速度的相对比。 In fact, the surface features may be designed such that the relative ratio is determined depending on the application of the lateral velocity and vertical velocity. 对于需要良好侧向混合、包括化学反应的应用,垂直速度矢量的加强是特别有益的,因为这是将新鲜的反应物携带到反应表面的主要方法。 It requires good lateral mixing, including the application of the vertical velocity vector of reinforcing a chemical reaction is particularly advantageous, since this is the main method of a fresh reaction surface for the reactant to carry.

[0132] 较佳的是,所述特征深度(定义为凹槽底板和总体流动通道间隙或开口之间的内部凹陷或凹槽或表面特征深度)与通道间隙(表面特征附近(例如1厘米以内)微通道壁之间的最小距离)的尺寸比为0.25-10,所述表面特征的特征深度优选至少为通道间隙的25%,至所述通道间隙的10倍。 [0132] Preferably, the feature depth (internal feature defined between the well bottom and the bulk flow passage gap or opening or surface depressions or grooves depth) and the passage gap (near the surface characteristics (e.g. less than 1 cm ) the minimum distance between the microchannel wall) ratio of 0.25 to 10, wherein a depth of the surface features preferably at least 25% of the passage gap, and 10 times the channel gap. 更佳的是,所述尺寸比为0. 5-3,以产生足够的流动扰动。 More preferably, the ratio is 0. 5-3, to generate sufficient flow disturbances. 如果所述特征过浅,总体流动会掠过顶部,受到最小的扰动。 If the feature is too shallow, the overall flow will sweep the top, with the minimum of disturbance. 如果表面特征的深度过深, 则总体流动将不容易地对流进入深的特征内,进入所述活性表面特征的总体流动的部分将会很小。 If the depth of the surface features is too deep, the overall convective flow will not easily enter the deep features, will be small portion of the active surface into the bulk flow characteristics.

[0133] 在表面特征在一个以上壁上的实施方式中,一个壁上的特征与第二壁上存在的图案相同(或类似),但是围绕主通道平均总体流动方向(或长度)旋转。 [0133] In an embodiment wherein a surface of a wall of the above, the same features present in one wall and a second wall of the pattern (or the like), but rotation about the main channel mean bulk flow direction (or length). 在其它具有相对壁上的特征的实施方式中,一个壁上的特征近似为相对壁上特征的镜像。 In other embodiments having features of the opposing walls, wherein one wall is approximately a mirror image of features on opposite walls. 在一个以上壁中具有表面特征的其它实施方式中,一个壁上的特征与第二壁上存在的图案相同(或类似), 但是围绕垂直于主通道平均总体流动方向的轴旋转(换句话说,所述特征相对于主通道平均总体流动方向旋转180度,围绕主通道平均总体流动中心线旋转)。 Other embodiments of the surface features in more than one wall, the wall of the same characteristic present in a wall of the second pattern (or the like), but rotation about an axis perpendicular to the main channel mean bulk flow direction (in other words the characteristic with respect to the main channel mean bulk flow direction rotated by 180 degrees, rotation about the centerline of the main channel mean bulk flow). 相对的或相邻的壁上的特征可以互相直接对齐,或者不互相直接对齐,但是优选沿壁连续重复一定长度。 Characterized in opposing or adjacent walls may be directly aligned with each other, or are not aligned with each other directly, but is preferably repeated continuously along the wall length. 在其它的实施方式中,可以在微通道的三个或更多个表面上存在表面特征。 In other embodiments, the surface features may be present on the surfaces of three or more microchannels. 对于具有三个或更少侧面的微通道几何结构,例如三角形、卵形、椭圆形、圆形等,表面特征可以覆盖微通道周边的至少20%至高达100%。 For surface features with three or fewer sides microchannel geometries, such as triangular, oval, elliptical, circular, etc. may cover the periphery of the microchannel is at least 20% up to 100%.

[0134] 各表面特征支段可与总体流动方向成斜角。 [0134] wherein each branched segment surface may be an oblique angle to the bulk flow. 所述特征跨距长度或跨距或开口规定为垂直于特征取向。 The feature span length or span or opening perpendicular to the predetermined alignment feature. 例如,一种表面特征是一种斜向凹陷,其与垂直于主通道总体流动的平均方向的平面成45度角,开口或跨距或特征跨距长度为0. 38毫米,特征行程长度为5. 59 毫米。 For example, one surface feature is an oblique recess, which plane is perpendicular to the mean direction of bulk flow of the main passage 45 degree angle, the opening or span or feature span length of 0.38 mm, wherein the length of the stroke 5.59 mm. 行程长度描述了沿最长的方向、特征的一端到另一端的距离,而跨距或特征跨距长度是沿最短方向(非深度)的距离。 Describes the stroke length along the longest direction, wherein one end to the other end of the distance, whereas the span or feature span length (non depth) direction along the shortest distance. 特征深度是离开主通道的距离。 Wherein the depth is a distance away from the main channel. 对于具有不均匀宽度(跨距)的特征,跨距是行程长度上的平均跨距。 For features having a nonuniform width (span), the span is the average span length of the stroke.

[0135] 在一些优选的实施方式中,两个或更多具有图案的片(至少两个具有通透图案(through Pattern),例如通孔或通缝)在彼此顶部叠置。 [0135] In some preferred embodiments, the sheet having two or more patterns (transparent pattern having at least two (through Pattern), such as vias or through-slits) stacked on top of each other. 两种或更多种所述图案可以是相同的,或者所述有图案的表面中的三种或更多种图案可以是不同的。 The pattern of two or more of them may be the same, or a surface pattern of three or more kinds of patterns may be different. 具有不同的几何结构的叠置的图案可产生有益的流动状态,从而使得流体接近活塞流,并且在相当短的距离内接近活塞流。 Having different geometries of the pattern may be superposed beneficial flow conditions, so that the fluid approaches plug flow, and is close to plug flow over a relatively short distance. 建立所述流动状态的距离可小于100个特征跨距长度,或者更优选小于50个特征跨距长度,更加优选小于20个特征跨距长度。 Establishing the flow state 100 wherein the distance may be less than the span length, or more preferably less than 50 feature span length, more preferably less than 20 feature span length. 所述表面特征可以与总体流动方向成斜角。 The surface features may be an oblique angle to the bulk flow. 所述特征跨距长度或跨距规定为垂直于特征取向。 The feature span length or span perpendicular to the predetermined alignment feature. 行程长度描述了沿最长的方向、 从特征的一端到另一端的距离,而所述跨距或特征跨距长度是沿最短的方向(不是深度)。 The longest run length is described in the direction from the other end from one end to the features, while the span or feature span length along the shortest direction (not depth). 特征深度是离主通道的距离。 Wherein the depth is the distance from the main channel. 对于具有不均匀宽度(跨距)的特征,跨距是行程长度上的平均跨距。 For features having a nonuniform width (span), the span is the average span length of the stroke.

[0136] 本发明包括设备,其中所述设备的至少一区包括位于任意通道段内超过20% (优选至少40%,更优选至少70%)通道表面上的表面特征(在垂直于长度的横截面内测量; 即垂直于通过通道的净流动方向),优选连续延伸至少1厘米,在一些实施方式中,表面特征延伸至少5厘米的长度。 [0136] The present invention comprises a device wherein at least one region of the device includes an arbitrary channel segment more than 20% (preferably at least 40%, more preferably at least 70%) surface features on the surface of the channel (perpendicular to the length of the cross measuring the inner cross-section; i.e. in the direction of the net flow through the channel), preferably vertically extending continuously at least 1 cm, in some embodiments, the surface features extending length of at least 5 cm. 对于封闭的通道,表面百分数是表面特征覆盖的横截面与从表面特征的底部或顶部或其间定值均匀延伸的密闭通道之比。 For closed channel, wherein the surface is a surface percentage covered or cross-section than the top or bottom of the closed path extending therebetween value uniformly from the surface features. 后者定义为平坦通道。 The latter is defined as a flat channel. 例如, 如果通道具有带图案的顶部和底部表面(宽度各自为0.9厘米)和未带图案的侧壁(高0. 1厘米),则90%的通道表面将包括表面特征。 For example, if the channel has patterned top and bottom surfaces (width 0.9 cm each) and unpatterned side walls (0.1 cm high), 90% of the surface of the channel comprises surface features.

[0137] 在一些实施方式中,器件在流动分布区可包括基本平坦的通道,物流在内部分经歧管进入各个通道中。 [0137] In some embodiments, the flow distribution device may include a substantially flat channel, the inner portion of the stream enters the manifold through the respective channel. 所述器件可包括传热区,该传热区可包括用来提高传热的表面特征区,或不包括表面特征区。 The device may include a heat transfer zone, heat transfer region may include surface features to improve heat transfer area, or region does not include surface features. 所述器件还可包括反应区,所述反应区中的全部或一部分包括表面特征。 The device further comprises a reaction zone, said zone comprising all or a portion of the reaction surface features. 所述表面特征最好成簇使用,其中5个或10个或20个或更多类似的特征连续地对齐(先是活性表面特征凹槽,然后是脊,然后是活性表面特征等等),以进行单元操作或混合包含至少两种流体的物流。 The surface feature is preferably used in clusters, wherein 5 or 10 or 20 or more similar features are continuously aligned (first active surface wherein the grooves and ridges is, then the active surface features, etc.) to mixing operations or unit comprising at least two fluid streams. 线性距离或沿表面特征之间的脊的距离优选保持在表面特征跨距或行程宽度的0. 01倍至10倍之间。 Or the linear distance between surface features along the ridge distance is preferably maintained between 0.01 to 10 times the surface characteristics of the span or width of the stroke. 优选相邻表面特征之间的距离是活性表面特征的开口或跨距或行程宽度的0.2-3倍。 Preferably the distance between adjacent surface features is an opening or span or feature active surface of 0.2 to 3 times the width of the stroke. 随着该距离增大,另外的层流物流将缓和成常规的抛物线流路,不容易将流体引入活性表面特征。 As this distance increases, the additional laminar flow stream into conventional parabolic ease passage, is not easy to introduce fluid into the active surface features.

[0138] 较佳的是,所述通道在所有的侧面上封闭,在一些实施方式中,所述通道具有大体上呈正方形或矩形的横截面(对于矩形通道,图案结构优选设置在两个主面上)。 [0138] Preferably, the channel is closed on all sides, in some embodiments, the channel has a substantially square or rectangular cross-section (for a rectangular channel, the pattern is preferably disposed on both main structure surface). 对于常规的正方形或矩形通道,所述通道可仅在两个或三个面上封闭,仅有这两个或三个壁的侧面用于上述表面特征百分数的计算。 For conventional square or rectangular channel, the channel may be closed only two or three sides, three sides or only two walls of the surface features used to calculate the percentage.

[0139] 图案 [0139] pattern

[0140] 各表面特征图案可以沿主通道的一面重复,在主通道总体流动方向,特征之间具有可变的或规则的间距。 [0140] Each surface feature patterns may be repeated along one side of the main channel, with variable or regular general flow direction between the main channel, characterized in pitch. 一些实施方式中,每个特征仅有单独的支段,其它的实施方式具有多个支段(2个,3个或更多)。 In some embodiments, only a single strut sections each feature, other embodiments having a plurality of branch segments (2, 3 or more). 对于宽的宽度的主通道,跨越主通道的宽度可相互相邻地设置多个特征或多列重复特征。 For the main channel of the wide width, across the width of the main channel may be disposed adjacent to each other wherein a plurality of repeating features or columns. 对于各表面特征图案,随着图案沿主通道的总体流动方向重复,特征深度、宽度、跨距和间隔可以改变或恒定,但是优选具有恒定或规则的重复尺寸。 For each pattern of surface features, along with the overall direction of flow of the main channel pattern repeat, feature depth, width, span, and spacing may be varied or constant, but preferably having a constant size or regular repetition. 另外,具有以两个不同的角度连接支段的顶点的表面特征几何结构可包括另一种实施方式,其中所述特征支段不在顶点连接。 Further, having an apex at two different angles of the connection piece segment geometry of surface features may include another embodiment, wherein the branched section wherein the vertex is not connected.

[0141] 图2e显示了可用于表面特征的许多不同的图案。 [0141] Figure 2e shows a number of different patterns may be used for surface features. 这些图案并非用来限制本发明, 仅仅用来列举一些可能情况。 These patterns are not intended to limit the invention, merely to name a few possibilities. 图案可具有任意的表面特征,可用于微通道不同的轴向或侧向部分。 Pattern may have any surface features may be used in different axial or lateral portions microchannels.

[0142] 在一些实施方式中(包括将催化剂组合物遮盖涂敷(washcoat)到微通道上), 需要在重力场中,将液体固定在表面特征内(即例如在微通道的壁上施涂均匀的涂层的应用)。 [0142] In some embodiments (including the catalyst composition coated cover (washcoat) to the micro-channel) is required, the liquid in the gravitational field is fixed (i.e., applied on the inner wall of e.g. surface features in microchannels uniform application of the coating). 对于这些实施方式,各表面特征支段的行程长度的垂直分量(相对于重力)应优选小于4毫米,更优选小于2毫米,以防特征中的液体排出。 For these embodiments, the vertical component of the stroke length of each branch segment surface feature (with respect to gravity) shall be preferably less than 4 mm, more preferably less than 2 mm, to prevent the liquid discharge characteristics. 对于这些实施方式,还优选活性表面特征的行程宽度、跨距或开口小于微通道的开放通道间隙(在此处,在单元操作过程中发生排出和主流流动)。 For these embodiments, the surface features also preferred active stroke width, less than the span or opening of the microchannel gap open channels (here, the main flow occurs and the discharge unit during the operation). 如果行程宽度大于通道间隙,则在排出过程中,特征可能无法保持流体。 If the passage gap width is greater than the stroke, then the discharge process, the fluid characteristics may not be maintained.

[0143] 表面特征几何图案SFG-O (见图3a)通过沿单元操作工艺微通道的长度存在的人字形或V形凹陷阵列来描述。 [0143] surface features geometric pattern SFG-O (see FIG. 3a) present along the length of the process microchannel unit operation chevron or V-shaped recess array will be described. 所述人字形图案可以是规则间隔或不规则间隔的,在连续的特征之间的距离是相等或不同的。 The herringbone pattern can be regular or irregular intervals, the distance between the successive features are equal or different. 规则的(或相等的)特征间隔可能是优选的,这是由于存在各特征而对主通道中的总体流动造成的分裂作用更好地增强由其它特征造成的分裂作用。 Rule (or equivalent) wherein the interval may be preferred, the role of which is split due to the presence of features resulting from the overall flow in the main channel due to better enhance the effect of division by other features. 单侧特征仅在微通道的一侧具有特征。 Characterized in that only one side wherein the side of the microchannel. 双侧特征在微通道的两个侧面具有特征(相对的壁上或相邻的壁上)。 Bilateral feature having a characteristic (or the opposite walls of the adjacent walls) on both sides of the microchannel. 在一些双侧面取向实施方式中,特征取向可以为顺式取向或反式取向。 In some embodiments, the double side alignment, alignment features may be oriented cis or trans orientation. 如图3a所示,在相对的壁上具有特征的顺式取向中,两个通道壁上的特征成镜像。 As shown in Figure 3a, cis orientation of the opposed walls having a feature, the feature image into a two channel walls. 反式表示具有表面特征的有两个或更多侧面的微通道的一种对齐方式,其中,相对壁上的特征不互相对齐,而是首先将第二个壁看作镜像,然后将其旋转180度(使得图案的俯视图相对于第一壁看起来是颠倒的)以产生偏移的特征。 Indicates there is a trans-alignment of two or more sides of the microchannel having a surface feature, wherein the opposing walls are not aligned with each other feature, but first the second mirror wall considered, then rotate 180 degrees (so that the plan view of the pattern relative to the first wall appears upside down) to produce a characteristic offset. 应当注意,所述第二相对壁可以不是精确地旋转镜像,因为可以添加填充特征以产生更多的包括表面特征的微通道净面积, 由于相对壁上的特征可以沿总体流动方向略微互相偏移。 It should be noted that the second opposing wall may not exactly mirror rotation, wherein as filler may be added to produce more of the net area of ​​the microchannel comprises surface features, since the features of the opposite walls may be slightly offset from one another along the general flow direction . 相对于特定壁上的特征的流动取向可以是顺式A (流动方向从图3a的底部到顶部)或顺式B (例如流动方向从图3a中的顶部到底部)。 With respect to the flow characteristics of the particular wall can be oriented cis A (flow direction from the bottom to the top in FIG. 3a) or cis B (e.g. from the top of the flow direction in the end portion in FIG. 3a). 通常,所述特征在相对的壁上,但是它们可以在相邻的壁上。 Typically, characterized in that the opposite walls, they may be in the adjacent walls.

[0144] 顺式A表示具有两个或多个侧面的带表面特征的微通道的一种对齐方式,其中顶面和底面上的特征在相对于流动的相同方向对齐,表面特征支段沿流动方向会聚。 [0144] cis and A represents an alignment of the microchannel surface features having two or more sides of the belt, characterized wherein the top and bottom surfaces of the same with respect to the flowing direction are aligned, wherein the surface section in the flow branch converging direction.

[0145] 顺式B表示具有两个或多个侧面的带表面特征的微通道的一种对齐方式,其中顶面和底面上的特征在相对于流动的相同方向对齐,表面特征支段沿流动方向发散。 [0145] B represents one cis alignment microchannel with surface features having two or more sides, wherein the top and bottom surfaces features are aligned with respect to the same direction of flow, wherein the surface section in the flow branch divergent direction.

[0146] Fanelli图案表示通过其它方式连接的表面特征的支段的不连续部位或小的断开。 [0146] Fanelli surface feature pattern represented by other means of connection discontinuity branched disconnected or small segment. 不连续部位小于微通道宽度的20%,优选小于微通道宽度的10%。 Discontinuity less than 20% of the width of the microchannel, preferably less than 10% of the microchannel width. 图3h显示了SFG-O 特征图案的Fanelli,其中去除了顶点,以帮助减小主通道流动路径中由于角度变化造成的死点或减小速度的区域。 Figure 3h shows Fanelli SFG-O characteristic pattern, wherein the apex removed to help reduce dead point area or decrease the speed of the main channel due to the flow path caused by the angle change. 两个表面特征之间的Fanelli的断开位置还可沿着通道长度方向发生位移,V形的一半沿着通道长度在两个轴向位置开始和停止,V形的另一半的开始和停止的位置相对于V形第一半的开始和停止的位置发生略微的向上和向下的位移。 Fanelli open position between the two surface features may also be displaced along the channel length direction, half of the V-shaped channels along the axial length of the two start and stop positions, the other half of the V-shape of the start and stop position relative to the slight upward and downward displacement of the first half of the V-shaped position of the start and stop occurs.

[0147] 图3b显示了表面特征几何结构I (SFGl),其包括沿各微通道壁交替取向或角度交替的特征。 [0147] Figure 3b shows a surface feature geometry I (SFGl), comprising alternately along each microchannel wall features alternating orientation or angle. 对于这种几何结构,设置了五个或更多不对称人字形结构(其中一个特征支段比第二特征支段长),其中特征的顶点设置在微通道宽度的1/3处,在该特征之后设置了两个填充特征(注意可使用更少或更多的填充特征),然后设置五个或更多的不对称特征,其中人字形结构的顶点大致位于沿微通道宽度的2/3处。 With this geometry, provided five or more asymmetric herringbone structure (a feature wherein a second segment wherein branching ratio of branched segment length), wherein the vertex feature is provided in the microchannel width 1/3, in which wherein are provided two filler (note that more or fewer may be used to fill feature), then five or more asymmetrically disposed feature, wherein the apex of the herringbone structure located approximately 2/3 of the width along the microchannel after feature place. 该图案重复几次。 This pattern was repeated several times. 如图所示,相对的微通道壁上的图案是反式取向的,特征不是镜像。 As shown, the opposing walls of the microchannel pattern is a trans orientation, wherein not mirror images.

[0148] SFG-2是一种如下的设计,如图3c所示(俯视图),各角度沿着特征的行程长度连续变化,与特征相邻的主通道中的流动方向是从左至右或从右至左。 [0148] SFG-2 is one of the following design, as shown (top view), each angle changes continuously along the length of the stroke characteristic shown in FIG. 3C, the direction of flow characteristics adjacent to the main channel from left to right or from right to left. 由于该形状更符合空气动力学,因此该特征能够有益地使各特征前缘处的流动扰动最小。 Since the more aerodynamic shape, this feature can be advantageously characterized in that the flow at the leading edge of each minimum disturbance. 所述基本连续变化的角度也可沿特征的行程长度由正值变为负值。 The angle may also change substantially continuously along the length of the stroke characteristics from positive to negative.

[0149] 图3d中显示了SFG-3表面特征图案的俯视图,其包括从顶面和底面观察的视图, 以及从上部观察时两者如何重叠。 [0149] FIG. 3d shows a top view SFG-3 pattern of surface features, including a view as viewed from the top surface and a bottom surface, and when viewed from above the overlap of both. 这种图案可以根据需要重复多次以填充所需的长度。 This pattern may be repeated multiple times to fill the required length as necessary. SFG-3的主要特征是SFG-5的"对号"形状的重复。 SFG-3 is the main feature of SFG-5 "checkmark" repeating shape.

[0150] 特征图案SFG-4是一种简单的斜向狭缝,在每种表面特征中仅有一个特征支段(例如图3e中右图所示)。 [0150] SFG-4 wherein the pattern is a simple oblique slits, wherein only one support segment (e.g. as shown in FIG. 3e right) of each of the surface features. 图案SFG4基本与现有技术中描述的许多单角斜向特征类似,对于混合和单元操作是特别低效的,尤其对于仅有单壁的图案或反式取向的双壁图案。 Many similar single angle oblique pattern characterized substantially SFG4 described prior art, and the mixing unit operation is particularly inefficient, especially for only a single wall or trans orientation of a pattern of double-walled design. 随着雷诺数的增大,在该图案中的流动在所述特征中花费的停留时间的分数减小。 As the Reynolds number increases, the fraction of the flow the residence time in the pattern is spent in the reduced feature.

[0151] 表面特征几何结构5用一系列的对号表示,所述对号的顶点使得特征支段的行程长度约为另一支段行程长度的一半。 [0151] 5 surface feature geometry with a series of check mark indicates, that the vertex of the checkmark wherein the stroke length of the segment of the segment of the other about half the stroke length. 这些"对号形"特征中的4个或更多特征所成的组可以以许多不同的组合排列,包括图3f中所示的三种。 The "step-shaped" features four or more features into groups may be many different combinations of three kinds of arrangement, comprising shown in Figure 3f. 这些对号组互相可具有不同的取向, 或者全部具有相同的取向,沿着表面形成连续的对号图案。 Another permutation of these groups may have a different orientation, or all have the same orientation, form a continuous surface along a checkmark pattern. 各种SFG-5或组合将得到不同的混合特性。 SFG-5, or various combinations to obtain different mixing characteristics. 图3f显示了SFG-5表面特征几何图案的三种不同的替代的布置。 Figure 3f shows an arrangement SFG-5 three different geometric pattern of surface features alternative.

[0152] 表面特征的取向角度优选具有至少一种变化。 [0152] Preferably the orientation angle of the surface features having at least one variation. 表面特征几何结构6 (SFG6)包括三个表面特征支段,相对于流动方向,取向角发生两次由正到负的变化,如图3g所示。 Surface feature geometries 6 (SFG6) comprises three surface features branched segment with respect to the flow direction, orientation angle from that shown by the two negative to positive changes, as shown in FIG 3g. 当特征支段中的两个沿着总体流动方向互相会聚和特征支段中的两个沿着总体流动方向互相发散时,这给予了主通道中的流体以"A〃和〃B"类流动方向。 When the two branch segments of the characteristic features of two converging and diverging from each other along the segment of the general flow direction along the general flow direction to each other, which gives the fluid in the main channel "and 〃B A〃" type mobile direction.

[0153] 〃房形图案(house) 〃表示表面特征的进入支段,此处一个或多个支段的走向与主通道总体流动方向相平行,然后以斜角转向流动方向(见图3i)。 [0153] Room 〃 pattern (House) 〃 represents branched into the surface feature section, or to a bulk flow direction of the main passage where a plurality of parallel branch segments, and then turn the direction of flow at an oblique angle (see FIG. 3i) . 该角度可任选地比下图中所示的结构更加圆些。 This angle may optionally be lower than that shown in FIG some more rounded. 房形图案还可优选地呈非90度的角,使其能够改进流体进入活性表面特征的平流。 Room-shaped pattern may also be preferably in the non-90 degree angle, it is possible to improve the characteristics of the fluid into the active surface advection.

[0154] 鲨鱼齿形图案表示了一种单支段的表面特征,其具有从一端到另一端改变的跨距(例如见图3j)。 [0154] shark tooth surface feature pattern shows a single-section branch, with the span (e.g., see FIG. 3j) from one end to the other end of the change. 所述支段可以相对于主通道总体流动方向具有任意的角度,具有不同角度的多个齿可填充微通道壁。 The branched segment with respect to the general direction of the main flow passage having an arbitrary angle, the plurality of teeth may fill the microchannel wall having different angles.

[0155] 图3e显示了具有60度角的SFG-O、具有75度角的SFG-O以及具有45度角的SFG-4 图案的表面特征,规定所述角度是相对于水平面的,该水平面将垂直于主流方向的微通道横截面二等分。 [0155] Figure 3e shows the SFG-O having a 60 degree angle, having a 75-degree angle SFG-O and characterized in SFG-4 having a surface pattern of a 45 degree angle, the predetermined angle relative to the horizontal, to the horizontal plane perpendicular to the main flow direction of the microchannel cross section bisected.

[0156] 对于各支段、或一些支段、或5个或更多相同表面特征的组,多支段表面特征几何结构的其它实施方式具有不同的角度或长度(如图3k所示)。 [0156] For each branch sections, or some branched segments, or five or more of the same group of surface features, surface features other embodiments multibranched section geometry with a different angle or the length (shown in FIG. 3k). 表面特征组的重复也能在制造的过程中提供潜在的优点。 Repeating group of surface features can provide potential advantages during manufacture. 例如,当由薄板冲印特征时,可以制造冲压工具,一次冲压多个特征。 For example, when the printing sheet feature, a punching tool can be manufactured, wherein a plurality of stamping.

[0157] 多层表面特征:在主通道的一个或多个壁中形成了多层表面特征。 [0157] The multilayer surface features: forming a multilayer surface features a main channel or a plurality of walls. 所述多层表面特征壁是通过将其中具有不同表面特征几何结构的相邻层叠置而形成的(见图4a),使特征的列对齐,使得二者叠置起来,形成更复杂的三维特征。 Wherein a wall surface of the multilayer (see FIG. 4A), characterized in that the columns formed by the laminate wherein the adjacent opposing surface feature geometries having different alignment, such that the two superposed to form a more complex three-dimensional features . 对于多层特征,除了最远离主通道的层以外,所有层中的表面特征都必须是通透(through)特征。 Wherein the multilayer, in addition to the layer farthest from the main channel, the surface characteristics of all layers must be transparent (through) feature. 或者,所述在薄板中制成为通透特征的相同的表面特征可通过将具有相同表面特征的薄板直接互相叠置,使得各薄板中的特征对齐而变得更深。 Alternatively, the surface characteristics of the same made transparent by the features may have the same surface characteristics of the sheet in the sheet overlap each other directly, characterized in that each sheet is aligned becomes deeper.

[0158] 微通道设备 [0158] microchannel apparatus

[0159] 微通道反应器的特征是存在至少一个具有以下特征的反应通道,该反应通道的至少一个尺寸(壁到壁,不计催化剂)等于或小于1厘米,优选等于或小于2毫米(在一些实施方式中约等于或小于I. 〇毫米)且大于100纳米(优选大于1微米),在一些实施方式中为50-500微米。 [0159] wherein the microchannel reactor there is at least one reaction channel having the following characteristics, at least one dimension of the reaction passage (wall to wall, not counting catalyst) is equal to or less than 1 cm, preferably equal to or less than 2 mm (in some embodiment I. about 110mm or less) and greater than 100 nm (preferably greater than 1 micron), in some embodiments, 50 to 500 microns. 催化反应通道是包含催化剂的通道,其中所述催化剂可以是非均相的或均相的。 Catalytic reaction channel is a channel containing a catalyst, wherein the catalyst may be heterogeneous or homogeneous. 均相催化剂可以与反应物同向流动。 The reaction was homogeneous catalyst may be co-current flow. 微通道设备具有类似的特征,其不同之处在于不需要包含催化剂的反应通道。 Microchannel apparatus having similar features, except that it does not require a catalyst comprising a reaction channel. 微通道的间隙(或高度)优选约等于或小于2毫米,更优选等于或小于1毫米。 Gap microchannel (or height) is preferably approximately equal to or less than 2 mm, more preferably equal to or less than 1 mm. 反应通道的长度通常更长。 Length of the reaction channel is typically longer. 较佳的是,所述长度大于1厘米,在一些实施方式中大于50厘米,在一些实施方式中大于20厘米,在一些实施方式中为1-100厘米。 Preferably, the length greater than 1 cm, in some embodiments greater than 50 cm, greater than 20 cm, in some embodiments, in some embodiments, from 1 to 100 cm. 微通道的侧面由反应通道壁限定。 Side microchannels defined by reaction channel walls. 这些壁优选由陶瓷、铁合金(例如钢)或蒙乃尔合金之类的Ni-,Co-或Fe-基超耐热合金之类的硬质材料制造。 These walls are preferably made of a ceramic, an iron alloy (e.g. steel) or Ni- hard material such Monel, Fe- or Co- base superalloy such manufacture. 它们也可由塑料、 玻璃、或者铜、铝等之类的其它金属制造。 They may also be manufactured of other metals, plastic, glass, or copper, aluminum, or the like. 反应通道的壁的材料的选择可取决于该反应器所用的反应。 The choice of material of the walls of the reaction channel may depend on the reactor used in the reactor. 在一些实施方式中,反应室壁由具有耐久性和良好导热性的不锈钢或丨nconel 1' 构成。 In some embodiments, the reaction chamber wall 1 'made of stainless steel or Shu nconel durability and good thermal conductivity. 所述合金应具有低的硫含量,在一些实施方式中,在形成错化物(aluminide)之前要进行脱硫处理。 The alloy should have a low sulfur content, in some embodiments, prior to formation of the wrong compound (Aluminide) to be desulfurized. 通常反应通道壁由提供微通道设备的主要结构支承的材料制造。 Typically the reaction channel walls made of a material to provide the main structural support of the microchannel apparatus. 微通道设备可通过已知的方法制造,在一些优选的实施方式中是通过将交替的板材(也称为"垫片")层叠起来而制造的,优选设计用于反应通道的垫片与设计用于热交换的垫片交替设置。 Microchannel apparatus can be produced by known methods, by alternating plates (also known as "shims") stacked manufactured In some preferred embodiments, the reaction is preferably designed for the passage of the gasket and the design gaskets for heat exchange are alternately disposed. 一些微通道设备包括层叠在器件中的至少十个层,这些层各自包括至少十个通道;所述器件可包括具有较少通道的其它的层。 Some microchannel apparatus includes at least ten layers laminated in a device, comprising at least ten layers each channel; the device may include other layers with less channels.

[0160] 微通道设备(例如微通道反应器)优选包括微通道(例如多个微通道反应通道) 和多个相邻的热交换微通道。 [0160] microchannel apparatus (e.g. microchannel reactor) preferably comprises a micro-channel (e.g., a plurality of microchannel reaction channels) and a plurality of adjacent heat exchange microchannels. 所述多个微通道可包括例如2, 10, 100, 1000或更多能够并联操作的通道。 The plurality of microchannels may comprise, for example, 2, 10, 100, 1000 or more channels can be operated in parallel. 在优选的实施方式中,所述微通道以平面微通道的平行阵列(例如至少三个平面微通道的阵列)设置。 In a preferred embodiment, the microchannel array in a plane parallel microchannels (e.g., an array of at least three planar microchannel) is provided. 在一些优选的实施方式中,多个微通道进口与共同的头部相连和/或多个微通道出口与共同的足部相连。 In some preferred embodiments, the plurality of inlet microchannels connected to a common header and / or outlet of the plurality of microchannels connected to a common foot. 在操作过程中,热交换微通道(如果存在的话)包含流动的加热和/或冷却的流体。 During operation, the heat exchange microchannels (if present) contain flowing heating fluid and / or cooling. 可用于本发明的这类已知反应器的非限制性例子包括微型组件片结构类的反应器(例如具有微通道的层叠体),如美国专利第6, 200, 536 号和第6, 219, 973号(这两篇文献都参考结合入本文中)列举的。 Micro-reactor assembly comprising a sheet like structure (e.g., a laminate with microchannels), as described in US Patent No. 6, 200, 536 and 6 Non-limiting examples of such known reactions of the present invention, 219 , 973 (both of which are incorporated herein by reference) recited. 对于本发明,这类反应器结构的性能优点包括它们较大的传热和传质速率,而且基本没有任何爆炸极限。 For the present invention, the performance advantage of this type of reactor configuration include their larger heat and mass transfer rates, and substantially free of any explosive limits. 压降可以很低,允许高物料通过量,催化剂可以以非常容易进入的形式固定在通道中,因此不需要进行分离。 The pressure drop can be low, allowing high throughputs, the catalyst may be fixed in a very accessible form readily in the channel, and therefore does not need to be separated. 在一些实施方式中,一个或多个反应微通道包括总体流动路径。 In some embodiments, the one or more reaction microchannels include bulk flow path. 术语〃总体流动路径"表示反应室内的开放路径(邻接的总体流动区域)。邻接的总体流动区域允许流体快速流过反应室而不产生大的压降。各反应通道内的总体流动区域的横截面积优选为5X10_ 8至IXKT2米2,更优选为5X10_7至IXKT 4米2。所述总体流动区域优选占1)微通道的内部体积,或2)微通道的横截面的至少5%,更优选至少50%,在一些实施方式中为30-99%。 The term & 〃 bulk flow path "indicates the reaction chamber is an open path (contiguous bulk flow region). Contiguous bulk flow region allows rapid fluid flow through the reaction chamber without a large pressure drop in the bulk flow region cross each reaction channel preferably cross-sectional area to IXKT2 5X10_ 8 m 2, more preferably 2. m IXKT 4 5X10_7 to the bulk flow regions preferably comprise 1) an internal volume of microchannels, or 2) at least 5% of the cross-section of the microchannels, more preferably at least 50%, in some embodiments, 30 to 99%.

[0161] 在许多优选的实施方式中,所述微通道设备包括多个微通道,优选至少5个、更优选至少十个平行通道的组,这些平行通道在共同的歧管内相连,所述歧管与所述器件构成整体(不是之后连接的管),所述共同的歧管包括使流过与所述歧管相连的通道的流体均等的一种或多种特征。 [0161] In many preferred embodiments, the microchannel apparatus comprises a plurality of microchannels, preferably at least 5, more preferably at least ten sets of parallel channels, the parallel channels are connected in a common manifold, said manifold means integral with said tube (not after the pipe is connected), said common manifold comprises one kind of the fluid flowing through the channel equalization pipe connected to the manifold of the one or more features. 这些歧管的例子见述于美国专利申请顺序号第10/695, 400号,该文献于2003年10月27日提交,参考结合入本文中。 Examples of such manifolds are described in U.S. Patent Application Serial No. No. 10/695 400 of the document filed on October 27, 2003, incorporated by reference herein. 在上下文中,〃平行〃不一定表示是直的,而是指通道互相一致。 In this context, it does not necessarily mean 〃 〃 parallel straight, but rather refers to the channel coincide with each other. 在一些优选的实施方式中,微通道器件包括至少三组平行微通道,各组内的通道与共同的歧管相连(例如四组微通道和四个歧管),较佳的是,各共同歧管包括能够使流过与歧管相连的通道的流体均等的一种或多种特征。 In some preferred embodiments, a microchannel device includes at least three sets of parallel microchannels, channels within each group is connected to a common manifold (for example, four sets of four manifolds and microchannels), Preferably, the co the manifold includes the ability of a fluid flowing through the uniform passage of the manifold is connected to one or more features.

[0162] 热交换流体可以流过与工艺通道(例如反应微通道)相邻的传热微通道,它们可以是气体或液体,可包括蒸汽、油或任意已知的热交换流体-所述体系可以优化,使得热交换器中包括相变。 [0162] The heat exchange fluid may flow through process channels (e.g., the reaction microchannel) adjacent heat transfer microchannels, which may be a gas or a liquid, may include steam, oil or any known heat exchange fluids - the system It can be optimized, so that the heat exchanger includes a phase change. 在一些优选的实施方式中,多个热交换层与多个反应微通道相交错。 In some preferred embodiments, the plurality of heat exchange layers are interleaved plurality of reaction microchannels. 例如,至少十个热交换器与至少十个反应微通道交错,较佳的是,十层热交换微通道阵列与至少十层反应微通道相邻接。 For example, at least ten heat exchanger and at least ten interleaved microchannel reactor, is preferred, ten layers of heat exchange microchannel arrays with at least ten layers of reaction microchannels adjacent. 这些层中的各层可包括简单的直的通道,或者层内的通道可具有更复杂的几何结构。 The layers of these layers may comprise a simple straight channel, or channels within a layer may have more complex geometries. 在优选的实施方式中,一个或多个热交换通道的一个或多个内壁具有表面特征。 In a preferred embodiment, the one or more heat exchange channels inner wall has one or more surface features.

[0163] 在一些实施方式中,本发明的设备(或方法)包括催化剂材料。 [0163] In some embodiments, the device (or method) includes a catalyst material of the present invention. 所述催化剂可以限定总体流动路径的至少一个壁的至少一部分。 The catalyst may define at least a portion of the overall flow path of the at least one wall. 在一些优选的实施方式中,所述催化剂的表面限定了其中流过流体流的总体流动路径的至少一个壁。 In some preferred embodiments, the surface of the catalyst defines the overall flow through the flow path of the fluid stream wherein the at least one wall. 在非均相催化工艺中,反应物组合物可以流过微通道,通过并与催化剂接触。 In heterogeneous catalytic processes, the reactant composition may flow through the microchannel, and by contact with the catalyst.

[0164] 在一些优选的结构中,催化剂包括下面的大孔载体。 [0164] In some preferred constructions, the catalyst comprising the large pore support. 优选的大孔载体的例子包括市售的金属泡沫体和金属毡。 Examples of preferred large pore supports include commercially available metal foams and metal felts. 大孔载体的孔隙率至少为5%,更优选为30-99,更优选为70-98%。 Porosity of macroporous carrier is at least 5%, more preferably 30 to 99, more preferably 70 to 98%. 较佳的是,用BET测得所述载体的体均孔径等于或大于0.1微米,更优选为1-500微米。 Preferably, as measured by BET average pore diameter of the carrier body is equal to or greater than 0.1 microns, more preferably 1 to 500 microns. 优选的多孔载体的形式是泡沫体和毡,它们优选由热稳定和导热材料制造, 优选使用不锈钢或FeCrAlY合金之类的金属、这些多孔载体可以很薄,例如厚度为0. 1-1 毫米。 The preferred porous support is in the form of a foam and a felt, a metal which is preferably stainless steel or FeCrAlY alloy such thermally stable and thermally conductive material, preferably, the porous support may be very thin, for example having a thickness of 0. 1-1 mm. 泡沫体是一种连续结构,其具有限定通过该结构的孔的连续壁。 Foam is a continuous structure having a structure defining a bore through which the continuous wall. 毡是非织造纤维, 在纤维之间具有空隙,包括钢丝棉之类的缠结的丝束。 Non-woven fibrous mat, having voids between the fibers, including steel wool strands entangled or the like. 所述多孔载体可以叠置在具有通透(through)表面特征的传热壁和片材之间。 The porous support may have laminated between transparent (through) the surface characteristics of the heat transfer wall and the sheet. 或者,所述多孔载体可以被蚀刻、切割或通过其它方式,具有置于片材内的活性表面特征凹槽。 Alternatively, the porous support may be etched, cut or by other means, the recess having an active surface features placed within the sheet. 所述片材可以与用作壁的非多孔片材相叠, 以形成组件。 The sheets may be stacked with a non-porous sheet is used as the wall, to form an assembly. 在此实施方式中,所述活性表面特征自身的孔隙率增大了化学反应位点的数量,在此位点,反应物可以从形成于多孔片材内的凹槽扩散到所述多孔片材内的内部的较小的孔内。 In this embodiment, the active surface feature itself porosity increases the number of chemical reaction sites, at this site, the reactants can diffuse from the recess formed in the porous sheet to the porous sheet small hole in the interior. 可以将一层或多层活性催化剂层设置在多孔片材上。 It may be one or more active catalyst layer disposed on the porous sheet. 所述通透表面特征通过平流和扩散将分子引入凹陷的凹槽中,在凹槽中这些分子可以在其上或其中设置有催化剂的多孔载体内继续扩散。 Characterized by said transparent surface advection and diffusion of molecules into the groove in the recess, these molecules can be provided in a recess on or in which diffusion within the porous support to continue the catalyst. 由于随着雷诺数的增大,分子在特征中不成比例地花费更长的时间, 因此反应物有更多的时间与催化剂表面碰撞并与之反应。 Since with increasing Reynolds number of molecules in the feature it takes longer disproportionately, so the reactants have more time to collide with the surface of the catalyst and reacts. 由于反应物在表面特征凹槽和多孔催化基层中花费时间,它们不以对流的方式与总体流动一起向下游运动,从而离开所述活性催化剂。 Since the reaction time was spent on the surface of the recess, and wherein the porous catalyst base layer, in a manner that they do not bulk flow convection along with downstream movement, thereby leaving the active catalyst.

[0165] 以多孔材料的总体积为基准计,具有大孔的催化剂(包括氧化铝负载的催化活性位点)的孔体积优选为5-98%,更优选为30-95%。 [0165] In the total volume of the porous material based on the weight of the catalyst with large pores (including alumina-supported catalytically active sites) of the pore volume is preferably 5 to 98%, more preferably 30-95%. 较佳的是,材料孔体积中的至少20% (更优选至少50% )由孔径(直径)为0· 1-300微米、更优选0· 3-200微米、更加优选1-100 微米的孔组成。 Preferably, at least 20% (more preferably at least 50%) of the pore volume by the material pore size (diameter) of 0.5 to 300 microns, more preferably 0 · 3-200 microns, more preferably 1-100 [mu] m aperture composition. 孔体积和孔径分布用水银孔隙率检测法(假定孔的几何形状为圆柱形)和氮吸附法测定。 And measured by mercury porosimetry (geometry assuming cylindrical pores) and nitrogen adsorption pore volume of the pore size distribution. 已知水银孔隙率检测法和氮吸附法是互补的技术,水银孔隙率检测法在测量较大的孔径(大于30纳米)时更加准确,测定小孔径(小于50纳米)时,氮吸附法更加准确。 Known mercury porosimetry and nitrogen adsorption are complementary techniques, the mercury porosimetry method is more accurate when measuring large pore sizes (larger than 30 nm), measurement of small pore size (less than 50 nm) and nitrogen adsorption more accurate. 设置在氧化层上的催化剂金属之类的催化剂可沉积在大孔载体上。 Metal catalyst such as a catalyst disposed on the oxide layer may be deposited on a macroporous carrier.

[0166] 在一些实施方式中,所述微通道的高度和宽度限定了横截面,该横截面包括多孔催化剂材料和开放区域,多孔催化剂材料占所述横截面积的5-99%,所述开放区域占所述横截面积的5-99%。 [0166] In some embodiments, the height and width of the microchannel defines a cross-section, the cross-section comprises a porous catalyst material and an open area, porous catalyst material comprises 5-99% of the cross-sectional area, the 5-99% of open area of ​​the cross-sectional area. 在另一种替代情况下,催化剂可以作为材料涂层(例如遮盖涂层)的形式提供到一个或多个微通道反应通道之内。 In another alternative, the catalyst can be used as a coating material (e.g. hiding coating layer) provided to form one or more microchannels of the reaction channel. 使用旁流(flow by)催化剂结构可以产生有利的容量/压降关系。 The catalyst structure using the bypass flow (flow by) can produce favorable capacity / pressure drop relationship. 在旁流催化剂结构中,所述流体优选在与多孔的插入物相邻的间隙内流动,或流过与微通道壁接触的催化剂壁涂层,(较佳的是,所述与催化剂接触的微通道壁与热交换器(优选是微通道热交换器)直接热接触,在一些实施方式中,热交换流接触所述壁与催化剂接触的相反侧)。 In the catalyst bypass structure, the fluid is preferably in the porous insert adjacent clearance flow, or flow through the catalyst coating in contact with the wall of the microchannel wall (preferably, the contact with the catalyst microchannel wall and the heat exchanger (preferably a microchannel heat exchanger) in direct thermal contact, in some embodiments, the thermal contact with the wall opposite to contact with the catalyst stream side switching).

[0167] 在一些实施方式中,微通道包括多孔旁流催化剂,该催化剂厚度(>25微米)大于壁遮盖涂层的厚度(〈25微米)。 [0167] In some embodiments, the porous bypass flow microchannels comprising a catalyst thickness (> 25 microns) is greater than the wall thickness of the cover coat layer (<25 microns). 在一些实施方式中,所述多孔旁流催化剂的厚度可超过25 微米,催化剂遮盖涂层的厚度也可超过25微米。 In some embodiments, the thickness of the porous catalyst bypass stream may exceed 25 micrometers, the thickness of the catalyst coating layer may also cover more than 25 microns. 在所有的情况下,优选遮盖涂层的厚度小于旁流催化剂结构的厚度。 In all cases, the thickness of the cover coat layer is preferably less than the thickness of the catalyst bypass structure. 多孔催化剂可具有表面特征(优选是凹陷的特征),该特征能够扰动开放流动通道中的总体流动路径,以减小外部传质阻力,还能促进表面特征内的平流, 这有助于将新鲜的反应物引到多孔催化剂结构上和除去产物。 Wherein the porous catalyst may have a surface (preferably a recessed feature), characterized in that the bulk flow path disturbances can be open flow channel, to reduce the external mass transfer resistance, but also promote advection within the surface features, which helps fresh the reaction was introduced onto a porous structure of the catalyst and removal of the product. 所述凹陷的表面特征可以在所述厚多孔催化剂结构的整个厚度凹陷,或者在该厚度的一部分上凹陷。 The surface features may be recesses in the entire thickness of the thick porous catalyst structure of the recess, or recess in a portion of the thickness. 所述多孔催化剂可具有任意的长度;例如,连续多孔催化剂(具有表面特征)或不连续多孔催化剂(被表面特征隔开)可以延伸至少1厘米、3厘米或更长的长度。 The porous catalyst may be of any length; e.g., a continuous porous catalyst (surface features) or discontinuous porous catalyst (surface features are separated) may extend at least 1 cm, 3 cm or longer.

[0168] 可以在大孔催化剂,例如催化剂泡沫体或催化剂毡中形成表面特征。 [0168] may be, for example, the surface features to form the catalyst or catalyst foam mat macroporous catalyst. 可通过在微通道中插入具有表面特征的催化剂插入物来提供有结构的表面。 Through the catalyst insert is inserted in a microchannel having surface features to provide a surface structure. 所述插入物可以由大孔催化剂形成(例如泡沫体或毡),或者通过插入具有表面特征的金属载体、然后在所述载体表面上涂敷催化剂而形成。 The insert may be formed from a macroporous catalyst (e.g., foam or felt), or by inserting a metal support surface characteristics, it is then formed in the coating of the catalyst support surface.

[0169] 遮盖涂层是通过使通道壁与液体类涂料组合物接触而施涂在通道壁上的涂层。 [0169] hiding coating layer is obtained by coating the channel walls with a liquid-based composition is applied in contact with the coating on the channel walls. 所述涂料组合物可包含颗粒(通常是金属氧化物或者金属氧化物与金属颗粒的混合物)的悬浮体或溶胶。 The coating composition may comprise particles (typically a mixture of a metal oxide or a metal oxide and metal particles) of the suspension or sol. 通过遮盖涂敷形成的催化剂涂层被称为遮盖涂层。 The catalyst coating layer formed by applying masking hiding coating layer is called.

[0170] 微通道设备还可包括沿着反应器长度的活性表面特征的多个区。 [0170] microchannel apparatus may further comprise a plurality of active regions of surface features along the length of the reactor. 第一区可用来提高传热,第二区可用于化学反应。 The first region can be used to improve heat transfer, chemical reactions can be used for the second zone. 或者,在单元操作中可以有两个或更多个区,在这些区发生反应或者分离之类的传质。 Alternatively, the operation unit may have two or more zones, reaction or mass transfer separation occurs like in these regions. 还可在不同的表面特征区中包括两个或更多个顺序化学反应。 It may also comprise two or more different sequential chemical reactions on the surface region features. 在一个实施方式中,对于顺序反应可优选使用两种不同的反应,或者添加新的反应物, 使得反应连续进行,或者用新的传热流体正好继续进行反应、或者在控制或调节表面特征区之间或之内的壁温度的同时连续进行反应、或者通过其它方式控制金属的机械应变。 In one embodiment, the order for the reaction may preferably use two different reaction, or adding a new reaction, such reaction is carried out continuously, the reaction was continued with or just new heat transfer fluid, or in the control or regulating surface feature region while the temperature in the wall or between the continuous reaction, or to control the mechanical strain of the metal by other means. 在微通道设备中具有连续的两种或更多种活性表面特征区的另一个动机在于,可利用包括弯曲或U形流的通道,流体在其中基本沿一种方向流动,然后弯曲并返回沿第二通道向下流动。 Another motivation for having two or more continuous activity surface feature region in the microchannel device that may be utilized include curved or U-shaped channel stream, in which the fluid substantially flows in the direction of one kind, and then is bent back along second passage flows downward. 可以同时在前后路径中设置活性表面特征区,这在需要低排放物的催化燃烧应用中尤为有用。 Wherein the active surface can be simultaneously set in the region before and after the path, which is particularly useful where low emission catalytic combustor applications.

[0171] 微通道壁中的毛细管特征 Capillary wherein [0171] the microchannel walls

[0172] 表面特征也可作为能够有效地将液体保持在微通道壁之上或附近的毛细管特征。 [0172] surface features may also be used as the liquid can be effectively held on the wall of a microchannel or capillary features nearby. 所述特征可具有任意的形状(矩形、圆形、梯形、其它形状)只要它们能够提供至少一个小于根据流体性质规定的参数的临界尺寸,使得该毛细管作用力大于重力,防止沿微通道壁的排出或滑动即可。 The feature may have any shape (rectangular, circular, trapezoidal, other shape) so long as they are capable of providing at least one less than the critical nature of the fluid according to a predetermined size parameters so that the capillary force greater than the force of gravity, along the microchannel walls to prevent discharge or swipe.

[0173] 毛细管特征可以沿微通道的长度,在所需的位置设置,以产生涂料组合物的均匀的或特定的通道内分布。 [0173] Capillary features may be along the length of the microchannel, is provided in a desired position to produce a uniform distribution channel or a specific coating composition. 为了促进良好的通道之间的均匀性,沿微通道阵列中的每条平行微通道设置相同轮廓的毛细管特征。 In order to promote good uniformity between channels, disposed along the same contour capillary array of microchannels wherein each of the parallel microchannels. 所述特征优先在部分或完全地垂直于重力方向的方向排列,以使重力方向的排出最小。 Wherein said prioritizing a partially or completely perpendicular direction to the direction of gravity, in order to minimize the discharge direction of gravity. 所述特征可以与排出过程中重力的方向成一定角度排列。 The features may be arranged to discharge at an angle during gravity. 如果所述特征短而不连续,它们可取向为平行于重力方向。 Wherein if said short discontinuous, they may be oriented parallel to the direction of gravity. 在微通道壁上,一组内优选包括三个、五个、十个或更多的特征。 In the micro-channel walls, preferably the group consisting of three, five, ten or more features.

[0174] 在一个实施方式中,特制的轮廓可以在对催化剂需要更高的反应器区的前部附近留下更多的毛细管特征,从而留下更多的催化剂溶液。 [0174] In one embodiment, the special profile may leave more capillary features near the front portion of the catalyst requires a higher reactor zone, thus leaving more of the catalyst solution. 在另一个放热反应(例如选择性氧化)的实施方式中,可以减少设置或保持在反应器前部附近的催化剂的量,进而减少放热量以及不希望有的升温。 In another exothermic reaction (e.g., selective oxidation) embodiment, may be provided to reduce the amount of the catalyst is maintained at or near the front portion of the reactor, thereby reducing heat release and undesirable heating. 在第三个实施方式中,可以确定在微通道器件边缘通道上的毛细管特征的位置和尺寸,使得器件边缘附近的放热减少。 In a third embodiment, the position and size of the capillary feature may be determined on the edge of the microchannel device of the channel, such that heat near the edge of the device is reduced. 例如,在微通道器件的一层内,层中心附近的毛细管特征的浓度可能高于边缘附近的浓度,因此更多的涂层施涂在器件中心附近。 For example, in one microchannel device, wherein the concentration of capillaries in the vicinity of the center layer may be higher than the concentration near the edge, thus further coating is applied in the vicinity of the center of the device. 因此,在包括微通道阵列的层中,该微通道阵列包括至少一条中心微通道和两条边缘微通道,在一些实施方式中,所述至少一条中心通道的毛细管特征的浓度高于这两边缘通道中的任一通道的浓度;如果在沿边缘的位置需要更大的催化剂浓度,则可使这种情况相反。 Thus, a layer comprising a microchannel array, the microchannel array comprising at least one central microchannel and two edge microchannels, in some embodiments, the concentration of the at least one characteristic of the capillary channel than the center of the two edges a concentration of any of the channels of the channel; if needed locations along the edge of the greater concentration of catalyst, which will enable the contrary. 这可创造有益的机械设计,其中在高热应变区域附近,局部边缘温度降低。 This can create useful mechanical design, wherein the heat strain in the vicinity, local edge temperature. 所述毛细管特征可用来在特定的容量或单位体积流速条件下,控制或调节用转化率和选择性测量的工艺性能。 The capillary features may be used in a particular volume or volume flow rates, with a control or regulation process performance measurement of conversion and selectivity. 所述特征还可用来通过减少局部放热,从而减小所产生的温度梯度,而使设备的高应变区域内的机械应变最小。 The feature can also be used by reducing local heat release, thereby reducing the temperature gradient generated, the minimum mechanical strain in the high strain region of the apparatus.

[0175] 为了保持液体(催化剂前体或其它)。 [0175] In order to maintain the liquid (or other catalyst precursor). 将流体填入微通道内或平行微通道的阵列之内,然后排出,同时将流体留在壁上的毛细特征之内。 Fluid is filled into the microchannels or the array of parallel microchannels, and then discharged, while the fluid left in the wall of the capillary features. 然后干燥所述流体,在壁上留下活性试剂。 The fluid is then dried, leaving the active agent on the wall. 所述流体可以是水基的,或者包括固体颗粒或液滴(包括纳米颗粒)的溶液或浆液或悬浮体,或者可以是聚合物溶液,或者是任意的液体涂料组合物。 The fluid may be water-based, or comprise solid particles or liquid droplets (including nanoparticles) solution or slurry or suspension, or may be a polymer solution, or any of the liquid coating composition.

[0176] 制备表面特征的方法 [0176] The method of preparation of the surface features

[0177] 表面特征可例如通过以下方法制造:激光蚀刻;放电加工(EDM),该方法使用小直径导线,通过烧掉导电性基材制得所需的特征;或者将具有通孔的一片材叠置在另一片材上,然后将这些片材结合在一起。 [0177] surface features can be manufactured, for example by the following method: laser etching; discharge processing (the EDM), which uses small-diameter wires, by burning conductive substrate to prepare a desired characteristic; or a through hole having material stacked on another sheet and then these sheets together. 所述表面特征可以在片材中部分蚀刻,或者作为通透的特征形成于片材中,然后将所述片材置于与实心(solid)壁相邻的位置。 The surface features may be partially etched in the sheet, or formed as a transparent characteristic in the sheet, the sheet is then placed in the solid (Solid) a position adjacent to a wall. 或者可通过在与实心的或蚀刻的片材相邻的位置将两个或更多个具有通透特征的片材叠置,产生所述表面特征。 Or two or more sheets having transparent characteristics can be superposed with by a solid sheet or a position adjacent etched, generating the surface features. 所述两个或更多个具有通透特征的叠置片材上的特征的图案和/或尺寸和/或形状可以是不同的。 The pattern of two or more features on the stacked sheets having transparent characteristics and / or size and / or shape may be different. 表面特征还可通过形成三维图案法制造,例如SLS法,其中对金属粉末进行选择性烧结,以产生复杂的三维结构。 Surface features may also be, e.g. SLS method, in which metal powder is formed by selective sintering process for producing a three-dimensional pattern to produce complex three-dimensional structures.

[0178] 所述表面特征可以作为薄金属垫片中的通缝或通孔的形式形成,所述垫片与壁垫片相邻地叠置,然后进行扩散结合。 [0178] The surface features may be formed in a form of a thin metal shim through slits or through holes, the spacer and the spacer adjacent stacked wall, then diffusion bonding. 所得的结构与微通道壁中凹陷的特征类似。 Similar structure to the microchannel walls in the resulting recessed features.

[0179] 表面特征可以用来调节催化剂或任意其它遮盖涂料溶液沿微通道壁长度的混合和/或施涂。 [0179] The surface features may be used to adjust any other catalyst or mixing the coating solution covers the length of the wall along the microchannels and / or application. 可以在微通道入口(例如头部附近的进口)附近设置较大密度的表面特征, 或者可以在微通道出口附近设置较大密度的表面特征。 The inlet may be disposed in the microchannel (e.g., near the inlet head) of greater density near the surface features or surface features may be provided a greater density in the vicinity of the outlet microchannel. 因此,在一些实施方式中,具有一个进口和一个出口的反应微通道在进口附近的毛细管特征的密度大于出口附近的密度;或者相反地,在出口附近的毛细管特征的密度大于进口附近的密度。 Thus, in some embodiments, having an inlet and an outlet of the microchannel reactor wherein the capillary density greater than the density in the vicinity of inlet near the outlet; or conversely, wherein the capillary density greater than the density in the vicinity of the outlet near the inlet.

[0180] 催化剂涂层 [0180] The catalyst coating layer

[0181] 可以对包括表面特征的微通道涂敷催化剂或其它材料,例如吸着剂。 [0181] The catalyst can be applied to the microchannel comprises surface features or other materials, such as sorbent. 可以使用本领域已知的技术,例如遮盖涂敷在微通道内施涂催化剂。 Known in the art may be used in the art, for example, applying the catalyst coating covering the microchannel. 也可使用CVD或无电镀膜法之类的技术。 CVD techniques can also be used electroless plating or the like. 在一些实施方式中,优选用盐的水溶液浸渍。 In some embodiments, the salt is preferably immersed in an aqueous solution. 在一些实施方式中优选的是Pt, Rh 和/或PcL通常在此之后进行热处理和本领域已知的活化步骤。 In some embodiments, it is preferable that Pt, Rh and / or heat treated and PcL generally known in the art, after this activation step. 优选的是形成ρΗ>0的溶液的盐。 It is preferably formed ρΗ> 0 the salt solution. 其它涂料可包含溶胶或浆液基的包含催化剂前体和/或载体的溶液。 Other coating may comprise a sol or slurry comprising a solution-based catalyst precursor and / or carrier. 涂层还可包括向壁施涂的反应方法,例如无电镀膜法或其它表面流体反应。 The reaction method may further comprise applying a coating to the wall, for example, electroless plating or other fluid reaction surfaces.

[0182] 还可通过以下方法在微通道壁上施涂涂层:用液体涂料组合物将通道填充至所需的高度,在减压条件下除去挥发性组分(通常是溶剂)。 [0182] In the micro-channel walls may also be coated by the following method was applied: a liquid coating composition to the desired height of the filled channels, volatile components were removed under reduced pressure (usually solvent). 需要小心进行,以免产生起泡的缺陷。 Need to be done carefully to avoid blister defects.

[0183] 可以通过印刷、优选通过类似喷墨印刷之类的技术将金属之类的材料印刷在微通道壁(平坦的或具有特征的)上。 [0183] may be by printing, preferably by inkjet printing technology similar material such as a metal printed on a microchannel wall (planar or having a feature). 还可将印刷的金属图案用作形成无电沉积金属(优选具有图案的、无电涂层)的晶种材料(催化剂)。 It may also be used as a printed metal pattern formed electroless deposition of metal (preferably having a pattern, electroless coating) of seed material (catalyst). 另外或作为替代,可采用电子工业中开发的选择性蚀刻和/或选择性沉积技术在表面特征52中形成亚图案结构(subpatterning)。 Additionally or alternatively, the electronics industry can be developed in selective etching and / or selective deposition techniques to form an alkylene pattern structure (subpatterning) on ​​the surface features 52. 见图5。 See Figure 5. 这种亚图案结构能够特别有效地提高用于沉积催化剂的表面积,和/或直接选择性沉积催化剂以增强反应控制。 This sub-pattern structure can be particularly effectively increased surface area for catalyst deposition, and / or direct deposition of a catalyst to enhance the reaction selectivity control. 例如,可以在表面特征的底部和/或表面特征的顶部形成多个亚凹部(sub-well) 54,可以在多个亚凹部上沉积(例如通过涂遮盖涂层)催化剂56。 For example, ethylene may be formed a plurality of recessed portions (sub-well) on the top surface of the base features and / or surface features 54 may be deposited on a plurality of sub-recesses (e.g., by coating the cover layer) 56 catalyst. 任选地,可以在所述表面特征和/或亚凹部上沉积导热材料区域55,以进一步增大表面积。 Optionally, the thermally conductive material may be deposited in the region of the surface features 55 and / or on sub-recess, in order to further increase the surface area.

[0184] 反应 [0184] Reaction

[0185] 在一些实施方式中,本发明提供了进行反应的方法,该方法包括:使至少一种反应物流入微通道,在催化剂的存在下,使所述至少一种反应物在微通道内反应形成至少一种产物。 [0185] In certain embodiments, the present invention provides a method of performing the reaction, the method comprising: reacting at least one reactant into a microchannel, in the presence of a catalyst, said at least one reactant in the reaction microchannels forming at least one product. 在一些实施方式中,所述反应主要由选自以下的反应组成:乙酰化、加成反应、烷基化、脱烷基化、氢化脱烷基化、还原性烷基化、胺化、氨氧化、氨合成、芳构化、芳基化、自热转化制氢、羰基化、脱羰基化、还原性羰基化、羧化、还原性羧化、还原性偶联、缩合、裂化、力口氢裂化、环化、环低聚反应、脱卤、二聚、环氧化、酯化、交换、费-托反应、卤化、氢卤化、同系化、水合、脱水、氢化、脱氢、氢羧基化、加氢甲酰化、氢解、氢金属化、硅氢化、水解、加氢处理(HDS/HDN)、异构化、甲基化、脱甲基、复分解、硝化、聚合、还原、重整、逆水煤气轮换、 Sabatier、磺化、调聚反应、酯交换反应、三聚反应和水煤气轮换。 In some embodiments, the reaction is mainly composed of a reaction selected from the group consisting of: acetylation, addition reactions, alkylation, dealkylation, hydrogenation dealkylation, reductive alkylation, amination, ammonia oxide, ammonia synthesis, aromatization, arylation, autothermal reforming hydrogen production, carbonylation, decarbonylation, reductive carbonylation, carboxylation, reductive carboxylation, reductive coupling, condensation, cracking, force mouth hydrocracking, cyclization, cyclooligomerization reaction, dehalogenation, dimerization, epoxidation, esterification, exchange, Fischer - Tropsch reaction, halogenation, hydrohalogenation, homologation, hydration, dehydration, hydrogenation, dehydrogenation, hydrogen carboxy of, hydroformylation, hydrogenolysis, hydrogen metallization, hydrosilation, hydrolysis, hydrotreating (HDS / HDN), isomerization, methylation, demethylation, metathesis, nitration, polymerization, reduction, weight whole, reverse water gas shift, the Sabatier, sulfonation, telomerization, transesterification, trimerization, and water gas shift reaction. 燃烧是另一种优选的反应。 It is another preferred combustion reaction. 烃类蒸汽转化是特别优选的(例如甲烷、乙烷或丙烷蒸汽转化等)。 Steam reforming of hydrocarbons are particularly preferred (e.g., methane, ethane or propane steam reforming, etc.).

[0186] 实施例 [0186] Example

[0187] 在具有壁表面特征的微反应器中进行的蒸汽甲烷转化 [0187] The methane steam in a microreactor having a wall surface features transforming

[0188] 针对甲烷蒸汽转化反应,对表面特征对反应器性能的影响进行了探索。 [0188] for methane steam reforming reaction, influence on the surface characteristics of the performance of the reaction was explored. 特征倾向于增大每单位长度的转化率,尤其在低催化剂活性时。 Wherein tends to increase the conversion rate per unit length, especially at low catalyst activity. 表面特征增大了催化剂可用的表面积,它们允许用催化剂溶液均匀地涂敷遮盖涂层,减小了总体微通道中的外部传质限制, 因此允许反应器以更接近催化剂活性的固有潜能(intrinsic potential)的方式操作。 Wherein the catalyst surface increases the surface area available, which allows the catalyst coating solution was uniformly coated cover, reduces the overall microchannels external mass transfer limitations, thus allowing the natural potential to the reactor catalyst activity closer (intrinsics potential) manner.

[0189] 在本实施例中,所述表面特征具有矩形的横截面形状;它们在微通道的任一侧面或两个侧面上;所述表面特征的深度与主流通道间隙为相同数量级;所述表面特征以与主流方向成特定的角度设置。 [0189] In the present embodiment, the surface features having a rectangular cross-sectional shape; they are on either one side or both sides of the microchannel; a; a depth of the surface features and the main channel of the same order as the gap surface features to a specific angle with the main direction is provided.

[0190] 对于所有的实施例,限定该问题的部分尺寸保持相同 [0190] For all embodiments, portions defining the problem remains the same size

[0191] •通道间隙:0.0125" [0191] • Channel gap: 0.0125 "

[0192] •通道宽度:0.18〃 [0192] • channel width: 0.18〃

[0193] •凹槽的深度:0. 010〃(也评价了0. 005〃和0. 015〃),置于微通道的两个侧面上 [0193] • groove depth: 0 010〃 (also evaluated the 0.5 and 0.5 015〃 005〃), placed on both sides of the microchannel

[0194] •凹槽的行程宽度或跨距:0. 015〃 [0194] • travel or span the width of the groove: 0 015〃

[0195] •相邻凹槽之间的距离(边缘到边缘的距离):0. 015〃 [0195] • distance (edge ​​to edge distance) between adjacent grooves: 0 015〃

[0196] · 5个凹槽连续设置(长度约为0. 15") [0196] * 5 consecutive grooves provided (a length of about 0.15 ")

[0197] 对于所有计算,每个通道在25大气压下3:1的蒸汽:甲烷混合物的流速为0.238 千克/小时、 [0197] For all calculations, each channel at 325 atmospheres: 1 steam: methane mixture flow rate was 0.238 kg / hr,

[0198] SMR动力学 [0198] SMR dynamics

[0199] 本实施例的重点是微通道反应器中的甲烷蒸汽转化(SMR)反应。 Key [0199] This embodiment is a methane steam reforming microchannel reactor (SMR) reaction.

[0200] [0200]

Figure CN104525072AD00311

[0201] 还可考虑水煤气轮换(WGS)反应,该反应是中等放热的,这是因为在SMR催化剂上CO 2生成的重要性。 [0201] Water gas shift can also be considered (WGS) reaction, which is exothermic medium, this is because of the importance of 2 CO generated in the SMR catalyst.

[0202] [0202]

Figure CN104525072AD00312

[0203] 对于本实施例中报道的所有CFD模拟结果都假定使用以下动力学(其中下标"Γ 表示SMR反应,下标"2"表示WGS反应)。在本实施例中将以下速率表达式用于反应动力学, [0203] For all results of CFD simulations reported in the present embodiment, assume the following kinetics (where the subscript "Gamma] indicates SMR reactor, the subscript" 2 "represents a WGS reaction). In the example in the present embodiment the rate of the following expression for reaction kinetics,

Figure CN104525072AD00313

[0205] V2 - k 2 (Pc〇Ph20_Ph2Pc〇2/K2) [0205] V2 - k 2 (Pc〇Ph20_Ph2Pc〇2 / K2)

[0206] 反应速率的单位是千摩/米2_催化剂.秒,上式中的压力Pi的单位是巴。 [0206] The reaction rate in units of one thousand moles / m 2_ catalyst. Seconds, the pressure Pi in the formula is a unit bar. 反应速率常数遵循以下的阿伦尼乌斯形式: The reaction rate constants follow the Arrhenius form:

[0207] Ii1= A pxp (-E1ZRT) [0207] Ii1 = A pxp (-E1ZRT)

[0208] k2= A 2exp (_E2/RT) [0208] k2 = A 2exp (_E2 / RT)

[0209] 假定SMR 反应的活化能E1= I. 7E8J/Kmol ;对于WGS 反应,E2= 6. 713E+7J/Kmol。 Activation energy E1 [0209] The reaction is assumed SMR = I. 7E8J / Kmol; for the WGS reaction, E2 = 6. 713E + 7J / Kmol. 假定指前因子为A1= 2. 126E+04和A2= I. 222。 Pre-exponential factor is assumed that A1 = 2. 126E + 04 and A2 = I. 222.

[0210] 在这些反应速率表达式中,通过相应的化学平衡常数将逆反应考虑在内 [0210] In these expressions the reaction rate by the corresponding chemical equilibrium constant into account the reverse reaction

[0211] K1= exp (-26830/T+30. 114) [0211] K1 = exp (-26830 / T + 30. 114)

[0212] K1= exp (4400/T-4. 036) [0212] K1 = exp (4400 / T-4. 036)

[0213] 动力学中的参数是使用根据5重量%的Rh分散在MgO稳定的氧化铝上的SMR催化剂的实验数据,对模型预测进行最佳拟合的结果。 [0213] Kinetic parameters from experimental data using SMR catalyst 5 wt% of Rh dispersed on MgO stabilized alumina, and the results of the model prediction of the best fit. 应当指出,对于所有SMR催化剂,这组动力学不一定是典型的,而是用来说明比较反应器几何结构和设计对性能的影响。 It should be noted that for all SMR catalyst, which is not necessarily a typical group dynamics, but to illustrate the effect of reactor geometry comparator and design performance.

[0214] 这组动力学称为基线动力学。 [0214] This set is called the baseline kinetics kinetics. 还评价了从该基线水平减小的活性的影响 Also evaluated the effect of reducing the baseline level of activity from the

[0215] 边界条件 [0215] Boundary Conditions

[0216] 在边界上设置以下条件。 [0216] provided the following conditions on the boundary.

[0217] •进口:总质量流速F = 6. 48E_5kg/s ;3:1(摩尔比,蒸汽:甲烧);温度与壁温相等。 [0217] • Import: The total mass flow rate of F = 6. 48E_5kg / s; 3: 1 (molar ratio of steam: A burning); the wall temperature equal to the temperature.

[0218] •出口:除非另外具体说明,对所有情况假定压力为345psia(2. 38MPa) [0218] • export: Unless specifically stated otherwise, assume that in all cases the pressure is 345psia (2 38MPa.)

[0219] •壁:无滑动速度;恒温 [0219] • wall: no sliding speed; thermostat

[0220] 在反应器部分的进口处施加质量流速是很容易实现的,但是如果进口正好位于催化剂结构的前缘处,可能会引起一些问题,这是因为已知进口长度会影响流体完全形成层流型的位置。 [0220] applied to the mass flow rate at the inlet portion of the reactor is very easy to implement, but if the inlet is located just at the leading edge of the catalyst structure, may cause some problems, because it is known to affect the length of the fluid inlet layer is formed entirely the position of the flow pattern. 在计算中为了避免这种影响,将微通道进口置于催化剂结构上游的特定长度。 In order to avoid this effect the calculations, the length of the microchannel inlet disposed upstream of the specific catalyst structure. 在此进入区中没有模拟反应。 In this simulation does not enter the reaction zone. 该进口的实际长度是数值实验的内容,以确定所述流体在到达催化剂结构时确实完全形成层流。 The actual length of the inlet is the content of numerical experiments to determine the fluid does flow entirely formed on the arrival of the catalyst layer structure. 通常,进口长度为流体间隙(flow gap)长度二十倍时,便足以完全形成层流。 Typically, the length of the fluid inlet gap (flow gap) two times the length, sufficient to complete formation of laminar flow.

[0221] 使用甲烷转化率比较不同结构的反应器性能。 [0221] conversion of methane reactor performance comparison of different structures. 另外,为了比较,模拟了一种基线情况,这时是一种直的通道,该通道的通道长度、宽度和间隙尺寸与具有表面特征的通道相同。 For comparison, a baseline simulation, when a straight channel, the channel length of the channel, and the width of the gap having the same dimensions as the channel surface features. 使用以下提高因子定量测量具有表面特征的反应器性能, The following factor improving reactor performance quantitative measurement of surface features,

[0222] [0222]

Figure CN104525072AD00321

[0223] 上述等式中的X是甲烷转化率。 [0223] X in the above equation is the methane conversion rate. 其根据流入反应器和流出反应器的甲烷的质量流速计算。 The calculated mass flow rate of methane into the reactor and the reactor effluent. 尽管假定反应器进口处具有均匀的甲烷浓度,但是在反应器出口处并非如此。 Although it is assumed at the reactor inlet concentration of methane having a uniform, but not the case at the outlet of the reactor. 通常,在出口的通道横截面上,甲烷浓度并不完全均匀。 Typically, the outlet channel in cross section, the methane concentration is not completely uniform. 将出口处的甲烷总流速在整个出口面积上积分,以计算平均转化率。 The total flow rate at the outlet of the methane over the whole outlet area integrated to calculate the average conversion rate.

[0224] A)与流动方向成90度角或基本与流动方向水平的表面凹槽 [0224] A) 90-degree angle to the flow direction or the substantially horizontal surface of the groove the flow direction

[0225] 模拟结果显示,在凹槽内的流体和主通道内的流体之间没有对流混合。 [0225] The simulation results show that there is no convective mixing between the fluid in the recess and the fluid within the main passage. 对于凹槽内释放的流体粒子的轨迹,它们形成封闭的圆,使它们被限制在将它们释放于其中的凹槽中。 Fluid particles to the trajectory of the release recess, which form a closed circle, that they are limited in their release therein in the groove. 所述流体仅在表面特征内滚动或旋转。 The fluid in the rolling or rotation of surface features only. 在反应环境下,在凹槽表面上发生的化学反应将会导致物质的浓度梯度。 In the reaction environment, a chemical reaction occurring on the surface of the groove will result in a concentration gradient of the substance. 在凹槽与主流通道之间的边界上发生物质扩散。 Substance diffusion occurs at the boundary between the groove and the main duct. 在各凹槽内, 压力差过小,使得观察不到横向流体运动。 In each groove, the pressure difference is too small, so that the observed lateral fluid movement. 如表1所示,计算了E-因子。 As shown in Table 1, calculate E- factor.

[0226] 表1 [0226] TABLE 1

Figure CN104525072AD00322

[0228] 对于这种几何结构,注意到一种惊人的结果,如果动力学过程足够快(在较高温度下),则表面特征可能实际上具有不利的影响(负提高特征)。 [0228] For this geometry, noting an amazing result, if sufficiently fast kinetics (at higher temperatures), the surface features may actually have an adverse effect (increase negative feature). 如果动力学过程足够快, 在表面特征内只有流体旋转,则各个催化剂区域从总体流动通道(或空通道)向更远的距离(表面特征谷的端部或底部)的运动或平移增加了更多的传质阻力,抑制了性能。 If the kinetics is fast enough, only the fluid rotates within the surface features of the respective bulk flow path from the catalyst zone (or empty channels) to greater distances (the surface features of the end or bottom of the valley) translational movement or increase more more mass transfer resistance performance is suppressed. 当动力学过程很慢时,由较低温度的结果观察到,从壁到表面特征谷的较长的传质距离被以下因素抵消,而且还有富余:表面特征增加的表面积,以及表面特征内分子的反应时间的延长。 When the process is slow kinetics, from the results of observation to the lower temperature, the mass transfer to the longer distance from the wall surface features are canceled valley factors, but also surplus: surface features increased surface area, and an inner surface wherein reaction time of the molecule. 该图案不使用平流将反应物引入活性表面特征中。 This pattern does not use advection introducing reactants into the active surface features.

[0229] B)与流动方向成倾斜角的表面凹槽一在通道的两个相对壁上一对称一使凹槽内的流体会聚 [0229] B) surface of the groove and the flow direction at an inclination angle of the two opposite walls of a passage of the fluid in a symmetrically converging recess

[0230] 在本实施例中,通过"顺式A构型"中主通道相对壁上的CFD模拟SFGO (V-形或人字形)表面特征(或凹槽)。 [0230] In the present embodiment, the "A cis configuration" in the opposite walls of the main channel CFD simulations (V- or chevron-shaped) surface features SFGO (or grooves). 所述SFGO图案由重复的类似的人字形图案组成,用来将比水平凹槽图案更多的流体引入活性表面特征中。 The SFGO pattern repeating herringbone pattern of similar composition, to more than the level of the fluid introduced into the active surface of the groove pattern features. 因此,有效因子总是正值,因此所述特征总是用来将更多的反应物引入所述活性表面特征中。 Thus, the significance factor is always positive, and therefore the characteristic is always used to more reactants into the active surface features.

[0231] 评价了三种角度,30度、45度和60度。 [0231] Evaluation of three angle, 30 degrees, 45 degrees and 60 degrees. 正的角度意味着V形凹槽的顶点指向流动的下游(或者指向流动方向),在所述V行凹槽的两个分支内流动的流体在主流通道的中间会聚。 Means positive angle vertex V-shaped groove directed downstream of the flow (flow direction or point), the fluid flowing in the two branches of the V-groove converging in the middle row of the main duct.

[0232] 假想的在流动通道侧壁附近释放的无质量的流体粒子进入凹槽中,朝向通道中心横向运动。 [0232] virtual flow path side walls in the vicinity of the released particles massless fluid into the groove, lateral movement toward the center of the channel. 凹槽各支段(或分支)中的流体流动由压力差推动,在主流通道侧壁附近(该特定凹槽的最上游位置)观察到最大值。 Fluid flow grooves in the branched segment (or branch) is driven by the pressure difference, observed in the vicinity of the maximum value of the main flow channel side walls (most upstream position of the particular recess). 凹槽内的次级流动图案被主流道内的扫过流体和凹槽内的流体之间的边界处的动量交换所推动。 Secondary flow pattern in the recess is driven by the momentum transfer at the boundary between the main flow path within the sweep fluid in the groove and the fluid. 通过在凹槽内,将次级流动叠置在主要的横向流动之上,观察到了螺旋流动图案。 By the groove, the secondary flow superimposed on the main lateral flow, a spiral flow pattern was observed. 这种流动图案由于有较长的有效反应时间,因此有益于在凹槽壁上发生的化学转化的程度。 Because longer effective reaction times, and therefore the degree of benefit in the wall of the recess chemical conversion occurs such a flow pattern. 在凹槽两个相连的分支内的流动在通道的中心会聚,在此处形成了猛烈的上升流,流入主流通道。 Flowing in the branch of the two grooves in the central channel connected to converge, where formation of a violent upward flow, flow into the main channel. 所述上升流在凹槽的一区之上产生,在通道宽度中心附近达到其最大强度。 The upward flow over a region of the groove is generated in the vicinity of the center of the width of the channel reaches its maximum strength. 这种通道中心附近的猛烈的上升流可以防止主流通道内的流体被吸入凹槽中。 Violent upward flow near the center of such a channel can be prevented in the main fluid passage is sucked into the groove.

[0233] 模拟结果显示,对于中间平面,甲烷浓度分布是对称的。 [0233] The simulation results show the median plane, the methane concentration distribution is symmetric. 但是在横向方向观察到甲烷有一定程度的不均匀分布。 However, methane was observed in the lateral direction to a certain degree of uneven distribution. 这将导致反应速率分布的不均匀,这又会造成不均匀的热负荷。 This will result in an uneven distribution of the reaction rate, which would cause uneven heat load. 但是,考虑到通道壁内沿横向方向的热传导,这种不均匀的热负荷将会有效地获得减小。 However, considering the heat conduction in the transverse direction of the inner wall of the channel, this uneven heat load will be reduced efficiently obtained. 类似地,在横向方向上观察到不均匀的产物(H2)分布。 Similarly, non-uniform product was observed (H2) in the transverse direction of the profile.

[0234] 另外,观察到在较低温度下获得更大的提高因子,说明凹槽特征有效地加快了反应速率,如无该特征,所述反应速率则会很慢。 [0234] Further, the observed improvement factor greater at lower temperatures, wherein the grooves described effectively speed up the reaction rate, without this feature, the reaction rate will be very slow.

[0235] 表2 [0235] TABLE 2

Figure CN104525072AD00331

[0238] 在下表中,我们看到,对于被测的角度,这种几何结构的初始反应器性能从最好到最差排序如下:60度>45度>30度 [0238] In the following table, we see that, for the measured angle, the performance of such initial reactor geometry ordered from best to worst as follows: 60 °> 45 °> 30 °

[0239] 表:角度的影响 [0239] TABLE: Effect of the angle

Figure CN104525072AD00332

[0241] C)与流动方向成倾斜角的表面凹槽一位于通道的两个相对壁上一对称一使在凹槽内的流体发散 [0241] C) and the surface of the groove inclination angle a flow direction of two opposite walls of the passageway a fluid in a symmetrical diverging recess

[0242] 还是用指向相反方向(即与流动方向相反,或者顺式-B取向)的V形凹槽进行了模拟,令人惊讶的是,测得的提高因子与指向流动方向的V形凹槽的情况相同。 [0242] or simulated by pointing in opposite directions (i.e. opposite to the flow direction, orientation or cis -B) of the V-shaped grooves, surprisingly, improvement factor measured with flow direction directed V-shaped recess same as the slot. 流动图案与相反取向的凹槽极为不同。 Flow pattern of oppositely oriented grooves and very different. 对于指向流动方向的V形特征,凹槽内的流体朝向通道的中心或V形结构的顶点滚动。 For the V-shaped feature point direction of flow, the center or apex of the V-shaped structure in the fluid passage toward the rolling groove. 对于与流动方向反向的V形特征,流体朝向通道的侧面滚动。 For the V-shaped feature reverse flow direction, the side facing the fluid passage rolling. 在给定凹槽内。 Within a given recess. 在V形的顶点处,压力最高。 At the apex of the V-shape, the highest pressure. 对于这两种情况,表面积的总增量或可用于反应的表面位点的总增量保持恒定,因此具有相同的性能。 For both cases, the total surface area or incremental total increased surface sites may be used in the reaction is maintained constant, and therefore has the same performance. 窄的微通道间隙(0.0125〃)几乎不会给予平坦的通道以外部传质阻力,因此横向和垂直的流动影响几乎没有影响。 Narrow microchannel gap (0.0125〃) hardly give flat external mass transfer resistance in the channel, thus lateral and vertical flow influencing little effect. 预期随着反应通道间隙的增大,横向和垂直流动的影响将会更显著。 With the expected increase in the reaction channel gap, and the influence of the lateral vertical flow will be more pronounced.

[0243]表4 [0243] TABLE 4

Figure CN104525072AD00341

[0245] 对于中间平面,浓度分布也是对称的,但是观察到在横向方向上存在甲烷的不均匀分布(与情况B中观察到的情况相反),其中在通道宽度的中心具有局部的高甲烷浓度。 [0245] to the median plane, the concentration distribution is symmetrical, but the observed uneven distribution of methane is present (in the case of Case B observed contrast) in the transverse direction, having a high localized concentration of methane in the center of the channel width . 这会导致不均匀的反应速率分布,这又会造成不均匀的热负荷。 This causes a non-uniform distribution of the reaction rate, which would cause uneven heat load. 但是,考虑到通道壁内沿横向方向的热传导,这种不均匀的热负荷应该会被有效地减小。 However, considering the heat conduction in the transverse direction of the inner wall of the channel, this uneven heat load should be effectively reduced.

[0246] D)与流动方向成倾斜角的表面凹槽一在通道的两个相对壁上,但是具有不同的取向 [0246] D) of flow at an inclination angle of a surface of the recess in two opposite walls of the channel, but with different orientation

[0247] 在实施例B和C中,就形状和取向而言,在通道的相对壁上具有镜像表面特征。 [0247] In an embodiment, B and C, on the shape and orientation, the mirror surface features on opposite walls of the channel. 在本实施例中,一个壁上设置了B类凹槽,相对壁上设置了C类凹槽(角度相反)。 In the present embodiment, a groove wall of the set of B class, C class disposed opposite recess walls (opposite angle). 这种取向也被称为反式构型。 This orientation is also referred to as a trans-configuration. 失去了通道中间的对称面。 He lost the intermediate plane of symmetry of the channel.

[0248] 相对壁上的表面特征内的主要流动在横向指向相反的方向。 [0248] The main features of the flow in the opposite surface of the lateral walls of the point in opposite directions. 在一个侧面上,流动从靠近主流通道中心的边缘转向较远的边缘。 On one side, the flow diversion from the far edge of the edge near the center of the main flow channel. 在相对的侧面上,流动从远离主流通道中心的边缘转向靠近流动通道中心的边缘。 On the opposite side, away from the edge of the main flow channel flows from the center of the flow channel near the edges of the steering center. 表面凹槽内的这些流动图案造成主流通道中没有显著的横向流动方向。 The flow pattern in the surface of the main passage groove causes no significant lateral flow direction. 这明显不同于情况B (流动从中心指向侧面)和情况C(流动从流动通道的侧面指向中心)中存在显著的流动方向的现象。 This is significantly different from the case of B (flow side from the center point) and case C (flow from the flow channel side toward the center) direction of significant flow phenomena occurring.

[0249] 另外,在横向观察到甲烷的不均匀分布,但是不均匀程度较小。 [0249] Further, in the transverse direction is observed uneven distribution of methane, but a smaller degree of unevenness. 与情况B和C不同,沿横向的甲烷浓度分布不是单调的。 B and C in the case of different concentrations of methane is not monotonic in the transverse distribution. 在一侧,中心的浓度高于通道侧壁附近的浓度。 On one side, a concentration higher than the concentration near the center of the channel side walls. 在另一侧,通道侧壁附近的浓度高于流动通道中心附近的浓度。 On the other side, a concentration higher than the concentration near the channel side walls near the center of the flow channel. 相对壁上凹槽相反的取向可以使浓度分布和流场平均化。 Orientation opposite walls of the groove relative concentration distribution can flow fields and averaged. 表面特征以非完美的对称、不完全对称或不对称特征设置在相对壁上,因此与情况B和C中所示的对称的设置相比,能够提供更佳的初始反应器性能。 Wherein the surface of non-perfect symmetry, is not completely symmetric or asymmetric features disposed on opposite walls, so compared to the case shown disposed symmetrically B and C, it can provide better initial reactor performance.

[0250] 表5 [0250] TABLE 5

Figure CN104525072AD00342

[0252] 这些结果显示,其性能几乎与壁两侧上具有相同的表面特征的情况的性能相等。 Performance is equal to [0252] These results show that almost the same performance characteristics with the upper surface of the side walls of the case. 由于具有以推-拉方式配合的两种特征,改进了垂直流动,从而略微减小了外部传质,所以有略微的额外的提高。 Because a push - pull mode with two characteristics of improved vertical flow, thereby slightly reducing the external mass transfer, so additional slight increase. 然而,如果模拟了该表面特征图案的较长区,将会产生一个或多个芯流(core flow),芯流中几乎不会与活性表面特征发生相互作用。 However, if the simulated long region of the surface feature pattern, will produce one or more streams of the core (core flow), almost does not interact with the active surface of the core flow characteristics.

[0253] 对于具有较大间隙的反应器通道的情况,垂直流动速度的重要性将会更加显著。 [0253] In the case of a reactor having a large gap passage, the flow velocity perpendicular to the importance will be more significant. 随着间隙增大,对具有层流型流体的平坦通道内的外部传质的贡献将会更加显著,这是因为扩散时间的增加随着扩散距离(或半间隙)的平方而增大。 As the gap increases, the contribution of the external mass transfer in laminar flow channel has a planar fluid will be more significant, because the diffusion time increases as the square of the diffusion distance (or semi-batch) is increased. 使用表面特征产生垂直流将会增大初始提高因子。 Generating vertical flow will increase the use of surface features to improve the initial factor. 对于气相反应,与间隙尺寸相关的表面特征的重要性也将取决于反应进行的快慢,而反应进行的快慢与在反应通道中花费的时间以及扩散所需的时间有关。 For vapor phase reactions, the importance of surface features associated with the gap size will also depend on how fast the reaction proceeds, the speed and the time spent in the reaction channel for reaction and diffusion relating to the time required. 例如,在接近1毫秒的接触时间操作的SMR反应,即使在25-50微米(微米=千分之一英寸)间隙中也将具有外部传质影响。 For example, the SMR reaction is close to 1 millisecond contact time of the operation, even when the (m = thousandths of an inch) clearance 25-50 microns will also have an external mass transfer. 在接近10毫秒的接触时间操作的SMR反应,直到间隙接近500微米时,才会有外部传质阻力。 SMR reactor in close contact time of 10 milliseconds of operation, until the close gap 500 microns, will have an external mass transfer resistance. 即使对于小于500微米的流体间隙,液相反应也将具有显著的传质限制。 Even if the fluid gap is less than 500 microns, the liquid phase reaction also has a significant mass transfer limitations. 预期本发明的特征不仅对气相反应是有益的,而且也有益于液相反应,这是因为液相反应更有可能表现出外部传质限制。 Contemplated by the present invention is characterized in the gas phase reaction is not only useful, but also good liquid phase reaction, since the reaction liquid is more likely to exhibit external mass transfer limitations.

[0254] E)具有与流动方向呈倾斜角的表面特征一在通道单侧上具有不对称的图案一在通道相对壁上具有不同的取向 [0254] E) was characterized in having a surface inclination angle to the flow direction has an asymmetric pattern on one side a channel having a different orientation relative to the channel walls

[0255] 就反应器性能提高试验了很宽范围的设计参数。 [0255] For testing the performance of the reactor to improve a wide range of design parameters. 其中包括: These include:

[0256] •表面特征深度 [0256] • surface feature depth

[0257] •催化剂活性水平 [0257] • catalyst activity level

[0258] •主通道间隙尺寸 [0258] • main channel gap size

[0259] •工艺流速 [0259] • Process flow

[0260] 分析的设计如图6所示;黒线显示了顶面上的凹陷,浅色的线显示了底面上的凹陷。 [0260] Analysis of the design shown in Figure 6; black line shows the top surface of the recess, light-colored lines show the bottom surface of the recess.

[0261] 表:对于SMR动力学,在700°C和25大气压下,不同特征深度的反应器提高(平衡转化率〜44% ) [0261] TABLE: For SMR kinetics at 700 ° C and 25 atmospheres, reactor different feature depth increased (~44% equilibrium conversion)

[0262] [0262]

Figure CN104525072AD00351

[0263] 在所有的这些模拟中,都使用了在该部分开头处给定的完全SMR催化剂活性。 [0263] In all these simulations, full use SMR catalyst activity at the beginning of this section is given. 如上表所示,观察到甲烷转化率有小的提高。 As shown in the above table, the methane conversion rate was observed a small increase. 应当指出,所有情况下所达到的甲烷转化率接近700°C下的平衡转化率。 It should be noted that in all cases the methane conversion rate reached near equilibrium conversion at 700 ° C. 随着表面特征深度的增大,从反应器进口到出口的压降也增大。 With increasing depth of the surface features, from the reactor inlet to the outlet of the pressure drop also increases. 这反映出具有较大深度的表面特征内存在较大的动量损失。 This reflects a greater depth of surface features having a larger loss of momentum in the memory. 然而,当表面特征更深时,压降的增加速率更慢。 However, when the surface features deeper, the pressure drop increases at a slower rate.

[0264] 表:对于不同的特征深度的反应器提高(较低催化剂活性水平一20% ) [0264] TABLE: For different features of the reactor to improve the depth (a low level of catalyst activity by 20%)

[0265] [0265]

Figure CN104525072AD00361

[0266] 观察到随着催化剂活性减小,提高的程度高得多。 [0266] As the catalyst activity decrease was observed, the degree of improvement is much higher. 对于上表中总结的情况,前文所述的基线动力学减小到初始基线的20%。 In the case of the above table summarizes the baseline kinetics described hereinbefore is reduced to 20% of the initial baseline. 令人吃惊的是,较深的特征得到较佳的性能。 Surprisingly, the deeper features get better performance. 较深的特征具有更大的表面积,但是总体流动路径到反应器壁的距离也更远。 Characterized in having a greater surface area of ​​the deeper, but the bulk flow path from the reactor wall to be longer. 另外的表面积超过了传质的问题,这是因为在主通道内和表面特征自身之内的垂直流速造成的。 Additional mass transfer surface area in excess of the problem, since in the main passage and the flow velocity perpendicular to the surface features of the self-inflicted.

[0267] 活性水平定义为用于前文描述的动力学表达式的指前因子的减小百分数。 [0267] level of activity is defined as the pre-exponential factor for kinetic expressions of the previously described reduction percentage. 通常, 当反应速率或动力学较慢时,活性表面特征的影响更显著。 Typically, when the slow kinetics or reaction rate, the surface activity of the more significant features. 这是当催化剂活性减小时,活性表面特征内所花费的时间增加变得更重要的结果。 This is when the catalyst activity is reduced, time spent within the active surface features is increased becomes more important result.

[0268] 表:对于甲烷转化,在深0. 01"的特征、700°C和25大气压的条件下,活性水平对皮应黑件能的影晌 [0268] TABLE: For the conversion of methane, wherein the depth of 0.01 ", and under conditions of 700 ° C and 25 atmospheric pressure, the level of activity of the skin can be black member IMPACT

Figure CN104525072AD00362

[0270] 表面特征给予的相对提高经历催化剂活性条件下的优化。 [0270] Optimization of surface active conditions wherein the catalyst administered experience relatively increased. 如果反应动力学非常快且微通道间隙很小(对于接触时间小于10毫秒的气相反应,〈〇. 〇15〃),则在通道内增加的横向和垂直流动几乎没有增加优点,大部分的影响是由表面积的增大造成的。 If the reaction kinetics are very fast and the microchannel small gap (less than the contact time of the gas phase reactor is 10 ms, <square. 〇15〃), increase in the lateral and vertical flow passage almost no increase advantages, most of the impact by increasing the surface area caused. 如果动力学过慢,则微通道中短接触时间的环境占优势,因为反应物在达到可观的转化率之前便被扫出反应器。 If the kinetics is too slow, a short contact time microchannel environmental advantage, because before reaching the reaction was appreciable conversion rates will be swept out of the reactor.

[0271] 表:对于甲烷转化,在深0. 015"的特征、700°C和25大气压的条件下,工艺流速对反应器性能的影响 [0271] TABLE: For the conversion of methane, in the deep .015 "feature, 700 ° C and 25 atmospheric pressure conditions, the flow rate of the reaction process influence the performance of

[0272] [0272]

Figure CN104525072AD00371

[0273] 对于SMR反应速率在20%的基线活性水平下,所有情况下的甲烷转化率都认为远离700°C下的平衡值(〜44%)。 [0273] For the SMR reaction rate at 20% of the baseline level of activity, the methane conversion rate in all cases that are far from equilibrium value (~44%) at 700 ° C. 如表中所示,发现最深的特征的提高效果最高。 As shown in the table, it was found to increase the maximum effect of the deepest features. 当流速增大超过基线流速时,令人惊讶地观察到进一步提1¾。 When the flow rate increases beyond a baseline flow rate, the observed surprisingly further improved 1¾. 随着流速减小,提1¾减少。 As the flow rate decreases, mention 1¾ reduced. 对于后一种情况,从较低的流速减小到更低的速度,减少了这种固定几何结构的流体旋转,从而略微减小了提高因子。 In the latter case, the flow rate is reduced from a lower to a lower speed, reducing the fixed geometry of the fluid such rotation, whereby the improvement factor is slightly reduced. 当流速增大时,总体速度也增大,因此产生了由表面特征产生的横向和垂直速度。 When the flow rate increases, the overall speed is increased, thus creating lateral and vertical velocity generated by the surface features. 当动力学比基线情况慢时,表面特征的影响变得更重要-部分是由于该研究的基线动力学非常快。 When slower kinetics than the baseline case, the influence of surface features become more important - in part due to the baseline study of the kinetics very fast.

[0274] 较高的流速也对应于较高的雷诺数。 [0274] corresponds to a higher flow rate is also higher Reynolds numbers. 当雷诺数增大时,分子在活性表面特征中将花费较长的时间,因此它们在催化剂处或附近发生反应的时间更长。 When the Reynolds number is increased, the molecule takes a long time in the active surface features so that they are longer reaction times occur at or near the catalyst.

[0275] 表:通道间隙尺寸对反应器性能的影响(间隙尺寸:0. 04"),700°C,25大气压,SMR反应,0. 0Γ深表面特征 [0275] TABLE: Effect channel gap size reactor performance (gap size:. 0 04 ")., 700 ° C, 25 atm, SMR reaction, 0 0Γ deep surface features

Figure CN104525072AD00372

[0277] 对于该表中所示的情况,模拟了大得多的间隙。 [0277] In the case shown in the table, much of the simulated gap. 使用大得多的间隙,如预期,观察到了更大的提高因子。 Use much larger gap, as expected, a greater increase was observed factor. 对〇. 0Γ深的表面特征的20%基线活性和基本流速类似的情况是: 对于0. 0125"的间隙的提高因子为26. 6%,对0. 04〃的间隙的提高因子为31. 9%。在大间隙的情况下也观察到在较高流速情况下具有较高的提高因子的趋势。 20% of the baseline activity of the square and the flow rate substantially similar situation 0Γ deep surface features are: 0.0125 clearance for "improvement factor of 26.6%, a gap of 0.5 04〃 improvement factor of 31. 9%. in the case of a large gap is also observed to have a higher tendency of improvement factor at higher flow rates.

[0278] 实施例一使用表面特征提高传热 [0278] Example features improve the heat transfer surface using a

[0279] 表面特征引起旋转或螺旋流动路径,这些流动路径可以提高从壁向流体主体(或反之亦然)的传热。 [0279] surface features cause rotational or spiral flow path, which flow path may improve the heat transfer to the fluid from the body wall (or vice versa). 使用计算流体动力学估算了表面特征带来的传热的改进。 Estimated using computational fluid dynamics to improve the surface characteristics caused by the heat transfer. 使用的工具是Fluent V 6. 1. 22。 Tools used Fluent V 6. 1. 22.

[0280] 对最小尺寸不同的两种微通道建立CFD模型。 [0280] CFD models to establish the minimum size of two kinds of different microchannels. 一种通道的间隙为0. 0125〃,另一种通道的间隙为0.040〃。 A passageway gap of 0. 0125〃, another channel is a gap 0.040〃. 对于各种间隙尺寸,建立两种模型:1)不具有表面特征和2)具有表面特征,以分别估算传热提高。 For the various gap sizes, create two models: 1) having no surface features, and 2) has a surface characteristic, to estimate the heat transfer are improved.

[0281] 使用Gambit V2. 2. 30建立CFD模型。 [0281] use Gambit V2. 2. 30 establish the CFD model. 图1-3中显示了通道尺寸和表面特征的详图。 FIG 1-3 shows details of the size and surface characteristics of the channel. 主通道尺寸是宽4. 06晕米,间隙1. 02晕米和长36. 83晕米。 Main channel size of width 4.06 meters halo, halo gap 1.02 meters long and 36.83 meters halo. 一段在主通道长度的3. 81 毫米开始和5. 08毫米终止之间的主通道具有图6所示的表面特征。 Section of the main channel between 3.81 mm and 5.08 mm terminated start the main channel length of surface features shown in FIG. 6. 所述表面特征图案与SHM中提出的图案类似,但是包括特征的微通道壁的尺寸或数量不同,而且也不像本实施例中那样使用填充特征。 The surface feature pattern similar to the pattern SHM proposed, but a different size or number of features including the microchannel walls, but also unlike a packed feature in this embodiment. 表面特征是被〇. 38晕米的壁隔开的0. 38晕米的开口,其深度为0. 25 毫米,用于微通道的两个侧面上。 Characterized in that the surface of the wall opening is spaced square 38 meters halo halo 0.38 m, a depth of 0.25 mm, for the two sides of the microchannel.

[0282] 在Gambit中产生了用于计算流体分析的网(mesh)。 [0282] produced a net (mesh) is used to calculate the fluid analysis in Gambit. 网格的总数为131106,面的总数为542409,节点的总数为177006。 The total number of the grid is 131,106, the total number of surface is 542,409, the total number of nodes is 177,006. 产生网以尽可能将其保持为规则的网。 Generating net to hold it as a regular network.

[0283] 考虑了用两种流体来确定表面特征的混合效率。 [0283] consideration of mixing efficiency of the two fluids is determined by the surface features. 下面给出了流体的性质和操作条件: The following properties are given fluid and operating conditions:

[0284] 1)气体 [0284] 1) Gas

[0285] a.出口压力=34S psi [0285] a. = 34S psi pressure outlet

[0286] b.进口温度=300K [0286] b. Inlet temperature = 300K

[0287] c.粘度=1. 28 X lCT5kg/m/s [0287] c. Viscosity = 1. 28 X lCT5kg / m / s

[0288] d 导热系数=0· 087W/m/K [0288] d Thermal Conductivity = 0 · 087W / m / K

[0289] e.比热=2768.03J/kg/K [0289] e. Specific heat = 2768.03J / kg / K

[0290] f.密度=使用理想气体定律 [0290] f. = Density using the ideal gas law

[0291] g.分子量=17. 49g/mol [0291] g. Molecular weight = 17. 49g / mol

[0292] h.分子扩散系数=lXl(T5m2/s [0292] h. Diffusivities = lXl (T5m2 / s

[0293] 2)液态水 [0293] 2) liquid water

[0294] a.出口压力=14. 7psi [0294] a. Outlet pressure = 14. 7psi

[0295] b操作温度=300K [0295] b = 300K operating temperature

[0296] c 粘度=I. 0 X lCT3kg/m/s [0296] c viscosity = I. 0 X lCT3kg / m / s

[0297] d.导热系数=0· 6W/m/K [0297] d. Thermal conductivity = 0 · 6W / m / K

[0298] e 比热=4182J/kg/K [0298] e specific heat = 4182J / kg / K

[0299] f 密度=998. 2kg/m3 [0299] f density = 998. 2kg / m3

[0300] g 分子量=18. Olg/mol [0300] g molecular weight = 18. Olg / mol

[0301] h分子扩散系数=IX 10_9m2/s [0301] h diffusivities = IX 10_9m2 / s

[0302] 情况1:0· 0125英寸的通道间隙 [0302] Case 1: 0.5 passage gap of 0125 inches

[0303] 使用液态水作为流体 [0303] Use of liquid water as the fluid

[0304] 边界条件 [0304] Boundary Conditions

[0305] 0 操作压力=14. 7psi [0305] Operating pressure 0 = 14. 7psi

[0306] 0 出口压力=Opsig [0306] 0 = Opsig outlet pressure

[0307] 0 进口速度=I. 54m/s [0307] Inlet Velocity 0 = I. 54m / s

[0308] 0 进口温度=300K [0308] inlet temperature = 300K 0

[0309] 〇壁温度=350K [0309] square wall temperature = 350K

[0310] 通道中流体的雷诺数为1000。 [0310] The Reynolds number of the fluid passage 1000. 雷诺数计算如下 Reynolds number is calculated as follows

[0311] [0311]

Figure CN104525072AD00381

[0312] 式中P =流体密度,kg/m3 [0312] wherein P = fluid density, kg / m3

[0313] v =流体速度,m/s [0313] v = fluid velocity, m / s

[0314] D =通道的水力直径,m [0314] D = hydraulic diameter of channel, m

[0315] μ =流体的粘度,kg/m/s [0315] μ = fluid viscosity, kg / m / s

[0316] 总传热系数通过下式估算: [0316] The overall heat transfer coefficient estimated by the following formula:

[0317] [0317]

[0318] 式中 [0318] wherein

Figure CN104525072AD00391

[0319] HTC总体=总传热系数(W/m2/K) [0319] HTC = overall heat transfer coefficient (W / m2 / K)

[0320] Qlt=从壁传递的热量(W) [0320] Qlt = heat transfer from the wall (W)

[0321] Aw =基于平坦(或无表面特征)几何结构的传热面积,m2 [0321] Aw = on flat (or no surface features) geometry heat transfer area, m2

[0322] LMTD =平均温差的对数值 [0322] LMTD = average value of the temperature difference

[0323] 模型选择 [0323] Model selection

[0324] 对CFD分析选择K- Ω模型(SST类)。 [0324] Analysis of the CFD model selection K- Ω (SST class). 模型常数的数值是Fluent 6. 0提供的默认值。 Numerical model constants Fluent 6. 0 are the default values ​​provided. 选择完全多组分扩散物质传递模型。 Select full multicomponent diffusion mass transfer model. 扩散系数为lE_5m2/S。 Diffusion coefficient lE_5m2 / S.

[0325] 结果 [0325] results

[0326] 图7显示了平坦通道(无表面特征)与具有表面特征几何结构的通道之间的温度曲线的比较。 [0326] Figure 7 shows a flat channel (no surface features) having a temperature profile comparison between the channel geometry of the surface features. 该温度曲线是沿着流动方向,在通道中心绘制的。 The temperature profile along the direction of flow, drawn in the center of the channel. 所有的温度的单位均为开。 All temperatures are in the open. 对于具有表面特征的几何结构,从壁向流体的传热比较快。 For the geometry of the surface features, heat transfer from the wall to the fluid relatively quickly. 下表比较了平坦通道和表面特征几何结构的计算的传热系数。 The following table compares the calculated heat transfer coefficient of the channel and the flat surface feature geometries. 结果显示,具有表面特征的几何结构相对于不具有表面特征的情况,传热系数提高143%,压降增大63%。 The results show, the geometry of surface features relative to the surface features without having heat transfer coefficient increased by 143%, 63% increase in pressure drop. 注意传热的相对提高大于压降的相对提高。 Note that heat transfer is greater than the relative increase of the pressure drop is relatively increased. 还要注意,为了达到与长1.4英寸的平坦通道相同的性能,具有表面特征的通道的长度仅需为0.3英寸。 Note also that, in order to achieve 1.4 inches long with the same performance as a flat channel, the channel having a length of surface features only 0.3 inches.

Figure CN104525072AD00392

[0327] 表:对于0. 0125英寸的间隙,平坦通道和表面特征几何结构的传热系数和压降的比较 [0327] TABLE: 0.0125 inches for the gap, the flat channel heat transfer coefficient and surface characteristics and the geometry of the pressure drop comparison

[0328] [0328]

[0329] 情况2:0. 040英寸的通道间隙 [0329] Case 2: Channel gap 0040 inches

[0330] 使用气体作为流体: [0330] using a gas as a fluid:

[0331] 边界条件 [0331] Boundary Conditions

[0332] 0 操作压力= 345psi [0332] 0 = 345psi operating pressure

[0333] 0 出口压力=Opsig [0333] 0 = Opsig outlet pressure

[0334] 0 进口速度=0· 47m/s [0334] 0 inlet velocity = 0 · 47m / s

[0335] 0 进口温度=300K [0335] inlet temperature = 300K 0

[0336] 〇壁温度=350K [0336] square wall temperature = 350K

[0337] 使用液态水作为流体: [0337] liquid water as the fluid used:

[0338] 0 操作压力=14. 7psi [0338] Operating pressure 0 = 14. 7psi

[0339] 0 出口压力=Opsig [0339] 0 = Opsig outlet pressure

[0340] 0 进口速度=0· 60m/s [0340] 0 inlet velocity = 0 · 60m / s

[0341] 0 进口温度= 300K [0341] inlet temperature = 300K 0

[0342] 〇壁温度=350Κ [0342] square wall temperature = 350Κ

[0343] 通道中的流体的雷诺数为1000。 [0343] The Reynolds number of the fluid passages 1000.

[0344] 模型选择 [0344] Model selection

[0345] 选择K-Ω模型(SST类)用于CFD分析。 [0345] Select Model K-Ω (SST class) for the CFD analysis. 模型常数的数值是由Fluent 6. 0提供的默认值。 Numerical model constants default values ​​provided by Fluent 6. 0.

[0346] 选择完全多组分扩散物质传递模型。 [0346] select full multicomponent diffusion mass transfer model. 扩散系数为lE_5m2/s。 Diffusion coefficient is lE_5m2 / s.

[0347] 结果 [0347] results

[0348] 对于这种较大的间隙,具有表面特征的几何结构仍然表现出优于平坦几何结构的提高传热。 Geometry [0348] For such a large clearance having a surface characteristic exhibiting an improved heat transfer is still better than flat geometry. 表2将平坦几何结构和具有表面特征的几何结构的传热系数和压降进行了比较。 Table 2 The heat transfer coefficient of planar geometry and the geometry of the surface features and pressure drop were compared.

[0349] 表:对于0. 040英寸的间隙,对平坦通道和表面特征几何结构的传热系数和压降的比较 [0349] TABLE: For .040 inches clearance, for comparison flat channel heat transfer coefficient and surface characteristics and the geometry of the pressure drop

Figure CN104525072AD00401

[0351] 在两种情况下,传热系数的增大大于每单位长度的压降增大。 [0351] In both cases, increasing the heat transfer coefficient is greater than the pressure drop per unit length is increased. 另外,还可预期通过减小微通道的长度,可以得到更高效的交换器,从而可以进一步减小系统的压降。 In addition, also contemplated by reducing the length of the microchannel, you can be more efficient exchanger, which can further reduce the system pressure drop.

[0352] 实施例甲烷燃烧 [0352] Example combustion of methane

[0353] 使用整体一步机理模拟甲烷的燃烧,在此机理中,甲烷与两个氧气分子反应,生成1分子的〇) 2和2分子的水(式1)。 [0353] Simulation using an integral step in the mechanism of methane combustion, this mechanism, the methane is reacted with two molecular oxygen to produce 1 billion molecules) two molecules of water and 2 (Formula 1). 模拟了甲烷的燃烧速率,对于甲烷和氧气都是一级反应(式2)。 Simulation of the burn rate of methane, methane and oxygen for the reaction are a (Formula 2). 在独立的研究中估算了活化能,为553,900kJ/mol,指前因子为1130m 4/kgmol/ S,中心温度为1098. 2K。 The activation energy estimated in a separate study for 553,900kJ / mol, pre-exponential factor of 1130m 4 / kgmol / S, central temperature 1098. 2K.

[0354] CH4+202- CO 2+2Η20 [0354] CH4 + 202- CO 2 + 2Η20

[0355] 式I [0355] Formula I

Figure CN104525072AD00411

[0357] 式2 [0357] Formula 2

[0358] 本实施例的具体目标是使用小CFD模型模拟具有等温壁边界条件的微通道几何结构,以便对具有表面特征的设计相对于具有平坦的壁(或没有表面特征)的可比较设计的燃烧性能提高进行定量比较。 [0358] DETAILED object of the present embodiment is small CFD model simulates a like microchannel geometry boundary condition of the warm wall, so with respect to the wall having a flat design of surface features (or no surface features) of comparable design combustion performance improvements quantitative comparison.

[0359] 下表给出了输入条件 [0359] The following table shows the input conditions

[0360] 表:Pt-Re燃料稀燃排放物净化通道CFD模拟的边界条件。 [0360] Table: Pt-Re boundary conditions emission purifying a lean fuel passage CFD simulation.

[0361] [0361]

Figure CN104525072AD00412

[0362] 图8显示了具有表面特征和不具有表面特征的实验性能数据。 [0362] FIG 8 shows the experimental performance data having no surface features and surface characteristics.

[0363] 该模型使用上表所列的边界条件进行运算。 [0363] Boundary conditions are listed in the table on the model used for calculation. 对燃烧催化剂动力学的指数前常数进行修正,直至模拟预测的CH 4转化率与具有和不具有表面特征的750°C的实验数据相符。 Pre-exponential kinetics of combustion catalyst constant correction, consistent with the predicted until analog conversion of CH 4 with the experimental data having 750 ° C and having no surface features. 使用用来匹配具有和不具有表面特征的模型中所需的指前因子之比,对具有表面特征情况下的性能提1¾进行定量。 Than used to match the pre-exponential factor and the model does not have the desired surface features, for 1¾ performance increase in the case of surface features quantified. 估算了750°C下的表面特征提1¾因子。 Surface characteristics estimated at 750 ° C 1¾ mentioned factors.

[0364] 在750°C下的具有表面特征的甲烷转化性能提高因子为4. 4倍。 [0364] improved performance of surface features methane conversion at 750 ° C of the factor of 4.4 times. 也就是说,在750°C下,仅设置在平坦壁上的催化剂的活性必须达到4. 4倍,才能达到与设置在具有表面特征的微通道上的催化剂相同的性能。 That is active, at 750 ° C, only provided on the flat wall of the catalyst must reach 4.4 times, to achieve the same performance of the catalyst provided in a microchannel having surface features.

[0365] 假设和参考 [0365] Reference assumptions and

[0366] •所述几何结构是间隙0. 058英寸的通道,宽0. 16英寸,长3. 5英寸 [0366] • the geometry of the passage is the gap of 0.058 inches, 0.16 inches wide, 3.5 inches long

[0367] •表面特征图案是通道顶面和底面上的SFG-I。 [0367] • pattern of surface features is SFG-I-channel of the top and bottom surfaces.

[0368] 基线情况的燃料稀燃动力学指前因子为1129. 3,表示为1倍。 [0368] Fuel lean burn baseline before 1129.3 kinetics exponential factor, expressed as a fold. 在此实验中测得的平滑或平坦通道上的试验催化剂高得多-改良配方的结果。 In this experiment the test much catalyst measured smooth or planar channel high - the result of improved formula. 对两种情况使用相同的催化剂配方。 Using the same catalyst formulations for both cases.

[0369] 对指前因子进行修正,以匹配750°C下平滑通道的014转化率。 [0369] The pre-exponential factor is corrected to match the 014 conversion at 750 ° C in a smooth channel. 750°C下平滑通道的CH4转化率约为47% (见图1)。 At 750 ° C CH4 conversion rate of about 47% smoother passage (see FIG. 1). 匹配平滑通道的性能之后,改变指前因子以便与有表面特征的性能相匹配。 After matching performance smooth channel change factor to match the performance characteristics of the front surface of the finger. 下表列出了结果。 The following table lists the results.

[0370] 表:在750°C的CFD模型分析的总结 [0370] Table: Summary of 750 ° C in the CFD model analysis

[0371] [0371]

Figure CN104525072AD00421

[0372] 具有表面特征的性能提高因子(在750°C )= 4. 4倍,从而说明催化剂如果设置在平坦的或无特征的通道上,则需要4. 4倍高的活性才能获得相同的转化率性能。 [0372] surface features to improve the performance factor (at 750 ° C) = 4. 4-fold, so that if the catalyst described is provided on the flat or featureless channel is required 4.4 times higher in order to obtain the same activity conversion performance.

[0373] 实施例废气净化 [0373] The exhaust gas purifying Example

[0374] 本实施例在简化的模拟燃烧废气流(仅含CH4, O2和余量的N 2)中模拟了燃烧废气(最终2500ppm)的净化。 [0374] The present embodiment of the burner exhaust stream Simplified Analog (only CH4, O2, and the balance of N 2) simulated combustion exhaust gas (2500 ppm of final) purification.

[0375] 设计概述 [0375] Design Overview

[0376] 该几何结构包括间隙0. 058英寸的通道,宽0. 16英寸,长3. 5英寸,位于片式(pellet)器件中,在所述0.058英寸的间隙的任一侧面上具有板,该板具有凹陷的表面特征,或者具有平坦的表面。 [0376] The geometry comprises a passage gap 0.058 inches, 0.16 inches wide, 3.5 inches long, located in the chip (a pellet) device, having a plate on either side of the gap 0.058 inches the plate has a recessed surface features, or have a flat surface. 所选的表面特征图案是位于主通道两个相对的主壁上的SFG-I, 其为反式构型,特征深度为〇. 010英寸,各自具有〇. 015〃的跨距,特征间距0. 015"。 The selected pattern of surface features are located in the main channel of the two main opposing walls of SFG-I, which is a trans-configuration, wherein a depth of square. 010 inches, each having a square. 015〃 span, feature pitch 0 . 015. "

[0377] 制造详细说明 [0377] Detailed Description of manufacturing

[0378] 为了使背景活性最小,器件中的部件具有氧化铬外皮(通过inconel 617热处理生长出来,在此处理中,所述通道在氧气和氮气的稀混合物中加热至l〇〇〇°C,处理4小时)。 [0378] In order to minimize background activity, the device having a chromium sheath member (inconel 617 by heat treatment grow out, in this process, the channel is heated to l〇〇〇 ° C for a lean mixture of oxygen and nitrogen, 4 hours).

[0379] 在对平坦的和包括表面特征的试件进行热处理,使其生长出氧化铬外皮之后,将分散在热解法氧化铝(fumed alumina)上的钼遮盖涂敷到该试件上。 Molybdenum [0379] After the test piece comprises a flat surface and heat treatment characteristics, the chromium oxide grown skin, dispersed in a fumed alumina (fumed alumina) is applied to the cover of the test piece. 热解法氧化铝上的遮盖涂层催化剂为50 %的Pt, 3 %的CaO,负载量约为10毫克/英寸2。 Hiding coating on fumed alumina catalyst 50% Pt, 3% of CaO, loading is about 10 mg / in2. 所述空白试件是平坦的,具有氧化铬外皮,但是没有催化剂。 The test piece flat blank having a chromium oxide skin, but without a catalyst.

[0380] 试验设置 [0380] Test Set

[0381] 空气和〃燃料〃(N2+CH4)在盘管中分开预热,然后立即将空气注入器件片中的上游。 [0381] air and fuel 〃 〃 (N2 + CH4) pre-separated coils, and air is injected immediately upstream of the device sheet. 由于在模拟的废气中,用N 2代替了所有的C0,H2, COjPH2O,预期动力学活性不同于进料中包含水的情况。 Since the exhaust gas in the simulation, with N 2 in place of all the C0, H2, COjPH2O, kinetic activity contemplated includes a case different from the feed water. 设计流速,使得如果所有的CH4燃烧、废气中将保留2. 05%的O2。 Design flow rate, such that if all of the combustion of CH4, 2.05% retained in the exhaust gas of O2. 温度(750-950°C )2)N2流速(7. 383-3. 184SLPM) Temperature (750-950 ° C) 2) N2 flow rate (7. 383-3. 184SLPM)

[0382] 固定常数:014流速(0. 0213SLPM),0 2流速(I. 035SLPM),以及设备 [0382] a fixed constant: 014 flow rate (0. 0213SLPM), 0 2 flow (I. 035SLPM), and the device

[0383] 结果 [0383] results

[0384] 在平坦的和具有表面特征的试件中,测得CH4的转化率在统计学上具有显著的不同(在750°C,转化率相对高24%,在900°C,转化率相对高7%)。 [0384] In the flat and the test piece having surface features, the measured CH4 conversion has significant statistically different (at 750 ° C, the conversion rate is relatively high 24%, at 900 ° C, the conversion rate is relatively 7%). CFD模拟证明,平坦的器件片在750-850°C下的初始数据主要是传质限制的,如果需要达到通过添加表面特征获得的那样相同的甲烷转化率相对提高,需要催化剂活性增大4. 4倍。 CFD simulations proved that the initial data at the flat sheet device was mainly 750-850 ° C mass transfer limitations, if necessary to achieve the same as the methane conversion rate obtained by the addition of surface features relatively increased, catalyst activity is increased need to 4. 4 times. 即使是对于高达950°C的温度,空气和燃料在进入片式器件之前立即混合,也大大减小了测得的背景活性。 Even for a temperature up to 950 ° C, the air and fuel are mixed immediately before entering the chip device, but also greatly reduces the background activity measured.

[0385] 实施例压降 [0385] Example embodiments drop

[0386] 进行了试验研究,以确定具有表面特征的通道中的压降,将其与不具有表面特征的通道中的压降相比较。 [0386] Experimental studies carried out to determine the pressure drop characteristics of the channel having a surface, and it is compared with the channel without surface features of the pressure drop.

[0387] 制造了一种器件,该器件在主通道的两个主(相对)壁上具有顺式-A取向的SFGO 图案。 [0387] for producing a device, which in the main channel the main two (opposite) walls of the cis orientation SFGO -A pattern. 在进口和出口之间制造了7个压力位置,以测量通道中不同位置的压力。 Between the inlet and the outlet 7 for producing a pressure position, to measure the pressure in the channel at different locations. 通道尺寸为0. 16英寸X0. 020英寸X6. 985英寸。 Channel size is 0.16 inches X0. 020 Yingcun X6. 985 inches.

[0388] 表面特征呈V形,表面特征臂之间成45°角。 [0388] V-shaped surface feature, a 45 ° angle between the surface features arm. 表面特征的开口为0.015英寸,特征之间隔开0.015英寸。 Wherein the opening surface of 0.015 inches, 0.015 inches between the spaced features. 各表面特征的深度为0.010英寸。 Each surface feature depth of 0.010 inches. 〃V-形〃的两个臂用半径0.008〃 的曲线连接。 Two arms connected by 〃 〃V- shaped curve radius of 0.008〃. 所述特征支段(或臂)的另一端为半圆形。 Wherein the other end of the branch section (or arms) is semicircular.

[0389] 使用空气作为流体。 [0389] using air as the fluid. 试验台由一个流动空气质量流速控制器、9个电磁阀和2个差压传感器(〇-5psid和0-15psid)组成。 A test station by a flow of air mass flow rate controller, the solenoid valves 9 and two differential pressure sensors (square-5psid and 0-15psid) composition. 该系统是完全自动的,这样对于各种流速校准过质量流速控制器、连接管子之后,实验室观察者将设定流速,打开与第一个端口相连的电磁阀,决定使用哪个差压变换器(〇-5psid或0-15psid),保持稳态,记录下数值,转移到下一个端口。 The system is fully automated, so that the calibrated flow rates for the various mass flow controllers, after the connection pipe, the flow rate setting laboratory viewer, opens the solenoid valve connected to the first port, determines which use differential pressure transducer (or square-5psid 0-15psid), held steady, recorded values, proceeds to the next port. 稳态定义为压力变化小于1%的情况。 Is defined as the steady-state pressure variation is less than 1%.

[0390] 设计了实验计划来测试在不同的流体和不同流速的情况下,表面特征对压降的影响。 [0390] experiment was designed to test the program under different fluids and different flow rates, the pressure drop characteristics of the impact surface. 选择用于测试的流体是水和空气。 Selected for testing fluid is water and air. 改变流速以获得层流状态和过渡状态的雷诺数。 Varying the flow rate to obtain a Reynolds number laminar flow state and a transient state. 下面是试验测试的实验计划。 The following is a pilot test of the experimental program.

[0391] 实验1无表面特征的器件 [0391] Experiment 1 without surface features of the device

[0392] 试验编号流体表面特征流速流速单位雷诺数ARSTHl .个无4.HH SLPM 1.04SE-04 2519 ARSTH2 个Ju 6.00 SLPM I.2H9E-04 3097 /\RSTH3 个:'C Jl 2.63 SLPM 5.64IE-05 1358 ARSTH4 个Jl 3.7.5 SLPM S.059E-05 1936 ARSTH5 个"C Jil 6.()() SLPM I.2H9E-04 3097 ARSTH6 卞^ Ji1 1.50 SLPM 3.224E-05 774.3 ARSTH7 '个"CM 3.75 SLPM 8.059E-05 1936 ARSTHS .个"C Jl 1.50 SLPM 3.224E-05 774.3 [0392] Test No. velocity fluid flow unit surface features Reynolds ARSTHl-free 4.HH SLPM 1.04SE-04 2519 ARSTH2 a Ju 6.00 SLPM I.2H9E-04 3097 / \ RSTH3 a:. 'C Jl 2.63 SLPM 5.64IE- 05 1358 ARSTH4 a Jl 3.7.5 SLPM S.059E-05 1936 ARSTH5 a "C Jil 6. () () SLPM I.2H9E-04 3097 ARSTH6 Bian ^ ji1 1.50 SLPM 3.224E-05 774.3 ARSTH7 'a" CM 3.75 SLPM 8.059E-05 1936 ARSTHS. a "C Jl 1.50 SLPM 3.224E-05 774.3

[0393] 试验2A具有顺式A取向的表面的器件 [0393] surface of the test device 2A cis orientation A

[0394] 试验编号流体表面特征流速流速单位雷诺数/\RSFG(M5-CIS/\N/\ •个{\ 4.HS SLPM I.04HE-04 2519 /\RSFG(>-45-CIS/\2-/\ '个ff 6.()() SLPM I.2H9E-04 3097 ARSF(:i(M5-CISA3-A '个/ (, {\ 2.63 SLPM 5.64IE-05 1358 ARSF(:i(>-45-CISA4-A •个/ (, {\ 3.75 SLPM H.059E-05 1936 ARSFG()-45-CISA5-A Vw〔 if 6.00 SLPM 1.2H9E-04 3097 ARSFG()-45-CISA6-A 十:\ ίί 1.50 SLPM 3.224E-05 774.3 ARSFG()-45-CISA7-A '个if 3.75 SLPM H.059E-05 1936 ARSFG0-45-CISA8-A 'V:7 C if 1.50 SLPM 3.224E-05 774.3 [0394] Test No. velocity fluid flow unit surface features Reynolds / \ RSFG (M5-CIS / \ N / \ • a {\ 4.HS SLPM I.04HE-04 2519 / \ RSFG (> - 45-CIS / \ 2 - / \ 'a ff 6 () () SLPM I.2H9E-04 3097 ARSF (: i (M5-CISA3-A' a / (, {\ 2.63 SLPM 5.64IE-05 1358 ARSF (: i (> -45-CISA4-A • a / (, {\ 3.75 SLPM H.059E-05 1936 ARSFG () - 45-CISA5-A Vw [if 6.00 SLPM 1.2H9E-04 3097 ARSFG () - 45-CISA6-A ten : \ ίί 1.50 SLPM 3.224E-05 774.3 ARSFG () - 45-CISA7-A 'th if 3.75 SLPM H.059E-05 1936 ARSFG0-45-CISA8-A' V: 7 C if 1.50 SLPM 3.224E-05 774.3

[0395] 结果: [0395] Results:

[0396] 测量压力的通道总长度为6. 985"。图9显示了具有和不具有表面特征的试验压降的比较。从图9可以看出,具有表面特征的通道和不具有表面特征的通道之间总通道压降之差,随着雷诺数增大而增大。"压降因子"定义为:压降因子=具有表面特征的通道中的压降/平滑通道中的压降。图10显示了压降因子随雷诺数的变化。计算了总压降因子以及通道中不同区内的压降因子。〃压降因子-1-2〃表示压力端口1和2之间的压降因子(1 最接近进口)。从图中可以看出,在接近进口的位置(端口1和2之间),压降因子随雷诺数的变化较为平坦。端口1和2之间的距离为0.985"。 [0396] The total length of the channel for measuring pressure is 6.985. "Figure 9 shows a comparison of pressure drop test with and without surface features can be seen from FIG. 9, the channel having a surface feature having no surface features and difference between the total pressure drop of the channel between the channels, as the Reynolds number increases "pressure drop factor" is defined as: drop factor = surface features in the channel drop / drop FIG smooth passage 10 shows the pressure drop factor with Reynolds number is calculated the total pressure drop factor factor and the channel region .〃 different pressure drop factor -1-2〃 factor represents the pressure drop between the pressure ports 1 and 2 (closest to the inlet 1). as can be seen from the figure, the (between ports 1 and 2) a position close to the inlet, the pressure drop factor with Reynolds number changes relatively flat. the distance between ports 1 and 2 of 0.985 " . 在端口2之后,在层流区中,压降因子随着雷诺数增大而急剧增大,在过渡流区中,则会变平。 After the port 2, in the laminar flow zone, the pressure drop factor increases sharply as the Reynolds number increases, the flow in the transition zone, then flattens out. 随后的压降因子随雷诺数的变化(端口2和3之间,3和4之间,4和5之间)与总压降因子随雷诺数的变化情况类似。 A subsequent pressure drop factor with Reynolds number (between ports 2 and 3, between 3 and 4, between 4 and 5) and the total pressure drop factor with Reynolds number similar changes. 还应注意,压降因子是随表面特征设计而变的。 It should also be noted that the pressure drop factor is a design with varying surface features.

[0397] 这些结果显示,所述表面特征通道的压降相对于平坦或平滑通道的增大是雷诺数的函数。 [0397] These results show that the surface of the pressure drop characteristics of the channel relative to the flat or smooth increase in channel function of Reynolds number. 随着雷诺数增大,压降因子从小于1.5倍增大到大于2. 3倍。 As the Reynolds number is increased, the pressure drop multiplying factor ranging from less than 1.5 to greater than 2.3 times large. 当雷诺数增大超过层流区,进入过渡区和湍流区时,表面特征相对于平坦通道的压降比逐渐接近约2. 3倍。 When the Reynolds number laminar flow area increases beyond, into the transition zone and a turbulent zone, wherein the surface of the flat channel with respect to pressure drop ratio gradually approaches about 2.3 times. 对于不同的表面特征设计、主通道间隙和流体性质,预计在不同体系中,渐近值会改变。 Designed for different surface characteristics, fluid properties and the main passage gap, expected in different systems, asymptotic value will change. 这些结果表明,使用表面特征还可有益地提高微通道中的过渡或湍流系统,在较高雷诺数下, 压降的增大趋于平坦,但是表面特征的表面积的净增加可能会抵消压降的增大。 These results indicate that the use of surface features may also advantageously increase the microchannels transitional or turbulent system at higher Reynolds numbers, the increase in pressure drop flattens, but the net increase in surface area of ​​the surface features may be offset by the pressure drop It increases. 例如,对于在用于上述实施例的微通道内的湍流状态操作的热交换器,提供大于2. 3倍的表面积的表面特征几何结构将会使得总传热增大(传热系数乘以传热面积)超过压降的净增加。 Surface area of ​​the surface feature geometry e.g., a heat exchanger for a turbulent state in the microchannel for the operation of the above-described embodiment, there is provided greater than 2.3 times that would increase the overall heat transfer (heat transmission coefficient by hot area) than the net increase in pressure drop. 净结果是对于特定负荷,热交换体积较小,而总压降不增大。 The net result is for a particular load, the heat exchanger smaller, but does not increase the overall pressure drop. 对于类似的总器件热负荷,在湍流状态下操作的表面特征微通道的相应的长度很可能比湍流状态下操作的平坦微通道短。 Similar to the total heat load device, the length of the corresponding surface features of the micro-channel operating in the turbulent flow regime it may be shorter than the flat microchannel turbulent state of operation.

[0398] 实施例压降的模拟 Simulation [0398] Example drop

[0399] 在本实施例中,使用FLUENT模拟了流过具有表面特征的微通道的情况。 [0399] In the present embodiment, using FLUENT to simulate the flow through a microchannel of surface features. 模拟的结构是SFG0-45度角,反式,长10. 3英寸。 Simulated structure SFG0-45 degrees, trans, 10.3 inches long. 该模拟工作的目的是研究在各种条件下该表面特征器件的压降。 The purpose of this work was to study simulated pressure drop characteristics of the device surface under various conditions. CFD结果显示,压降对表面特征高度敏感,根据条件,在平坦通道中,各处的压降从53%增大到162%。 CFD results showed that the pressure drop is highly sensitive to the surface characteristics, depending on the conditions in the flat channel, the increased pressure drop from around 53% to 162%.

[0400] 特定表面特征几何结构包括: [0400] wherein the specific surface geometry comprising:

[0401] .45。 [0401] .45. 表面特征 Surface features

[0402] •反式构型设置(顶部和底部壁上的取向相反) [0402] • trans configuration setting (the top and bottom walls of the opposite orientation)

[0403] •表面特征深度=0· 010英寸;宽度=0· 015英寸 [0403] • surface feature depth = 0 · 010 inches; width = 0 · 015 inches

[0404] •表面特征长度方向间距=0· 042英寸 [0404] • longitudinal direction of the spacing of surface features = 0 · 042 inches

[0405] •间隙=〇.〇125 英寸 [0405] • 〇.〇125 inch gap =

[0406] •总宽度=0.160英寸 [0406] • The total width = 0.160 inches

[0407] •总长度=10. 3英寸(0. 15英寸的上游和下游,不包括表面特征)。 [0407] • Total length = 10.3 inches (0.15 inches of the upstream and downstream, does not include surface features).

[0408] •特征的总数=239 [0408] • feature = 239 total

[0409] 为上述几何结构产生了CFD网,总计一百四十万个网格-六面体形。 [0409] produced a CFD mesh geometry of the above, a total of 1.4 million grid - six-sided shape.

[0410] 上述CFD模型在12种不同的条件下进行运算: [0410] The CFD model calculates at 12 different conditions:

[0411] •四次运算在〃SMR〃条件下进行,S卩:T = 800°C,P = 2533000Pa, P = 5. 067kg/ cu.m,进口速度=12. 13-37. 6m/s。 [0411] • 〃SMR〃 to four operations carried out under conditions, S Jie: T = 800 ° C, P = 2533000Pa, P = 5. 067kg / cu.m, inlet velocity = 12 13-37 6m / s.. .

[0412] •四次运算在〃水〃条件下进行,S卩:T = 20°C,P = 101325Pa, P = 998. 2kg/ cu.m,进口速度=1.704_5.284m/s。 [0412] • to four operations carried out at 〃 〃 water conditions, S Jie: T = 20 ° C, P = 101325Pa, P = 998. 2kg / cu.m, inlet velocity = 1.704_5.284m / s.

[0413] •四次运算在〃空气〃条件下进行,S卩:T = 20°C,P = 101325Pa,P = I. 205kg/ cu. m,进口速度=25. 72-79. 49m/s。 [0413] • to four operations carried out in the air 〃 〃 conditions, S Jie: T = 20 ° C, P = 101325Pa, P = I. 205kg / cu m, inlet velocity = 25 72-79 49m / s... .

[0414] 另外,为了比较,这些CFD运算在这些条件、但是没有表面特征的情况下重复。 Repeating the [0414] Further, for comparison, the CFD calculation in these conditions, but without the surface characteristics thereof.

[0415] 这些CFD分析的基本主要假设包括: [0415] The main assumption of these basic CFD analysis comprising:

[0416] 1.通道限制成不包括反应。 [0416] 1. Channel restricted to not include the reaction.

[0417] 2.流动认为是完全层流。 [0417] 2. considered fully laminar flow.

[0418] 3.整个流场设为绝热的。 [0418] 3. The entire flow field to adiabatic.

[0419] 4.流动是稳态的。 [0419] 4. The flow is steady state.

[0420] 计算/分析 [0420] Calculation / Analysis

[0421] 下面包括了这些12+12次运算的CFD结果。 [0421] The following includes a CFD 12 + The results of these operations 12 times. 〃总dP〃表示整个长度上的流场压降。 〃 dP〃 total pressure drop across the flow field represents the entire length. 〃产生的(Developed) dP〃表示在认为是周期性的流动的位置出现的压降。 〃 generated (Developed) dP〃 pressure drop indicates that the periodic flow of a position of occurrence. CFD结果显示, 在0. 654英寸至10. 066英寸的位置存在该周期性的区域。 CFD results show, there is a region in the periodic 0.654 to 10.066 inches position. 最后还包括了压降增加。 Finally, also it includes the increase in pressure drop.

[0422] 层流情况下,表面特征与平顶结构压降之比较 The [0422] laminar flow, and compare the pressure drop characteristics of the flat top surface of the structure

[0423] 具有表面特征-人字形结构产生的区域(0654 - 10. 066英寸) [0423] surface features - a herringbone structure area generated (0654-- 10.066 inches)

Figure CN104525072AD00451

[0425] 水/油表面特征-平顶 [0425] Water / oil surface features - topped

Figure CN104525072AD00461

[0427] 由这些结果,注意到一个惊人的结果,在特定雷诺数之下,压降的增大完全与实际流体的性质无关。 [0427] From these results, it is noted a surprising result, an increase in pressure drop is completely independent of the nature of the actual fluid below a certain Reynolds number. 换言之,与在20°C和1大气压条件下的流体空气(气体)或水(液体) 相比,在雷诺数约为1000、800°C时,对于蒸汽甲烷转化反应的流体混合物(23大气压,蒸汽与甲烷之比为3:1),观察到平坦通道内的压降增加约为52-54%。 In other words, as compared with fluid such as air (gas) or water (liquid) at 20 ° C and 1 atm condition, when the Reynolds number of about 1000,800 ° C, the reaction mixture for the steam methane fluid (23 atm Conversion, ratio of steam to methane of 3: 1), the pressure drop was observed in approximately 52-54% increase in the flat passage. 类似地,在接近3000 的雷诺数之下,压降比增加接近160%。 Similarly, under the close Reynolds number 3000, an increase of nearly 160% than the pressure drop. 这些明显的结果说明,由压降的增大表示的另外的混合的程度仅由雷诺数所控制。 These results clearly illustrate the degree of additional mixing by increasing the pressure drop represented only controlled by the Reynolds number. 这些结果的另一个惊人之处在于,它们从层流状态转化为过渡流状态(Re〜3000)。 Another surprising thing is that these results, they are converted from a laminar flow state is a state transition (Re~3000). 认为相对于主流通道的表面特征几何结构和尺寸将会改变从平坦通道到表面特征通道的压降增加的绝对值,但是在相同的雷诺数下,对于特定几何结构超过平壁的该压降增大与流体无关。 The pressure drop increased with respect to that surface feature geometry and dimensions of the main channel will change the channel to increase the pressure drop from the flat surface of the channel characteristic of the absolute value, but at the same Reynolds number, over the flat wall for the particular geometry It has nothing to do with the large fluid.

[0428] 实施例表面特征的不同的深度和宽度 [0428] different depth and width of the surface features of embodiment

[0429] 对于本研究,表面特征深度和宽度是不同的。 [0429] For this study, surface feature depth and width are different. 在Fluent-6. 0中开发了CFD模型来研究表面特征的深度和宽度的影响。 Effect of the Fluent-6. 0 CFD model developed to study the surface feature depth and width. 通过观察轨迹线(pathline)定性地测量深度和宽度的影响。 Effect of depth and width measured by observing the trace (Pathline) qualitatively. 为了定量测量,在特征的表面上施加表面反应,测量出口处的气体组成。 For quantitative measurement, applied to the surface reaction on the surface features, measurement of gas composition at the outlet. 发现相比表面特征的宽度,表面特征的深度对流动混合的影响更大。 Found that a greater depth as compared to the width of the surface features of the surface features of the flow mixing effect.

[0430] 下表给出了用于本研究的CFD模型的描述。 [0430] The following table gives a description of a CFD model of the present study.

[0431] 表:情况1的模型描述 [0431] TABLE: model description of the case 1

[0432] [0432]

Figure CN104525072AD00471

[0433] 情况2与情况1相同,不同之处在于,表面特征宽度为0. 508毫米。 [0433] 2 in the case of the same case 1, except that the surface feature width 0.508 mm. 情况3与情况1相同,不同之处在于,表面特征深度为〇. 762毫米。 3 in the case of the same case 1, except that the depth of square surface features 762 mm.

[0434] 这些CFD分析的假设包括:认为流动是完全层流;整个流场是绝热的;流动是稳态的。 [0434] These assumptions CFD analysis comprising: a flow that is entirely laminar flow; the entire flow field is adiabatic; is the steady state flow.

[0435] 当在0. 597毫米的固定主通道间隙下,表面特征的深度从0. 508毫米增大到0. 762 毫米时,相比较宽的表面特征,流向边缘、然后流向中心的流动次数显著增加。 Flow times [0435] When the main channel at a fixed gap of 0.597 mm, a depth of the surface features is increased from 0.508 mm to 0.762 mm, wider than the surface features, edge flows, then to the center A significant increase.

[0436] 在通道中引入表面特征的一个目的是打破层状边界层,以提高传热和传质性质。 An object of the [0436] surface features introduced in the channel was broken laminar boundary layer to enhance heat and mass transfer properties. 通过在表面特征壁上施加甲烷燃烧的表面反应,并比较出口的甲烷浓度和通道中的总压降,来研究增大宽度和深度的效果。 By applying a surface reaction in the methane combustion wall surface features, and the methane concentration in the outlet passage and the comparison of the total pressure drop, to study the effect of increasing width and depth. 下表列出了施加有表面反应的情况1、情况2和情况3 的进口/出口甲烷浓度和压降。 The following table lists the reaction conditions applied the surface 1, the case 2 and the case 3 of inlet / outlet methane concentration and pressure drop.

[0437] 表:甲烷浓度和压降 [0437] TABLE: methane concentration and pressure drop

Figure CN104525072AD00481

[0439] 从上表可以看出,情况3 (具有增大的特征深度)在出口处达到了最小的甲烷浓度。 [0439] As can be seen from the table, the case 3 (characteristic having an increased depth) methane concentration reaches a minimum at the outlet. 这是由于流体在通道中更多运动以及能够更好地使流体与表面反应壁接触而造成的。 This is due to the fluid in the channel can be better and more movement of the fluid in contact with the wall surface of the reaction caused. 然而,流体的运动会造成通道里有更高的压降。 However, the fluid channel in the Games caused a higher pressure drop. 另外目视观察轨迹线,在通道内的流体运动和混合方面,情况2看来优于情况1。 Further visually observed trajectory line, the fluid movement and mixing within the channel, the situation seems superior to 1. 2. 但是情况1和情况2之间甲烷出口浓度的比较显示, 流体被引到反应壁的程度不如情况1。 However, cases 1 and Comparative outlet methane concentration between 2 shows the extent of the reaction fluid is introduced into the inferior wall of the case 1.

[0440] 应当注意,本研究中使用的催化剂动力学略慢于(因子为4. 5)前述的燃烧实施例所使用的催化剂动力学。 [0440] It should be noted that the kinetics of the catalyst used in this study is slightly slower than (factor of 4.5) the kinetics of combustion catalyst used in Example embodiment. 因此,所得的甲烷ppm的出口预测值高得多。 Thus, the outlet methane ppm predicted value obtained is much higher.

[0441] 实施例-相对侧面上的特征 [0441] Example - on opposite sides of features

[0442] 对仅在一个壁上有表面特征的通道和在两个相对壁上有"顺式"取向的表面特征的通道的混合性能进行了比较评价,其中主通道尺寸为0. 0125英寸X 0. 160英寸X 2. 5英寸。 [0442] In the mixing performance of only one wall of the channel has a channel surface features and surface characteristics of the two opposite walls of the "cis" orientation were comparative evaluation in which the main channel is 0.0125 inches dimension X 0.160 inches X 2. 5 inches. 所述表面特征是SFG-O型,跨距宽度为0.015英寸,深度为0.01英寸,互相分开,间隔为0.015英寸。 Wherein said surface is SFG-O type, span the width of 0.015 inches, a depth of 0.01 inches, separated from each other, spaced 0.015 inches. SFG-O几何结构的表面特征角度为45°。 Wherein the angle of the surface geometry SFG-O is 45 °. 对于此处考虑的具体情况,发现具有"A"流动取向的单侧特征在垂直于流动的方向达到最佳的混合。 For the specific case considered here, it was found wherein one side has a "A" flow orientation to achieve optimum mixing in a direction perpendicular to the flow. 但是,表面特征设计的效果取决于通道几何结构和流速。 However, the effect of surface features designed depending on the channel geometry and flow rate.

[0443] 计算/分析 [0443] Calculation / Analysis

[0444] 单侧几何结构以两种流动取向进行运算:A和B,A中流体进料沿着有角度的支段、 向着顶点流动,B中的流体冲击在顶点上,然后向外流过具有角度的支段。 [0444] Unilateral geometry calculates the flow orientation in two: A and B, A are branched fluid feed along the angled section, the flow toward the apex, B the fluid impinges on the apex, and having outward through angle branch section.

[0445] 下表列出了顺式A和顺式B取向的单侧和双侧表面特征在通道内的压降比较。 [0445] The following table lists the single-sided and double-sided surface characteristics cis and cis A B Comparative oriented pressure drop within the channel.

[0446] 表:压降比较 [0446] TABLE: Comparison of the pressure drop

Figure CN104525072AD00482

[0448] 双侧特征中较高的压降是由于通道两个侧面上的特征造成的。 [0448] bilateral features due to higher pressure drop on both sides of the channel characteristics caused. 对于〃B〃流动取向,单侧特征几何结构具有最低的压降,其混合效果优于双侧的情况。 For 〃B〃 flow orientation, wherein one side geometry has the lowest pressure drop, which is better than the case of mixed two-sided. 应当注意,这种比较是对于0. 381毫米的较小开放流动间隙和0. 67的表面特征深度:微通道开放间隙比进行的。 It should be noted that this comparison for smaller open flow gap of 0.381 mm and a depth of the surface features of 0.67: microchannels in the open gap ratio. 别处还显示了当开放微通道间隙增大,或表面特征深度:微通道开口间隙之比减小到低于0. 3,则使用双侧表面特征是特别有益的。 Elsewhere also it shows that when the open microchannel gap increases, or the depth of the surface features: the opening ratio of the gap of the microchannels decreases below 0.3, using double-sided surface feature is particularly advantageous. 特别有利于运动到更大的微通道开口间隙,以增大单元操作的生产能力,以及减小单元操作中包含的金属的总量。 Particularly advantageous moved to a larger opening of the microchannel gap, to increase the production capacity of the unit operation, unit operations and to reduce the total amount of metal contained. 在一些实施方式中,"A"流动取向要比"B"流动取向更不大可能形成无限循环区(或死区)。 In some embodiments, "A" may be less likely to flow alignment is formed endless loop region (or dead) than "B" flow orientation. 对于其它的图案,观察到相反的趋势。 For other patterns, the opposite trend was observed.

[0449] 实施例表面特征几何结构 EXAMPLE surface feature geometries [0449] Embodiment

[0450] 研究了许多表面特征几何结构的混合效率和对流动旋转的诱导,其条件列于表X1-X2。 [0450] studied the efficiency of mixing a number of surface feature geometries and flow induced rotation, which conditions are shown in Table X1-X2. 对于表Xl中情况1的几何结构和条件,流动的一些轨迹线似乎被截留在顶点处或通道宽度中心处表面特征角度变化的位点的死区。 For the case where the geometry in Table Xl 1 and conditions, some of the flow trace appears to be trapped in the dead angle at the apex of the surface features or changes in the channel width at the center of the site. 所述顶点处潜在的死区部分是由于以下原因形成的:表面特征两个支段的支段长度相同,各支段的角度变化180度,在顶点处产生完全的对称点,顶点处特征内的流体的作用力都是相同的,沿任一支段往下。 The potential at the apex portion of the dead zone is formed for the following reason: the segment of the surface features two segments of equal length branches, each branch section varies the angle of 180 degrees, produce a fully symmetric point at the apex, wherein the apex fluid biasing force is the same, in either one segment down. 不产生这种对称点的图案较不易形成死区。 This symmetry is not generated dot pattern is less likely to form a dead zone.

[0451] 表Xl情况1-3的模拟的CFD模型的几何结构和条件 Simulated conditions and geometry of the CFD model [0451] TABLE Xl case 1-3

[0452] [0452]

Figure CN104525072AD00501

[0453] 表X2情况4-5模拟的CFD模型几何结构和条件 [0453] Table X2 and conditions where the geometry of the CFD model simulation 4-5

[0454] [0454]

Figure CN104525072AD00511

[0455] 分析了CFD结果,用来帮助确定下文讨论的表面特征的特性。 [0455] CFD analysis of the results to help determine the characteristics of the surface features discussed below. 对于表Xl中情况I 的几何结构和条件,轨迹线被截留在通道宽度中心的表面特征中的死区内(所述表面特征凹槽支段部分的两个上游端或角相交的位置)。 For the case where I in Table Xl and geometry conditions, trace trapped in the surface characteristics of the channel width of the dead zone in the center (or the angle of the two upstream end surface feature groove portion intersecting the segment of the position). 表Xl中情况2的CFD模拟结果说明,该种表面特征几何结构类型的反式构型在大致与表面特征凹槽的各支段部分(角)的中点对齐的横跨主通道宽度的侧向位置在主通道间隙中心附近产生了基本笔直/略微扭曲流动的不良混合区,在主通道的包括表面特征的壁附近的流体围绕这三个流动中心核涡旋。 Table Xl results of CFD simulations described in the case 2, a side surface of the seed feature geometry type trans configuration at the midpoint of each support segment portion (corner) of the groove surface feature substantially aligned across the width of the main channel generating a main channel to a position near the center of the gap in the mixing zone substantially straight poor / slightly distorted flow, the flow around the central core of the three swirl in the fluid near the wall of the main channel comprises surface features. 相反,这种表面特征几何结构顺式构型(表Xl中的情况3) CFD结果表明,在主通道流动的整个横截面上,顺式结构混合效率高得多,不存在不会周期性扫入表面特征中的流动核。 In contrast, (Xl Fact Sheet 3) characterized in that the surface geometry of the cis configuration CFD results show that the entire cross section of the main flow passage, cis mixing efficiency is much higher, there is not a periodic sweep nuclear flow into the surface features. 对于其它将主通道中的主流拉向与表面特征凹槽的各支段部分(或角)的上游端对齐的跨越主通道宽度的侧向位置的顺式构型情况,情况3的流线显示了相同的趋势。 For other cis configuration where the lateral position of the main main channel pull aligned to the upstream end portion of the branch section and the groove surface feature (or angle) across the width of the main channel, where the flow line display 3 the same trend. 表X2中情况4 和情况5的CFD模拟结果显示,该表面特征几何结构取决于流动方向,其中顺式-B流动方向能够略快地产生良好混合的流动,顺式-A流动在主通道中分成两股,但是这两种情况均表现出良好的混合。 Table 4 and X2 in the case where the CFD modeling results show that 5, characterized in that the surface geometry depending on the direction of flow, wherein the flow direction of the cis -B slightly faster flow can be generated well-mixed, cis -A flow in the main channel divided into two shares, but in both cases show a good mix. 对于表Xl中的顺式情况,情况4和情况5(表X2)的结果显示将主通道中的主流拉向与所述表面特征凹槽各支段部分(或角度)的上游端对齐的跨越主通道宽度的侧向位置,不存在在沿着主通道长度向下流动时不会周期性扫入表面特征内的流动核。 For the cis-Xl table, the results of the case 4 and case 5 (Table X2) of the main display in the main channel is pulled toward the upstream end of each branch segment portion (or angle) of the groove alignment features across the surface the width of the lateral position of the main passage, the absence of periodic sweep does not flow into the inner core surface features flows downwardly along the length of the main channel.

[0456] 特征几何结构影响效果的概述 SUMMARY affect the effect of the geometry of the [0456] wherein

[0457] 对于主通道内总体流动提供良好混合是很重要的表面特征几何结构的两个方面是: [0457] For bulk flow provides good mixing within the main passage are two very important aspect is the geometry of surface features:

[0458] 1)所述表面特征必须能够有效地在通道中引起一部分总体流动转入各表面特征的前缘, [0458] 1) the surface features must be able to effectively cause the bulk flow into a portion of the leading edge of each surface feature in the channel,

[0459] 2)对于足够数量的沿流动长度重复的表面特征,在各表面特征的局部上游和下游末端或"端部"之间保持足够的特征行程长度。 [0459] 2) for a sufficient number of repeated along the length of the flow characteristics of the surface, characterized in maintaining a sufficient stroke length between the local upstream and downstream ends or "end" of each of the surface features. 足够的行程长度优选至少为通道间隙的两倍,更优选最少为通道间隙的四倍。 Sufficient stroke length is preferably at least twice the channel gap, and more preferably a minimum of four times the passage gap.

[0460] 将流体引入表面特征内的一个重要的变量是表面特征深度比,R深度: [0460] introducing a fluid into a variable inner surface of the important features of the surface feature depth ratio, R Depth:

[0461] [0461]

Figure CN104525072AD00521

[0462] 式中深度^是表面特征的深度,间隙是主通道内的间隙。 [0462] wherein ^ is the depth of the depth of the surface features, the gap is a gap in the main channel. 为了导致足够的流体进入所述表面特征,所述表面特征深度与通道间隙之比R aw优选为0.010-100,更优选为0· 10-10,更加优选为0· 25-2。 In order to cause sufficient fluid enters the surface features, the surface features than R aw passage gap depth is preferably of 0.010-100, more preferably 10-10 0.5, more preferably 0.5 25-2.

[0463] 沿着包括相同的沿流动长度重复的表面特征几何结构的通道的延伸方向的所有表面特征的局部上游和下游端部之间的侧向扩展(lateral spread)由侧向扩展比定义。 [0463] All lateral extensions (lateral spread) between the upstream and downstream ends of the local surface feature defined by a ratio of a lateral extension extending in a direction along a path comprising the same repeating along the length of the flow geometry of the surface feature. 侧向扩展比定义为: Lateral expansion ratio is defined as:

[0464] [0464]

Figure CN104525072AD00522

,式中,横向展开改为侧向扩展。 , Wherein, to expand laterally extended laterally.

[0465] 式中端部_长度#是从局部上游端部到局部下游端部的表面特征支段长度,α是表面特征角,跨距SF是表面特征的跨距。 [0465] wherein the end portion of # _ length from the upstream end to the partial surface of the downstream end portion of the local features branched segment length, wherein [alpha] is the angle of the surface, and SF is the span of span of the surface features. 注意在α =90度的极限情况下(表面特征与主通道平均总体流动方向对齐),侧向扩展比为0。 Note that in the limit α = 90 degrees (the surface feature is aligned with the main channel mean bulk flow direction), lateral expansion ratio is 0. 为了能有效地贯穿总体流动,侧向扩展比优选为3-100,更优选为5-20。 In order to effectively penetrate the bulk flow, lateral expansion ratio is preferably 3-100, more preferably 5-20. 注意具有合适的侧向扩展比是表面特征引起的流动作用导致明显贯穿总体流动的必要但非充分条件。 Note that a lateral extension having an appropriate ratio of the flow caused by action of surface features necessary results in significant bulk flow through but not sufficient condition.

[0466] 当表面特征沿流动方向连续重复时,表面特征的数量和间距也是重要的。 [0466] When the surface features is repeated continuously in the flow direction, the number and spacing of the surface features is also important. 特征与特征之间的间距优选小于端部_长度SF,更优选间距长度与表面特征跨距之比为〇. 1-10,更加优选在合理前提下尽可能密,这可由制造限制决定。 Preferably the spacing between the end portion with the features smaller than _ length SF, span the length of the pitch and more preferably of square surface features than 1-10, more preferably reasonably dense as the premise, it may be decided to manufacturing limitations. 为了形成良好的混合,表面特征应重复的最小数量取决于几何结构和条件,但是简化的经验方法是设计具有合适的表面特征进口长度的通道。 To form a good mixing, the surface features should be repeated a minimum number depends on the geometry and condition, but the experience is a simplified design having a suitable surface features inlet channel length. 换句话说,我们可以将特征进口长度数)定义为: In other words, we can import the feature number length) is defined as:

[0467] [0467]

Figure CN104525072AD00523

[0468] 式中,深度SF是表面特征的深度,间隙是主通道内的间隙,Nsf是每个壁上基本类似的连续重复的表面特征的最小数,N jwwijmit是包括表面特征的壁的数量。 [0468] In the formula, SF depth is the depth of the surface features, the gap is a gap in the main channel, to be limited Nsf on each wall is substantially similar minimum number of continuously repeated surface features, N jwwijmit is the number of surface features comprising a wall . 为了形成良好的混合图案,特征进口长度数优选为5-80,更优选为10-40,更优选为10-20。 To form a good mixing pattern, wherein the number of inlet length is preferably 5-80, more preferably 10-40, more preferably 10-20. 当然,超过特征进口长度,可以连续重复比最小数量多的特征,但是特征进口长度给出了形成将新鲜的总体流动从主通道引入活性表面特征内的流动图案所需的最小数量的估算值(假定设计的其它方面(例如主通道间隙)不会排除这一点)。 Of course, more than the length of the import features, may be repeated more than the minimum number of consecutive features, the feature gives the minimum inlet length estimate of the number of desired flow pattern in the form of fresh bulk flow from the main passage introducing active surface feature ( other aspects of the design assumed (e.g., the main channel gap) it is not excluded).

[0469] 实施例热反应 Example thermal reaction [0469] Embodiment

[0470] 预期表面特征可有益地用于均相反应,包括催化的和非催化的反应。 [0470] surface features may be expected to be useful for heterogeneous reactions, including catalytic and non-catalytic reactions. 非催化的均相反应的一个例子是乙烷热裂解生成乙烯的反应。 Examples of a non-catalytic homogeneous reactions are ethane thermal cracking of ethylene generated.

[0471] 使用表面特征引起微通道内的混合或流体旋转,从而破坏了层状流线。 [0471] or the use of surface features cause mixing fluid in microchannels rotation, thereby destroying the laminar flow lines. 在常规的层流微通道中,从通道中心线到壁存在相当大的温度梯度。 In conventional microchannel laminar flow, there is a considerable temperature gradient from the center line to the channel wall. 对于吸热反应,中心线的温度低得多,因此总反应速率会降低。 For endothermic reactions, the centerline of the much lower temperature, thus reducing the overall reaction rate. 对于放热反应,中心线温度高得多,因此形成不希望有的副反应的情况会加剧。 For exothermic reactions, the centerline temperature is much higher, and therefore the formation of undesired side reactions of some situation will aggravate. 流体在通道内旋转减小了通道内的温度梯度。 A fluid passage in the rotating reduced temperature gradients within the channel. 另外,在具有壁表面特征的微通道壁上,有高得多的传热系数和更大的传热表面积。 Further, in the micro-channel walls having a wall surface features, much higher heat transfer coefficients and greater heat transfer surface area. 因此,对于吸热反应,热量可以更快地施加到工艺微通道,或者对于放热反应,可以更快地从工艺通道除去,从而有可能避免发生不希望有的副反应。 Thus, for an endothermic reaction, heat may be applied to more quickly process microchannel, or for exothermic reactions, the process may be quickly removed from the channel, thereby making it possible to avoid undesirable side reactions. 预期表面热通量的增大大于相应的平坦通道的两倍,这是基于与表面特征顶部相切的横截面。 Expected to increase the surface heat flux greater than twice the corresponding flat channel, which is based on a cross-section tangential to the top surface features. 而且,包括表面特征的均相反应的总反应器体积可以小至不包括表面特征的反应器相应体积的十分之一。 Further, the surface features including total reactor volume can be as small homogeneous reaction reactor does not include surface features a corresponding one tenth volume.

[0472] 实施例毛细管特征对催化剂的负载量和重新分配的影响 Effect of catalyst loading and redistribution capillary features of [0472] Embodiment

[0473] 使用两种试件(长152毫米X宽12. 7毫米),一种具有毛细管特征(3CFC = 0· 76 毫米或3密耳深的毛细管特征)。 [0473] using two test pieces (152 mm long X 12.7 mm wide), having a capillary characteristic (3CFC = 0 · 76 mm or 3 wherein the capillary mils deep). 所述毛细管特征是水平的狭缝(角度为0度,深0. 076毫米,宽0. 076毫米。支段长度为4毫米,另一种没有毛细管特征(平坦试件,FC),通过将这些试件浸渍在15% (重量)Rh在去离子水中的乙酸铑溶液中,对它们进行涂敷。本实施例中的毛细管特征不是作为薄板中的通透特征形成的,而是机械加工在较厚的板中的特征。 这样形成的特征可以同样有效,而且可具有除了矩形开放通道以外的横截面。表面特征横截面还可具有圆角,为三角形,完全变圆等。在本实施例(11)中,表面特征或毛细管特征的横截面具有圆角。然后这些试件在120°C垂直地干燥,类似于在器件中进行处理,然后在400°C水平焙烧。煅烧之后,对于FC,负载量为2. 3毫克(Rh2O3)/英寸2;对于包括3CFC毛细管特征的试件,负载量为5. 1毫克(Rh2O3) /英寸2。 Wherein said capillary slit is horizontal (0 degree angle, depth 0.076 mm, 0.076 mm wide. Branch length 4 mm, the other without capillary features (flat test piece, the FC), by the test piece was immersed in a 15% (wt) Rh in the rhodium acetate solution in deionized water, they are applied. the present embodiment features in capillary permeability is not a feature of the sheet is formed, but is machined characterized in thicker plate. such features may be formed equally effective, but may have a rectangular cross-section except for an open channel. cross-section of the surface features may also have rounded corners, triangular, fully rounded, etc. in the present embodiment after (11), the cross-sectional surface features having rounded corners or capillary features. these test pieces vertically and dried at 120 ° C, the processing similar to that in the device, and then calcined at 400 ° C level calcined for FC , loading was 2.3 mg (Rh2O3) / 2 inch; for the loading of the specimen is characterized in comprising a capillary 3CFC 5.1 mg (Rh2O3) / 2 inches.

[0474] 通过SEM对两种试件进行表面检测: [0474] surface of the two test pieces detected by SEM:

[0475] 在3CFC试件上,在试件面上,从顶部至底部、从左至右的Rh分布在宏观尺寸上是均匀的;但是在平坦试件上,在轴向或侧向方向上,金属的分布不均匀。 [0475] 3CFC on the specimen in the specimen surface, from top to bottom, from left to right Rh distributed macroscopically uniform size; however, on a flat test piece, the axial or lateral direction uneven distribution of the metal.

[0476] 涂层质量: [0476] coating quality:

[0477] 观察用15% (重量)的Rh溶液制成的涂层中的裂纹。 [0477] Crack coating made with 15% (by weight) solution of Rh is observed. 通过使用较低浓度的涂料溶液,可以将开裂减至最小。 By using a lower concentration of the coating solution can be minimized cracking. 获得了用8%的Rh溶液涂敷两次的具有毛细管特征的试件的光学照片。 Obtaining an optical photograph of the specimen with a capillary characteristics Rh solution was coated twice with 8%. 涂层中的Rh负载量为8毫克(Rh 2O3)/英寸2。 Rh loading amount of coating is 8 mg (Rh 2O3) / 2 inches. 未观察到裂纹。 No crack was observed.

[0478] 从试验结果对毛细管特征进行模型确认 [0478] Model for confirmation of test results from the capillary wherein

[0479] 对于三种毛细管特征几何结构,用遮盖涂层保持模型预测用贵金属盐水溶液遮盖涂敷过程中,每种涂层的液体保持情况。 [0479] For the three capillary feature geometries, with model predictions covering coating remains covered with noble metal salt solution during coating, each coating liquid holding case. 还通过试验测试了这些几何结构各自的催化剂负载量。 By further experimental test each catalyst loading of these geometries. 在模型中假定接触角约为45度(遮盖涂敷之前,在常规的表面稳定的试件上测得的对8重量%的铑溶液的近似值)。 In the model assumed that the contact angle is about 45 degrees (before masking coating, on a conventional surface stabilized specimen measured approximation of the rhodium solution of 8% by weight). 应当注意,在热处理表面上,接触角确实会稍微变化,也可认为是毛细管特征的谷稍微不同。 It should be noted that, on the surface of the heat treatment, the contact angle does vary slightly, can also be considered a capillary trough slightly different features.

[0480] 由于与测定值相比,每种涂层上的预测的负载量一贯很低,因此还可在假定毛细管特征完全充满液体的情况下计算预测的负载量。 [0480] as compared with the measured values, the prediction of each coating loading consistently low, so the predicted loading can also be calculated under the assumption that the capillary features completely filled with liquid. 在图11中将两种预测值与实测值进行比较。 Two kinds of predicted values ​​are compared with the measured values ​​in the FIG. 11. 注意在图11中,由于实际的几何结构不符合遮盖涂层保持模型中所作的假设,ICFC 几何结构的两种预测值都假定凹槽是被完全充满的。 Note that in FIG 11, since the actual geometry of the model does not meet the assumptions made in the coating covers the holding two predicted values ​​ICFC groove geometry is assumed to be fully charged. 惊人的是,假定毛细管特征完全被液体充满得到的模型预测值与试验测得的数值更好地相符。 Surprisingly, better matching characteristics assumed capillary is completely filled with the liquid obtained model predictions and experimental measured values. 这些结果说明在毛细管特征的谷内产生的表面上产生更高的接触角。 These results indicate that produces a higher contact angle on the surface of the capillary Valley features produced. 应当注意,氧化铝会开裂,表面粗糙度也可能会影响催化剂负载量。 It should be noted that alumina will crack, a surface roughness may also affect the amount of catalyst loading.

[0481] 图12显示了Rh负载量相当程度上取决于毛细管特征的设计。 [0481] FIG. 12 shows the characteristics of the capillary depends considerably on the Rh loading design. 关于铑的负载量, 试件根据效果的大小按照以下顺序分等:5CFC>3CFC>1CFC>FC,其中FC表示平坦通道(无毛细管特征),CFC表示毛细管特征通道或表面特征通道。 Rhodium loading on test pieces according to the size of the effect of classification in the following order: 5CFC> 3CFC> 1CFC> FC, where FC represents a flat channel (no capillary feature), the CFC represents a capillary channel wherein the channel or surface features. CFC前的数字表示以密耳或0.001 英寸表示的特征的深度,即5CFC是凹陷在微通道主流通道中的5密耳或0. 005英寸或125 微米深的水平对齐的表面特征。 CFC indicates the number before characterized in mils or 0.001 inches in depth, i.e. is recessed in a microchannel 5CFC main channel 5 mils surface features or deep horizontally aligned 0.005 inches or 125 microns.

[0482] 实施例用于提高甲烷蒸汽转化的表观催化剂活性的单侧表面 [0482] Example embodiments for enhancing apparent catalytic activity of one surface of the methane steam reforming

[0483] 在具有0. 006英寸的旁流(flow-by)间隙的器件中,通过测试在每单位面积具有相同水平催化剂负载量的具有表面特征的试件和不具有表面特征(平坦)的试件,研究微通道中单侧表面特征对Rh/MgO催化剂的表观活性的影响。 [0483] In the device (flow-by) having a bypass gap of 0.006 inches, by testing the specimen surface features per unit area has the same level of catalyst loading and without surface features (planar) of specimen, affect the surface characteristics to one side apparent activity Rh / MgO catalyst research microchannel. 所述表面特征由人字形结构形成,这些结构的臂与通道长轴中心线成45度角(SFG-0)。 The surface features are formed by a herringbone structure, the long axis of the arm and the channel structures 45 degrees to the center line (SFG-0). 所述特征本身深度各自为10密耳,宽度或跨距为15密耳。 The depth of each feature itself is 10 mils, a width or span of 15 mils. 人字形结构的尖端具有半径10密耳的圆,支段端部具有完全的圆形。 Herringbone structure rounded tip has a radius of 10 mils, a branched segment having a full circular end portion. 表面特征的存在将可用来保留催化剂的面积增大了1.63倍。 The presence of surface features may be used to retain the catalyst area is increased 1.63 times. 在675-850°C的温度范围内,使用3:1的蒸汽:甲烷比,以4. Ims进行比较。 In the temperature range of 675-850 ° C, using a 3: 1 steam: methane ratio, compared to 4. Ims. 在无特征的试件的情况下,试件的负载量为9. 5毫克/英寸2 (毫克活性金属);在包括表面特征的试件的情况下,试件的负载量为10. 5毫克/英寸2 (毫克活性金属)。 In the case of the test piece featureless specimen loading is 9.5 mg / in2 (mg of active metal); in the case of including features of the specimen surface, loading of the test piece was 10.5 mg / in2 (mg of active metal). 使用FLUENT进行计算流体动力学模拟,发现包括所述特征可以将表观动力学活性增大至少2. 1倍。 Using the FLUENT computational fluid dynamics simulation, comprising the features found an apparent kinetic activity can be increased by at least 2.1-fold. 因此单侧表面特征(仅在通道的一个侧面上)提供的传质增强将表观活性比仅基于增大表面积所预期的增大了约31%。 Thus one surface enhanced mass transfer characteristics (only on one side of the tunnel) is provided only on the apparent activity increases the expected increase the surface area ratio of about 31%.

[0484] 试验试件 [0484] Test specimens

[0485] 在具有和不具有表面特征的情况下制备用于催化剂涂层的试件。 Preparation of [0485] for the test piece in case where the catalytic coating with and without surface features.

[0486] 总的来说,所述试件的长度为1. 4英寸,在其总共1. 323英寸的长度上配置了包括在其中的表面特征。 [0486] In general, the length of the test piece is 1.4 inches, in which a total length of 1.323 inches, including a surface feature disposed therein. 所述试件的宽度为〇. 215英寸,但是设计了相应的测试器件,使得反应气体仅会在通道长轴中心线任一侧的表面的0. 080英寸范围内流动。 Width of the square test piece of 215 inches, but the design of the corresponding device under test, such that any of the reaction gas will only flow in the range of 0.080 inches in the side surface of the channel long axis centerline. 所述试件厚0. 095英寸,由Inconel 617制成。 The specimen thickness 0.095 inches, is made of Inconel 617.

[0487] 所述试件包括两个热壁,以允许在操作过程中测量金属的温度。 [0487] The trial includes two hot wall, to allow measurement of temperature of the metal during operation. 表面特征由人字形结构形成,这些结构的臂与通道长轴中心线成45°角(SFG0)。 Wherein the surface is formed by a herringbone structure, the long axis of the arm and the channel structures 45 ° to a centerline (SFG0). 所述特征本身各自深10 密耳,宽度或开口为15密耳。 Each of the feature itself a depth of 10 mils, a width of 15 mils or openings. 人字形的顶端是10密耳的圆形,臂的末端具有完全的圆形。 Chevron is rounded tip 10 mils, the ends of the arms having a perfect circle. 平坦的试件具有0. 301英寸2的面积用来施加催化剂,具有表面特征的试件可用来施加催化剂的表面积为0.435英寸2。 Surface area of ​​the area of ​​the flat test specimen having a .301 inches 2 for applying a catalyst having a surface feature may be used to apply the catalyst was 0.435 inches 2. 这些面积用来计算每平方英寸负载的催化剂的量(对于平坦试件,在4毫克/英寸2的MgO上的Rh负载量为9. 5毫克/英寸2,对于具有表面特征的试样,在4. 2晕克/英寸2的MgO上的Rh负载量为10. 7晕克/英寸2)。 The area used to calculate the amount of catalyst supported per square inch (for flat test piece, Rh loading on MgO 4 mg / in 2 to 9.5 mg / inch 2, with respect to the sample surface features, in Rh loading on halo MgO 4. 2 g / inch 2 is halo 10.7 g / 2 inches). 各试件与反应气体混合物接触的面积为:无特征的试件:〇. 212英寸2,具有表面特征的试件:0. 346英寸2。 The area of ​​each specimen was in contact with the reaction gas mixture are: featureless specimen: 2 212 inches square, surface features of the specimen: 0346 in2. 在施加催化剂之前,对试件施加估计厚10-20微米的错化镍(nickel aluminide)涂层,然后对其进行热处理,以制得薄的附着的氧化铝外皮。 Before application of the catalyst, the specimen is applied to the estimated 10-20 microns thick fault nickel (nickel aluminide) coating, and then subjected to heat treatment, to produce a thin alumina scale adhered.

[0488] 试验-催化剂 [0488] Test - Catalyst

[0489] 通过用移液管将12重量%的Mg(NO3)2催化剂滴在试件上,对具有表面特征的试件施涂催化剂。 [0489] The catalyst was applied by the specimen pipette 12% by weight of Mg (NO3) 2 catalyst is dropped onto the test piece, having surface features. 涂敷后的试件在KKTC干燥1小时。 Test piece after coating was dried KKTC 1 hour. 遮盖涂敷法再重复一次。 Covering coating process was repeated once. 然后试件在1000°C的空气中煅烧4小时。 Then the specimen calcined in air at 1000 ° C for 4 hours. MgO负载量为4.2毫克/英寸2。 MgO loading of 4.2 mg / inch 2. 接下来,将10重量%的乙酸六(乙酸根)-μ-氧代三(水合)三铑(III)溶液滴在试件上。 Next, 10 wt% acetic acid hexa (acetate) -μ- oxo-tris (hydrated) tris rhodium (III) solution was dropped on the test piece. 该试件在KKTC干燥,然后在450°C焙烧1小时。 The specimens KKTC dried, and then calcined at 450 ° C for 1 hour. 重复该涂敷过程,以得到10. 7毫克/英寸2的Rh负载量。 The coating process was repeated to obtain a Rh loading of 10.7 mg / inch 2.

[0490] 以35°C /分钟的加热速率,在流动的4中,将所述平坦的试件(没有表面特征) 加热至10501:。 [0490] In a heating rate of 35 ° C / min, the flow 4 in the flat specimen (no surface features) was heated to 10501 :. 在10501:下用41'吹扫1小时之后,将气体变为21%的0 2/^1'。 In 10501: 41 with the 'one hour after purging the gas becomes 21% 0 2 / ^ 1'. 在继续通O2Ar的条件下,对该试件热处理10小时,然后冷却至室温。 Under conditions continue through O2Ar, the heat treatment of the specimen 10 hours, then cooled to room temperature. 在热处理之后,在表面上产生了α -八1203外皮。 After the heat treatment, produced on the surface of α - eight sheath 1203.

[0491] 通过用移液管将12重量%的Mg (NO3) 2催化剂溶液滴在平坦试件上,将催化剂施涂在该平坦试件上。 [0491] By using pipette 12% by weight of Mg (NO3) 2 catalyst solution was dropped on a flat test piece, the catalyst is applied on the flat test piece. 涂敷后的试件在loot:干燥1小时。 Loot specimens after coating: dried for 1 hour. 遮盖涂敷过程重复进行1次。 Covering the coating process is repeated once. 然后该试件在空气中,在l〇〇〇°C焙烧4小时。 The test piece is then in air, calcined at l〇〇〇 ° C 4 hours. MgO负载量为3. 7毫克/英寸2。 MgO loading of 3.7 mg / inch 2. 接下来将10重量%的乙酸六(乙酸根)-μ -氧代三(水合)三铑(III)溶液滴在试件上。 Next, 10 wt% acetic acid hexa (acetate) -μ - oxo-tris (hydrated) tris rhodium (III) solution was dropped on the test piece. 该试件在KKTC 干燥,然后在450°C焙烧1小时。 The specimens KKTC dried, and then calcined at 450 ° C for 1 hour. 重复该涂敷过程,以得到9. 4毫克/英寸2的Rh负载量。 The coating process was repeated to obtain a Rh loading of 9.4 mg / inch 2.

[0492] 制备之后,平坦试件包含位于4毫克/英寸2的MgO上的9. 5毫克/英寸2的Rh, 具有表面特征的试件具有位于4. 2毫克/英寸2的MgO上的10. 7毫克/英寸2的Rh。 Specimen [0492] After preparation, comprising a flat test piece 4 positioned mg / 9.5 mg on the 2 inch MgO / Rh 2 inches, the surface features 10 having located on the MgO 4. 2 mg / in2 7 mg / inch of Rh 2. 空白试件也以类似于含催化剂的试件的方式得到了氧化铝薄层,但是不含催化剂。 Blank specimen also in a manner similar specimens containing alumina catalyst obtained thin, but no catalyst.

[0493] 试验-条件 [0493] Test - Conditions

[0494] 将一种涂覆了催化剂的试件安装在微通道测试器件中,这意味着对于每次测试, 表面特征和催化剂仅存在于主通道的一个壁上。 [0494] A coating of the catalyst test piece is mounted in a microchannel test device, which means that for each test, and the surface characteristics of the catalyst present in only one wall of the main channel. 一旦将完成的器件安装在测试基础结构中之后,通过在常压、450°C的条件下,使催化剂与50sccm的氢气和450sccm的氮气接触2小时,对催化剂进行还原。 Once the completed device structure is mounted on a test basis by at normal pressure and 450 ° C, the catalyst 50sccm and 450sccm of hydrogen and nitrogen contacted for 2 hours, the catalyst reduction. 测试在675,750,800和8501:下进行。 In 8501 and 675,750,800 test: carried out. 甲烷的流速为1508(^111,蒸汽的流速为450sccm(蒸汽与碳的比例为3:1)。 Flow rate of methane is 1508 (111 ^, 450 sccm flow rate of steam (steam to carbon ratio of 3: 1).

[0495] 结果-试验和模拟 [0495] Results - Test and simulation

[0496] 在平坦试件和具有表面特征的试件上进行的试验的结果可参见表1,表中还显示了用计算流体动力学包Fluent™进行的反应模拟的结果。 [0496] The results of tests carried out on flat test pieces and test pieces having surface features shown in table 1, the table also shows the result of the reaction with computational fluid dynamics simulation package Fluent ™ performed. 对于平坦试件,在673-852Ό的温度下,用九种样品进行了大约53小时的运转测试。 For flat specimens, at a temperature of 673-852Ό performs operation for about 53 hours in nine samples tested. 对于具有表面特征的试件,在671-865°C 的温度下,用样品进行了约52小时的运转测试。 For specimens having surface features, at a temperature of 671-865 ° C, the samples were tested about 52 hours running.

[0497] 使用一组无特征的(平坦的)试件对系统的背景活性进行了测试。 [0497] using a set of featureless (flat) test piece of background activity of the system tested. 未进行还原步骤。 Reduction step is not performed. 注意到在低于800°C (670,700,718)的条件下,无甲烷转化。 Noting at less than 800 ° C (670,700,718), non-methane conversion. 发现在800°C,甲烷的转化率约为4%,在900°C,甲烷的转化率约为22%。 Found at 800 ° C, the methane conversion rate of about 4% at 900 ° C, conversion of methane is about 22%.

[0498] 通过构建表示同时具有外表面特征的通道的计算区域,也就是说,宽0. 160〃X高0. 006〃X长1. 70〃的流体区域以及包括如上所述设置在1. 7〃的总长度上的1. 32〃的长度上的表面特征的类似的区域,进行Fluent™模拟。 Calculation of the area of ​​the channel [0498] has an outer surface characteristics represented by constructing the same time, that is, high width 160〃X 0. 0. 1. 70〃 006〃X long fluid region disposed as described above and comprising a. similar features on the surface region of the length of the total length 7〃 1. 32〃 performs Fluent ™ simulation. 该区域的反应部分长1.4",在进口和出口允许为0.15",以产生流动。 1.4 part of the length of the reaction zone ", the inlet and outlet to allow 0.15", to create flow. 在模型的反应部分中,SMR活性以基于表面的速率的形式应用,允许水煤气轮换反应以体积速率进行,使得该反应的气体组成处于局部平衡,对于SMR 活性的情况,仅对应于试件上的表面的表面设为具有催化活性。 In the reaction part of the model, SMR activity based on the form of the surface of the rate of application, allowing the water gas shift reaction is carried out at a volume rate so that the gas in the reaction composition is in local equilibrium, in the case of SMR activity corresponding to only the specimen surface to the surface having catalytic activity. 模拟使用试验中测得的气体进口温度、流速和出口压力。 Simulated measured using the test gas inlet temperature, flow rate and the outlet pressure. 还应用了与试件温度相等的等温边界条件。 Also applied to the test piece is equal to the temperature of isothermal boundary condition.

[0499] 使用169kJ/mol的活化能和预定的速率形式测定第一动力学水平(level),其中转化的速率与甲烷分压的I. 6次幂(power)成正比,调节指前因子值(速率常数),直至无特征的试件的试验结果和CFD模型的预测值之间获得合理的匹配。 [0499] Determination of Kinetic first level (Level) using 169kJ / mol and the activation energy in the form of a predetermined rate, wherein the rate of conversion of methane partial pressure I. 6 power (power) is proportional to the value of the pre-exponential factor adjustment (rate constant), to obtain a reasonable match between the predicted value until the test results and featureless CFD model specimen. 这指前因子值设为动力学水平1。 This pre-exponential factor value is set to 1 level dynamics. 使用所述具有表面特征的试件进行相同的步骤,收集数据,建立第二动力学水平(level)。 Test pieces having a surface feature using the same procedure was performed, to collect data, establishing a second kinetic horizontal (level). 发现第二水平为第一水平的值的2.1倍。 The second level is found to 2.1 times the value of the first level.

Figure CN104525072AD00561

[0501] 这些结果显示,使用表面特征还可减少在化学反应中存在的外部传质阻力。 [0501] These results show that the use of surface features may also reduce the external mass transfer resistance existing in a chemical reaction. 催化剂如果设置在平坦的壁上,其活性至少应该是设置在具有表面特征的壁上的活性的两倍。 If the catalyst is provided on the flat wall, its activity should be at least twice the active set having the walls of the surface features. 该结果部分是由于表面积的增大(约60% ),部分是由于外部传质阻力减小,后者是由于消除了层状抛物线流体分布曲线和引起对流、使反应物从总体流动路径向涂敷了催化剂的壁流动而造成的。 This result is due to the increased surface area of ​​the part (about 60%), in part due to external mass transfer resistance is reduced, which is due to the elimination of laminar parabolic profile and fluid convection due to the bulk flow path from the reactant to the coating plating the walls of the flow caused by the catalyst.

[0502] 实施例14-用于提高甲烷和一氧化碳的燃料稀燃的两侧表面特征 [0502] Example 14 for improving the surface characteristics of the fuel lean burn both methane and carbon monoxide

[0503] 钼铑催化剂以浆液的形式施涂在两种试件上,一种试件具有表面特征,另一种试件不具有表面特征,对它们进行测试,以测定通过添加表面特征在CO和甲烷的燃料稀燃(过量氧气)中产生的提高。 [0503] Molybdenum rhodium catalyst in the form of a slurry was applied on both of the test piece A test piece having a surface feature, another test piece having no surface features, they are tested to determine the surface features by adding CO methane fuel and improve the lean (excess oxygen) generated. 结果说明在具有表面特征的试件上获得了更高的CO和甲烷的转化率。 The results obtained illustrate the high conversion of CO and methane in the test piece having surface features. 在具有表面特征的试件上观察到的压降增大(1.5-1. 8倍)说明表面特征影响了流场。 Observed on the specimen surface features of the increased pressure drop (1.5-1. 8 times) illustrate surface features affecting the flow field. 尽管两种试件都经历了失活,但是具有表面特征的试件在测试的操作时间过程中获得稳定的转化率。 Although both specimens have undergone deactivation, but the test pieces having surface features stable operation time of the conversion of the testing process. 对于平坦的试件和具有表面特征的试件,甲烷的转化率看来都受反应速率限制,但是CO看来受传质限制。 For flat test pieces and test pieces for the conversion of methane appears to surface features are subject to reaction rate limited, but it seems CO by mass transfer limitations. 对于CO燃烧的情况,包括表面特征使初始出口CO减小至IJ 1/15 (相对于可用于催化的表面积增大的2. 2倍)。 For the case of CO combustion, including surface features to reduce an initial outlet CO IJ 1/15 (relative to the catalyst can be used to increase the surface area of ​​the 2.2-fold). 该时间内燃烧之后的CO燃烧平均提高4.1倍。 After combustion of the CO combustion time average of 4.1 times. 这种活性的升高超过了预期的基于表面积的影响,可以由于表面特征(并且在表面特征处使接近催化表面的反应物质的浓度最大)以及使任意流体弯曲沿更长的路径通过反应器(比严格的层流情况中出现的更长),从而延长有效停留时间而造成的流线混合所致。 This increase in activity than expected based on the surface area of ​​influence may be due to the surface characteristics (concentration of the reaction mass and the near surface of the catalytic surface feature at the maximum) and causing any fluid through the reactor along a longer curved path ( streamline longer), thus extending the effective residence time caused by the emergence of a strict than in the case of laminar mixing due.

[0504] 所述具有表面特征的试件的表面积约为平坦试件表面积的2. 2倍,在施涂催化剂以达到类似的负载率(质量/单位面积)时,可以预期能够观察到类似这种大小的效果,但是具有表面特征的试件上的CO减少说明反应速率平均比平坦的或无特征的试件大4. 1倍。 When the [0504] surface area of ​​the test piece having a planar surface features is about 2.2 times the surface area of ​​the test piece, in applying a catalyst to achieve similar load rate (mass / unit area), it is contemplated that this can be similar to that observed seed size effect, but the CO specimen surface features to reduce the rate of the reaction described average 4.1 times larger than the large flat or featureless test piece. 因此,对于CO燃烧,相比平坦的试件,表面特征可提供远超过通过增加催化剂的量所预期的反应速率提高。 Thus, for CO combustion, as compared to a flat test piece, the surface features may provide a far improved by increasing the amount of catalyst than the expected rate of reaction. 这种提高很大程度上是由于特征引起的流体混合造成的。 This increase is largely due to the characteristics of the fluid caused by mixing caused. 这种混合在催化剂覆盖的表面附近保持高反应物质浓度。 This reaction mixture to maintain a high concentration of a substance in the vicinity of the surface of the catalyst is coated. 除了这种混合作用以外,流体组成部分在该反应器中流过的路径会比在层流反应器中流过的路径长。 In addition to this mixing, the components of the fluid flowing through the path of the reactor will be longer than in a laminar flow path flowing through the reactor. 对于任意特定的流体组成部分,这可以延长平均停留时间。 For any particular part of the fluid, which can extend the average residence time.

[0505] 实施例15-用来增强混合和传热的〃看穿〃表面特征 [0505] Example 15 〃 enhanced mixing and heat transfer to the surface of the see-through features 〃

[0506] 〃看穿〃表面特征是连续穿透壁的任意形状的表面特征,使得相邻的通道相连(即所述表面通道将总体流动通道与相邻的空间或通道相连)。 [0506] wherein 〃 〃 surface is seen through the surface features of any continuous shape through the wall such that adjacent channels are connected (i.e., the surface of the channel bulk flow path is connected to an adjacent space or channel). 可以使多个看穿特征在相互的顶部对齐,以增大表面特征的深度。 Wherein the plurality of possible to see through the aligned top of each other to increase the depth of the surface features. 即使在特征底部没有实心表面时,它们仍然可以用来在流体与相邻通道内的流体相剪切时,使主通道的流体转向。 Even in the absence of a solid surface wherein the bottom, they can still be used within the fluid passageway adjacent the fluid phase cut, the main channel of the fluid steering. 在需要较大间隙的单侧混合的情况,"看穿"特征是特别有效的。 In case of need of a large gap on one side mixing, "see through" feature is particularly effective.

[0507] 在第二种应用中,可以用特征来搅拌需要在悬浮体中保持固体的不可压缩流体。 [0507] In a second application, it can be characterized by the need to maintain the solid was stirred in suspension incompressible fluid. 所述"看穿"特征的一个优点在于,特别是当通道垂直设置时,悬浮的颗粒不会在特征的"底部"聚集,但是当颗粒松开时,它们落回到使其重新悬浮的流线中。 The "see" a feature is advantageous in that, especially when arranged vertically channel, the suspended particles do not "bottom" feature aggregates, but when the particles are loosened, so that they fall back into the flow line resuspended in. 在另一种应用中,固体颗粒悬浮在可压缩流体中,通过"看穿"特征保持在悬浮液中,在另一种应用中,液滴悬浮在可压缩流体中,保持在悬浮体中。 In another application, the solid particles are suspended in a compressible fluid, the "see through" feature remains in suspension, in another application, the droplets are suspended in a compressible fluid, held in suspension. 用两种不混溶的(或部分不混溶的流体)可以得到类似的效果。 A similar effect can be obtained using two immiscible (or partially immiscible fluid).

[0508] 在第三种应用中,可将催化剂保持在表面特征中,由于允许反应物和产物从两个侧面扩散入涂层中(而不是像袋型表面特征中的涂层那样,仅从一侧进行扩散),提高了涂层的效率。 [0508] In a third application, the catalyst may be maintained in the surface features, by allowing the reactants and products from both sides diffuses into the coating (rather than the surface of the bag characterized in that a coating type, only side diffusion), improves the efficiency of the coating.

[0509] 在第四种应用中,两种不混溶的流体在包括看穿特征的壁的任一侧面上流动,例如被水饱和的空气或被空气饱和的水,在特征的任一侧面上同向流动。 [0509] In a fourth application, the two immiscible fluids flowing on either one side wall comprises a see-through features, such as water saturated with air or water-saturated air, on either side of the feature co-current flow. 通过所述特征使空气流混合,将悬浮在空气流中的颗粒引入所述特征,使其与水接触。 Characterized by said flow of air mixed with the suspended particles in the air stream introduced into the feature into contact with water. 然后所述颗粒变成悬浮在水中,从气相中洗涤出来。 The particles then become suspended in water and washed out from the gas phase. 或者,气体和液体(或液体和液体)可以不是饱和的,在边界接触导致产生饱和的物流。 Alternatively, the gas and liquid (or liquid and liquid) may not be saturated, leading to the contact at the boundary stream generated saturation. 这种看穿特征也可用于液体-液体接触,例如可进行液-液萃取。 This feature can also be used to see through a liquid - liquid contact, for example by liquid - liquid extraction.

[0510] 实施例17 [0510] Example 17

[0511] 通过在大间隙(0. 047")主通道中进行甲烷燃烧的CFD模拟,评价不同的表面特征几何结构和取向的影响,操作在高速(>80米/秒)下进行,以减少排放物,或者在出口处将氮气中的氧气和甲烷的稀混合物转化为极低含量的甲烷。 [0511] Effect of different surface characteristics evaluation geometry and orientation, operation at a high speed (> 80 m / sec) through a CFD simulation of the combustion of methane in the large clearance (0.047 ") in the main channel, in order to reduce emissions, or at the outlet of the dilute mixture of oxygen in nitrogen and methane to methane very low levels.

[0512] 进行了分析,在64毫米长的排气反应器区(在该长度的55毫米之上具有表面特征)、870°C的恒定壁温,进口5700ppm甲烷的条件下比较以下不同情况的甲烷燃烧结果: 直通道(无表面特征),SFG-〇-顺式-A-60° (在两个相对壁上的表面特征通过中心面以镜像对准,相对于进口面以60°取向(90°是平行于净流动方向)),SFG-O-顺式-B-75° 和SFG-5. 1-顺式-B-60°。 [0512] analyzed, a 64 mm long zone of the reactor exhaust gas (having a surface feature on the length 55 mm), the following comparison under different conditions, a constant wall temperature condition of 870 ° C inlet 5700ppm methane methane combustion results: a straight channel (no surface features), SFG-cis 〇- -A-60 ° (in two opposite walls of the surface features to align the mirror plane passing through the center, relative to the inlet surface oriented at 60 ° ( 90 ° parallel to the net flow direction)), SFG-O- cis and -B-75 ° SFG-5. 1- cis -B-60 °. 所述SFG-5. 1几何结构是相同取向、连续重复"对号"表面特征的SFG-5几何结构。 The SFG-5. 1 is the geometry of the same orientation, continuously repeated "step" surface feature geometry SFG-5. 对于这些几何结构中的每一个,使用0.38毫米的特征跨距和特征间距,以及0.51毫米的特征深度。 For each of these features using 0.38 mm span geometry and spacing characteristics, and wherein the depth of 0.51 mm. 在各个相对的壁上,各表面特征跨越了4.1毫米的整个主通道宽度。 In each of the opposing walls, each of the surface features across the entire width of the main channel of 4.1 mm. SFG-O-顺式-A-60°具有最低的出口甲烷ppm(262ppm),其次是SFG-5顺式-B-60。 SFG-O- cis -A-60 ° lowest outlet methane ppm (262ppm), followed by cis-SFG-5 -B-60. (529ppm),SFG-O-顺式-B-75。 (529ppm), SFG-O- cis -B-75. (545ppm)和直通道(2844ppm)。 (545ppm) and straight channel (2844ppm).

[0513] [0513]

Figure CN104525072AD00581

[0514] 表:对于5700ppm进口甲烷燃烧情况的列表结果 [0514] Table: Results for listing 5700ppm methane combustion inlet

[0515] 甲烷的浓度首先在所述反应器的最初十分之几英寸内直线下降,然后沿着所述反应器长度的0.3-0. 4英寸,减少量明显变少。 [0515] First, the concentration of methane within a few tenths of linear inch of the reactor initially decreases, then 0.3-0. 4 inches along the length of the reactor, significantly reduce the amount reduced. 在此区域内,表面特征产生的流场仍未处于稳态,在反应器内开始混合。 In this region, the surface features of the flow field generated yet in a steady state, start mixing in the reactor. 沿着主通道长度约0.4英寸之后,总体流动开始在反应器内发生良好的混合或旋转,甲烷排放物又以相当陡的斜率下降。 After the main channel along the length of about 0.4 inches, good bulk flow begins to occur within the mixing or rotation of the reactor, methane emissions decreased again considerably steeper slope. 该流动不是层流,而是在所有的方向运动和旋转,使得新的物质通过平流而非扩散引入中心线,从而造成中心线浓度的变化。 The flow than laminar flow, but in all directions and the rotational movement, such that the new material is introduced by diffusion rather than advection centerline, resulting in a change in the concentration of the centerline. 约2英寸之后,随着甲烷的总转化率达到高水平,中心线浓度开始变得更均匀。 After about 2 inches, with a total conversion of methane to achieve a high level, starts the centerline concentration becomes more uniform. 2.3 英寸之后(表面特征终止之处)中心线浓度非常低,因此表面特征通道对该高传质限制的问题表现出极佳的转化效率。 After 2.3 inches (termination of the surface features) centerline of a very low concentration, the surface characteristics of the passage of the high mass transfer limitations question exhibits excellent conversion efficiency.

[0516] 0. 3英寸的进口长度对应于进入所述总体流动路径内约10个表面特征。 [0516] 0.3 inches importing into the length corresponding to about 10 surface features within the bulk flow path. 约10个特征的进口长度小于进入微通道内超过10个水力直径长度的平坦微通道的进口长度。 Inlet length is less than about 10 feature 10 into the hydraulic diameter than the length of the flat microchannel inlet microchannel length. 对于间隙=1. 19毫米的情况,水力直径超过1. 2毫米,因此需要反应器总长度中超过1. 2厘米的长度来完全产生层流场。 In the case of gap = 1.19 mm, the hydraulic diameter of more than 1.2 mm, the total length of the reactor is required more than 1.2 cm in length to produce laminar flow field completely. 与之相反,表面特征通道在〇. 8厘米处就接近完全产生流动, 这部分是由于表面特征的尺寸(表面特征之间的间隙和跨距为〇. 015英寸)小于0. 047英寸的微通道间隙。 In contrast, the surface features square passage 8 cm to near full flow is generated, in part because the size of the surface features of the micro (and span the gap between the surfaces wherein the square. 015 inches) of less than 0.047 inches passage gap. 预期相对于平坦或平滑通道使用能够产生良好混合的表面特征,可以获得较短的进口长度的效果。 Expected channel relative to the flat or smooth surface feature capable of producing a good mixing effect can be obtained in a shorter inlet length.

[0517] 在加快的流速(>50米/秒)下,SFG-O-顺式-A_45°特征显示出在表面特征内的流体循环。 [0517] In the accelerated flow rate (> 50 m / second), SFG-O- cis -A_45 ° characteristic exhibits a fluid circulation within the surface features. SFG-O-顺式-A人字形结构的倾斜角从45°增大到60°和75°。 The inclination angle of SFG-O- cis -A herringbone structure increases from 45 ° to 60 ° and 75 °. 结果显示两个重要的情况:对于较高流速的情况,角度对混合有很大的影响,当表面特征的角度从60° 增大到75°,顺式-B取向变得比顺式-A取向略微有利。 The results show that two important cases: the case of higher flow rate, the angle has a great influence on the mixing, when the angle of the surface features is increased from 60 ° to 75 °, it becomes smaller than the cis-cis orientation -B -A orientation slightly favorable. 在60°角的顺式-A取向情况下观察到了最佳的反应性能。 -A viewed in cis orientation angle of 60 ° to the case where the optimal reaction performance. 所述最佳反应性能情况还具有最高的压降,这是由于从主通道向活性表面特征的流体运动增加。 The optimum reaction performance cases, the highest pressure drop, which is due to the increased movement of fluid from the main passage to the active surface features.

[0518] 实施例18-停留时间分布比较 [0518] Example embodiment of the residence time distribution is 18

[0519] 停留时间分布(RTD)是设计化学反应器时的一个重要性能指标。 [0519] The residence time distribution (RTD) is an important performance index when a chemical reactor design. 在大多数操作条件下,微通道反应器中的流动是层流。 Under most operating conditions, the flow in the microchannel reactor is laminar. 在无特征的微通道反应器中,反应器壁附近的流体难以被推离反应器。 In featureless microchannel reactor, the fluid near the reactor wall is pushed away from the reactor is difficult. 这有可能会造成产物选择性很差,使得放热反应产生热点。 This may result in poor product selectivity, an exothermic reaction so that hot spots. 为了改进层流反应器的RTD,将表面特征结合入通道壁中可以在不需要外界输入能量的情况下将进入反应器的总体物流分为许多股亚流。 In order to improve the RTD laminar flow reactor, the surface features incorporated into the channel wall may be a case where the external input of energy without the need for overall stream entering the reactor is divided into many sub-streams stocks. 相对壁上表面特征的相反取向会将流体保持更久。 Wherein the opposite wall surface of the opposite orientation will be maintained longer fluid.

[0520] 在所有的情况下,使用表面特征使得流动分布曲线接近活塞流,从而得到窄得多的停留时间分布。 [0520] In all cases, the use of surface features such that the flow approaches plug flow profile, thereby obtaining a much narrower residence time distribution. 本研究中选择的特征是45°角的SFG-0。 In this study, the selected characteristic is SFG-0 45 ° angle. 在本实施例中,顺式-A取向得到最多的流体旋转,流体分布曲线为最陡,因此最接近真正的活塞流。 In the present embodiment, the alignment obtained cis -A most rotary fluid, the fluid distribution curve is steepest, thus closest to the true plug flow.

[0521] 在第二种比较中,进行瞬时RTD评价来比较以下二者中的RTD :平坦微通道(1. 02 毫米X 4. 1毫米,无表面特征);具有深0. 25毫米的凹陷倾斜凹槽(图案SFG-1)的相同的主通道。 [0521] In the second comparison, to compare the instantaneous RTD evaluated RTD both of the following: a flat microchannel (1.02 mm X 4. 1 mm, no surface features); 0.25 mm having a deep recess inclined grooves (pattern SFG-1) is the same as the main channel. 具有表面特征的通道的流体动力学更接近活塞流。 A fluid passage having surface features closer to plug flow kinetics. 管内层流的RTD表现出典型的Taylor-Aris分散,这是由于在中心线的快速流动(平均值的1. 5倍)和无滑动边界附近的缓慢流动造成的。 The inner flow tube RTD showed a typical Taylor-Aris dispersion, which is due to the fast flow centerline (1.5 times the average) and slow flow near the no-slip boundary caused. 矩形微通道具有两个无滑动边界条件的轴点(侧向和横向)。 Rectangular microchannel has pivot points (lateral and transverse) two no-slip boundary condition. 所得的抛物线型流动分布曲线在X方向和y方向都给出速度梯度。 The resulting parabolic flow profile in the X-direction and the y direction are given velocity gradient. 所得的2维梯度在直通道RTD中产生多种斜率。 The resulting produce a variety of two-dimensional gradient slope of the straight channel RTD.

[0522] 实施例19具有表面特征的微通道中的涡量 Vorticity microchannel [0522] Example 19 having the surface features in

[0523] 涡量 [0523] vorticity

[0524] 涡量(ω)是流动的局部矢量分量或旋度,是▽矢量和速度矢量U的矢量积。 [0524] vorticity ([omega]) is a partial vector component flowing or curl, is ▽ vector and the velocity vector U of the vector product.

[0525] -ω =V XU [0525] -ω = V XU

[0526] 该矢量的大小与流体的旋转强度成正比,因此是对混合程度进行量化的工具。 [0526] proportional to the rotation of the magnitude of the intensity vector of the fluid, and therefore to quantify the degree of mixing tools. 其结果是涡量矢量依照与流体自身的运动成镜像的方式运动。 As a result, the fluid vorticity vector in accordance with its own motion mirrored manner. 如果流体是拉伸的,则涡量沿着拉伸轴增强;如果流体倾斜,则涡量矢量与其一起倾斜;粘度作用于涡量完全象其作用于速度。 If the fluid is stretched along the reinforcing vorticity stretching axes; If the fluid is tilted, the tilted together therewith vorticity vector; viscosity vorticity acting exactly like which acts on the speed. 用来完全形成层流的涡量理论上为〇,因此一旦该层流完全形成,相应的平坦通道微通道具有〇涡量。 For laminar flow vorticity formed entirely theoretical square, once the complete formation of a laminar flow, the respective flat microchannel having a square vorticity.

[0527] 对于进行涡量比较的具有表面特征的微通道中的蒸汽甲烷转化CFD模拟,使用以下条件。 [0527] For microchannel for methane steam vorticity surface features comparison is converted CFD simulations, using the following conditions.

[0528] -0· 0125〃(0· 32毫米)主通道间隙 [0528] -0.3 0125〃 (0 · 32 mm) of the main passage gap

[0529] -2. 5" (63. 5 晕米)长 [0529] -2. 5 "(63.5 halo meters) long

[0530] -0· 160〃 (4. 1毫米)宽的主通道 [0530] 160〃 -0.3 (4.1 mm) wide main passage

[0531] -表面特征跨距为0. 015〃 (0.38 毫米),深0. 010〃 (0.25 毫米),间隔0, 015〃 (0.38 毫米) [0531] - a surface wherein a span of 0. 015〃 (0.38 mm), 0. 010〃 deep (0.25 mm), the interval 0, 015〃 (0.38 mm)

[0532] -10米/秒的进口流速 [0532] -10 m / s inlet velocity

[0533] -350psig(25. 1 巴)出口 [0533] -350psig (25. 1 bar) exports

[0534] _3份蒸汽:1份甲烷 [0534] Steam _3 parts: 1 part of methane

[0535] -雷诺数约为1450,正好位于层流区内 [0535] - Reynolds number of about 1450, right in the laminar flow zone

[0536] 评价的几何结构为(所有的几何结构的角度都为45°,SFG_4几何结构除外,其角度为22. 5° ): [0536] Evaluation of geometry (angles of all the geometries are both 45 °, except SFG_4 geometry, the angle of 22. 5 °):

[0537] SFG-OF-顺式-A (具有FanelIi 的SFG-0) [0537] SFG-OF- cis -A (having a FanelIi SFG-0)

[0538] SFG-O-顺式Cis-A [0538] SFG-O- cis-Cis-A

[0539] SFG-O-顺式-B [0539] SFG-O- cis -B

[0540] SFG-OF-反式 [0540] SFG-OF- trans

[0541] SFG-4-反式 [0541] SFG-4- trans

[0542] 使用FLUENT CFD计算机编码,完成全通道体积(包括开放通道和表面特征体积) 的体积平均总涡量大小的计算。 [0542] is calculated using the FLUENT CFD computer code, to complete the whole channel volume (including open channel volume and surface characteristics) of the total volume average size of vorticity. 下表显示了涡量结果和物流的定性混合结果。 The following table shows the results of the qualitative result of mixing vorticity and stream. 通道中涡量较高与改进混合定性地相关。 Higher and qualitatively improve the mixing vorticity associated channel. 特定表面特征的混合程度很好地与主通道涡量或表面特征体积涡量相关。 The degree of mixing of the specific surface features correlate well with the main channel vorticity vorticity volume or surface features. 涡量是局部速度的函数,因此密度和速度可改变其总值。 Vorticity is a function of local velocity, density and speed can thus change the total value.

[0543] 沿通道而下横跨1. 875"横截面的横截面的SFG-O-顺式-A流体涡量的大小显示出在主通道角落的高的涡量。角落处三个表面之间的相互作用和通道流动有助于在表面特征内和主通道表面内产生混合。 [0543] along the passage across at 1.875 "cross section of the cross-sectional size of SFG-O- cis fluid vorticity -A shows a high vorticity in the main channel corner. Three surfaces of the corner of the and the interaction between the flow passages in the mixing helps produce surface features and an inner surface of the main channel.

Figure CN104525072AD00601

[0545] 表:几何结构和体积平均涡量以及定性混合结果 [0545] TABLE: geometry and volume-averaged mixing vorticity as well as qualitative results

[0546] 涡量矢量的大小为100(hz)至大于628,000hz。 [0546] vorticity vector size 100 (hz) to greater than 628,000hz. 该种情况的平均体均涡量超过70, OOOhz。 The mean body case were more than scroll 70, OOOhz. 这种惊人的高涡量反映出表面特征产生的极佳的混合程度。 Excellent mixing amount of the high degree of staggering of such vortex generated reflecting surface features. 应注意仅仅涡量不足以认为单元操作具有活性表面特征的性能。 It should be noted that vorticity unit operation having only insufficient performance characteristics of the active surface. 图案SFG4(反式)具有较高的涡量,尽管不如SFGO那样高,但是其不能提供极佳的性能。 Pattern SFG4 (trans) with high vorticity, although not as high SFGO, but it can not provide excellent performance. 中心线流体分子不会进入活性表面特征区域至少1次。 Centerline fluid molecules will not enter the active surface area of ​​at least one characteristic times.

[0547] 对在湍流状态下操作的平坦通道进行比较。 [0547] The flat channel operating in the turbulent flow state is compared. 所述平坦或平滑的通道采取相同的几何结构 The flat or smooth passage to take the same geometry

[0548] -0· 0125〃 (0· 32毫米)主通道间隙 [0548] -0.3 0125〃 (0 · 32 mm) of the main passage gap

[0549] -2. 5〃 (63. 5 毫米)长 [0549] -2 5〃 (63.5 mm) long

[0550] -0· 160〃 (4. 1毫米)主通道宽度 [0550] 160〃 -0.3 (4.1 mm) of the main channel width

[0551] -表面特征跨距为0. 015〃 (0. 38 毫米),深0. 010〃 (0. 25 毫米),间隔0. 015〃 (0. 38 毫米) [0551] - a surface wherein a span of 0. 015〃 (0.38 mm), 0. 010〃 deep (0.25 mm), 0. 015〃 spacing (0.38 mm)

[0552] -30米/秒进口流速(或上述情况流速的三倍) [0552] -30 m / s inlet velocity (or three times the flow rate of the above)

[0553] -350psig(25. 1 巴)出口 [0553] -350psig (25. 1 bar) exports

[0554] _3份蒸汽:1份甲烷 [0554] Steam _3 parts: 1 part of methane

[0555] -雷诺数约4360,正好位于层流区内 [0555] - Reynolds number of about 4360, right in the laminar flow zone

[0556] 较低雷诺数下表面特征通道中的峰涡量惊人地高于在高得多的雷诺数下(4360) 平坦通道中的情况。 [0556] Peak vorticity surface features in the channel is higher than at surprisingly much higher Reynolds number (4360) of the flat passage at lower Reynolds numbers. 对于三倍流速,壁附近的峰涡量为551000hz,而雷诺数为1450时的表面特征通道的涡量为628000hz。 For three times the flow rate of the peak near the wall of vorticity 551000hz, the Reynolds number for the vorticity surface features when channel 1450 is 628000hz. 另外,在表面特征通道中涡量增大贯穿总体流动路径要比在三倍流速或三倍雷诺数下操作的平坦微通道中的多。 Further, the surface features increase the vorticity passage through bulk flow path than multi operated at a flow rate three times or three times the Reynolds number of planar microchannels. 平坦通道将最大的涡量局限于壁附近,而不会在总体流动通道中产生更多的流体旋转和运动。 The flat channel maximum vorticity limited vicinity of the wall, without creating additional fluid motion and overall rotational flow channel.

[0557] 通过Fluent在上述条件下计算,在4360的雷诺数下操作的平坦通道的压降为0. 47psig,相应的在1450的雷诺数下操作的平坦通道的压降是0. 2psig。 [0557] Fluent by calculation under the above conditions, the pressure drop of the flat channel operating at a Reynolds number of 4360 was 0. 47psig, the pressure drop of the respective flat channels operating at Reynolds number 1450 is 0. 2psig. 对通过具有表面特征的微通道内的压降进行了模拟,测得雷诺数接近1500的压降为平坦通道的二倍,约为0. 4psig。 The air pressure drop through the microchannel having a surface feature simulated, the measured pressure drop is nearly twice the Reynolds number of the flat channel 1500, about 0. 4psig. 净结果是通过使用活性表面特征在较低雷诺数下混合程度要比通过将相同的通道引入湍流状态的混合程度高,而前者的净压降则比后者低。 The net result is characterized by the use of the active surface at Reynolds numbers less than the degree of mixing by a high degree of mixing turbulence introduced into the same channel state, then the net pressure drop former lower than the latter.

[0558] 实施例传热 [0558] Example heat

[0559] 制造测试器件来证明使用具有表面特征的通道提高传热。 [0559] manufacturing test device to prove that the use of channels having surface features to improve heat transfer. 器件的主体包括狭缝, 使得两个试件插入狭缝中,插入的试件之间的间隙形成用于流体流入的微通道。 The device comprises a body slit, such that two test pieces inserted into the slit, the gap between the test piece is inserted to form the microchannels for fluid inflow. 该器件的主体由12. 7毫米直径的棒和用于试件的开口构成,器件主体中制造的狭缝的一部分是5. 59毫米X2. 54毫米,位于距棒的横截面中心0. 64毫米的位置。 The body of the device by a rod 12.7 mm in diameter and constituting the opening for the test piece, the body portion of the device is produced in slit 5.59 mm X2. 54 mm from the center is located in the cross section of 0.64 bar mm position. 当将试件插入开口时,形成标称间隙1.27毫米的微通道。 When the test piece insertion opening, 1.27 mm nominal gap formed microchannels. 所述微通道的宽度为4. 06毫米。 The microchannel has a width of 4.06 mm. 主体的总长度为88. 39毫米。 The total length of the body is 88.39 mm. 热电偶管置于距器件主体各端25. 4毫米的位置。 Thermocouple was placed 25.4 mm from the position of each end of the device body. 热电偶管深3. 81毫米,直径为0.89毫米。 Thermocouple depth 3.81 mm, a diameter of 0.89 mm. 总体来说,平滑壁和表面特征试件的长度均为88. 39毫米。 In general, the length of the wall and the smooth surface characteristics of the specimen are 88.39 mm. 对于表面特征试件,表面特征的总长度为86. 36毫米。 Wherein the surface of the specimen, the total length of the surface features is 86.36 mm. 试件的宽度为5. 46毫米。 The width of the test piece was 5.46 mm. 试件的厚度为2. 41毫米,用Inconel 617制造。 Thickness of the test piece was 2.41 mm, manufactured by Inconel 617.

[0560] 图13中显示了具有包括表面特征的试件的反应器。 [0560] FIG. 13 shows a test piece comprises a reactor having a surface feature. 所述表面特征是"V"形结构, 其臂成75°角(90°角表示基本与主流方向平行,0°角表示对主流动路径基本为横向)。 Wherein said surface is a "V" shaped configuration, to which the arm angle of 75 ° (90 ° represents an angle substantially parallel to the main flow direction, 0 ° angle indicates the primary flow path is substantially horizontal). 所述特征本身各自的深度为〇. 51毫米,宽度或开口为0. 38毫米。 Wherein the depth of each square itself. 51 mm, a width of 0.38 mm or openings. 表面特征的顶点是0. 20 毫米的圆形,臂末端具有完整的圆。 Wherein a surface apex is 0.20 mm round, ends of the arms having a complete circle. 各表面特征之间的间距为〇. 38毫米。 The spacing between the surface features of square 38 mm.

[0561] 在加热器中将氮气加热至所需的温度,然后使其进入所述器件。 [0561] heated to the desired temperature under nitrogen in the heater, and then allowed to enter the device. 该器件保持在恒温浴中。 The device remains in a constant temperature bath. 氮气从器件的另一端离开,进入环境。 Nitrogen away from the other side of the device, into the environment. 流动环路中所有的接头都使用不锈钢接头套管配件和管子。 All flow loop connectors are Swagelok fittings and stainless steel pipe. 在实验过程中,恒温水浴连续循环,以保持均匀的温度。 During the experiment, continuously circulating water bath to maintain a uniform temperature. 两个热电偶也设置在首创的片状器件(pioneer pellet)表面上,各自与片状器件端部相距3.25〃。 Two thermocouples are also provided on the first surface of the pellet (pioneer pellet), each pellet with an end portion spaced 3.25〃. 将热电偶设置在与片状器件表面相距约6. 3毫米的位置,以测定水温。 The thermocouple disposed at a distance of about 6.3 mm and a sheet surface position of the device, to determine the temperature. 对进入器件的气体进行预热。 For preheating the gas entering the device. 在全部的时间,该器件保持浸没在水下,以保持温度。 In all the time, the device remains submerged, to maintain the temperature. 在试件和主体之间使用Watlow Watlube,这是一种热导性楽液。 Use Watlow Watlube between the specimen and the body, which is a thermally conductive fluid yue.

[0562] 在各种流速和进口温度下进行试验。 [0562] tested at various flow rates and inlet temperatures. 下面列出了用于不同热电偶和压力传感器的术语: Listed below are the terms used for different thermocouples and pressure sensors:

[0563] TCl :进入器件之前3. 2毫米处的平均气体进口温度/C [0563] TCl: 3.2 mm mean gas inlet at the temperature of the device before entering / C

[0564] TC2:热电偶孔内(器件进口附近)热电偶的平均温度/C [0564] TC2: thermocouple bore (device near the inlet) average thermocouple temperature / C

[0565] TC3:热电偶孔内(器件出口附近)热电偶的平均温度/C [0565] TC3: thermocouple bore (near the outlet of the device) average thermocouple temperature / C

[0566] TC4 :离开器件之后3. 2毫米处的平均气体进口温度/C [0566] TC4: after leaving the device 3.2 mm average gas temperature at the inlet / C

[0567] TC5:平均水浴温度,°C [0567] TC5: average water bath temperature, ° C

[0568] PTl:平均进口压力,kPa [0568] PTl: average inlet pressure, kPa

[0569] PT2:平均出口压力,kPa [0569] PT2: Average outlet pressure, kPa

[0570] 对表面特征通道测试规定了两种取向。 [0570] The surface characteristics of both an orientation of the predetermined path test. 取向1规定为这时流体运动方向为表面特征顶点所指的方向。 A predetermined time oriented fluid motion direction is a direction in which the apex of the surface features. 取向2规定为这时流体运动方向与表面特征顶点所指的方向相反。 Oriented in a direction opposite to the second predetermined time movement direction and the fluid in which the apex of the surface features. 两种取向的表面特征几何结构和平坦通道几何结构的试验结果列于下表: The results planar surface feature geometries and channel geometry both orientations are listed in the following table:

[0571] 表:表面特征几何结构(两种取向)和平坦通道几何结构的试验结果。 [0571] Table: surface feature geometry (both orientations) and the test results of flat channel geometry.

[0572] [0572]

Figure CN104525072AD00621

[0573] 使用所述试验数据(温度和压力)及通道几何结构确定通道内的传热系数。 [0573] Using the experimental data (temperature and pressure) to determine the geometry of the channel and the heat transfer coefficient in the channel. 所有的计算都基于平坦的通道表面区域。 All calculations are based on a planar passage surface area. 平坦通道传热表面积约为6. 43厘米2,而具有表面特征的通道的传热表面积为19. 41厘米2。 Channel flat heat transfer surface area of ​​about 6.43 cm 2, and the heat transfer surface area of ​​the channel surface features to 19.41 cm 2. 由于表面特征造成的传热表面积的增大是平坦通道传热表面积的2. 06倍。 Since the surface heat transfer characteristics due to increase in surface area is 2.06 times the heat transfer surface area of ​​the flat passage. 还基于文献中的相互关系预测了平坦通道的传热系数和压降。 Further based on the relationship in the prediction literature heat transfer coefficient and pressure drop of the flat passage.

[0574] 下表给出由具有表面特征的通道和不具有表面特征的通道的实验数据得到的传热系数和压降的估算值。 [0574] The following table gives experimental data channel estimate by a channel and having surface features having no surface features of the resulting heat transfer coefficient and pressure drop. 还给出了平坦通道的预测值。 Also gives the prediction value of the flat passage.

[0575] 表:由试验数据得到的传热系数和压降估算值,平坦通道的传热系数和压降的预测值。 [0575] Table: the heat transfer coefficient and pressure drop values ​​estimated from experimental data obtained, the heat transfer coefficient of a flat channel and the predicted value of pressure drop.

[0576] [0576]

Figure CN104525072AD00631

[0577] 表中Q =估算的总传热,W [0577] Table Q = total heat transfer estimate, W

[0578] LMTD =平均温差的对数,°C [0578] LMTD = log mean temperature difference, ° C

[0579] HTC =估算的传热系数,W/m2/K [0579] HTC = the estimated heat transfer coefficient, W / m2 / K

[0580] DP=试验压降,kPa [0580] DP = pressure drop test, kPa

[0581] 下表显示,在表面特征通道中传热系数提高和压降增大。 [0581] The table shows that increasing the pressure drop and increases the heat transfer coefficient in the channel surface features.

[0582] 表:相比平滑壁通道,在表面特征通道中的传热系数提高和压降增大 [0582] TABLE: Compared smooth-walled passage, wherein the surface heat transfer coefficient enhancement and pressure drop in the channel is increased

[0583] [0583]

Figure CN104525072AD00632

[0584] 表中HTC =估算的传热系数,W/m2/K [0584] Table HTC = the estimated heat transfer coefficient, W / m2 / K

[0585] DP =试验压降,kPa [0585] DP = pressure drop test, kPa

[0586] 图14显示了传热提高与压降增大之比随雷诺数而变化。 [0586] FIG. 14 shows the heat transfer increases with increase of the ratio of the pressure drop varies with Reynolds number. 当该比例大于1时,说明传热提高大于压降增大。 When the ratio is greater than 1, indicating improved heat transfer is greater than the pressure drop increases.

[0587] 实施例:雷诺数对使用表面特征进行大通道间隙混合效果的影响 [0587] Example: Reynolds number using the surface features of a large impact mixing passage gap

[0588] 使用计算流体动力学编码Fluent Version 6. 2. 16对具有60°角的人字形表面特征SFG-O-顺式-A设计的0. 119厘米(0. 047")高的间隙通道进行检测。通道的尺寸如下:间隙为0. 119厘米,宽度为0.406厘米(0. 160〃),长度为6. 35厘米(2. 5〃)。所述人字形结构进入壁的深度为〇. 051厘米(0. 020"),宽度为0. 038厘米(0. 015"),法线到法线(normal to normal)的人字形结构的间距为0.038厘米(0.015〃)。该图案为顺式-A,在通道间隙的两个侧面上具有相同的图案。所述人字形结构的中心在所述通道宽度的中间, 所述人字形结构从中心延伸到任一侧上的壁〇. 203厘米(0. 080"),在通道宽度中线到壁之间,与流动方向相反,呈60°角。 [0588] Using a computational fluid dynamics Fluent Version 6. 2. 16 encoding human-shaped surface features SFG-O- cis -A design 0.119 cm (0.047 ") with a high angle of 60 ° gap passage . size detection channels as follows: a gap of 0.119 cm, a width of 0.406 cm (0.5 160〃), a length of 6.35 cm (2 5〃) into the depth of the gable wall structure is square. pitch herringbone configuration. 051 cm (0.020 "), a width of 0.038 cm (0.015") normal to the normal line (normal to normal) 0.038 cm (0.015〃). the pattern is a -A cis, have the same pattern on both sides of the channel gap. the hub-shaped structure in the middle of the channel width, the chevron structure extending from the center to either side of the wall on the square. 203 cm (0.080 "), the channel width to the line between the wall, opposite to the direction of flow, the angle was 60 °. 换句话说,所述人字形结构对称线上的点与流动方向对齐。 In other words, the point of the chevron structure is aligned with the line of symmetry of the flow direction. 一共有33个连续的表面特征,在特征起始之前的上游形成长度为0. 406厘米(0. 160〃),从最后一个人字形结构的顶点开始的下游长度为〇. 584厘米(0. 230")。该模型使用此种几何结构提供的对称面:由顺式排列产生的在通道间隙中心的将该通道二等分的水平宽度对称面,中心的人字形结构产生的在通道宽度的中心将通道二等分的垂直间隙对称面。这些对称线可供通道四等分对称模型之用。 A total of 33 features a continuous surface, to a length of 0.406 cm (0. 160〃) upstream of the features before the start, a downstream length from the apex of the last herringbone structure begins to square. 584 cm (0. 230 ") using the model symmetry plane of this geometry provides: cis generated by the arrangement of the channel width of the second plane of symmetry of the central passage gap sub level, the center of the herringbone structure generated in the channel width the central passage gap bisecting vertical plane of symmetry of these quarters with a line of symmetry for the symmetry model of the channel.

[0589] 本段列出了Fluent Version 6. 2. 16模型的条件。 [0589] This paragraph lists the conditions Fluent Version 6. 2. 16 model. 在此四等分对称模型中一共使用127,000个节点。 The four aliquots used in the model symmetry total of 127,000 nodes. 通道的出口静态压力为125.42迚&(18.19?81 &)。 Static pressure outlet channel is 125.42 Zhong & (18.19? 81 &). 设计点流速为4. 975E-05千克/秒,使用以下进口物流质量分数:氧气含量0.03240,二氧化碳含量0.31482,甲烷含量0.00263,蒸汽含量0.09184,余量为氮气,假定这些物质在进口良好混合。 Design point flow rate was 4. 975E-05 kg / s, the following mass fraction stream inlet: oxygen content .03240, .31482 carbon dioxide content, the methane content of 0.00263, 0.09184 steam content, the balance being nitrogen inlet assumed good mixing of these materials. 对于我们观察的三种情况,流速为设计点流速的100%,50%和10%。 For the three cases we observe a flow rate of 100% of the design flow rate point, 50% and 10%. 进口物流和所有壁温度都固定在870°C (1598° F)。 Inlet stream temperatures are fixed, and all the walls at 870 ° C (1598 ° F). 该系统使用粘性层流模型,对密度和热容使用理想气体定律,对导热系数和粘度使用质量加权的平均混合定律,将动力学理论二元扩散系数与全多组分扩散公式相结合。 The system uses a viscous laminar flow model, using the ideal gas law density and heat capacity, mass-weighted average using the mixing rule of the viscosity and thermal conductivity, the diffusion coefficient of kinetic theory and two yuan whole combined multicomponent diffusion equation. 对于甲烷燃烧,反应器利用表面速率反应,但是该速率与作为流体混合的分析无关,因为用于燃烧的总甲烷流速很小,而且不应极大地改变流动轨迹线中物流的温度或组成,进口和出口的质量加权动力学粘度分别为4. 44E-05kg/m/s和4.43E-〇5kg/m/s〇 For the combustion of methane, the reactor using a surface reaction rate, but this rate is independent of the analysis of a fluid mixture, as for the total combustion of the methane flow rate is small, and should not significantly alter the temperature of the flow stream in trace or composition, imports weighting the quality and dynamic viscosity were outlet 4. 44E-05kg / m / s and 4.43E-〇5kg / m / s〇

[0590] 模型的结果列于表ZZ,显示了通道的进口流动参数以及全流量百分数为100%到50%到10%时的混合结果。 Results [0590] Model set forth in Table ZZ, show mixed results when the inlet flow channel full flow parameters and the percentage is 100% to 50% to 10%. 压力设定在141. 2千帕时,基于间隙的皮克里特数是基于进口速度、通道间隙,而不是基于主通道(仅使用的尺寸是间隙和高度)的水力直径以及进口组成和温度下的甲烷扩散系数。 When the pressure is set at 141.2 kPa, the gap is based on the number Pikelite inlet velocity, passage gap, rather than on the primary channel (using only the size and height of the gap) and the hydraulic diameter inlet temperature and composition the diffusion coefficient of methane. 所述雷诺数计算是基于4倍模型输入质量流速、主通道水力直径和4. 44E-05kg/m/s的进口动态粘度。 The Reynolds number is calculated based on mass flow rate 4 times the input model, the dynamic viscosity of the main inlet channel and the hydraulic diameter 4. 44E-05kg / m / s to. 至少一次通过表面特征的轨迹线百分数计算是基于CFD粒子轨迹线分析,其中无重量的粒子从进口面和垂直间隙对称面(6条轨迹线)或水平宽度对称面(23条轨迹线)作出的线释放出来。 At least one trace percentages by surface characteristics calculated based on CFD particle trajectory analysis, none of the weight of the particles plane of symmetry (6 trace) or a horizontal width of the plane of symmetry (23 trajectory line) from the inlet face and the vertical gap made line released.

Figure CN104525072AD00641

[0592] 表ZZ.在减小质量流速的条件下CSF-O-顺式_A60°表面特征的列表的模型结果。 [0592] Table ZZ. Model surface features result list cis _A60 ° CSF-O- under conditions of reduced mass flow rate. 对于10%和50%流量的情况,在连续设置的33个特征上未观察到了完全混合。 For 10% and 50% of the flow rate, characterized in consecutive 33 provided complete mixing was not observed.

[0593] 表ZZ中的结果说明,具有60°人字形结构的CSF-O-顺式-A表面特征的设计点流速能够有效地混合物流,迫使所有的进入物流轨迹线通过至少一个表面特征。 Results [0593] Table ZZ is described, having a flow point of 60 ° designed for people surface features -A CSF-O- cis-shaped structure can be effectively mixed stream, forcing all the trace stream enters through at least one surface feature. 使用较低的流速和相同的表面特征以及通道几何结构,观察到通过特征的轨迹线少得多。 Use of lower flow rates and the same surface characteristics as well as channel geometry, is observed by the features of the trajectory line is much less. 所述10%和50 %的全流速的情况中,使得物流通过这些有较倾斜的角的表面特征的推动力就小于较高流速的情况。 The case where 10% and 50% of the full flow, so that the stream through these drivers have more surface features on the angle of inclination is smaller than the higher flow rate. 所述顺式A取向使全流速可利用(邻接实心壁形成的)角落处较低的速度, 使得这些角落部分能通入表面特征给出的另外的区域。 A cis orientation so that the whole flow rate may be utilized (adjacent solid wall formed) at a speed lower corners, such that the corner portion can be passed into the region of the surface features further analysis. 所述60°的角则允许从表面特征离开的流体离开表面特征,进入主通道流内流动,此时所述流体的动量比如果角度为45° 时的动量更加与流动方向一致。 The 60 ° angle allows the fluid away from the surface away from the surface features wherein, the main flow passage into the flow, the momentum of the fluid at this time is more consistent with the direction of flow when the ratio of the momentum if the angle is 45 °. 当物流离开表面特征时,其具有沿流动方向的流体动量矢量,而且还具有垂直方向的流体动量矢量,后者会造成在总体流动中发生混合。 Wherein when the stream leaves the surface, having a fluid flow direction momentum vectors, but also having a fluid momentum vectors in the vertical direction, which will result in overall flow mixing occurs. 如果流速从全流速值进一步增大,则需要增大倾斜角以产生混合,例如将倾斜角增大到等于或大于75°。 If the flow rate from a full flow rate value is further increased, the inclination angle needs to be increased to produce a mixed, for example, the inclination angle is increased to greater than or equal to 75 °. 该结果说明通过具有表面特征的通道的流速影响了通道内的混合,最佳的表面特征角度取决于通道尺寸和设计的流速。 This result illustrates the effect of mixing in the flow rate through the channel has a channel surface features, surface features optimum angle depends on the size and design flow passage.

[0594] 实施例:在不同雷诺数下,粒子在表面特征中所花费的时间与在主通道中所花费的时间的比较 [0594] Example: at different Reynolds numbers, times the particle surface features compared to the time spent in the main channel takes the

[0595] 研究了一种情况,以估算比较在不同雷诺数下,粒子在表面特征内所花费的时间与在主通道内(表面特征外)所花费的时间。 [0595] A case study to compare the estimated time at different Reynolds numbers, the particles within the surface features time spent in the main channel (the outer surface characteristics) it takes. 使用计算流体动力学工具进行该研究,所用的研究工具是Fluent V 6. L 22。 Use of computational fluid dynamics tool for the study, research tool used was Fluent V 6. L 22.

[0596] 通道尺寸和表面特征的详图见于图3b (SFG-I),在上述实施例中进行过描述。 [0596] detail the channel dimensions and surface features seen in Figures 3b (SFG-I), carried out in the above-described embodiment. 从进口的位置,通道的最初3. 81毫米的区在任意的壁上都没有任何表面特征。 From the position of the inlet, the first region of 3.81 mm in any channel walls do not have any surface features. 该通道横截面是矩形,通道的宽度和间隙为4. 57毫米和1. 02毫米。 The passage cross section is rectangular, and the width of the gap passage is 4.57 mm and 1.02 mm. 接下来的27. 94毫米长度包括位于宽度为4. 57毫米的壁上的表面特征,将该区域称为〃表面特征区〃。 The next length of 27.94 mm wall comprising a surface feature in the width of 4.57 mm, and this region is referred 〃 〃 surface feature region. 该区内主通道的间隙与进口区相同,为1. 02毫米。 The gap region and the main channel inlet same area as 1.02 mm. 最后5. 08毫米的长度是出口区,在任意的壁上都没有任何表面特征。 The last 5.08 mm of the length of the outlet zone is, in any wall do not have any surface features.

[0597] 用于CFD模型的网是使用Gambit V2. 2. 30构建的。 [0597] CFD models for network use Gambit V2. 2. 30 constructed. 该模型的构建方式使得通道的间隙(1.02毫米的尺寸)沿X方向,通道的长度(36. 83毫米尺寸)沿Y方向,通道的宽度(4. 06毫米尺寸)沿Z方向。 The model is constructed such a manner that a gap (1.02 mm size) in the X direction, the channel length (size 36.83 mm) in the Y direction in the channel, the channel width (4.06 mm size) in the Z direction. 模型的X-坐标从(1.53毫米,0,0)变化到(2. 95毫米,0,0)。 X- coordinates from the model (1.53 mm, 0, 0) is changed to (2.95 mm, 0,0). 模型的Y-坐标从(〇, 〇, 〇)变化到(〇, 36. 83毫米,0)。 Y- coordinates from the model (square, square, square) is changed to (square, 36.83 mm, 0). 模型的Z-坐标从(0, 0, -4. 57毫米) 变化到(0, 0, 0)。 Z- model coordinates from (0, 0, -4. 57 mm) is changed to (0, 0, 0). 图4示了X,Y和Z方向及其坐标。 FIG 4 illustrates an X, Y and Z coordinates and directions.

[0598] 计算流体分析的网在Gambit中产生。 [0598] Calculation in the fluid analysis mesh generation in Gambit. 总网格数为131106,总面数为542409,总节点数为177006。 The total number of meshes to 131,106, the total surface is 542,409, the total number of nodes 177,006. 产生网要尽可能保持规则的网。 Generating net as much as possible to maintain the rule of the network. 认为流体具有以下性质和操作条件: That the fluid having the following properties and operating conditions:

[0599] i.粘度=1. 28 X lCT5kg/m/s [0599] i. Viscosity = 1. 28 X lCT5kg / m / s

[0600] j.导热系数=0· 087W/m/K [0600] j. Thermal conductivity = 0 · 087W / m / K

[0601] L 比热=2768.03J/kg/K [0601] L Specific Heat = 2768.03J / kg / K

[0602] 1.密度=使用理想气体定律 [0602] 1 = density using the ideal gas law

[0603] m.分子量=17. 49g/mol [0603] m. Molecular weight = 17. 49g / mol

[0604] η·分子扩散系数=lXl(T5m2/s [0604] η · molecular diffusion coefficient = lXl (T5m2 / s

[0605] 如图4所示将进口面分成四个相等象限。 [0605] As shown the inlet face 4 into four equal quadrants. 每个区域给予不同的名称,但是各个区的热-物理性质是相同的。 Each region given different names, but each of the hot zone - the same physical properties. 所以A区定义为浓度A = 1,B,C,D = O的区,B区定义为浓度8=1,欠(:和0 = 0的区等等。四个区之间的分子扩散系数为1\10^12/5。雷诺数计算方法为 A region is defined so that the concentration of A = 1, B, C, D = O zone, B zone is defined as a concentration of 8 = 1, under (: = 0 area 0 and the molecular diffusion coefficient and the like between the four regions 1 \ 10 ^ 12/5 Reynolds number is calculated as

Figure CN104525072AD00661

[0607] P =流体密度,kg/m3 [0607] P = fluid density, kg / m3

[0608] V =进口的流体平均速度,m/s [0608] V = average velocity of the fluid inlet, m / s

[0609] D =通道的水力直径,m [0609] D = hydraulic diameter of channel, m

[0610] μ =流体的粘度,kg/m/s [0610] μ = fluid viscosity, kg / m / s

[0611] 考虑了三种情况,进口雷诺数=10, 100, 1000。 [0611] consider three cases, Reynolds number = 10, 100, 1000. 各种情况的边界条件如下: In each case the boundary conditions are as follows:

[0612] 〇操作压力=2379kPa [0612] billion operating pressure = 2379kPa

[0613] 〇出口压力=Opsig [0613] square outlet pressure = Opsig

[0614] 〇进口速度:当Re = 1000 时为0· 467m/s,当Re = 10 (应为100)时为0· 0467m/ s,当Re = 10 时为0· 00467m/s [0614] square inlet velocity: when Re = 1000 to 0 · 467m / s, when Re = 10 (should be 100) to 0 · 0467m / s, while when Re 10 = is 0 · 00467m / s

[0615] 〇进口温度=300K [0615] billion inlet temperature = 300K

[0616] 〇壁温度=350K [0616] square wall temperature = 350K

[0617] 〇A区质量分数 [0617] mass fraction 〇A area

[0618] 〇A = 1 [0618] 1 = 〇A

[0619] 〇B = 0 [0619] 0 = 〇B

[0620] 〇C = 0 [0620] 0 = 〇C

[0621] 〇D = 0 [0621] 0 = 〇D

[0622] 〇B区质量分数 Mass fraction [0622] 〇B area

[0623] 〇A = 0 [0623] 0 = 〇A

[0624] oB=l [0624] oB = l

[0625] 〇C = 0 [0625] 0 = 〇C

[0626] 〇D = 0 [0626] 0 = 〇D

[0627] 〇C区质量分数 [0627] 〇C content area

[0628] 〇A = 0 [0628] 0 = 〇A

[0629] 〇B = 0 [0629] 0 = 〇B

[0630] 〇C = 1 [0630] 1 = 〇C

[0631] 〇D = 0 [0631] 0 = 〇D

[0632] 〇D区质量分数 [0632] mass fraction 〇D area

[0633] 〇A = 0 [0633] 0 = 〇A

[0634] 〇B = 0 [0634] 0 = 〇B

[0635] 〇C = 0 [0635] 0 = 〇C

[0636] 〇D = 1 [0636] 1 = 〇D

[0637] 模型选择 [0637] Model selection

[0638] K-Ω模型(SST类)选择用于CFD分析。 [0638] K-Ω model (SST class) selected for the CFD analysis. 模型常数的数值是fluent 6.0提供的默认值。 Numerical model constants are the default values ​​provided fluent 6.0. 湍流模型的系数为:α *_inf = I ; a _inf = 0· 52 ; β *_inf = 0· 09 ;R_@ = 8 ;A1 = 0· 31 ; β _i (内)=0· 075 ; β _i (外)=0· 0828 ;TKE (内)P Prandtl# = I. 176 ;TKE (外) PPrandt 1# = I. 0 ;SDR(内)P Prandt 1# = 2 ;SDR(外)P Prandt 1# = I. 168 ;能量PrandtIy 数=0· 85 ;壁Prandtly 数=0· 85 ;湍流Schmidt 数=0· 7。 Coefficient turbulence model is: α * _inf = I; a _inf = 0 · 52; β * _inf = 0 · 09; R_ @ = 8; A1 = 0 · 31; β _i (inner) = 0 · 075; β _i (outer) = 0 · 0828; TKE (inner) P Prandtl # = I. 176; TKE (outer) PPrandt 1 # = I. 0; SDR (inner) P Prandt 1 # = 2; SDR (outer) P Prandt 1 # = I. 168; number of energy PrandtIy = 0 · 85; wall Prandtly number = 0 · 85; the number of turbulent Schmidt = 0 · 7.

[0639] 选择全多组分扩散物质传递模型。 [0639] Select All multicomponent diffusion mass transfer model. 扩散系数为lE_5m2/s。 Diffusion coefficient is lE_5m2 / s. 根据质量加权平均计算A,B,C和D的混合物的性质。 Properties of the mixture of A, B, C and D based on the weighted average mass. 对该模型进行运算,直至质量和能量收敛到小于进口质量和能量的1%。 It calculates the model, until convergence of mass and energy to less than 1% of the inlet mass and energy.

[0640] 结果 [0640] results

[0641] 如图15 (应为14)所示选择三个点。 [0641] Figure 15 select three points (should be 14). 所有这些点都位于流体进入处的通道的面上。 All these points are located at the surface of the fluid enters the channel. 对于各点,释放没有质量的粒子,追踪该粒子在通道内如何运动。 For each point, the release of the particles have no mass, how to track the movement of particles in the channel. 数值计算粒子在表面特征内所花费的时间以及在主通道内、表面特征外所花费的时间。 Time of particles in the surface features and the time spent in the main passage, the outer surface of numerical features takes. 在任何雷诺数下,粒子1和粒子2从不进入表面特征通道。 Any Reynolds, particles 1 and particle 2 never enters the channel surface features.

[0642] 下表比较了雷诺数从10增大到1000时的所述时间。 [0642] The following table compares the Reynolds number is increased from 10 to 1000 time.

[0643] 表1:粒子在表面特征之内和之外所花费时间的比较 [0643] Table 1: Characteristics of particles in the surface of the comparison and the time spent outside

Figure CN104525072AD00671

[0645] 从上表我们可以清楚地看出,通道角落内的粒子进入表面特征。 [0645] we can clearly be seen from the table, into the corner of the particles in the channel surface features. 另外,当雷诺数约为1000时,与雷诺数为10或100时相比,粒子进入表面特征内的机会显著减小。 Further, when the Reynolds number of about 1000, compared with the Reynolds number of the particles into the surface features opportunities in 10 or 100 is significantly reduced.

[0646] 实施例:对于沿通道宽度每个特征具有一个以上角的活性表面特征图案,雷诺数对在表面特征内花费的停留时间作为总停留时间分数的影响 [0646] Example: For the channel width of each feature along with an active surface feature pattern of more than one angle, the Reynolds number of the residence time spent in the surface characteristics as the total residence time of impact score

[0647] 考虑在雷诺数为6-600的范围内,具有SFG-O-顺式/Fanelli型表面特征的0. 254 米(1〇〃)长的通道。 [0647] In consideration of the Reynolds number in the range 6-600, with 0.254 m (1〇〃) long channel SFG-O- cis / Fanelli type surface features. 简单的人字形特征在相对的微通道面上互成镜像,相对于流动方向为顺式-A构型。 Simple herringbone wherein opposing surfaces are mirror images of the microchannel, the flow direction -A cis configuration. 所述人字形结构在顶点处不连接,间隔的距离小于0. 4毫米(或微通道总宽度的1/10)。 The chevron structure is not connected to the apex, a distance of less than 0.4 mm interval (or 1/10 of the total width of the microchannel). 不同角度的表面特征两个支段之间的Fanelli距离或不连接距离优选小于通道宽度的20%,更优选小于微通道宽度的10%。 Fanelli or distance between surface features at different angles from the two branched segments are not connected to the channel width is preferably less than 20%, more preferably less than 10% of the microchannel width.

[0648] 所述主通道的宽度是0. 4064厘米(0. 16〃),主通道间隙是0. 04572厘米(0. 018")。所述表面特征的深度为0. 254毫米(0. 0Γ),宽度为0. 381毫米(0. 015")。 [0648] The width of the main channel is 0.4064 cm (0.5 16〃), a main passage gap is 0.04572 cm (0.018 "). The depth of the surface features to 0.254 mm (0. 0Γ), a width of 0.381 mm (0.015 "). 取向角度为45°。 Orientation angle of 45 °. 在该器件的整个长度上,在相对壁的各侧上总共具有234个表面特征。 Over the entire length of the device, on each side of the opposing walls 234 having a total surface features. 以不同的平均速度将氮气送入所述器件。 At different average speeds nitrogen gas into the device. 温度恒定在25°C。 A constant temperature of 25 ° C. 器件出口处的压力设定为1大气压。 Pressure at the outlet of the device is set to 1 atm. 雷诺数根据进口处的平均速度以及主通道的水力直径计算。 The Reynolds Number at the inlet of the hydraulic diameter and the average speed of the main channel. 用Fluent CH)模拟工具求解流场。 Solution flows by Fluent CH) simulation tool.

[0649] 为了使用具有特征的壁进行化学反应,在流动通道的壁上涂敷催化剂。 [0649] In order to use a wall having a characteristic chemical reaction, the catalyst is coated on the walls of the flow channel. 考虑了单表面特征,表面积与流体体积之比非常高。 Consider the single-surface features, a very high surface area to volume ratio of the fluid. 由于这一点,表面特征内的反应物更容易催化转化为所需的产物。 Because of this, the inner surface of the reaction was more easily characterized in catalytic conversion to the desired product. 在表面特征内花费的时间占总停留时间的分数可以作为表面特征效率的指标。 Time spent in the surface features fraction of the total residence time can be used as a surface characteristic efficiency indicators.

[0650] 可以通过沿从反应器进口引入的粒子轨迹进行积分,计算流体在表面特征内花费的停留时间,该结果以占总停留时间的分数的形式表示。 [0650] may be performed along the trajectory of particles introduced from the reactor inlet points is calculated residence time of the fluid within the surface features takes the result as a fraction of the total residence time expressed. 实际上,释放了有限数量的粒子,确定了它们的轨迹。 In fact, the release of a limited number of particles to determine their trajectory. 对于本实施例的几何结构,两个对称面将进口分成四个相等的四等分。 The geometric structure of the present embodiment, two planes of symmetry of the inlet is divided into four equal quarters. 只需考虑从进口的一个四等分释放的粒子的轨迹。 Just consider the trajectory of a particle quartered released from imports. 将该四等分成大量的网格。 The four equally divided into a large number of grid. 在每个网格内,从其中心释放一个粒子。 Within each grid, a particle is released from the center. 考虑的网格数越多,对其轨迹进行追踪的粒子的集(ensemble)越大,通过统计平均可以得到的停留时间结果越详细。 The more the number of grid considered, the larger the particle tracking its trajectory set (ensemble), the more detailed the statistical average dwell time can get results. 对于在壁附近释放的粒子,它们到负载了催化剂的壁的扩散距离短得多。 For particles released in the vicinity of the wall, load them into the wall of the diffusion distance is much shorter catalyst. 它们大多数会在催化壁上转化。 Most of them will be converted at the catalytic wall. 对于在对称面附近释放的粒子,它们并不是代表性的,这是因为它们可能根本不流入表面特征中,尤其当表面特征完全对称时。 For particles in the vicinity of the plane of symmetry of the release, they are not representative because they might not flow into the surface features, especially when the surface is completely symmetrical characteristics. 为了计算流体在表面特征内花费的停留时间,从灰色区域释放的粒子更加具有代表性。 In order to calculate the residence time of the fluid within the spent surface features, release of particles from the more representative gray area. 为了简化,仅从深色网格的中心释放一个无质量的粒子,并追踪其轨迹。 For simplicity, only the center of a massless particle release dark grid, and track its trajectory.

[0651] 在沿着所述轨迹的任意点,存在与粒子从进口释放出来之后达到该点所花费的实际时间相关的流动时间。 [0651] at any point along the trajectory, associated with the presence of the particle flow time reaches the actual time it takes from the point after the inlet released. 从沿着轨迹的任意点的坐标,可以确定该粒子是否位于壁内一个表面特征的凹陷空间内。 From the coordinates of any point along the track, it may determine whether the particle is located within a recess of the inner wall surface of the space features. 通过仅对处于表面特征内的轨迹的线段进行积分,可以计算粒子在表面特征内花费的累积时间。 By integrating the line segments in the tracks only in the surface characteristics of the particles may be calculated cumulative time spent in the surface features. 通过对从进口到出口的整个轨迹进行积分,可以计算整个停留时间。 Through the entire route from the inlet to the outlet by integrating the entire residence time can be calculated. 对于所有考虑的情况计算粒子在表面特征内花费的时间与总停留时间之比,结果列于下表。 Calculating the time spent in the particle surface characteristics for all cases considered the ratio of the total residence time, the results are shown in Table.

Figure CN104525072AD00681

[0653] 结果显示流体在表面特征内花费的停留时间作为总停留时间的分数,当雷诺数增大时,尽管总停留时间减小,但是该分数会增大。 [0653] The results show that the residence time of the fluid within the surface features takes a fraction of the total residence time, when the Reynolds number is increased, although the total residence time is reduced, but the score increases. 这说明至少在本工作中考虑的雷诺数范围内,当流速或雷诺数增大时,可以实现更有效地与活性表面接触。 This shows that the range of Reynolds numbers of at least considered in this work, when the flow rate or Reynolds number is increased, can be realized more effectively contact with the active surface.

[0654] 对于在任意微通道壁的宽度上包括一个以上的角度,而且重复15个以上基本类似的表面特征的活性表面特征图案,这些结果是典型的,特别是在相对的壁上使用顺式取向时。 [0654] For any of the width of the microchannel wall comprises more than one angle, and repeats the above active surface 15 substantially similar characteristic pattern of surface features, these results are typical, especially in the opposing walls of the cis- when orientation. 对于沿着微通道宽度仅有一种角度的图案,在特征内花费的停留时间的分数未必会随着雷诺数增大而提高。 For an angle of only one pattern along the width of the microchannel, fractional residence time spent in the feature will not necessarily increase with the Reynolds number increases.

Claims (10)

1. 一种在微通道中进行流体处理的方法,该方法包括: 在大于100的雷诺数Re下,使流体流过微通道; 所述微通道包括表面特征; 在表面特征中,对流体进行单元操作; 所述单元操作包括选自以下的一种或多种单元操作:化学反应、蒸发、压缩、化学分离、 蒸馏、冷凝、加热和冷却。 A method of fluid processing in a microchannel, the method comprising: at a Reynolds number Re is greater than 100, fluid flow through the microchannel; wherein the microchannel comprises surface; the surface features of fluid the operation unit; the operating unit comprises one or more units selected from the following operations: chemical reaction, evaporation, compression, chemical separation, distillation, condensation, heating and cooling.
2. 如权利要求1所述的方法,其特征在于,所述表面特征包括一系列至少10个类似的表面特征,所述至少10个类似的表面特征各自包括至少一种角度。 2. The method according to claim 1, wherein the surface features comprise a series of at least 10 similar surface features, at least 10 similar surface features each comprise at least one angle.
3. 如权利要求1所述的方法,其特征在于, 所述表面特征在每个表面特征中包括至少一种角度; 所述散热器或热源与所述表面特征热接触; 结果是热量传到微通道中流动的流体,或者从微通道中流动的流体传走热量。 3. The method according to claim 1, wherein said surface feature comprises at least one angle of each surface feature; the heat sink or source in thermal contact with the surface features; as a result of heat to fluid, or the fluid flow from the microchannels flowing in the microchannel for transferring heat away.
4. 如权利要求1所述的方法,其特征在于, 所述微通道包括两个相对的微通道壁以及位于所述两个相对的微通道壁之间的间隙; 至少一个所述微通道壁包括至少10个连续的类似的表面特征; 所述类似的表面特征各自包括至少一种角度,所述表面特征深度:通道间隙之比至少为0. 4。 4. The method according to claim 1, wherein the microchannel comprises a gap between the two opposing two opposing microchannel wall and located in said microchannel wall; at least one wall of the microchannel comprising at least 10 consecutive similar surface features; similar to each of the surface features comprise at least one angle, a depth of the surface features: the passage gap ratio of at least 0.4.
5. 如权利要求1所述的方法,其特征在于,连续的至少10个类似的表面特征还包括设置在表面特征上的催化剂。 5. The method according to claim 1, characterized in that at least 10 consecutive similar surface features further includes a catalyst disposed on the surface features.
6. 如权利要求5所述的方法,该方法包括甲烷蒸汽转化,甲烷以小于100毫秒的接触时间流过微通道。 6. The method according to claim, the method comprising steam reforming of methane, the methane to less than 100 milliseconds contact time flowing through the microchannel.
7. 如权利要求5所述的方法,其特征在于,所述催化剂包括燃烧催化剂,所述流体是在至少为1000的Re下流过所述微通道的反应物。 7. The method according to claim 5, wherein the catalyst comprises a combustion catalyst, the fluid is at least as Re reactant flow through the microchannel 1000.
8. 如权利要求1所述的方法,其特征在于,所述微通道包括在相对壁上的表面特征,其中,一个壁上的表面特征与第二壁上存在的图案相同或类似,但是围绕垂直于主通道平均总体流动方向的轴旋转。 8. The method according to claim 1, wherein the microchannel comprises surface features on opposing walls, wherein one wall surface features present in the same or a similar pattern on the second wall, but about average axis of rotation perpendicular to the general flow direction of the main channel.
9. 如权利要求1所述的方法,其特征在于,所述微通道在所有的侧面上封闭。 9. The method according to claim 1, wherein the microchannel is closed on all sides.
10. 如以上权利要求任一项所述的方法,其特征在于,所述单元操作包括化学反应。 10. The method according to any one of the preceding claims, wherein said unit operation comprises a chemical reaction.
CN 201410454998 2004-03-23 2006-03-23 Surface features in microprocess technology CN104525072A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/089,440 US8124177B2 (en) 2004-03-23 2005-03-23 Tailored and uniform coatings in microchannel apparatus
US69790005P true 2005-07-08 2005-07-08
US72712605P true 2005-10-13 2005-10-13
US73159605P true 2005-10-27 2005-10-27

Publications (1)

Publication Number Publication Date
CN104525072A true CN104525072A (en) 2015-04-22



Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201410454998 CN104525072A (en) 2004-03-23 2006-03-23 Surface features in microprocess technology

Country Status (1)

Country Link
CN (1) CN104525072A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104991055A (en) * 2015-06-19 2015-10-21 大连理工大学 Blood sample time-delay flowing bionic control unit in thrombus POCT product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6241379B1 (en) * 1996-02-07 2001-06-05 Danfoss A/S Micromixer having a mixing chamber for mixing two liquids through the use of laminar flow
US20020174936A1 (en) * 2001-05-25 2002-11-28 Motorola, Inc. Methods for forming recessed patterns in a multilayered ceramic package and devices produced by such methods
WO2003011443A2 (en) * 2001-07-27 2003-02-13 President And Fellows Of Harvard College Laminar mixing apparatus and methods
CN1549921A (en) * 2001-06-29 2004-11-24 梅索磅秤技术有限公司 Assay plates, reader systems and methods for luminescence test measurements
WO2004103549A2 (en) * 2003-05-16 2004-12-02 Velocys Inc. Oxidation process using microchannel technology and novel catalyst useful in same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6241379B1 (en) * 1996-02-07 2001-06-05 Danfoss A/S Micromixer having a mixing chamber for mixing two liquids through the use of laminar flow
US20020174936A1 (en) * 2001-05-25 2002-11-28 Motorola, Inc. Methods for forming recessed patterns in a multilayered ceramic package and devices produced by such methods
CN1549921A (en) * 2001-06-29 2004-11-24 梅索磅秤技术有限公司 Assay plates, reader systems and methods for luminescence test measurements
WO2003011443A2 (en) * 2001-07-27 2003-02-13 President And Fellows Of Harvard College Laminar mixing apparatus and methods
WO2004103549A2 (en) * 2003-05-16 2004-12-02 Velocys Inc. Oxidation process using microchannel technology and novel catalyst useful in same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104991055A (en) * 2015-06-19 2015-10-21 大连理工大学 Blood sample time-delay flowing bionic control unit in thrombus POCT product

Similar Documents

Publication Publication Date Title
Jen et al. Design and simulation of the micromixer with chaotic advection in twisted microchannels
Hartman Managing solids in microreactors for the upstream continuous processing of fine chemicals
Doku et al. On-microchip multiphase chemistry—a review of microreactor design principles and reagent contacting modes
Kockmann Transport phenomena in micro process engineering
Deutschmann et al. Natural gas conversion in monolithic catalysts: interaction of chemical reactions and transport phenomena
Giani et al. Washcoating method for Pd/γ-Al2O3 deposition on metallic foams
US20040031592A1 (en) Multi-stream microchannel device
JP4621213B2 (en) Process for performing equilibrium-controlled chemical reactions using microchannel technology
Jensen Microchemical systems: status, challenges, and opportunities
CN101218019B (en) Flow control through plural, parallel connecting channels to/from a manifold
CA2451416C (en) Catalytic reactor
CA2416431C (en) Method for processing fluid flows in a micro component reformer system
CN100400152C (en) Microreactor composed of plates and comprising a catalyst, and its using method
US7871578B2 (en) Micro heat exchanger with thermally conductive porous network
Capretto et al. Micromixing within microfluidic devices
Ajmera et al. Microfabricated differential reactor for heterogeneous gas phase catalyst testing
Losey et al. Microfabricated multiphase packed-bed reactors: characterization of mass transfer and reactions
Anxionnaz et al. Heat exchanger/reactors (HEX reactors): concepts, technologies: state-of-the-art
Hibara et al. Surface modification method of microchannels for gas− liquid two-phase flow in microchips
Jensen Microreaction engineering—is small better?
JP5610765B2 (en) Process for making styrene using microchannel process technology
Lee et al. Passive mixers in microfluidic systems: A review
AU2009302276B2 (en) Process and apparatus employing microchannel process technology
Sobieszuk et al. Hydrodynamics and mass transfer in gas‐liquid flows in microreactors
Yang et al. Dynamics of capillary-driven flow in open microchannels

Legal Events

Date Code Title Description
C10 Entry into substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)