CN104520754A - Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors - Google Patents

Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors Download PDF

Info

Publication number
CN104520754A
CN104520754A CN 201380041095 CN201380041095A CN104520754A CN 104520754 A CN104520754 A CN 104520754A CN 201380041095 CN201380041095 CN 201380041095 CN 201380041095 A CN201380041095 A CN 201380041095A CN 104520754 A CN104520754 A CN 104520754A
Authority
CN
China
Prior art keywords
array
score
lens
focal plane
sensor
Prior art date
Application number
CN 201380041095
Other languages
Chinese (zh)
Inventor
J·都帕尔
A·麦玛宏
D·勒勒斯古
Original Assignee
派力肯影像公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201261666852P priority Critical
Priority to US13/782,920 priority patent/US20140002674A1/en
Application filed by 派力肯影像公司 filed Critical 派力肯影像公司
Priority to PCT/US2013/046002 priority patent/WO2014004134A1/en
Publication of CN104520754A publication Critical patent/CN104520754A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0075Arrays characterized by non-optical structures, e.g. having integrated holding or alignment means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements
    • G02B7/005Motorised alignment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/225Television cameras ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, camcorders, webcams, camera modules specially adapted for being embedded in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/2251Constructional details
    • H04N5/2254Mounting of optical parts, e.g. lenses, shutters, filters or optical parts peculiar to the presence or use of an electronic image sensor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/225Television cameras ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, camcorders, webcams, camera modules specially adapted for being embedded in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/2257Mechanical and electrical details of cameras or camera modules for embedding in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/225Television cameras ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, camcorders, webcams, camera modules specially adapted for being embedded in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/232Devices for controlling television cameras, e.g. remote control ; Control of cameras comprising an electronic image sensor
    • H04N5/23212Focusing based on image signals provided by the electronic image sensor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/335Transforming light or analogous information into electric information using solid-state image sensors [SSIS]
    • H04N5/341Extracting pixel data from an image sensor by controlling scanning circuits, e.g. by modifying the number of pixels having been sampled or to be sampled
    • H04N5/3415Extracting pixel data from an image sensor by controlling scanning circuits, e.g. by modifying the number of pixels having been sampled or to be sampled for increasing the field of view by combining the outputs of a plurality of sensors, e.g. panoramic imaging

Abstract

Systems and methods in accordance with embodiments of the invention actively align a lens stack array with an array of focal planes to construct an array camera module. In one embodiment, a method for actively aligning a lens stack array with a sensor that has a focal plane array includes: aligning the lens stack array relative to the sensor in an initial position; varying the spatial relationship between the lens stack array and the sensor; capturing images of a known target that has a region of interest using a plurality of active focal planes at different spatial relationships; scoring the images based on the extent to which the region of interest is focused in the images; selecting a spatial relationship between the lens stack array and the sensor based on a comparison of the scores; and forming an array camera subassembly based on the selected spatial relationship.

Description

使用透镜叠层阵列和传感器的主动对准制造照相机模块的系统和方法 Active alignment system and method for manufacturing a camera module using the lens array and stack sensor

技术领域 FIELD

[0001] 本发明一般涉及使透镜叠层阵列与焦平面的阵列主动对准。 [0001] The present invention generally relates to a lens array and the focal plane array laminate active alignment.

背景技术 Background technique

[0002] 响应于施加在基于照相机暗箱的传统数字照相机上的约束,已提出了新类别的照相机,该新类别的照相机可被称为阵列照相机。 [0002] In response to constraints based on the conventional digital camera of the camera obscura is applied, a camera has been proposed a new category, a new category that can be referred to the camera array camera. 阵列照相机的特征在于它们包括具有多个像素的阵列的成像器阵列,其中每个像素阵列意在定义焦平面,并且每个焦平面具有独立的透镜叠层。 Characterized in that they comprise an array of camera array imager array having a plurality of pixels, wherein each pixel of the focal plane array meant to define and separate a lens having a focal plane of each stack. 通常,每个焦平面包括多个行像素,该多个行像素也形成多个列像素,并且每个焦平面被包含在不含有来自另一个焦平面的像素的成像器的区域内。 Typically, each focal plane comprising a plurality of rows of pixels, the plurality of rows of pixels are also formed a plurality of columns of pixels, and each focal plane is included in a region that does not contain pixels from another focal plane imager. 图像通常由每个焦平面的各个透镜叠层形成在每个焦平面上。 The image is typically formed on each focal plane of each focal plane of each lens stack. 在许多情况下,阵列照相机通过使用合并多个焦平面的成像器阵列以及透镜叠层的光学仪器阵列构造。 In many cases, by using an optical instrument array camera array and the lens configuration of the imaging array of the combined stack of a plurality of focal planes.

发明内容 SUMMARY

[0003] 根据本发明实施例的系统和方法使透镜叠层阵列与焦平面的阵列主动对准以构造阵列照相机模块。 [0003] so that the laminate lens array focal plane array system according to the embodiment and the method of the present invention to construct an array of active alignment camera module. 在一个实施例中,用于使透镜叠层阵列与传感器主动对准的方法,该传感器包括多个焦平面,其中每个焦平面包括多个行的像素,该多个行的像素也形成多个列的像素,并且每个焦平面被包含在不含有来自另一个焦平面的像素的成像器阵列的区域内,该方法包括:使透镜叠层阵列在初始位置中相对于传感器对准,其中该透镜叠层阵列包括多个透镜叠层并且该多个透镜叠层形成用于传感器中的每个焦平面的独立光学通道;改变透镜叠层阵列与传感器之间的空间关系;以透镜叠层阵列与传感器之间的不同空间关系通过使用多个活动的焦平面捕获已知目标的图像,其中该已知目标包括至少一个感兴趣的区域;对多个活动的焦平面所捕获的图像进行评分,其中产生的得分提供至少一个感兴趣的区域在图像中聚焦的程度的直接比较;基于多个活动的焦平面所 In one embodiment, a method for active alignment of the lens array laminated with a sensor comprising a plurality of focal planes, wherein each focal plane comprising a plurality of pixel rows, the plurality of pixels form a plurality of rows is also columns of pixels, and each focal plane is included in a region not containing the imager array of pixels from another focal plane, the method comprising: the lens array laminated in an initial position relative to the alignment of the sensor, wherein the lens array includes a plurality of lenses stacked laminate and the plurality of individual optical channels forming lens stack for each focal plane of the sensor; changing the spatial relationship between the lens and the sensor array stack; stack to the lens different spatial relationship between the sensor array and the captured image of the known target by using a plurality of active focal plane, wherein the at least one region of a known target of interest comprising; a plurality of focal plane image captured activity score wherein the degree score provide at least one region of interest in an image focused direct comparison; focal plane based on the plurality of activity 获的图像的得分的比较来选择透镜叠层阵列与传感器之间的空间关系;以及形成其中透镜叠层阵列和传感器被固定在所选择的空间关系中的阵列照相机子组件。 Comparison of images obtained scores to select a spatial relationship between the lens and the sensor array stack; and forming a stack wherein the lens and the sensor array are fixed spatial relationship to the selected subassembly array camera.

[0004] 在另一个实施例中,对多个活动的焦平面所捕获的图像进行评分包括对于图像计算调制传递函数(MTF)得分。 [0004] In another embodiment, the focal plane of the plurality of activities captured image comprises the image score is calculated modulation transfer function (MTF) score.

[0005] 在又另一个实施例中,多个活动的焦平面所捕获的图像的得分的比较基于:以所选择的空间关系由多个活动的焦平面所捕获的图像的得分与以不同的空间关系由相同的活动焦平面所捕获的图像的得分的比较;以及以所选择的空间关系由该活动的焦平面所捕获的图像的得分之间的变化。 [0005] Example embodiments, the comparison score focal plane of the plurality of activities based on the captured image In yet another: Score spatial relationship to the selected focal plane of a plurality of the captured images of activity and at different comparison score from the same spatial relationship of the focal plane image captured events; and changes in spatial relationship between the score of the selected focal plane by the activity of the captured image.

[0006] 在还另一个实施例中,得分的比较包括当活动的焦平面所捕获的图像的得分无法满足至少一个预定标准时,从考虑中略去由该活动的焦平面所捕获的图像。 [0006] In yet another embodiment, the time, including when the comparison scores score focal plane image captured by the activities of at least one predetermined criterion can not be met, is omitted from the focal plane of the image captured by the event from consideration.

[0007] 在进一步的实施例中,该至少一个预定标准包括由活动的焦平面所捕获的图像的得分处于预定范围内。 [0007] In a further embodiment, the at least one predetermined criterion includes an image captured by the focal plane of the activity score is within a predetermined range.

[0008] 在还进一步的实施例中,该方法当活动的焦平面所捕获的图像被从考虑中略去时使该活动的焦平面无效。 [0008] In yet a further embodiment, the method of the focal plane when the focal plane is invalid event activities captured image are omitted from consideration.

[0009] 在又另一个实施例中,得分的比较包括针对多个活动的焦平面中的每一个确定数学关系,该数学关系表征各个活动的焦平面所捕获的图像的得分与透镜叠层阵列和传感器之间的空间关系之间的关系。 [0009] In yet another embodiment, the scoring comprises a comparison score for each of the lens array laminated determining a mathematical relationship in a focal plane of the plurality of activities characterizing the mathematical relationship of the respective activities of the focal plane image captured the relationship between the spatial relationship between the sensor and.

[0010] 在另一个实施例中,得分的比较进一步包括使用所确定的数学关系计算最佳拟合平面,其中该最佳拟合平面根据预定标准定义期望的空间关系。 [0010] In another embodiment, further comprising calculating a comparison score best-fit plane using a mathematical relationship between the determined spatial relationship wherein the best-fit plane according to predetermined criteria defined desired.

[0011] 在又另一个实施例中,该预定标准包括在使得分的变动最小化的同时使该得分最大化。 [0011] In yet another embodiment, the predetermined criteria include such changes in points while minimizing the score maximized.

[0012] 在还另一个实施例中,已知目标包括感兴趣的中心区域和至少一个感兴趣的周边区域;图像被评分使得针对每个图像中可视的每个感兴趣的区域提供得分,该得分指示各个感兴趣的区域在该图像中聚焦的程度;得分的比较包括针对多个活动的焦平面中的每一个确定数学关系,该数学关系表征该感兴趣的中心区域在各个活动的焦平面所捕获的图像中聚焦的程度的得分与透镜叠层阵列和传感器之间的空间关系之间的关系;以及该至少一个感兴趣的周边区域在各个活动的焦平面所捕获的图像中聚焦的程度的得分与透镜叠层阵列和传感器之间的空间关系之间的关系。 [0012] In yet another embodiment, a known target of interest comprising a central region and a peripheral region of the at least one interest; Rating image is provided such that the score for each region of interest in each image visible, the score indicates the extent of each area of ​​interest in the image is focused; comparison score comprises determining for each of a plurality of mathematical relations activities in the focal plane, the mathematical relationship characterizing the power in the central zone of interest of each activity plane captured image focusing relationship between the degree score spatial relationship between the lens array and the sensor stack; and at least one peripheral region of interest in the image focal plane of the respective activities of the captured focus the relationship between the spatial relationship between the degree score and a sensor lens array laminate.

[0013] 在进一步的实施例中,得分的比较进一步包括使用所确定的数学关系计算:第一最佳拟合平面,该第一最佳拟合平面根据预定标准基于每个活动的焦平面在感兴趣的中心区域上聚焦的能力定义透镜叠层阵列与传感器之间的空间关系;第二最佳拟合平面,该第二最佳拟合平面根据预定标准基于每个活动的焦平面在该至少一个感兴趣的周边区域上聚焦的能力定义透镜叠层阵列与传感器之间的空间关系;以及位于第一和第二最佳拟合平面之间的被递增地间隔的多个平面。 [0013] In a further embodiment, further comprises comparing the score determined using the calculated mathematical relationships: a first best-fit plane, based on the first best-fit plane in the focal plane of each event according to predetermined criteria the ability to define the spatial relationship between the lens and the sensor array stack focused on the central region of interest; second best-fit plane, the second best-fit plane according to predetermined criteria based on each of the activities in the focal plane the ability to define the spatial relationship between the sensor array and the focusing lens stack on at least a peripheral region of interest; and positioned between the first and the second best-fit plane are a plurality of incrementally spaced plane.

[0014] 在还进一步的实施例中,选择透镜叠层阵列与传感器之间的空间关系包括使用至少一个预定标准来选择以下中的一个:由第一最佳拟合平面所定义的空间关系,由第二最佳拟合平面所定义的空间关系,以及由该多个平面中的一个所定义的空间关系。 [0014] In yet a further embodiment, the relationship between the selection of the lens and the sensor comprises a stacked array using at least one predetermined criteria to select one of the following: a first spatial relationship by a best-fit plane defined, a second spatial relationship by a best-fit plane defined spatial relationship and defined by the plane a plurality.

[0015] 在又还进一步的实施例中,该至少一个预定标准基于:以由所计算的平面所定义的每个空间关系,对指示该感兴趣的中心区域聚焦的程度的得分进行平均,该得分以各个空间关系跨越所有的活动焦平面被平均;以由所计算的平面所定义的每个空间关系,对指示该至少一个感兴趣的周边区域聚焦的程度的得分进行平均,该得分以各个空间关系跨越所有的活动焦平面被平均;以及评估空间关系之间的所确定的平均得分的变化。 [0015] In yet still a further embodiment, the at least one predetermined criterion is based on: each spatial relation to a plane defined by the calculated, indicates the degree of focus of the central region of interest averaged score, the scores across all spatial relationship to each of the activities is the average focal plane; each spatial relation to a plane defined by the calculated, indicates the degree of focus of the at least a peripheral region of interest averaged score, the score to each spatial relationships across all the activities of the focal plane is average; and changes in average scores determined between the assessment of spatial relationships.

[0016] 在进一步的实施例中,使透镜叠层阵列在初始位置中相对于传感器对准进一步包括:执行透镜叠层阵列相对于传感器的初始扫描;使用多个活动的焦平面沿着该初始扫描以改变的空间关系捕获包括感兴趣的中心区域的已知目标的图像的初始集合;针对多个捕获图像中的感兴趣的中心区域确定聚焦得分;针对被用于捕获图像的初始集合的多个活动的焦平面中的每一个确定数学关系的初始集合,其中该数学关系表征聚焦得分与透镜叠层阵列和传感器之间的空间关系之间的关系;使用数学关系的初始集合计算初始的最佳拟合平面;以及使透镜叠层阵列与所计算的初始的最佳拟合平面对准。 [0016] In a further embodiment, the lens array laminated in an initial position relative to the alignment sensor further comprises: performing a lens array with respect to the initial stack of a scanning sensor; focal plane along which a plurality of initial activity scanning to alter the spatial relationship acquisition targets are known comprising a central region of the interest of an initial set of images; the central area of ​​interest for the plurality of the captured image to determine a focus score; for the initial set is used to capture an image of the plurality each set of the mathematical relationship between the initial active in the focal plane, wherein the mathematical relationship characterizing the relationship between the spatial relationship between the focus lens and the score stack and a sensor array; initial mathematical relationship used to calculate an initial set of most best-fit plane; and the lens array is aligned with the stack of the initial best-fit plane calculated.

[0017] 在另一个实施例中,改变透镜叠层阵列与传感器之间的空间关系涉及相对于传感器扫描透镜叠层阵列。 [0017] In another embodiment, changing the spatial relationship between the lens array and the stack relative to the sensor scanning sensor relates to a lens array laminate.

[0018] 在还另一个实施例中,透镜叠层阵列在基本上垂直于传感器的表面的方向上被扫描。 [0018] In yet another embodiment, the lens array is scanned in a stack in a direction substantially perpendicular to the surface of the sensor.

[0019] 在进一步的实施例中,对多个活动的焦平面所捕获的图像进行评分包括:根据第一标准针对所捕获的图像确定初步得分;根据第二标准针对所捕获的图像的相关集合确定得分;以及基于针对所捕获的图像的相关集合所确定的得分将该初步得分外推为透镜叠层阵列与传感器之间的空间关系的函数。 [0019] In a further embodiment, the image focal plane of the plurality of the captured event score comprises: determining a preliminary score for the captured image in accordance with a first standard; the relevant set for the captured image according to the second criterion determining a score; and a function based on the score for the initial set of related images captured extrapolating the determined score spatial relationship between the lens array and the sensor stack.

附图说明 BRIEF DESCRIPTION

[0020] 图1概念性地示出了阵列照相机。 [0020] Figure 1 conceptually illustrates an array camera.

[0021] 图2示出了阵列照相机模块。 [0021] FIG. 2 shows an array camera module.

[0022] 图3示出了采用π过滤器的阵列照相机模块。 [0022] FIG. 3 illustrates a using π filter array camera module.

[0023] 图4概念性地示出了根据本发明实施例的使用透镜叠层阵列和传感器制造照相机模块期间可出现的焦距的变化。 [0023] Figure 4 conceptually illustrates a variation may occur according to the focal length of the lens during use and a sensor array stack manufacturing the camera module of the embodiment of the present invention.

[0024] 图5是示出根据本发明实施例的使透镜叠层阵列与包括相应的焦平面的阵列的传感器主动对准的处理的流程图。 [0024] FIG. 5 is a flowchart showing the processing of the lens stack according to an embodiment of the present invention, the array including a respective focal plane array of active alignment of the sensor.

[0025] 图6示意性地示出了根据本发明实施例的可以被用于使透镜叠层阵列与传感器主动对准的初始配置。 [0025] FIG. 6 schematically shows an embodiment of the present invention may be used to laminate the lens array and the sensor active alignment initial configuration.

[0026] 图7示出了根据本发明实施例的相对于传感器扫描透镜叠层阵列。 [0026] FIG. 7 shows a sensor array for scanning lens stack according to an embodiment of the present invention the phase.

[0027] 图8示出了根据本发明许多实施例的可以在主动对准期间使用的目标。 [0027] FIG. 8 shows a target that may be used during active alignment in many embodiments of the present invention.

[0028] 图9是示出根据本发明实施例的使用迭代计算处理以产生能够捕获并记录具有充分的轴上(on-axis)和轴外(off-axis)性能的图像的阵列照相机模块的主动对准处理的流程图。 [0028] FIG. 9 is a diagram illustrating calculation processing can be captured and recorded to generate a sufficient axis (on-axis) and the outer shaft performance (off-axis) array camera module according to an image using an iterative embodiment of the present invention active alignment process flowchart.

具体实施方式 Detailed ways

[0029] 现在转到附图,示出了根据本发明实施例的用于使透镜叠层阵列与单片传感器上的焦平面的阵列主动对准的系统和方法。 [0029] Turning now to the drawings, there is shown a system and method according to the embodiment of the present invention for the array of the embodiment laminated on the lens focal plane array sensors monolithic active alignment. 使用透镜叠层阵列构造阵列照相机的处理在Venkataraman 等人的标题为"Capturing and Processing of Images Using Monolithic Camera Array with Heterogeneous Imagers" 的美国专利申请序列号12/935, 504 中被描述。 Processing a lens array laminated structure array camera in U.S. Patent No. Venkataraman et al., Entitled "Capturing and Processing of Images Using Monolithic Camera Array with Heterogeneous Imagers" Application Serial No. 12/935, 504 is described. 美国专利申请序列号12/935, 504的公开内容通过引用其全文合并于此。 U.S. Patent Application Serial No. 12/935, 504, the disclosure of which is hereby incorporated herein by reference. 美国专利申请序列号12/935,504中所示出的单片照相机模块可由透镜叠层阵列和传感器构造,该传感器包括对应于透镜叠层阵列中的光学通道的多个焦平面。 U.S. Patent Application Serial No. monolithic camera module shown in FIG. 12 / 935,504 by the lens array laminated structure and a sensor, the sensor comprising a plurality of focal plane array corresponding to the lens optical stack channel. 透镜叠层及其相应的焦平面的组合可被理解为是"照相机模块"。 Laminated combinations of lenses and their corresponding focal plane may be understood as a "camera module." 理想地,阵列照相机的透镜叠层阵列被构造以使得每个光学通道具有相同的焦距。 Desirably, the stack array camera lens array is configured such that each optical channel has the same focal length. 然而,透镜叠层阵列的制造中所涉及的大量容差可导致不同的光学通道具有变化的焦距。 However, the manufacture of the lens array laminated involved tolerances may result in a large number of optical channels having different focal length change. 所有的制造处理变化的组合通常导致实际的("一阶")透镜参数一诸如焦距一偏离标称规定。 All combinations of the manufacturing process variations typically cause actual ( "first order") such as a lens focal length of a parameter deviates from the nominal predetermined. 作为结果,每个光学通道可具有不同的轴向最优图像位置。 As a result, each optical channel may have a different axial position of the optimum image. 并且因此,由于传感器是单片的,所以它通常不能被放置与阵列照相机模块内的每个照相机的焦距对应的距离。 And therefore, since the sensor is monolithic, it usually can not be placed with a focal distance of each camera in the array corresponding to the camera module. 值得注意的是,这些制造容差甚至在通过相同的制造处理所制作的透镜叠层阵列之间可能导致不同的焦距。 It is noteworthy that even in those manufacturing tolerance stack between the lens array fabricated by the same manufacturing process may result in different focal lengths. 因此,在本发明的许多实施例中,透镜叠层阵列与焦平面的阵列主动对准以形成被设计为对付透镜叠层阵列内的焦距的变动可能具有的不利影响的阵列照相机模块。 Thus, in many embodiments of the present invention, the lens array laminated focal plane array to form an active alignment is designed to cope with changes in the focal length of the lens array laminate may have adverse effects array camera module.

[0030] 在照相机系统的制造的背景下,术语主动对准通常是指用于通过评估作为光学系统与成像系统之间的空间关系的函数的配置的功效来使光学系统(例如,透镜叠层阵列) 与成像系统(例如,包括单片传感器)对准以实现最终期望的空间布置的处理。 [0030] In the context of the manufacturing of the camera system, the term generally refers to the efficacy of the active alignment configuration for evaluation by a spatial relationship between the optical system and the imaging system to function the optical system (e.g., a lens stack array) imaging system (e.g., includes the single sensor) aligned to achieve the final desired spatial processing arrangement. 通常,通过在光学系统相对于成像系统移动时使用该配置实时捕获并记录(通常为已知目标的)图像数据来实现该处理。 Typically, by using an optical system with respect to the configuration of the imaging system to capture and record the real-time movement (generally known as the target) image data to implement the process. 在光学系统相对于成像系统移动时,二者之间的空间关系改变,并且记录图像数据的特性也相应地改变。 In the optical system is moved relative to the imaging system to change the spatial relationship between the two, and the recording characteristic of the image data is also changed accordingly. 该记录图像数据然后可以被用于使光学系统以期望的方式相对于成像系统对准。 The recorded image data may then be used for the optical system in a desired manner relative to the imaging system are aligned. 例如,主动对准一般可被用于确定导致能够记录超过阈值图像质量的图像的照相机模块的空间关系。 For example, active alignment can generally be used to determine the spatial relationships cause a camera module capable of recording an image exceeds a threshold value in image quality.

[0031] 根据本发明的实施例,透镜叠层阵列可以与焦平面的阵列主动对准。 [0031] According to an embodiment of the present invention, the lens array may be laminated with an active alignment of the focal plane array. 重要的是, 该背景下的主动对准比传统的单透镜照相机的背景下的对准复杂和微妙得多。 Importantly, the active alignment under the alignment complex than the traditional single-lens camera and the background is much more subtle in the background. 最重要地, 由于透镜叠层阵列通常包含在单一集成壳体中,所以单个透镜叠层(相对于其相应的焦平面)的空间方位不能与其它透镜叠层的空间方位相独立地改变一相反,改变一个透镜叠层的空间方位总是改变其它透镜叠层的空间方位。 Most importantly, since the lens array laminated typically contained in a single integrated housing, so that a single lens stack (relative to their respective focal plane) of the spatial orientation can be changed independently of the other space with an opposite orientation of the lens stack changing the spatial orientation of the stack is always changing a lens other spatial orientations of the lens stack. 因此,多个照相机空间地位于其自身的各个最期望的位置处可能是不可能的。 Thus, multiple cameras at the location of its own spatial position of each of the most desirable may not be possible. 作为结果,阵列照相机的背景下的主动对准可以涉及计算最终的布置,尽管该最终的布置未必使每个照相机放置在其自身最优的位置处,但是该最终的布置充分地对多个照相机的透镜叠层进行定向以使得阵列照相机模块作为整体实现期望的性能水平。 As a result, active alignment in the Background of the camera array may involve calculating the final arrangement, although not necessarily the final arrangement of each camera is placed at an optimum position of its own, but the final arrangement of a plurality of cameras sufficiently the stack is oriented such that the lens array camera module as a whole to achieve the desired level of performance.

[0032] 此外,透镜叠层阵列与焦平面的阵列的主动对准通常涉及以各个改变的空间关系评估多个照相机(与单一照相机相对)的功效。 [0032] In addition, active alignment of the lens array and the focal plane array stack typically involves spatial relationship to each efficacy assessment changes plurality of cameras (single camera relative) of. 在许多实施例中,照相机的功效通过以改变的空间关系评估该照相机的已知目标的捕获和记录图像来确定。 In many embodiments, assessment of the efficacy of the camera to capture and record an image of the known object is determined by the camera to alter the spatial relationship. 例如,调制传递函数(MTF) 得分一指示记录图像的锐度并因此也指示聚焦的数值得分一可以针对给定的记录图像进行确定并且被用于评估各个空间方位处的各个照相机。 For example, the modulation transfer function (MTF) score indicating a sharpness of recorded images and thus also indicates the value of the focus score can be determined for a given record is used to evaluate the respective images and the camera at the respective spatial orientation. 此外,可以以不同的感兴趣的区域(ROI)并且特别是以不同的场高度评估记录图像。 Further, in a different region of interest (ROI) in a different field and in particular to highly evaluate the recorded image. 例如,MTF得分可以被分配给记录图像内的每个R0I。 For example, MTF score may be assigned to each R0I recorded within the image. 因此,相应的照相机可以关于每个ROI被评估,并且该评估数据可以被用于推断期望的阵列照相机模块配置。 Thus, corresponding to each camera may be assessed on the ROI, and the evaluation data may be used to infer the desired array camera module configuration.

[0033] 在若干实施例中,在评估处理期间仅使用阵列照相机模块中的所有照相机的子集。 [0033] In several embodiments, only a subset of all the cameras in the array camera module during the evaluation process. 定义该子集的照相机可以是预定的,或者它们可以通过考虑由一些或所有焦平面所捕获的图像数据的初始集合来计算地确定。 The camera is defined subset may be predetermined, or they may be calculated by the set of determined considering some or all of the original focal plane of the captured image data.

[0034] 此外,与传统的单透镜照相机不同,阵列照相机模块的主动对准可涉及策略性地禁用照相机。 [0034] Further, the conventional single lens camera with different active alignment may involve an array camera module strategically disable the camera. 例如,如果在阵列照相机模块处于估计的最终布置时照相机的图片质量在指定的阈值质量之下,则该照相机可以被禁用。 For example, if the camera is in the image quality of the final estimated disposed in an array camera module below the specified mass threshold, the camera may be disabled. 因此,在本发明的许多实施例中,主动对准处理最初被用于估计阵列照相机模块的最终布置,基于它们没有实现阈值质量并且禁用它们可提高照相机模块中的其它照相机的总体性能来识别应当被禁用的照相机,并且然后计算最终的布置,其中被禁用的照相机从计算处理中被排除。 Thus, in many embodiments of the present invention, the active alignment process is initially used to estimate the final arrangement of the camera module of the array, they should be identified by mass threshold is not achieved and disables the other thereof can improve the overall performance of the camera based on a camera module the camera is disabled, and then calculates a final arrangement, wherein the camera is disabled is excluded from the calculation process. 注意,这是可能的,因为阵列照相机包括多个照相机并且如果使若干照相机无效该阵列照相机仍然可操作。 Note that this is possible because the array includes a plurality of cameras and the camera, if the camera so that a plurality of the valid array camera remains operable. 即,阵列照相机可以被配置为依赖于其余的活动照相机起作用,并且基于那些其余的活动照相机来合成图像。 That is, the camera array may be configured to depend on the activities of the rest of the camera work, and those based on the remaining active camera synthesized image. 通过允许阵列照相机软件使某些照相机无效,可实现可降低完整的照相机模块的成本的较高制造产量。 By allowing some of the camera array so that the camera software is invalid, producing a higher yield can be achieved complete camera module can reduce cost.

[0035] 以下进一步讨论根据本发明实施例的用于使透镜叠层阵列与传感器主动对准以形成用于在阵列照相机中使用的照相机模块的方法和系统以及阵列照相机。 [0035] The embodiment discussed further below, according to an embodiment of the present invention, the lens array and the sensor stack to form the active alignment method and system for a camera and an array camera module for use in an array in the camera.

[0036] 阵列照相机架构 [0036] The camera array architecture

[0037] 图1示出了美国申请序列号12/935, 504中所公开的阵列照相机架构。 [0037] FIG. 1 shows a U.S. Application Serial No. 12/935, 504 disclosed in the camera array architecture. 阵列照相机100包括阵列照相机模块110,该阵列照相机模块110连接到图像处理管道模块120和控制器130。 The camera array 100 includes an array camera module 110, the camera module array 110 is connected to the image processing pipeline module 120 and a controller 130. 图像处理管道模块120是用于对从阵列照相机模块110所接收的图像进行处理的硬件、固件、软件或者组合。 The image processing pipeline module 120 is an image received from the camera module 110 for processing an array of hardware, firmware, software, or a combination thereof. 图像处理管道模块120能够对照相机模块中的多个焦平面所捕获的多个图像进行处理并且可产生合成的较高分辨率图像。 The image processing pipeline module 120 can be a plurality of images on the focal plane of the camera module in the plurality of the captured synthesis processes and may generate a higher resolution image. 在多个实施例中,图像处理管道模块120经由输出122提供合成的图像数据。 Embodiment, the image processing pipeline module 120 provides the synthesized image data via the output 122 in a plurality of embodiments.

[0038] 控制器130是用于对阵列照相机模块110的各种操作参数进行控制的硬件、软件、 固件或者其组合。 [0038] The controller 130 is an array of various operating parameters of the camera module 110 for controlling the hardware, software, firmware, or combinations thereof. 控制器130从用户或者其它外部部件接收输入132并且发送操作信号以控制阵列照相机模块110。 The controller 130 receives user input or other external member 132 and transmits an operation signal to control the camera module array 110. 该控制器还可向图像处理管道模块120发送信息以辅助阵列照相机模块110中的焦平面所捕获的图像的处理。 The controller may further process the image to the image processing pipeline module 120 transmits information to assist the array focal plane of the camera module 110 captured.

[0039] 尽管图1中示出了特定的阵列照相机架构,但是根据本发明实施例的使用主动对准处理构造的照相机模块可在各种阵列照相机架构中的任意一种中被利用。 [0039] Although FIG. 1 shows a specific architecture array camera, but using an active alignment according to an embodiment of the present invention, the camera module structure of a process may be utilized in a variety of camera array architecture of any one. 以下进一步讨论根据本发明实施例的可在阵列照相机中利用的照相机模块和用于利用主动对准处理制造照相机模块的处理。 The following discussion further processing active alignment process for manufacturing a camera module according to an array of available camera in the camera module of the embodiment of the present invention and for use.

[0040] 阵列照相机模块 [0040] array camera module

[0041] 图2示出了通过将透镜叠层阵列与单片传感器组合所形成的阵列照相机模块的分解视图,该单片传感器包括相应的美国申请序列号12/935, 504中所公开的焦平面的阵列。 [0041] FIG. 2 shows an exploded view of an array by the camera module lens array laminate formed by combining a monolithic sensor, the sensor comprising a monolithic corresponding U.S. Application Serial No. 12/935, 504 as disclosed in power plane of the array. 阵列照相机模块200包括透镜叠层阵列210以及包括焦平面240的阵列的传感器230。 Array camera module 200 includes a sensor array and a lens array 210 comprises a stack 240 of a focal plane 230. 透镜叠层阵列210包括透镜叠层220的阵列。 Lens array 210 comprises an array of lenses laminate stack 220. 每个透镜叠层创建对传感器上的焦平面240 上的图像进行分辨(resolve)的光学通道。 Each lens creates an image on a stack 240 on a focal plane sensor resolution (Resolve) optical channels. 每个透镜叠层可以具有不同的类型。 Each lens may have a different stack types. 例如,光学通道可以被用于以光谱的不同部分捕获图像,并且每个光学通道中的透镜叠层可以针对与该光学通道相关联的焦平面所成像的光谱部分被专门优化。 For example, the optical channel may be used in different parts of the spectrum of the captured image, and the lens of each optical channel in the stack may be optimized for the spectral components with the focal plane of the optical channels associated with the imaged. 更具体地,阵列照相机模块可以利用"π过滤器组"进行模式化(pattern)。 More specifically, the array may utilize the camera module "filter group [pi]" of a mode (pattern). 术语π过滤器组是指应用于照相机模块的透镜叠层阵列的颜色过滤器的模式,并且利用π过滤器组对阵列照相机进行模式化的处理在Venkataraman 等人的标题为"Camera Modules Patterned with π Filter Groups" 的美国专利申请序列号61/641,164中被描述。 [Pi] The term refers to the color filter group is applied to the filter stack camera module lens array mode, and the mode of the camera array process using the filter group [pi] Venkataraman et al., Entitled "Camera Modules Patterned with π Filter Groups "U.S. Patent application serial No. 61 is described in / 641,164. 美国专利申请序列号61/641,164的公开内容通过引用其全文合并于此。 The disclosure of U.S. Patent Application Serial No. 61 / 641,164 is incorporated herein by reference in its entirety. 图3示出了单一的π过滤器组,其中5个透镜被配置为接收绿光,2个透镜被配置为接收红光,以及2个透镜被配置为接收蓝光。 Figure 3 shows a single π filter group, which lens 5 is configured to receive the green light, the lens 2 is arranged to receive a blue light is configured to receive a red light, and the two lenses. 该透镜叠层可以进一步具有相对于彼此轴向布置的一个或多个独立的光学元件。 The laminate may further have a lens or a plurality of individual optical elements are arranged axially relative to each other.

[0042] 透镜叠层阵列可以采用晶片级光学器件(WLO)技术。 [0042] The lens array laminated wafer level optics may be employed (the WLO) technology. WLO是包含多个处理的技术, 该多个处理例如包括将透镜阵列模制在玻璃晶片上、将那些晶片(包括具有在基板的任一侧上复制的透镜的晶片)与适当的间隔件进行层叠、随后将光学器件直接与成像器封装到单片集成模块中。 WLO comprising a plurality of processing technology, the plurality of processing includes the lens array is molded on a glass wafer, that the wafer (a wafer comprising a lens having replicated on either side of the substrate) with a suitable spacer for laminated, then the optical device monolithically integrated module encapsulates the imager.

[0043] 除了其它过程之外,WLO过程可以涉及使用金刚石切削模具在玻璃基板上创建每个塑料透镜元件。 [0043] In addition to other processes, WLO process may involve the use of diamond cutting to create each mold plastic lens elements on the glass substrate. 更具体地,WLO中的处理链一般包括(在单个和阵列级二者上)产生金刚石切削的主透镜(lens master),然后产生用于该主透镜的复制的阴模(也被称作印模或压印工具),并且然后最终在玻璃基板上形成聚合物复制品,该玻璃基板已构成有适当的支撑光学元件,诸如,例如孔径(光阻隔材料层中的透明开口)和过滤器。 More specifically, the processing chain WLO is generally a diamond cutting comprises generating a main lens (the Master Lens) (in both single and array-level), then generates the female mold for reproducing the main lens (also referred to as printed molding or embossing tool), and then finally formed on a glass substrate, a polymer replicas, the glass substrate is constituted with a suitable support of the optical element, such as, for example, the aperture (opening the transparent light blocking material layer) and the filter.

[0044] 尽管以上讨论了使用特定的WLO处理构造透镜叠层阵列,但是可使用各种技术中的任意一种来构造透镜叠层阵列,例如涉及精密玻璃模制、聚合物注入模制或晶片级聚合物单片透镜处理的那些。 [0044] Although the above discusses the use of a specific laminated configuration of the lens array WLO process, but may be any of a variety of techniques used to construct a lens array laminate, such as those involving precision glass molding, injection molding a polymer or wafer those single lens treatment stage polymer. 以下讨论有关透镜叠层阵列内的透镜叠层的后焦距的变化的问题。 The following discussions focus lens changes after about the stack of the lens array laminate.

[0045] 后焦平面对准 After [0045] the focal plane of the alignment

[0046] 阵列照相机模块通常意在以每个焦平面(即,被配置为捕获由相应的透镜叠层形成在焦平面上的图像的像素的阵列)定位在形成光学通道的每个透镜叠层的焦点距离处的这样的方式构造。 [0046] The array camera module generally intended to each focal plane (i.e., configured to capture an array of pixels formed on the focal plane of the lens by the respective stack images) formed laminate positioned in each optical path of the lens in this manner a configuration of the focal distance. 然而,制造变化可导致每个光学通道中的透镜叠层相对于其规定(prescription)改变,并且在许多情况下,这些变化可导致透镜叠层阵列中的每个透镜叠层具有不同的焦距。 However, manufacturing variations may result in the lens of the optical stack in each channel relative to its predetermined (Prescription) changes, and in many cases, these changes may lead to each lens of the lens stack the stack array have different focal lengths. 例如,由于制造变化而可能在透镜叠层阵列中的单个透镜叠层之间改变的参数包括,但不限于:单个透镜中的曲率半径、圆锥曲线(conic)、较高阶非球面系数、 折射率、基层的厚度和/或总的透镜高度。 For example, due to manufacturing variations and changes may be laminated between the individual lens parameters of the lens array laminated include, but are not limited to: the radius of curvature of the individual lenses, conic (Conic), high order aspherical coefficient, refractive rate, the thickness of the base layer and / or the total lens height. 如本领域普通技术人员将意识到的,可以使用任意数量的透镜规定来表征透镜制作处理,并且各个容差可以涉及以任意数量的方式背离这些规定,其中每一种方式可能影响后焦距。 As one of ordinary skill in the art will appreciate, the lens making process may be characterized using any of a predetermined number of lenses, and the respective tolerance may involve any number of ways that depart from these provisions, each of which may affect the way back focus. 由于传感器的单片性质,焦平面(相对于透镜叠层)的空间关系不能被单独地定制以适应该可变性。 Because the monolithic nature of the sensor focal plane (relative to the lens stack) spatial relationship can not be individually customized to fit the variability.

[0047] 此外,在许多情况下,都是使用单一的制造处理来制作多个透镜叠层阵列的情形。 [0047] Further, in many cases, the lens case is to produce a plurality of stacked array using a single manufacturing process. 因此,除了前面提到的原因之外,后焦距可能进一步在来自通过相同的处理所制作的不同透镜叠层阵列的透镜叠层之间改变。 Thus, in addition to the reasons mentioned earlier, the focal length may be changed between the lens further from the laminate produced by the same process different lens array laminate. 例如,透镜基板以及透镜叠层中所采用的间隔件(尤其是朝着传感器盖玻璃的那些)的厚度的可变性(在容差内)可能进一步有助于后焦距的可变性。 For example, the thickness of the lens substrate and a spacer (especially those toward the sensor cover glass) lens stack employed variability (within the tolerance) may further contribute to the variability of the back focal length. 此外,(1)传感器盖玻璃的厚度,(2)透镜间隔件与传感器盖玻璃之间的结合线(bond line)厚度,以及(3)传感器与盖玻璃之间的任意空气间隙的可变性可能进一步加剧后焦距的可变性。 Further, (1) the thickness of the sensor cover glass, thickness, and any air gap between (3) and the sensor cover glass (2) and the sensor lens spacer cap binding line (bond line) between the glass variability may further exacerbating the focal length variability. 因此,即使在透镜叠层阵列制作以及透镜到传感器的附接处理期间利用恒定(标称)处理参数,样本到样本变化也可能导致离焦的照相机模块。 Thus, with a constant (nominal) even if the process parameters during the production of the lens and a lens array laminated to the sensor attachment process, the sample to sample variations may also cause the defocus of the camera module.

[0048] 图4中概念性地示出了可在传统的透镜叠层阵列中出现的焦距的变化。 In [0048] Figure 4 conceptually illustrates a change in focal length may occur in the conventional lens array laminate. 阵列照相机模块400包括透镜叠层阵列402,在该透镜叠层阵列402中,透镜叠层404将光聚焦在传感器408的焦平面406上。 The camera module includes a lens array 400 stacked array 402, stack array in which the lens 402, the lens stack 404 to focus light on the focal plane 408 of the sensor 406. 如所示出的,实际制作的透镜叠层与其原始规定之间的变动可导致透镜叠层具有相对于其规定稍微改变的焦距,并因此具有与该透镜叠层阵列和传感器之间的距离不对应的图像距离。 As shown, the variation between the actual production of the lens from its original predetermined laminated stack may result in the lens having a slightly modified with respect to its predetermined focal length, and thus a distance between the lens and the sensor are not stacked array corresponding to the image distance. 因此,在传感器的焦平面上所形成的图像可失焦。 Accordingly, the image on the focal plane of the sensor may be formed out of focus. 此外,包括(但不限于)透镜叠层阵列相对于传感器的对准以及间隔件厚度的变化的、与阵列照相机模块的组装相关联的其它制造容差可影响所有的光学通道。 Further, including (but not limited to) the lens array with respect to changes in alignment of the stack and a spacer thickness sensor, and other manufacturing tolerances may affect all of the optical channels of the array camera module associated with the assembly.

[0049] 主动对准处理 [0049] The active alignment process

[0050] 在许多实施例中,用于使透镜叠层阵列与传感器主动对准以构造阵列照相机模块的处理涉及在透镜叠层阵列相对于传感器移动时读取由传感器上的多个焦平面所捕获的图像数据。 [0050] In many embodiments, the lens stack for the active alignment and the sensor array is configured to process read array camera module according to the lens stack when moved relative to the sensor array by a plurality of sensors on a focal plane image data captured. 该图像数据可被利用以传感器与透镜叠层阵列之间的不同空间关系评估产生的图像质量,并且提供预定的阈值水平的图像质量的空间关系可被利用以构造照相机模块。 The image quality of image data may be utilized in different spatial relationship between the sensor evaluation and the lens array to produce a laminate, and provides an image of a predetermined quality threshold level spatial relationship may be utilized to construct the camera module. 图5中示出了根据本发明实施例的通过使透镜叠层阵列与传感器总体上对准,改变它们的空间关系,在变化期间评估产生的配置,以及使用评估数据对阵列照相机模块进行配置来使二者主动对准的处理。 FIG. 5 shows a whole stack aligned by the lens array sensor of the embodiment of the present invention, change their spatial relationship to produce evaluated configuration, and using the evaluation data array camera module configured to change during the processing of both active alignment.

[0051] 透镜叠层阵列与具有多个焦平面的相应的传感器总体上对准(510)。 [0051] The alignment of the lens array corresponding to the sensor stack having a plurality of generally focal plane (510). 该组合被对准以使得配置内的每个照相机能够捕获并记录图像。 It aligned such that the combination is disposed within each camera able to capture and record an image. 改变(520)透镜叠层阵列相对于传感器的空间关系。 Changing (520) the lens array laminated spatial relationship with respect to the sensor. 在若干实施例中,通过相对于传感器扫瞄透镜叠层阵列来实现该变化。 In several embodiments, this change is achieved by scanning the sensor with respect to the lens array laminate. 扫描可被理解为意指随着时间关于一个部件移动另一个部件(即,透镜叠层阵列或传感器)。 Scanning may be understood to mean a member moving with time on the other member (i.e., a lens stack or sensor array). 扫描可以处于一个自由度中或者它可以跨越许多自由度。 Scanning may be in a degree of freedom or it can span many degrees of freedom. 如可容易地意识到的,照相机模块的阵列性质意味着透镜叠层阵列相对于传感器的倾侧/倾斜和旋转以及X、y和Z方向上的变化都可对传感器上的焦平面所捕获的成像数据具有显著的影响。 The nature of the array can be readily appreciated, the camera module means relative to the imaging lens array laminated tilting / tilt and rotation changes, and y and the Z-direction X, the sensor on the focal plane can be captured on the sensor data having a significant impact. 注意,在许多阵列照相机中,照相机的聚焦并且因此锐度主要受透镜叠层阵列相对于传感器的倾侧/倾斜以及z方向影响,其中倾侧/倾斜原则上影响角落(corner)照相机的性能。 Note that in many array camera, the camera is focused and thus the sharpness of the main subject relative to the lens array laminated Effect tilting / tilt direction and the z-sensor, wherein the tilting / tilt principle affect the performance of the corner (corner) of the camera. 相反,在仅包括单一透镜叠层的传统照相机中,该照相机的图像质量主要取决于光学系统的相对于传感器的"z 位置"。 In contrast, in a conventional camera comprising a stack of only a single lens, the image quality of the camera depends on the "z position" relative to the sensor of the optical system. 在许多实施例中,扫描的路径是预定的。 In many embodiments, the scan path is predetermined.

[0052] 以改变的空间关系评估(530)捕获的图像数据的质量。 [0052] In the quality assessment of the spatial relationship (530) to change the captured image data. 例如,在本发明的若干实施例中,在透镜叠层阵列相对于传感器的扫描期间间歇地评估配置。 For example, in several embodiments of the present invention, in the lens array laminated evaluated intermittently arranged with respect to the sensor during scanning. 在许多实施例中,通过以改变的空间关系评估多个照相机的已知目标的捕获和记录图像来对配置评估。 In many embodiments, the configuration was evaluated by capturing certain known spatial relationship to evaluate a plurality of cameras and recording the changed image. 在若干实施例中,仅配置的照相机的子集被用于评估目的。 In several embodiments, only a subset of the configuration of a camera is used for evaluation purposes. 可以针对每个记录图像确定MTF得分并且该MTF得分可以被用于评估各个空间方位处的各个照相机。 MTF score may be determined for each of the recorded image and the MTF score may be used to evaluate the respective cameras at the respective spatial orientation. 记录图像还可以以其不同的ROI被评估。 Recorded images can also be evaluated for its different ROI. 例如,可以对记录图像内的每个ROI分配MTF得分。 For example, MTF score may be assigned for each ROI within the recorded image.

[0053] 使用评估期间所获得的信息对阵列照相机模块进行配置(540)。 The information obtained during the [0053] evaluation of the use of an array camera module is configured (540). 在一些实施例中, 该配置涉及推断导致相应的阵列照相机模块能够捕获并记录超过阈值质量的图像的、透镜叠层阵列与传感器之间的空间关系。 In some embodiments, the configuration involves inference results in a corresponding array camera module can capture and record an image quality exceeds the threshold value, the spatial relationship between the lens and the sensor array stack. 该配置还可以涉及禁用没有超出阈值质量的照相机。 This configuration may also involve disabling the camera not exceed the threshold quality. 再次,由于阵列照相机模块包括多个照相机,所以即使在若干照相机被禁用时它们也仍然可起作用。 Again, since the camera module comprises an array of a plurality of cameras, so they can still function even when a number of the camera is disabled. 能够禁用照相机的优点在于,在确定透镜叠层阵列和传感器的适当对准时,包括该照相机的阵列的平均性能可以比该禁用的照相机被排除考虑时其余照相机的平均性能低得多。 Advantage of being able to disable a camera that is much lower on average in an appropriate time when the performance of the rest of the camera, including the average performance of the camera array may be excluded from consideration than the disabling of the camera lens is determined and the sensor array stack.

[0054] 尽管已描述了使透镜叠层阵列与相应的焦平面的阵列主动对准的处理及其变型, 但是根据本发明的实施例,可以使用多个不同处理中的任意一个以使透镜叠层阵列与焦平面的阵列主动对准。 [0054] Although described in the lens array laminated focal plane array corresponding to the active alignment process and variations thereof, in accordance with embodiments of the present invention may be any of a number of different processes to the lens stack the array focal plane array layer active alignment. 以下讨论根据本发明实施例的用于主动对准处理的初始配置。 The following discussion initially configured for active alignment process according to an embodiment of the present invention.

[0055] 用于使透镜叠层阵列与焦平面的阵列对准的初始配置 [0055] The laminate for the lens array focal plane array aligned with the initial configuration

[0056] 根据本发明的实施例,主动对准处理可以从任意数量的初始配置开始。 [0056] According to an embodiment of the present invention, the active alignment process may start from any number of initial configuration. 图6中示出了根据本发明实施例的用于主动对准处理的初始配置,在该初始配置中,能够对透镜叠层阵列进行定向的设备连接到相应的阵列照相机模块的透镜叠层阵列,处理器连接到相应的传感器,并且目标被定位和照射以使得阵列照相机模块可对它进行捕获并记录。 FIG 6 shows a lens array laminate orientation device connected to the respective initial array camera module configured for active alignment process in the embodiment of the present invention, in the initial configuration, laminated lens array can be performed according to the processor is connected to the respective sensors and the target is positioned so that the illumination and camera module array it may be captured and recorded. 阵列照相机模块610包括透镜叠层阵列620以及具有相应的焦平面的传感器630。 The camera module 610 includes a lens array laminate 620, and an array of sensors having a respective focal plane 630. 透镜叠层阵列和传感器被总体上对准以使得它们能够捕获并记录目标640的图像。 And a sensor array lens stack are aligned so that they are generally able to capture and record an image of the target 640. 能够对透镜叠层阵列640进行空间定向的设备连接到透镜叠层阵列620,并且处理器660连接到传感器。 Lens arrays can be stacked spatially orienting device 640 is connected to a lens array laminate 620, and processor 660 connected to the sensor. 因此, 在透镜叠层阵列620的方位被改变的同时,处理器660能够从传感器630捕获并记录图像, 并且主动对准处理由此可被实现。 Thus, while the orientation of the lens array laminate 620 is changed, the processor 660 can capture and record an image, and the active alignment process can thus be realized from the sensor 630. 用于对透镜叠层阵列进行空间定向的设备650和处理器660的组合可被理解为是主动对准机670。 Compositions for the lens array laminated spatial orientation device 650 and processor 660 may be understood to be an active alignment unit 670.

[0057] 在许多实施例中,初始配置涉及使透镜叠层阵列620和传感器630总体上对准以便确保透镜叠层阵列620和传感器630处于充分的平移和旋转对准,使得每个透镜叠层与其相应的焦平面总体上对准。 [0057] In many embodiments, relates to the initial configuration of the lens array 620 and sensor stack 630 generally aligned so as to ensure the lens array 620 and sensor stack 630 in a fully translation and rotational alignment, such that each lens stack aligned on the focal plane of its corresponding overall. 平移运动在这里是指系统(即,透镜叠层阵列620或传感器630)在平行于其各个表面的方向上的运动。 Herein refers to translational movement system (i.e., a lens array laminate 620 or sensor 630) moving in a direction parallel to its respective surface. 旋转在这里是指系统相对于另一个围绕Z轴(即,定义传感器与透镜叠层阵列之间的距离的轴)的旋转。 Refers herein to rotation of the rotating system with respect to another about the Z axis (i.e., the distance between the axis of the sensor and the lens stack defined array). 总体对准可以通过例如以下来实现:监视测试图上的中心特征,并且(相对于另一个系统)平移地移动透镜叠层阵列或者传感器使得该中心特征中心地位于中心照相机模块内;这将表示该系统处于充分的平移对准。 Overall alignment may be achieved by, for example, the following: features on the center monitor test chart, and (relative to the other systems) translationally move the lens stack such that the center of the sensor array or centrally located within a central feature of the camera module; this represents the system is fully aligned with the translation. 任一个系统然后可以相对于另一个旋转,以使得每个透镜叠层阵列及其相应的焦平面的中点定义总体上平行于Z轴延伸的线。 The system may then either rotating relative to the other, so that the Z axis extending parallel to the line on each corresponding lens stack array and defines the overall focal plane midpoint. 在该旋转调整期间,系统还可以被重新调整以保持(或增强)足够的平移对准。 During this rotational adjustment, the system may be re-adjusted to maintain (or enhance) aligned translational sufficient. 以这种方式,每个透镜叠层阵列可以与其相应的焦平面总体上对准。 In this manner the alignment of each of the lens arrays may be stacked with their respective overall focal plane.

[0058] 尽管本发明的许多实施例采用了图6中所示的初始配置,但是许多其它实施例采用适于特定应用的要求的其它初始配置。 [0058] Although many embodiments of the present invention adopts the initial configuration shown in FIG. 6, but many other embodiments employ other initial configuration adapted to the requirements of the particular application. 根据本发明的实施例,可以实现允许透镜叠层阵列与传感器之间的空间关系被改变,并且进一步允许相应的阵列照相机模块被评估、基于它的评估被配置和操纵的任意初始配置。 According to an embodiment of the present invention may be implemented to allow the spatial relationship between the lens and the sensor array stack is changed, and further allows the respective array camera module is evaluated, based on its assessment is arbitrary initial configuration and the manipulation configuration. 以下讨论根据本发明实施例的透镜叠层阵列与传感器之间的空间关系的改变。 The following discussion of changing the spatial relationship between the lens and the sensor array stack according to embodiments of the present invention.

[0059] 改变透镜叠层阵列相对于传感器的空间关系 [0059] varying lens array laminated spatial relationship with respect to the sensor

[0060] 透镜叠层阵列与相应的传感器之间的空间关系可以以任意数量的方式改变。 [0060] The spatial relationship between the lens array and the respective transducer stack may be varied in any number of ways. 例如,图7中示出了根据本发明实施例的主动对准处理,其中透镜叠层阵列在基本上垂直于传感器的平坦表面的方向上被扫描。 For example, in FIG. 7 shows the active alignment process according to the present embodiment of the invention, wherein the lens array of the stack is scanned in a direction substantially perpendicular to the planar surface of the sensor. 阵列照相机模块700包括透镜叠层阵列710和具有焦平面的阵列的相应的传感器720,并且主动对准处理在基本上垂直于传感器的表面的预定方向730 (z方向)上扫描透镜叠层阵列710。 The camera module 700 includes a lens array stack array 710 and corresponding sensor 720 having a focal plane array, and an active alignment process in a direction substantially perpendicular to the predetermined surface of the sensor 730 scan direction (z direction) of the lens array laminate 710 . 注意,以该方式扫描透镜叠层阵列系统地改变每个照相机的聚焦一通常照相机将被对焦并然后失焦地扫描。 Note that, in this manner the laminate scan lens array system focus change each camera is a camera will generally focus and out of focus and then scanned. 阵列照相机模块可以沿着该扫描在改变的空间关系上被评估。 Array camera module can be evaluated in spatial relations changes along the scan. 根据本发明实施例的主动对准处理还可包括使透镜叠层阵列相对于传感器倾侧、倾斜和/或旋转。 Example embodiments of the present invention may further comprise an active alignment process with respect to the lens array laminated tilt sensor, tilt and / or rotation in accordance with. 在许多实施例中,在被称为"贯穿聚焦扫描(through focus sweep) "的扫描中仅透镜叠层阵列与传感器之间的距离被改变,并且用于确定最优对准的所有相关的计算(包括居中以及聚焦和倾侧/倾斜)分别通过使用各个曲线拟合和重心计算根据该贯穿聚焦扫描期间所捕获的图像来进行。 In many embodiments, only referred to the distance between the lens array and the sensor scans the stack "through focus scan (through focus sweep)" is changed in, and used to determine the optimum alignment of all the calculations (including tilting and centering and focusing / tilting) are carried out by using curve fitting and each centroid is calculated in accordance with the image captured during scanning through focus. 如可意识到的,歪斜的透镜叠层阵列的贯穿聚焦扫描已经分别通过均衡的MTF或峰聚焦位置的适当平面拟合计算提供了关于该透镜叠层阵列相对于传感器的最优倾侧/倾斜的信息。 As can be appreciated throughout the scanning focus, lens distortion stack array respectively have flat MTF appropriately balanced focus position or peak fit calculation is provided on the lens array with respect to the sensor stack optimal tilt / inclined information. 以下进一步讨论这些计算。 These calculations are discussed further below.

[0061] 在若干实施例中,计算地确定空间关系改变的方式。 [0061] In several embodiments, the spatial relationship determines how changed computationally. 例如,空间关系改变的方式可以基于阵列照相机模块的初始评估计算地确定。 For example, to change the spatial relationship may be determined based on the way the initial evaluation is computationally array camera module. 此外,空间关系改变的方式可以在主动对准处理期间变化。 In addition, changes in the way spatial relationships can change during active alignment process. 例如,在透镜叠层阵列已在基本上垂直于传感器的平坦表面的方向上被扫描之后,处理器可以计算可能促成阵列照相机模块的较佳配置的不同扫描路径。 For example, after the lens stack array have been scanned in a direction substantially perpendicular to the planar surface of the sensor, the processor may calculate different scan path preferred configuration may contribute array camera module.

[0062] 尽管已描述了关于透镜叠层阵列与传感器之间的空间关系可以如何被改变的若干示例,但是根据本发明的实施例,还可以以任意数量的其它方式改变空间关系。 [0062] While several examples have been described on the spatial relationship between the lens array and stack how the sensor may be changed, in accordance with embodiments of the present invention, the spatial relationship can also be altered in any number of other ways. 以下讨论以改变的空间关系评估阵列照相机模块。 The following discussion to change the spatial relationship assessed array camera module.

[0063] 评估阵列照相机模块 [0063] Evaluation array camera module

[0064] 在大量的实施例中,在主动对准处理期间评估阵列照相机模块涉及使多个照相机捕获并记录已知目标的图像,并且对这些图像进行评估。 [0064] In numerous embodiments, during the active alignment process involves evaluation array camera module to capture and record a plurality of camera images of known targets, and evaluated these images. 例如,可以通过评价图像的聚焦来对它们进行评估。 For example, they can be evaluated by the focus evaluation image. 根据本发明的实施例,可以以任意数量的方式执行聚焦的评价。 According to an embodiment of the present invention, the focus evaluation may be performed in any number of ways. 例如,在许多实施例中,可以针对给定的记录图像确定MTF得分。 For example, in many embodiments, the MTF score may be determined for a given recorded image. 一般来讲,在不同照相机之间的MTF得分可彼此直接比较的范围内,MTF得分是有利的度量。 In general, MTF scores between different cameras can be directly compared to one another within the range, it is advantageous to measure MTF score. 在一些实施例中,记录图像可以被给予"聚焦得分",其可类似地被用于评估记录图像。 In some embodiments, the recorded image may be given "focus scores", which can be used to evaluate the image recorded similarly. 例如,聚焦得分可以通过在图像中的对比特征(contrasting features)上对核进行卷积来确定,其中所产生的值与照相机的聚焦的能力有关。 For example, the score may focus on the nuclei by comparing features in the images (contrasting features) to determine the convolution, the value of the focusing capability of the camera which produced about. 不同于MTF得分,聚焦得分可能未必可与来自不同照相机的这样的得分直接比较;相反,聚焦得分在评估单一照相机时可能更有用。 Unlike MTF score, the score may not necessarily be focused direct comparison with such points from different cameras; instead, focus scores may be more useful when evaluating a single camera.

[0065] 选择要使用哪种评分度量可以部分地通过得分可被计算的速度来确定。 [0065] The choice of which to use ratings metrics may be determined by the speed of the score may be computed in part. 例如,如果计算MTF得分比计算聚焦得分花费更长的时间,则可以在评估中使用聚焦得分。 For example, if the calculated MTF focus scores score ratio calculation takes longer time, focus scores can be used in the evaluation. 选择要使用哪种评分度量还可以部分地通过得分的准确性和精确度来确定。 The choice of which to use the metric score can also be determined by the score of accuracy and precision part. 例如,如果MTF得分是用于评估图像质量的较精确的手段,则它可以被用于评估照相机图像。 For example, if the score is more accurate MTF evaluation image quality means for, it may be used to evaluate the camera image. 此外,主动对准处理可以利用评估记录图像的若干方法,并且这些方法可以不必同时进行。 Further, the process may utilize several active alignment method for evaluating recorded images, and these methods may not necessarily be carried out simultaneously. 例如,可以最初使用基于聚焦评分的评估,而稍后可以使用基于MTF得分的评估。 For example, you can use the initial assessment score based focus, and can be used to evaluate based MTF score later. 此外,主动对准处理可以涉及使不同的评分度量相关。 In addition, active alignment process may involve measures related to the different scoring. 例如,聚焦评分可以被用于评估阵列照相机所记录的图像集合, 而MTF评分可以被用于评估那些图像的代表性子集。 For example, the focus score may be used to evaluate a set of images recorded by the camera array, and the MTF score may be used to evaluate a representative subset of those images. 该子集的MTF得分然后可以被归一化为各个聚焦得分。 MTF score of the subset may then be normalized to the respective focus points. 并且该确定的关系可以被用于针对其余的图像确定MTF得分。 And the determined relationship may be used to determine the score for the remaining image MTF.

[0066] 此外,可以对记录图像的不同区域进行评估,由此关于特定的区域提供有关照相机的质量的信息。 [0066] In addition, different regions can be evaluated for image recording, thereby providing information about the quality of the camera with respect to a specific area. 例如,在某些实施例中,具有多个"感兴趣的区域"(R〇I)的已知目标的图像被记录,并且照相机的已知目标的记录图像相对于每个感兴趣的区域被评估。 For example, in some embodiments, an image having a plurality of known target "region of interest" (R〇I) is recorded, and the recording target image of the camera is known with respect to each region of interest is evaluation. 图8示出了根据本发明的许多实施例使用的已知目标。 Figure 8 shows a number of embodiments known target used in the present invention. 已知目标800包括突出(highlight)中心ROI 的中心特征810,该中心ROI也被称作"轴上"R0I。 The known target 800 includes a protrusion (highlight) wherein the center 810 of the center ROI, the ROI center is also called "shaft" R0I. 该已知目标进一步包括突出"轴外"ROI 的特征820。 The known target further comprises a protrusion "off-axis" of 820 ROI features. 图8中的目标在特征的边缘以MTF得分的切向和矢状分量以及因此还有像散可被直接导出并与先前的透镜测试数据比较的这样的方式被定向的范围内是有利的。 Is advantageously within the target 8 in FIG MTF score in the sagittal and tangential component and thus also the astigmatism can be directly exported at the edge characteristics and comparing such a way that the previous data of the lens is oriented test range. 因此,许多实施例通过相对于五个ROI中的每一个评估每个照相机的质量来利用图8中所示的已知目标。 Thus, many embodiments by mass with respect to each camera of each of the five ROI using known to evaluate the target 8 illustrated in FIG.

[0067] 图8中所示的目标还可以在确定聚焦得分时被使用。 [0067] The target shown in FIG. 8 may also be used in determining the focus scores. 具体地,结合该目标确定聚焦得分可以涉及在针对每个感兴趣的区域具有对比特征的图像区(例如,棋盘图案840或者与明亮背景相对的暗淡的斜方块850)上对核进行卷积,其中所产生的值与特征之间的对比成比例。 In particular, binding of the target to determine the focus score may involve nuclear convolved image area (e.g., a relatively dim or checkerboard pattern 840 and the swash bright background block 850) having contrast features for each region of interest on It is proportional to the contrast between the feature value generated therein. 例如,可以利用以下的卷积核: For example, you can use the following convolution kernel:

[0068] [0068]

Figure CN104520754AD00131

[0069] 该卷积核将产生与照相机的分辨对比的能力成比例。 [0069] The convolution kernel is generated proportional to the ability of the contrast and resolution of the camera. 注意,取决于被评估的区域是从明亮过渡到暗淡还是从暗淡过渡到明亮,该值将为正的或者负的。 Note that, depending on the area being evaluated is the transition from light to dark or from dark to bright transition, the value will be positive or negative. 然而,感兴趣的区域是从明亮过渡到暗淡还是相反与照相机的聚焦的能力不相关;因此,这些值的绝对值应被获得。 However, the opposite region of interest is not related to the transition from bright to dim or the camera focus capability; therefore, the absolute values ​​of these values ​​should be obtained. 然后,可以通过针对每个ROI对这些绝对值进行平均来获得每个ROI的聚焦得分。 Then, it is possible to obtain a focus score of each ROI by averaging the absolute values ​​for each ROI.

[0070] 尽管图8示出了根据本发明的实施例可以使用的特定的已知目标,但是许多其它实施例利用适于特定应用的要求的其它已知目标。 [0070] Although FIG 8 illustrates a particular embodiment of the known target in accordance with embodiments of the present invention may be used, but many other embodiments utilize other known target adapted to the requirements of a particular application. 例如,轴外ROI可以放置在目标的角落中一这允许照相机的性能被以较大的场高度测试。 For example, the outer shaft ROI can be placed in a corner of a target which allows the performance of the camera is at a greater height field test. 在示出的实施例中,ROI具有特征的边缘以MTF的切向和矢状分量以及因此还有像散可被直接导出并与先前的透镜测试数据比较的这样的方式被定向的优点。 In the illustrated embodiment, ROI feature having an edge component in the sagittal and tangential MTF, and hence also the astigmatism can be directly exported and advantages with the previous test data comparing the lens in such a manner oriented. 此外,尽管提供了可以如何生成聚焦得分的特定示例,但是可使用各种技术中的任意一种来生成聚焦得分。 Further, although the specific examples provided how to generate a focus scores can, but may be used in any of a variety of techniques to generate a focus score. 更一般地,本文中所描述的评估技术仅是说明性的。 More generally, the evaluation techniques described herein are merely illustrative. 根据本发明的实施例,用于评估阵列照相机模块的功效的任意技术可被合并。 According to an embodiment of the present invention, any technique used to evaluate the efficacy of the array camera module may be combined. 以下讨论使用评估数据来配置阵列照相机模块。 The following discusses the use of assessment data to configure the array camera module.

[0071] 配置阵列照相机模块 [0071] The camera module array configuration

[0072] 评估数据可以被用于在多个方面对阵列照相机模块进行配置。 [0072] The evaluation data may be used to configure the array camera module in a plurality of ways. 在许多实施例中, 阵列照相机模块被配置以最小化由透镜叠层阵列内的焦距的变动所引起的不利影响。 In many embodiments, the array of the camera module is configured to minimize the adverse effects of variation in the focal length of the lens array caused by the stack. 如以上所描述的,透镜叠层阵列内的变动可能由制造处理变化引起,该制造处理变化包括(但并不限于)影响以下参数的那些:单个透镜中的曲率半径、圆锥曲线、较高阶非球面系数、 折射率、基层的厚度和/或总的透镜高度。 As described above, variation in the lens array laminated may be caused by changes in the manufacturing process, the manufacturing process variations include (but are not limited to) those that affect the following parameters: the radius of curvature of the individual lenses, conic, higher order aspheric coefficient, refractive index, the thickness of the base layer and / or the total lens height. 此外,如以上所描述的,与照相机模块和多个透镜叠层阵列的制作有关的以下制造变化可能进一步加剧后焦距的可变性:透镜基板以及叠层中所采用的间隔件(尤其是朝着传感器盖玻璃的那些)的厚度、所使用的传感器盖玻璃的厚度、透镜间隔件与传感器盖玻璃之间的结合线厚度、以及传感器与传感器盖玻璃之间的任意空气间隙。 Further, as described above, the following changes associated with the manufacturing production camera modules and a plurality of lenses stacked array may further aggravate back focus variability: lens substrate and the stack spacer used (especially towards those thickness) of the sensor cover glass, the thickness of the cover glass sensors used, the lens and the spacer thickness between the bond line sensor cover glass, and any air gap between the sensor and the sensor cover glass. 因此,许多实施例评估作为每个照相机对于传感器的空间关系的函数的每个照相机的质量;此后,该信息被用于相对于传感器对透镜叠层阵列进行定向,以使得由于透镜叠层阵列内的焦距的变动所导致的阵列照相机的质量的任意劣化被减少。 Thus, many embodiments assess the quality of each camera function of the spatial relationship for each camera as a sensor embodiment; thereafter, the information is used relative to the sensor array lens stack oriented such that the lens array laminated Since any degradation of quality fluctuation array camera focal length is reduced as a result.

[0073] 若干实施例生成近似地表征与作为空间关系的函数的照相机质量相关的数据的数学式,并且使用导出的式子来计算减少焦距的变动的不利影响的期望的空间关系。 [0073] Some embodiment generates an approximate mathematical expression associated with the characterization of the spatial relationship as a function of the quality of the camera data, and using the derived equation to calculate the desired spatial relationship to reduce the adverse effects of the variation of the focal length. 例如, 一些实施例生成对聚焦评分数据近似地建模的多项式。 For example, some embodiments of the focus score data generating modeled polynomial approximation. 注意,由于光学器件的性质,每个透镜通常将具有峰焦值,并且因此多项式很好地适合于表征数据。 Note that, due to the nature of the optical device, generally each lens will have a peak power value, and thus well suited to characterizing polynomial data. 在许多实施例中,多项式通过针对预定的通用多项式(即,具有未确定的系数的那些)确定系数来生成,使得所产生的式子近似地表征使照相机质量与空间关系相关的数据。 In many embodiments, a polynomial by a polynomial for a predetermined universal (i.e., those having undetermined coefficients) determined coefficients generated such that the resulting equation is approximately characterizing data related to the camera so that the quality of the spatial relationship. 许多实施例然后使用这些导出的式子来计算最佳拟合平面,该最佳拟合平面表征降低焦距的变动的不利影响的空间关系。 Many embodiments and those derived using best-fit plane calculated from the equation, the best-fit plane spatial relationship characterizing reduce the adverse effect of fluctuation of the focal length.

[0074] 值得注意的是,最佳拟合平面可以以任意数量的方式计算。 [0074] It is noteworthy that the best-fit plane may be calculated in any number of ways. 例如,最佳拟合平面可以被计算为包括表征作为空间关系的函数的聚焦评分数据的多项式的峰值的近似。 For example, best-fit plane may be calculated as a peak comprising approximately characterizing polynomial function of the spatial relationship of the focus score data. 但是, 如以上所描述的,聚焦评分数据可能未必可跨越不同的照相机直接比较。 However, as described above, the data may not necessarily be the focus score across different camera direct comparison. 因此,最佳拟合平面也可以通过生成等同的MTF得分,并且确定使平均MTF得分最大化同时使其变动最小化的平面来计算。 Thus, the best-fit plane to be generated by an equivalent MTF score, and the score is determined to maximize the average MTF plane while it is calculated to minimize variation. 具体地,最佳拟合平面可以被计算以确定其中不同的透镜叠层之间的MTF 得分在某个指定的容差内被均衡的平面。 In particular, the best fitting plane may be calculated to determine the MTF of the lens between the laminate wherein the different points within a plane specified tolerance equalized. 此外,可以采用任意数量的平衡算法来完成适于特定应用的要求的该计算。 In addition, any number of balancing algorithms may be employed to accomplish this is adapted to calculate the specific application requirements. 这些平面的确定然后可以被用于促成阵列照相机模块的配置。 These planes may then be used to facilitate determining the configuration of the array of the camera module.

[0075] 在若干实施例中,配置处理涉及相对于传感器对透镜叠层阵列定向以形成能够实现具有期望特性的图片的阵列照相机模块。 [0075] In several embodiments, the configuration process involves the lens with respect to the sensor array oriented to form the laminate can be achieved with the desired characteristics of the image array camera module. 在一些实施例中,透镜叠层阵列相对于传感器被定向以便实现能够记录图像的阵列照相机模块,其中记录图像的轴上方面的质量超过指定的阈值标准。 In some embodiments, the lens array laminated so as to be oriented relative to the sensor array camera module can be implemented to record an image, wherein the image quality of the recording shaft exceeds the specified threshold criteria. 在若干实施例中,透镜叠层阵列相对于传感器主动对准以实现能够记录图像的阵列照相机模块,其中记录图像的轴外方面的质量超过指定的阈值标准。 In several embodiments, the lens array laminated active alignment relative to the sensor array to achieve a camera module capable of recording an image, wherein the quality of the recorded image areas of the outer shaft exceeds a specified threshold criterion. 还注意,在各个实施例中,配置处理可以涉及禁用在某一阈值质量之上的照相机以便避免使最佳拟合平面确定发生偏差。 Note also that, in various embodiments, the configuration process may involve disabled above a certain quality threshold of the camera in order to determine the best-fit plane to avoid deviations occur. 在大量的实施例中,透镜叠层阵列相对于传感器主动对准以实现能够记录图像的阵列照相机模块,其中轴上和轴外感兴趣的区域二者的质量超过各自指定的阈值质量。 In numerous embodiments, the lens array laminated active alignment relative to the sensor array to achieve a camera module capable of recording an image, the quality of both the outer shaft and wherein the shaft region of interest exceeds the threshold value of each specified mass.

[0076] 在许多实施例中,配置处理涉及禁用在某一定义的阈值质量之上或之下执行的照相机。 [0076] In many embodiments, the configuration process involves disabling the camera performs over a defined quality threshold or below. 再次,由于阵列照相机模块具有许多照相机,所以即使在其照相机中的一些不起作用时它也能够维持功能。 Again, since the camera module having a plurality of array camera, so the camera even when it does not work in some it is possible to maintain the function. 在若干实施例中,当在给定的空间方位时通过照相机的急剧聚焦的能力所确定的照相机的质量在阈值之上或之下时照相机被禁用。 In several embodiments, when above or below a threshold capacity by mass of sharp focus of the camera at a given spatial orientation determined by the camera when the camera is disabled. 例如,一些实施例通过评估照相机的各个记录图像的MTF得分来确定该照相机是否应当被禁用。 For example, some of the recorded images of each MTF embodiment of the camera by evaluating scores to determine whether the camera should be disabled. 在许多实施例中, 如果被禁用的照相机的数量超过指定值,则该阵列照相机模块被指明为是不可接受的。 In many embodiments, is disabled if the number exceeds a specified value of the camera, the camera module array is indicated as unacceptable. 在若干实施例中,可针对阵列照相机模块内的不同类型的照相机指定不同的阈值。 In several embodiments, different thresholds may be specified for different types of cameras in the array camera module. 例如,在利用π过滤器组的多个实施例中,可针对绿色照相机、红色照相机和蓝色照相机指定不同的阈值。 For example, in using a plurality of filters group π embodiment, different threshold values ​​may be specified for the camera green, blue and red cameras camera.

[0077] 在各个实施例中,在主动对准处理的评估方面期间所获得的信息被用于配置每个照相机的功能。 [0077] In various embodiments, assessment information during active alignment process is obtained for configuring each camera function. 例如,如果确定特定的照相机具有使它更适合于记录处于较远距离的对象的图像的焦距,则阵列照相机模块可被配置为在合成处于较远距离的对象的记录图像时更严重地依赖于该照相机。 For example, if the camera is determined to have a particular make it more suitable for recording an image in a relatively distant object focal length of the camera module of the array may be configured to record an image during the synthesis in a relatively distant object is more heavily dependent on the the camera.

[0078] 以上关于根据本发明实施例配置阵列照相机模块的描述不意味着是穷举的。 [0078] The above description of the embodiment configured in an array camera module according to the present invention is not intended to be exhaustive. 实际上,根据本发明的实施例,阵列照相机模块可基于配置的评估以任意数量的方式被配置。 In fact, according to an embodiment of the present invention, the camera module may be based on an array configuration is configured to evaluate any number of ways. 以下讨论对阵列照相机模块进行配置以使得它们能够捕获并记录具有期望的图像属性的图像的主动对准处理。 The following discussion of the camera module is configured in arrays such that they are able to capture and record an image of the active alignment process image having a desired property.

[0079] 产生能够记录具有期望特性的图像的阵列照相机模块的主动对准处理 Active alignment process [0079] can be produced having a desired recording characteristic of the image array camera module

[0080] 根据本发明实施例的主动对准处理可使用各种度量以对主动对准处理期间所捕获的图像数据进行评估。 [0080] Various metrics may be used an active alignment process according to an embodiment of the present invention to the image data captured during the active alignment process was evaluated. 在若干实施例中,主动对准处理可对捕获图像的特定区域中的图像质量进行优化,可对多个感兴趣的区域中的图像质量进行优化和/或可利用包括(但不限于)聚焦评分和MTF评分的各种度量。 In several embodiments, the active alignment process may be optimized for image quality of a specific region in the captured image, the image quality may be a plurality of regions of interest in the optimization and / or may be utilized include (but are not limited to) focus various metrics MTF score and score. 图9中示出了根据本发明实施例的主动对准处理,该主动对准处理使用迭代计算处理来产生能够捕获并记录具有充分的轴上和轴外性能的图像的阵列照相机模块。 FIG 9 shows the embodiment according to the active alignment process embodiment of the present invention, the active alignment process to produce an iterative calculation process can be used to capture and record an image array camera module has sufficient axis and off-axis performance.

[0081] 该处理被初始配置(902)以使得透镜叠层阵列和相应的传感器以类似于图6中所看到的方式被安装到主动对准机,以便它们总体上可操作为阵列照相机。 [0081] The process is initially configured (902) such that the lens array and the corresponding sensor laminate in a manner similar to that seen in FIG. 6 is mounted to the machine active alignment, so that they are generally operable array camera. 这可以包括使透镜叠层阵列与其相应的传感器总体上对准,如以上所描述的,这本身可以包括验证透镜叠层阵列和传感器处于充分的旋转对准以使得每个透镜叠层与其相应的焦平面总体上对准。 This may include the alignment of the lens array laminated overall sensor corresponding thereto, as described above, which in itself may include verifying a lens and a sensor array in a sufficiently stack rotational alignment such that each stack with its corresponding lens aligning the overall focal plane. 具有轴上ROI和轴外ROI的已知目标(类似于图8中所描绘的目标)被定位和照射以使得阵列照相机模块可以捕获并记录其图像。 The shaft having the outer shaft ROI and ROI known target (target similar to that depicted in FIG. 8) are positioned so that the illumination and camera module array can capture and record an image. 该初始配置还可以包括以预定的方式使特定的照相机无效以使得它们在对准处理期间不记录图像。 The initial configuration may further include a predetermined manner in a particular camera so that they are not invalid recorded image during the alignment process.

[0082] 透镜叠层阵列以类似于图7中所看到的方式在垂直于传感器的平坦表面的方向上被扫描(904),并且可以被扫描预定的距离。 [0082] In the lens array laminated manner similar to that seen in FIG. 7 is scanned (904) in a direction perpendicular to the planar surface of the sensor, and may be scanned a predetermined distance. 在扫描期间,活动的照相机间歇地捕获并记录(906)已知目标的图像。 During scanning, the camera intermittently active and known target captured image recording (906). 处理器评估(908)记录图像并且针对每个照相机为每个记录图像中的每个感兴趣的区域分配"聚焦得分"。 Assessment processor (908) and record an image for each camera is assigned to each region of interest in each image is recorded in the "focus scores." 对于最佳表征作为照相机离传感器的距离的函数的聚焦得分的、每个照相机所捕获的每个感兴趣的区域,导出(910)多项式。 For best characterized from the focusing distance sensor as a function of score cameras, each camera each captured region of interest, deriving (910) a polynomial. 在一些实施例中,该多项式通过针对给定的预定通用多项式(即,具有未确定的系数的多项式)计算系数来导出。 In some embodiments, the polynomial is derived by calculating for a given predetermined generic polynomial (i.e., a polynomial having coefficients undetermined) coefficients. 该多项式通常将具有峰值。 The polynomial typically has a peak.

[0083] 使用多项式的峰值导出(912)"轴上最佳拟合平面"。 Derived peak (912) "best fit plane axis" [0083] The polynomials used. 该轴上最佳拟合平面的特征在于它使对应于活动的照相机的峰值最大化和/或使峰值的变动最小化。 Wherein the shaft of the best-fit plane is that it maximizes the peak corresponding to the active camera and / or to minimize changes in the peak.

[0084] 然后使透镜叠层阵列与所计算的最佳拟合轴上平面对准(914)。 [0084] The laminate of the lens array and the calculated best-fit planar alignment axis (914). 每个活动的照相机捕获并记录(916)已知目标的图像。 Each active camera to capture and record images of known targets (916). 然后通过对于每个ROI确定MTF得分来评估(918) 每个记录图像。 Before assessing (918) an image is recorded by determining the MTF of each score for each ROI. 不满足阈值MTF得分的照相机被禁用(920)。 MTF score does not meet the threshold of a camera is disabled (920). 例如,在中间的轴上MTF得分的20%内不具有MTF得分的任意照相机可以被禁用,并且随后从进一步的对准位置计算中排除。 For example, the MTF of the intermediate shaft score 20% without having any MTF score camera may be disabled, and then excluded from further aligned position calculation. 该阈值当然可以是可配置的。 Of course the threshold may be configurable. 在其它实施例中,利用其它标准来确定哪些照相机应当被禁用。 In other embodiments, to determine which camera should be disabled by other standards. 此外,如果指定数量的照相机被禁用,则阵列照相机被认为是不可接受的。 In addition, if the specified number of cameras is disabled, the camera array is considered to be unacceptable.

[0085] 假设照相机没有被认为是不可接受的,则使用峰值聚焦得分和MTF得分对以前获取的聚焦评分数据进行调节(scale) (922)。 [0085] assuming the camera is not considered to be unacceptable, and the focus scores using a peak MTF focus scores for previously acquired data rates are adjusted (scale) (922). 例如,MTF得分可以根据以下公式调节: For example, MTF score can be adjusted according to the following formula:

[0086] 调节的聚焦得分z=(聚焦得分z/峰值聚焦得分)*MTF得分 [0086] adjustable focus scores z = (focus scores z / peak focus score) * MTF score

[0087] 其中z下标反映特定的z位置处的得分。 [0087] where the subscript z score reflects at a particular z position.

[0088] 聚焦评分数据(绝对值)是依赖曝光/信号水平的。 [0088] Focus data rates (absolute value) is dependent on the exposure / signal level. 因此,不同的照相机(例如, 蓝色、绿色、红色照相机)将由于它们不同的信号水平而具有不同的绝对聚焦得分峰值。 Thus, different cameras (e.g., blue, green, red camera) due to their different levels of the signals having different absolute peak focus scores. 然而。 however. MTF是对于信号水平不变的度量。 MTF is a measure of the signal level constant. 因此,MTF使得聚焦得分的曲线能够被归一化,使得从聚焦得分导出的曲线还可被用于比较每个照相机的峰值性能,而不仅仅是峰值性能出现的位置。 Thus, the MTF curve that focus scores can be normalized so that the curves derived from the focus scores can also be used to compare the performance of the peak of each camera, not just the position of the peak performance occurs. 在其它实施例中,在确定照相机峰值性能时可利用适于特定应用的各种度量中的任意一种。 In other embodiments, when the camera is determined using a peak performance can be adapted to measure any of a variety of specific applications.

[0089] 如之前那样,然后可以导出(924)表征调节的聚焦得分的多项式曲线。 [0089] As before, may then be derived polynomial curve (924) characterized by adjusting the focus scores. 因此,每个活动的照相机将由表征照相机的分辨各个感兴趣的区域的能力的多项式表征。 Thus, each camera's active area by polynomial characterizing the ability of the camera to distinguish the individual interest characterization. 考虑到这些新的多项式,最佳拟合轴上平面和最佳拟合轴外平面被导出(926);在这种情况下,最佳拟合平面的特征在于它们使平均MTF得分近似地最大化同时使它们的变动最小化。 Taking into account these new polynomial best fit plane axis and the best-fit plane is derived axis (926); in this case, characterized in that they are best-fit plane is approximately the average score of the maximum MTF of them while making changes is minimized. 计算(928)在两个最佳拟合平面(轴上和轴外)之间均匀间隔的可配置数量的平面。 A configurable number of plane between the two best-fit plane (outer shaft and the shaft) evenly spaced calculated (928). 计算(930)沿着那些平面中的每一个的其各个相应的位置处的每个照相机的调节聚焦得分。 Calculating (930) along the adjusting focus scores at that plane of each camera of each of their respective corresponding positions. 确定(932)最佳拟合平面,其中朝着最佳拟合轴外平面的任意偏移引起轴外调节聚焦得分的收益(gain)和轴上调节得分的损失(loss),其中轴外得分收益与轴上得分损失的比下降到可配置的阈值以下。 Determining (932) the best-fit plane, wherein an arbitrary best-fit axis towards the plane of the focus offset adjustment gains score (GAIN) to cause the outer shaft and adjustable loss scores (Loss) axis, wherein the outer shaft Score gains and losses axis scores decreased to below a configurable threshold. 然后使透镜叠层阵列与该计算的平面重新对准(934)。 Then the lens array and the plane of the laminate realigned calculated (934).

[0090] 验证(936)该处理的功效。 [0090] Verify (936) the process efficacy. 这可以通过例如使每个活动的照相机记录已知目标的图像,针对该图像内的每个ROI确定MTF得分,以及确保每个MTF得分超出某个阈值计算来完成。 This may be known in the target image recording by the camera, for example, each active, the score is determined for each ROI MTF within the image, and to ensure that each score MTF exceeds a certain threshold value calculation is done.

[0091] 所描述的处理可以被迭代(938)直到实现期望的配置。 [0091] The process may be iteratively described (938) until the desired configuration.

[0092] 尽管以上讨论了特定的处理及其变型,但是根据本发明的实施例,可以使用任意数量的处理来实现能够捕获并记录具有足够的轴上和轴外性能的图像的阵列照相机模块。 [0092] While the specific process discussed above and variations thereof, in accordance with embodiments of the present invention may be implemented with sufficient able to capture and record-axis and off-axis performance of an array camera module using any number of image processing. 此外,尽管讨论的处理关于足够平衡阵列照相机模块的轴上和轴外性能,但是根据本发明的实施例,主动对准处理可以被修改以实现任意数量的期望的图片特性。 Further, although the process performance with respect to the shaft axis and sufficiently balanced array camera module discussed above, in accordance with embodiments of the present invention, the active alignment process may be modified to implement any number of image characteristics desired.

[0093] 尽管已在某些特定的方面对本发明进行了描述,但是许多另外的修改和变化对于本领域技术人员将是清楚的。 [0093] Although certain aspects of the present invention has been described, but numerous additional modifications and variations to the skilled in the art will be apparent. 因此,要理解的是,本发明可以以具体描述以外的方式被实践。 Therefore to be understood that the present invention may be practiced otherwise than as specifically described. 因此,本发明的实施例在所有方面应当被认为是说明性的而非限制性的。 Thus, embodiments of the present invention is to be considered in all respects as illustrative and not restrictive.

Claims (17)

1. 一种用于使透镜叠层阵列与传感器主动对准的方法,该传感器包括多个焦平面,其中每个焦平面包括多个行像素,该多个行像素也形成多个列像素,并且每个焦平面被包含在不含有来自另一个焦平面的像素的成像器阵列的区域内,该方法包括: 使透镜叠层阵列在初始位置中相对于传感器对准,其中该透镜叠层阵列包括多个透镜叠层并且该多个透镜叠层形成用于传感器中的每个焦平面的独立光学通道; 改变透镜叠层阵列与传感器之间的空间关系; 以透镜叠层阵列与传感器之间的不同空间关系通过使用多个活动的焦平面捕获已知目标的图像,其中该已知目标包括至少一个感兴趣的区域; 对多个活动的焦平面所捕获的图像进行评分,其中产生的得分提供至少一个感兴趣的区域在图像中聚焦的程度的直接比较; 基于多个活动的焦平面所捕获的图像的 1. A method for making a laminated lens array and the sensor active alignment process, the sensor comprising a plurality of focal planes, wherein each focal plane comprising a plurality of rows of pixels, the plurality of rows of pixels are also formed a plurality of columns of pixels, and each focal plane is included in a region not containing the imager array of pixels from another focal plane, the method comprising: the lens array laminated stacked array in an initial position relative to the alignment of the sensor, wherein the lens comprising a stack of a plurality of lenses and the plurality of individual optical channels forming lens stack for each focal plane of the sensor; changing the spatial relationship between the lens and the sensor array stack; stack to the lens and the sensor array between the different spatial relationship acquisition by using a plurality of focal plane image of the known target activity, wherein the at least one region of a known target of interest comprising; a plurality of focal plane image captured activity score, the score generated therein to provide a direct comparison of at least one region of interest in an image focusing degree; a plurality of events based on a focal plane of a captured image 分的比较来选择透镜叠层阵列与传感器之间的空间关系;以及形成其中透镜叠层阵列和传感器被固定在所选择的空间关系中的阵列照相机子组件。 Comparative points selected spatial relationship between the lens and the sensor array stack; and forming an array wherein the camera lens stack subassembly and the sensor array are fixed spatial relationship to the selected.
2. 根据权利要求1所述的方法,其中对多个活动的焦平面所捕获的图像进行评分包括对于图像计算调制传递函数(MTF)得分。 2. The method according to claim 1, wherein the focal plane of the plurality of activities captured image comprises the image score is calculated modulation transfer function (MTF) score.
3. 根据权利要求1所述的方法,其中多个活动的焦平面所捕获的图像的得分的比较基于: 以所选择的空间关系由多个活动的焦平面所捕获的图像的得分与以不同的空间关系由相同的活动焦平面所捕获的图像的得分的比较;以及以所选择的空间关系由该活动的焦平面所捕获的图像的得分之间的变化。 3. The method according to claim 1, wherein the comparison score focal plane of the plurality of activities based on the captured images: spatial relationship to the score of the selected focal plane by a plurality of the captured images of activity and different comparison score from the same spatial relationship of the active focal plane of the captured image; and a change in score between the spatial relationship of the focal plane selected by the activity of the captured image.
4. 根据权利要求1所述的方法,其中得分的比较包括当活动的焦平面所捕获的图像的得分无法满足至少一个预定标准时,从考虑中略去由该活动的焦平面所捕获的图像。 4. The method according to claim 1, wherein comparing the score of the score when the image focal plane including the captured event can not satisfy at least one predetermined criterion, it is omitted from consideration of the focal plane image captured by the event.
5. 根据权利要求4所述的方法,其中该至少一个预定标准包括由活动的焦平面所捕获的图像的得分处于预定范围内。 5. The method of claim 4, wherein the at least one predetermined criterion comprises a focal plane image captured activity score within a predetermined range.
6. 根据权利要求4所述的方法,进一步包括当活动的焦平面所捕获的图像被从考虑中略去时使该活动的焦平面无效。 6. The method as claimed in claim 4, further comprising a focal plane when the activity of the captured image is omitted from consideration of the focal plane invalid activity.
7. 根据权利要求1所述的方法,其中得分的比较包括针对多个活动的焦平面中的每一个确定数学关系,该数学关系表征各个活动的焦平面所捕获的图像的得分与透镜叠层阵列和传感器之间的空间关系之间的关系。 7. The method according to claim 1, wherein the score comprises comparing the mathematical relationship is determined for each focal plane for a plurality of activities in the mathematical relationship characterizing the respective scores of the focal plane of the lens stack the activities of the captured image the relationship between the spatial relationship between the array and the sensor.
8. 根据权利要求7所述的方法,其中得分的比较进一步包括使用所确定的数学关系计算最佳拟合平面,其中该最佳拟合平面根据预定标准定义期望的空间关系。 8. The method according to claim 7, wherein further comprising comparing scores determined using the mathematical relation is calculated best-fit plane, wherein the spatial relationship between the best-fit plane according to predetermined criteria defined desired.
9. 根据权利要求8所述的方法,其中该预定标准包括在使得分的变动最小化的同时使该得分最大化。 9. The method according to claim 8, wherein the predetermined criteria include such changes in points while minimizing the score maximized.
10. 根据权利要求1所述的方法,其中: 已知目标包括感兴趣的中心区域和至少一个感兴趣的周边区域; 图像被评分使得针对每个图像中可视的每个感兴趣的区域提供得分,该得分指示各个感兴趣的区域在该图像中聚焦的程度; 得分的比较包括针对多个活动的焦平面中的每一个确定数学关系,该数学关系表征: 感兴趣的中心区域在各个活动的焦平面所捕获的图像中聚焦的程度的得分与透镜叠层阵列和传感器之间的空间关系之间的关系;以及至少一个感兴趣的周边区域在各个活动的焦平面所捕获的图像中聚焦的程度的得分与透镜叠层阵列和传感器之间的空间关系之间的关系。 10. The method according to claim 1, wherein: the known target of interest comprises a central region and a peripheral region of the at least one interest; region of each image is such that the rates of interest for each visual image provided score, the degree of interest in the region of each score indicates a focus in the image; comparison score comprises a mathematical relationship is determined for each focal plane in the plurality of activities, characterizing the mathematical relationship: the central region of interest in each activity the relationship between the spatial relationship between the focal plane image captured by the focusing lens stack degree score and a sensor array; and at least one peripheral region of interest in the image focal plane of the focus of each of the captured activities the relationship between the spatial relationship between the degree score and a sensor lens array laminate.
11. 根据权利要求10所述的方法,其中得分的比较进一步包括使用所确定的数学关系计算: 第一最佳拟合平面,该第一最佳拟合平面根据预定标准基于每个活动的焦平面在感兴趣的中心区域上聚焦的能力定义透镜叠层阵列与传感器之间的空间关系; 第二最佳拟合平面,该第二最佳拟合平面根据预定标准基于每个活动的焦平面在该至少一个感兴趣的周边区域上聚焦的能力定义透镜叠层阵列与传感器之间的空间关系;以及位于第一和第二最佳拟合平面之间的被递增地间隔的多个平面。 11. The method according to claim 10, wherein further comprising comparing scores determined using the calculated mathematical relationships: a first best-fit plane, based on the first best-fit plane for each active coke according to predetermined criteria the ability to define the spatial relationship between the lens array and stacked on the central plane of the sensor in the focus region of interest; a second best-fit plane, based on the second focal plane of the best-fit plane for each event according to predetermined criteria the ability to define the spatial relationship between the sensor array and the focusing lens is laminated on at least one peripheral region of interest; and positioned between the first and the second best-fit plane are a plurality of incrementally spaced plane.
12. 根据权利要求11所述的方法,其中选择透镜叠层阵列与传感器之间的空间关系包括使用至少一个预定标准来选择以下中的一个:由第一最佳拟合平面所定义的空间关系, 由第二最佳拟合平面所定义的空间关系,以及由该多个平面中的一个所定义的空间关系。 12. The method according to claim 11, wherein the selected spatial relationship between the lens and the sensor comprises a stacked array to select one of the following at least one predetermined criterion: a first spatial relationship by a best-fit plane defined , by a second spatial relationship defined by the best-fit plane, and the spatial relationship is defined by the plurality of planes one.
13. 根据权利要求12所述的方法,其中该至少一个预定标准基于: 以由所计算的平面所定义的每个空间关系,对指示该感兴趣的中心区域聚焦的程度的得分进行平均,该得分是以各个空间关系跨越所有的活动焦平面而被平均的; 以由所计算的平面所定义的每个空间关系,对指示该至少一个感兴趣的周边区域聚焦的程度的得分进行平均,该得分是以各个空间关系跨越所有的活动焦平面而被平均的;以及评估空间关系之间的所确定的平均得分的变化。 13. The method according to claim 12, wherein the at least one predetermined criterion is based on: each spatial relation to a plane defined by the calculated score indicates the degree of central region of the interest is focused on average, the score based on the respective spatial relationships across all activities averaged focal plane; each spatial relation to a plane defined by the calculated, indicates the degree of focus of the at least a peripheral region of interest averaged score, the score based on various spatial relationships across all the activities of the focal plane is average; and changes in average scores determined between the assessment of spatial relationships.
14. 根据权利要求1所述的方法,其中使透镜叠层阵列在初始位置中相对于传感器对准进一步包括: 执行透镜叠层阵列相对于传感器的初始扫描; 使用多个活动的焦平面沿着该初始扫描以改变的空间关系捕获包括感兴趣的中心区域的已知目标的图像的初始集合; 针对多个捕获图像中的感兴趣的中心区域确定聚焦得分; 针对被用于捕获图像的初始集合的多个活动的焦平面中的每一个确定数学关系的初始集合,其中该数学关系表征聚焦得分与透镜叠层阵列和传感器之间的空间关系之间的关系; 使用数学关系的初始集合计算初始的最佳拟合平面;以及使透镜叠层阵列与所计算的初始的最佳拟合平面对准。 14. The method according to claim 1, wherein the lens array laminated in an initial position relative to the alignment sensor further comprising: performing an initial scan lens of the stack relative to the sensor array; a plurality of events along the focal plane the initial scan to change the spatial relationship comprises a central region of interest to capture a known initial set of target image; the plurality of the captured image for the central region of interest in determining a focus score; for the initial set is used to capture an image each mathematical relationship to determine an initial set of the plurality of activities in the focal plane, wherein the mathematical relationship characterizing the relationship between the spatial relationship between the focus lens and the score stack and a sensor array; initial mathematical relationship used to calculate an initial set of the best-fit plane; and the lens array laminated with the computed initial best-fit plane aligned.
15. 根据权利要求1所述的方法,其中改变透镜叠层阵列与传感器之间的空间关系涉及相对于传感器扫描透镜叠层阵列。 15. The method according to claim 1, wherein changing the spatial relationship between the lens array and the stack relative to the sensor scanning sensor relates to a lens array laminate.
16. 根据权利要求15所述的方法,其中透镜叠层阵列在基本上垂直于传感器的表面的方向上被扫描。 16. The method according to claim 15, wherein the lens array of the stack is scanned in a direction substantially perpendicular to the surface of the sensor.
17. 根据权利要求1所述的方法,其中对多个活动的焦平面所捕获的图像进行评分包括: 根据第一标准针对所捕获的图像确定初步得分; 根据第二标准针对所捕获的图像的相关集合确定得分;以及基于针对所捕获的图像的相关集合所确定的得分将该初步得分外推为透镜叠层阵列与传感器之间的空间关系的函数。 17. The method according to claim 1, wherein the focal plane of the plurality of captured images activity score comprises: determining a preliminary score for the captured image according to a first criterion; according to the second standard for the captured image determining a score for the relevant set; and a function based on the score for the initial set of related images captured extrapolating the determined score spatial relationship between the lens array and the sensor stack.
CN 201380041095 2012-06-30 2013-06-14 Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors CN104520754A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US201261666852P true 2012-06-30 2012-06-30
US13/782,920 US20140002674A1 (en) 2012-06-30 2013-03-01 Systems and Methods for Manufacturing Camera Modules Using Active Alignment of Lens Stack Arrays and Sensors
PCT/US2013/046002 WO2014004134A1 (en) 2012-06-30 2013-06-14 Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors

Publications (1)

Publication Number Publication Date
CN104520754A true CN104520754A (en) 2015-04-15

Family

ID=49777764

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201380041095 CN104520754A (en) 2012-06-30 2013-06-14 Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors

Country Status (6)

Country Link
US (4) US20140002674A1 (en)
EP (1) EP2867718A4 (en)
JP (1) JP2015522178A (en)
KR (1) KR20150031452A (en)
CN (1) CN104520754A (en)
WO (1) WO2014004134A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106296711A (en) * 2016-08-22 2017-01-04 华南理工大学 Multi-axis active aligning method for mobile phone camera module

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103501416B (en) 2008-05-20 2017-04-12 派力肯成像公司 Imaging System
US8866920B2 (en) 2008-05-20 2014-10-21 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US8514491B2 (en) 2009-11-20 2013-08-20 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
SG10201503516VA (en) 2010-05-12 2015-06-29 Pelican Imaging Corp Architectures for imager arrays and array cameras
US8878950B2 (en) 2010-12-14 2014-11-04 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using super-resolution processes
US8305456B1 (en) 2011-05-11 2012-11-06 Pelican Imaging Corporation Systems and methods for transmitting and receiving array camera image data
US9009952B2 (en) * 2011-08-29 2015-04-21 Asm Technology Singapore Pte. Ltd. Apparatus for assembling a lens module and an image sensor to form a camera module, and a method of assembling the same
WO2013043751A1 (en) 2011-09-19 2013-03-28 Pelican Imaging Corporation Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US9129183B2 (en) 2011-09-28 2015-09-08 Pelican Imaging Corporation Systems and methods for encoding light field image files
EP2817955B1 (en) 2012-02-21 2018-04-11 FotoNation Cayman Limited Systems and methods for the manipulation of captured light field image data
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
US9100635B2 (en) 2012-06-28 2015-08-04 Pelican Imaging Corporation Systems and methods for detecting defective camera arrays and optic arrays
US20140002674A1 (en) 2012-06-30 2014-01-02 Pelican Imaging Corporation Systems and Methods for Manufacturing Camera Modules Using Active Alignment of Lens Stack Arrays and Sensors
US8619082B1 (en) 2012-08-21 2013-12-31 Pelican Imaging Corporation Systems and methods for parallax detection and correction in images captured using array cameras that contain occlusions using subsets of images to perform depth estimation
WO2014032020A2 (en) 2012-08-23 2014-02-27 Pelican Imaging Corporation Feature based high resolution motion estimation from low resolution images captured using an array source
CN104685860A (en) 2012-09-28 2015-06-03 派力肯影像公司 Generating images from light fields utilizing virtual viewpoints
WO2014078443A1 (en) 2012-11-13 2014-05-22 Pelican Imaging Corporation Systems and methods for array camera focal plane control
US9462164B2 (en) 2013-02-21 2016-10-04 Pelican Imaging Corporation Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
WO2014133974A1 (en) 2013-02-24 2014-09-04 Pelican Imaging Corporation Thin form computational and modular array cameras
US9638883B1 (en) 2013-03-04 2017-05-02 Fotonation Cayman Limited Passive alignment of array camera modules constructed from lens stack arrays and sensors based upon alignment information obtained during manufacture of array camera modules using an active alignment process
US9917998B2 (en) 2013-03-08 2018-03-13 Fotonation Cayman Limited Systems and methods for measuring scene information while capturing images using array cameras
US8866912B2 (en) 2013-03-10 2014-10-21 Pelican Imaging Corporation System and methods for calibration of an array camera using a single captured image
US9106784B2 (en) 2013-03-13 2015-08-11 Pelican Imaging Corporation Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9519972B2 (en) 2013-03-13 2016-12-13 Kip Peli P1 Lp Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9124831B2 (en) 2013-03-13 2015-09-01 Pelican Imaging Corporation System and methods for calibration of an array camera
WO2014164909A1 (en) 2013-03-13 2014-10-09 Pelican Imaging Corporation Array camera architecture implementing quantum film sensors
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9100586B2 (en) 2013-03-14 2015-08-04 Pelican Imaging Corporation Systems and methods for photometric normalization in array cameras
EP2973476A4 (en) 2013-03-15 2017-01-18 Pelican Imaging Corporation Systems and methods for stereo imaging with camera arrays
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US9445003B1 (en) 2013-03-15 2016-09-13 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
KR20140134498A (en) * 2013-05-14 2014-11-24 삼성전자주식회사 Imaging system and autofocus methed thereof
US20150062422A1 (en) * 2013-08-27 2015-03-05 Semiconductor Components Industries, Llc Lens alignment in camera modules using phase detection pixels
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9264592B2 (en) 2013-11-07 2016-02-16 Pelican Imaging Corporation Array camera modules incorporating independently aligned lens stacks
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
WO2015081279A1 (en) 2013-11-26 2015-06-04 Pelican Imaging Corporation Array camera configurations incorporating multiple constituent array cameras
US9213880B2 (en) * 2013-11-26 2015-12-15 Symbol Technologies, Llc Method of optimizing focus plane position of imaging scanner
WO2015134996A1 (en) 2014-03-07 2015-09-11 Pelican Imaging Corporation System and methods for depth regularization and semiautomatic interactive matting using rgb-d images
CN107077743A (en) 2014-09-29 2017-08-18 快图凯曼有限公司 Systems and methods for dynamic calibration of array cameras
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
EP3098777A1 (en) * 2015-05-28 2016-11-30 Socionext Inc. Drawing apparatus, drawing method, and drawing program
CN105842905B (en) * 2016-05-25 2018-08-03 京东方科技集团股份有限公司 A kind of virtual curved face display panel and display device
US10097777B2 (en) * 2016-06-03 2018-10-09 Recognition Robotics, Inc. Depth map from multi-focal plane images
US20190150717A1 (en) * 2016-06-13 2019-05-23 CapsoVision, Inc. Method and Apparatus of Lens Alignment for Capsule

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040165090A1 (en) * 2003-02-13 2004-08-26 Alex Ning Auto-focus (AF) lens and process
CN101102388A (en) * 2006-07-06 2008-01-09 三星电子株式会社 Image sensor and image sensing method using the same
CN101147392A (en) * 2005-03-24 2008-03-19 松下电器产业株式会社 Imaging device and lens array used therein
TW200828994A (en) * 2006-12-22 2008-07-01 Ind Tech Res Inst Autofocus searching method
US20100002126A1 (en) * 2004-11-16 2010-01-07 Aptina Imaging Corporation System and method for focusing a digital camera
US20110080487A1 (en) * 2008-05-20 2011-04-07 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
CN102375199A (en) * 2010-08-11 2012-03-14 鸿富锦精密工业(深圳)有限公司 Camera module

Family Cites Families (844)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4124798A (en) 1965-12-09 1978-11-07 Thompson Kenneth B Optical viewing apparatus
US4198646A (en) 1978-10-13 1980-04-15 Hughes Aircraft Company Monolithic imager for near-IR
US4323925A (en) 1980-07-07 1982-04-06 Avco Everett Research Laboratory, Inc. Method and apparatus for arraying image sensor modules
JPS5769476A (en) 1980-10-16 1982-04-28 Fuji Xerox Co Ltd Reader control system
JPS5925483A (en) 1982-08-04 1984-02-09 Hitachi Denshi Ltd Solid state image pickup device
US4652909A (en) 1982-09-14 1987-03-24 New York Institute Of Technology Television camera and recording system for high definition television having imagers of different frame rate
US4460449A (en) 1983-01-03 1984-07-17 Amerace Corporation Apparatus for making a tool
EP0289885A1 (en) 1987-05-08 1988-11-09 Siemens Aktiengesellschaft Aperture system for production of several partical probes with changeable cross-section
JPS6437177A (en) 1987-08-03 1989-02-07 Canon Kk Image pickup device
EP0342419B1 (en) 1988-05-19 1992-10-28 Siemens Aktiengesellschaft Method for the observation of a scene and apparatus therefor
US5070414A (en) 1988-09-20 1991-12-03 Kabushiki Kaisha Toshiba Method and apparatus for reading image information formed on material
US4962425A (en) 1988-10-27 1990-10-09 National Research Council Of Canada/Conseil National Deresherches Canada Photometric device
JPH02285772A (en) 1989-04-26 1990-11-26 Toshiba Corp Picture reader
US5157499A (en) 1990-06-29 1992-10-20 Kabushiki Kaisha N A C High-speed video camera using solid-state image sensor
US5144448A (en) 1990-07-31 1992-09-01 Vidar Systems Corporation Scanning apparatus using multiple CCD arrays and related method
US5463464A (en) 1991-10-04 1995-10-31 Kms Fusion, Inc. Electro-optical system for gauging surface profile deviations using infrared radiation
US5325449A (en) 1992-05-15 1994-06-28 David Sarnoff Research Center, Inc. Method for fusing images and apparatus therefor
JP3032382B2 (en) 1992-07-13 2000-04-17 シャープ株式会社 Sampling frequency converting apparatus of the digital signal
US5659424A (en) 1993-05-25 1997-08-19 Hitachi, Ltd. Projecting lens and image display device
JPH0715457A (en) 1993-06-18 1995-01-17 Hitachi Computer Electron Co Ltd Digital communication switchover system
US6095989A (en) 1993-07-20 2000-08-01 Hay; Sam H. Optical recognition methods for locating eyes
US6419638B1 (en) 1993-07-20 2002-07-16 Sam H. Hay Optical recognition methods for locating eyes
EP0677821A3 (en) 1994-04-14 1996-03-06 Hewlett Packard Co Magnify a digital image using feedback.
AU1742895A (en) 1994-06-09 1996-01-04 Kollmorgen Instrument Corporation Stereoscopic electro-optical system for automated inspection and/or alignment of imaging devices on a production assembly line
US5629524A (en) 1995-02-21 1997-05-13 Advanced Scientific Concepts, Inc. High speed crystallography detector
EP0739039A3 (en) 1995-04-18 1998-03-04 Interuniversitair Micro-Elektronica Centrum Vzw Pixel structure, image sensor using such pixel, structure and corresponding peripheric circuitry
US5963664A (en) 1995-06-22 1999-10-05 Sarnoff Corporation Method and system for image combination using a parallax-based technique
US6005607A (en) 1995-06-29 1999-12-21 Matsushita Electric Industrial Co., Ltd. Stereoscopic computer graphics image generating apparatus and stereoscopic TV apparatus
GB2302978A (en) 1995-07-04 1997-02-05 Sharp Kk LIquid crystal device
AU1074797A (en) 1995-11-07 1997-06-05 California Institute Of Technology Capacitively coupled successive approximation ultra low power analog-to-digital converter
US5757425A (en) 1995-12-19 1998-05-26 Eastman Kodak Company Method and apparatus for independently calibrating light source and photosensor arrays
JPH09181913A (en) 1995-12-26 1997-07-11 Olympus Optical Co Ltd Camera system
US5793900A (en) 1995-12-29 1998-08-11 Stanford University Generating categorical depth maps using passive defocus sensing
US5973844A (en) 1996-01-26 1999-10-26 Proxemics Lenslet array systems and methods
US6124974A (en) 1996-01-26 2000-09-26 Proxemics Lenslet array systems and methods
US6493465B2 (en) 1996-02-21 2002-12-10 Canon Kabushiki Kaisha Matching point extracting method and apparatus therefor
US5832312A (en) 1996-02-22 1998-11-03 Eastman Kodak Company Watertight body for accommodating a photographic camera
US5911008A (en) 1996-04-30 1999-06-08 Nippon Telegraph And Telephone Corporation Scheme for detecting shot boundaries in compressed video data using inter-frame/inter-field prediction coding and intra-frame/intra-field coding
US6002743A (en) 1996-07-17 1999-12-14 Telymonde; Timothy D. Method and apparatus for image acquisition from a plurality of cameras
GB9616262D0 (en) 1996-08-02 1996-09-11 Philips Electronics Nv Post-processing generation of focus/defocus effects for computer graphics images
US6141048A (en) 1996-08-19 2000-10-31 Eastman Kodak Company Compact image capture device
US6137535A (en) 1996-11-04 2000-10-24 Eastman Kodak Company Compact digital camera with segmented fields of view
US6069365A (en) 1997-11-25 2000-05-30 Alan Y. Chow Optical processor based imaging system
US5808350A (en) 1997-01-03 1998-09-15 Raytheon Company Integrated IR, visible and NIR sensor and methods of fabricating same
JPH10232626A (en) 1997-02-20 1998-09-02 Canon Inc Stereoscopic image display device
US5801919A (en) 1997-04-04 1998-09-01 Gateway 2000, Inc. Adjustably mounted camera assembly for portable computers
US6097394A (en) 1997-04-28 2000-08-01 Board Of Trustees, Leland Stanford, Jr. University Method and system for light field rendering
US6515701B2 (en) 1997-07-24 2003-02-04 Polaroid Corporation Focal plane exposure control system for CMOS area image sensors
US6563537B1 (en) 1997-07-31 2003-05-13 Fuji Photo Film Co., Ltd. Image signal interpolation
JP3430935B2 (en) 1997-10-20 2003-07-28 富士ゼロックス株式会社 Image reading apparatus and lens
JP4243779B2 (en) 1997-11-14 2009-03-25 株式会社ニコン Production process and the diffusion plate of the diffuser, as well as the microlens array manufacturing method and a microlens array
NO305728B1 (en) 1997-11-14 1999-07-12 Reidar E Tangen Optoelectronic camera and fremgangsmÕte the image formatting in the same
JPH11242189A (en) 1997-12-25 1999-09-07 Olympus Optical Co Ltd Method and device for forming image
US6721008B2 (en) 1998-01-22 2004-04-13 Eastman Kodak Company Integrated CMOS active pixel digital camera
JPH11223708A (en) 1998-02-09 1999-08-17 Nikon Corp Indentator and production of micro-optical element array
US6054703A (en) 1998-03-20 2000-04-25 Syscan, Inc. Sensing module for accelerating signal readout from image sensors
US6160909A (en) 1998-04-01 2000-12-12 Canon Kabushiki Kaisha Depth control for stereoscopic images
KR100307883B1 (en) 1998-04-13 2001-08-24 박호군 Method for measuring similarity by using a matching pixel count and apparatus for implementing the same
JP3931936B2 (en) 1998-05-11 2007-06-20 セイコーエプソン株式会社 The microlens array substrate and a method for manufacturing the same, and a display device
JP3284190B2 (en) 1998-05-14 2002-05-20 富士重工業株式会社 Stereo camera image correction device
US6205241B1 (en) 1998-06-01 2001-03-20 Canon Kabushiki Kaisha Compression of stereoscopic images
US6137100A (en) 1998-06-08 2000-10-24 Photobit Corporation CMOS image sensor with different pixel sizes for different colors
US6069351A (en) 1998-07-16 2000-05-30 Intel Corporation Focal plane processor for scaling information from image sensors
US6903770B1 (en) 1998-07-27 2005-06-07 Sanyo Electric Co., Ltd. Digital camera which produces a single image based on two exposures
US6340994B1 (en) 1998-08-12 2002-01-22 Pixonics, Llc System and method for using temporal gamma and reverse super-resolution to process images for use in digital display systems
US20020063807A1 (en) 1999-04-19 2002-05-30 Neal Margulis Method for Performing Image Transforms in a Digital Display System
US6269175B1 (en) 1998-08-28 2001-07-31 Sarnoff Corporation Method and apparatus for enhancing regions of aligned images using flow estimation
US6879735B1 (en) 1998-09-14 2005-04-12 University Of Utah Reasearch Foundation Method of digital image enhancement and sharpening
US6310650B1 (en) 1998-09-23 2001-10-30 Honeywell International Inc. Method and apparatus for calibrating a tiled display
GB2343320B (en) 1998-10-31 2003-03-26 Ibm Camera system for three dimentional images and video
JP3596314B2 (en) 1998-11-02 2004-12-02 日産自動車株式会社 Position measuring device and a mobile-way judging device of the object end
US6611289B1 (en) 1999-01-15 2003-08-26 Yanbin Yu Digital cameras using multiple sensors with multiple lenses
JP3875423B2 (en) 1999-01-19 2007-01-31 日本放送協会 A solid-state imaging device and its video signal output device
US6603513B1 (en) 1999-02-16 2003-08-05 Micron Technology, Inc. Using a single control line to provide select and reset signals to image sensors in two rows of a digital imaging device
US6563540B2 (en) 1999-02-26 2003-05-13 Intel Corporation Light sensor with increased dynamic range
US6819358B1 (en) 1999-04-26 2004-11-16 Microsoft Corporation Error calibration for digital image sensors and apparatus using the same
US6292713B1 (en) 1999-05-20 2001-09-18 Compaq Computer Corporation Robotic telepresence system
US6864916B1 (en) 1999-06-04 2005-03-08 The Trustees Of Columbia University In The City Of New York Apparatus and method for high dynamic range imaging using spatially varying exposures
JP2001008235A (en) 1999-06-25 2001-01-12 Minolta Co Ltd Image input method for reconfiguring three-dimensional data and multiple-lens data input device
JP2001042042A (en) 1999-07-27 2001-02-16 Canon Inc Image pickup device
US6801653B1 (en) 1999-08-05 2004-10-05 Sony Corporation Information processing apparatus and method as well as medium
US7015954B1 (en) 1999-08-09 2006-03-21 Fuji Xerox Co., Ltd. Automatic video system using multiple cameras
US6647142B1 (en) 1999-08-19 2003-11-11 Mitsubishi Electric Research Laboratories, Inc. Badge identification system
US6771833B1 (en) 1999-08-20 2004-08-03 Eastman Kodak Company Method and system for enhancing digital images
US6628330B1 (en) 1999-09-01 2003-09-30 Neomagic Corp. Color interpolator and horizontal/vertical edge enhancer using two line buffer and alternating even/odd filters for digital camera
US6358862B1 (en) 1999-09-02 2002-03-19 Micron Technology, Inc Passivation integrity improvements
JP3280001B2 (en) 1999-09-16 2002-04-30 富士重工業株式会社 Positional deviation adjustment device of the stereo image
US6639596B1 (en) 1999-09-20 2003-10-28 Microsoft Corporation Stereo reconstruction from multiperspective panoramas
US6774941B1 (en) 1999-10-26 2004-08-10 National Semiconductor Corporation CCD output processing stage that amplifies signals from colored pixels based on the conversion efficiency of the colored pixels
US6671399B1 (en) 1999-10-27 2003-12-30 Canon Kabushiki Kaisha Fast epipolar line adjustment of stereo pairs
US6674892B1 (en) 1999-11-01 2004-01-06 Canon Kabushiki Kaisha Correcting an epipolar axis for skew and offset
JP2001195050A (en) 1999-11-05 2001-07-19 Mitsubishi Denki System Lsi Design Kk Graphic accelerator
EP1235438B1 (en) 1999-11-26 2004-09-29 Sanyo Electric Co., Ltd. Method for converting two-dimensional video to three-dimensional video
JP3950926B2 (en) 1999-11-30 2007-08-01 エーユー オプトロニクス コーポレイションAU Optronics Corp. The image display method, the host apparatus, the image display device, and an interface for display
JP3728160B2 (en) 1999-12-06 2005-12-21 キヤノン株式会社 Depth image measuring apparatus and method, and a mixed reality presentation system,
US7068851B1 (en) 1999-12-10 2006-06-27 Ricoh Co., Ltd. Multiscale sharpening and smoothing with wavelets
FI107680B (en) 1999-12-22 2001-09-14 Nokia Oyj A method for transmitting video images, the data transmission system, the transmitting video terminal and the receiving video terminal
US6476805B1 (en) 1999-12-23 2002-11-05 Microsoft Corporation Techniques for spatial displacement estimation and multi-resolution operations on light fields
US6502097B1 (en) 1999-12-23 2002-12-31 Microsoft Corporation Data structure for efficient access to variable-size data objects
JP2001194114A (en) 2000-01-14 2001-07-19 Sony Corp Image processing apparatus and method and program providing medium
EP2311526A3 (en) 2000-02-18 2011-12-07 William Beaumont Hospital Cone-beam computerized tomography with a flat-panel imager
US6523046B2 (en) 2000-02-25 2003-02-18 Microsoft Corporation Infrastructure and method for supporting generic multimedia metadata
JP2001264033A (en) 2000-03-17 2001-09-26 Sony Corp Three-dimensional shape-measuring apparatus and its method, three-dimensional modeling device and its method, and program providing medium
US6571466B1 (en) 2000-03-27 2003-06-03 Amkor Technology, Inc. Flip chip image sensor package fabrication method
JP2001277260A (en) 2000-03-30 2001-10-09 Seiko Epson Corp Micro-lens array, its production method, and original board and display for producing it
KR20020084288A (en) 2000-04-04 2002-11-04 주식회사 아도반테스토 Multibeam exposure apparatus comprising multiaxis electron lens and method for manufacturing semiconductor device
US20020015536A1 (en) 2000-04-24 2002-02-07 Warren Penny G. Apparatus and method for color image fusion
JP2001337263A (en) 2000-05-25 2001-12-07 Olympus Optical Co Ltd Range-finding device
JP4501239B2 (en) 2000-07-13 2010-07-14 ソニー株式会社 Camera calibration apparatus and method, and storage medium
JP4015944B2 (en) 2000-07-21 2007-11-28 ザ トラスティース オブ コロンビア ユニバーシティ イン ザ シティ オブ ニューヨーク Method and apparatus for image mosaicking
WO2002009036A2 (en) 2000-07-21 2002-01-31 The Trustees Of Columbia University In The City Of New York Method and apparatus for reducing distortion in images
US7154546B1 (en) 2000-08-07 2006-12-26 Micron Technology, Inc. Pixel optimization for color
EP1185112B1 (en) 2000-08-25 2005-12-14 Fuji Photo Film Co., Ltd. Apparatus for parallax image capturing and parallax image processing
US7085409B2 (en) 2000-10-18 2006-08-01 Sarnoff Corporation Method and apparatus for synthesizing new video and/or still imagery from a collection of real video and/or still imagery
US6734905B2 (en) 2000-10-20 2004-05-11 Micron Technology, Inc. Dynamic range extension for CMOS image sensors
US6774889B1 (en) 2000-10-24 2004-08-10 Microsoft Corporation System and method for transforming an ordinary computer monitor screen into a touch screen
US7262799B2 (en) 2000-10-25 2007-08-28 Canon Kabushiki Kaisha Image sensing apparatus and its control method, control program, and storage medium
US6476971B1 (en) 2000-10-31 2002-11-05 Eastman Kodak Company Method of manufacturing a microlens array mold and a microlens array
JP3918499B2 (en) 2000-11-01 2007-05-23 セイコーエプソン株式会社 Clearance measuring method, clearance measuring device, the shape measuring method, a manufacturing method of a shape measuring apparatus and a liquid crystal device
US6788338B1 (en) 2000-11-20 2004-09-07 Petko Dimitrov Dinev High resolution video camera apparatus having two image sensors and signal processing
JP2002171537A (en) 2000-11-30 2002-06-14 Canon Inc Compound image pickup system, image pickup device and electronic device
US7260274B2 (en) 2000-12-01 2007-08-21 Imax Corporation Techniques and systems for developing high-resolution imagery
US7596281B2 (en) 2000-12-05 2009-09-29 Yeda Research And Development Co. Ltd. Apparatus and method for alignment of spatial or temporal non-overlapping images sequences
JP2002252338A (en) 2000-12-18 2002-09-06 Canon Inc Imaging device and imaging system
JP2002195910A (en) 2000-12-26 2002-07-10 Omron Corp System for testing optical part
JP2002209226A (en) 2000-12-28 2002-07-26 Canon Inc Image pickup device
US7805680B2 (en) 2001-01-03 2010-09-28 Nokia Corporation Statistical metering and filtering of content via pixel-based metadata
JP3957460B2 (en) 2001-01-15 2007-08-15 沖電気工業株式会社 Transmitting the header compression apparatus, the moving picture coding apparatus and a moving picture transmission system
JP2002250607A (en) 2001-02-27 2002-09-06 Optex Co Ltd Object detection sensor
US6635941B2 (en) 2001-03-21 2003-10-21 Canon Kabushiki Kaisha Structure of semiconductor device with improved reliability
JP2002324743A (en) 2001-04-24 2002-11-08 Canon Inc Exposing method and equipment thereof
US6443579B1 (en) 2001-05-02 2002-09-03 Kenneth Myers Field-of-view controlling arrangements
US20020167537A1 (en) 2001-05-11 2002-11-14 Miroslav Trajkovic Motion-based tracking with pan-tilt-zoom camera
US7235785B2 (en) 2001-05-11 2007-06-26 Irvine Sensors Corp. Imaging device with multiple fields of view incorporating memory-based temperature compensation of an uncooled focal plane array
WO2002096096A1 (en) 2001-05-16 2002-11-28 Zaxel Systems, Inc. 3d instant replay system and method
AU2002305780A1 (en) 2001-05-29 2002-12-09 Transchip, Inc. Patent application cmos imager for cellular applications and methods of using such
US7738013B2 (en) 2001-05-29 2010-06-15 Samsung Electronics Co., Ltd. Systems and methods for power conservation in a CMOS imager
US6482669B1 (en) 2001-05-30 2002-11-19 Taiwan Semiconductor Manufacturing Company Colors only process to reduce package yield loss
US6525302B2 (en) 2001-06-06 2003-02-25 The Regents Of The University Of Colorado Wavefront coding phase contrast imaging systems
US20020195548A1 (en) 2001-06-06 2002-12-26 Dowski Edward Raymond Wavefront coding interference contrast imaging systems
US20030025227A1 (en) 2001-08-02 2003-02-06 Zograph, Llc Reproduction of relief patterns
US8675119B2 (en) 2001-08-09 2014-03-18 Trustees Of Columbia University In The City Of New York Adaptive imaging using digital light processing
EP1289309B1 (en) 2001-08-31 2010-04-21 STMicroelectronics Srl Noise filter for Bayer pattern image data
JP3978706B2 (en) 2001-09-20 2007-09-19 セイコーエプソン株式会社 Method for manufacturing a microstructure
JP2003139910A (en) 2001-10-30 2003-05-14 Sony Corp Optical element, method and device for manufacturing the same, and liquid crystal display device and image projection type display device using the same
DE10153237A1 (en) 2001-10-31 2003-05-15 Lfk Gmbh Method and apparatus for automated determination of the modulation transfer function (MTF) of focal plane array (FPA) - Cameras
JP3705766B2 (en) 2001-11-28 2005-10-12 コニカミノルタホールディングス株式会社 Image input device
US6927922B2 (en) 2001-12-18 2005-08-09 The University Of Rochester Imaging using a multifocal aspheric lens to obtain extended depth of field
US7212228B2 (en) 2002-01-16 2007-05-01 Advanced Telecommunications Research Institute International Automatic camera calibration method
US7302118B2 (en) 2002-02-07 2007-11-27 Microsoft Corporation Transformation of images
US20030179418A1 (en) 2002-03-19 2003-09-25 Eastman Kodak Company Producing a defective pixel map from defective cluster pixels in an area array image sensor
US8369607B2 (en) 2002-03-27 2013-02-05 Sanyo Electric Co., Ltd. Method and apparatus for processing three-dimensional images
JP2003298920A (en) 2002-03-29 2003-10-17 Fuji Photo Film Co Ltd Digital camera
US20030188659A1 (en) 2002-04-05 2003-10-09 Canadian Bank Note Company Limited Method and apparatus for reproducing a color image based on monochrome images derived therefrom
US7215364B2 (en) 2002-04-10 2007-05-08 Panx Imaging, Inc. Digital imaging system using overlapping images to formulate a seamless composite image and implemented using either a digital imaging sensor array
US6856314B2 (en) 2002-04-18 2005-02-15 Stmicroelectronics, Inc. Method and system for 3D reconstruction of multiple views with altering search path and occlusion modeling
US6917702B2 (en) 2002-04-24 2005-07-12 Mitsubishi Electric Research Labs, Inc. Calibration of multiple cameras for a turntable-based 3D scanner
JP3567327B2 (en) 2002-05-08 2004-09-22 富士写真光機株式会社 Imaging lens
US6783900B2 (en) 2002-05-13 2004-08-31 Micron Technology, Inc. Color filter imaging array and method of formation
JP2004048644A (en) 2002-05-21 2004-02-12 Sony Corp Information processor, information processing system and interlocutor display method
JP2003347192A (en) 2002-05-24 2003-12-05 Toshiba Corp Energy beam exposure method and exposure device
US7129981B2 (en) 2002-06-27 2006-10-31 International Business Machines Corporation Rendering system and method for images having differing foveal area and peripheral view area resolutions
JP2004088713A (en) 2002-06-27 2004-03-18 Olympus Corp Image pickup lens unit and image pickup device
JP4147059B2 (en) 2002-07-03 2008-09-10 株式会社トプコン Calibration data measuring device, measuring method and a program, and a computer-readable recording medium, the image data processing device
JP2004037924A (en) 2002-07-04 2004-02-05 Minolta Co Ltd Imaging apparatus
WO2004008403A2 (en) 2002-07-15 2004-01-22 Magna B.S.P. Ltd. Method and apparatus for implementing multipurpose monitoring system
US20040012689A1 (en) 2002-07-16 2004-01-22 Fairchild Imaging Charge coupled devices in tiled arrays
JP2004078296A (en) 2002-08-09 2004-03-11 Victor Co Of Japan Ltd Picture generation device
US7447380B2 (en) 2002-09-12 2008-11-04 Inoe Technologies, Llc Efficient method for creating a viewpoint from plurality of images
US20040050104A1 (en) 2002-09-18 2004-03-18 Eastman Kodak Company Forming information transfer lens array
US20040207836A1 (en) 2002-09-27 2004-10-21 Rajeshwar Chhibber High dynamic range optical inspection system and method
US7084904B2 (en) 2002-09-30 2006-08-01 Microsoft Corporation Foveated wide-angle imaging system and method for capturing and viewing wide-angle images in real time
US7477781B1 (en) 2002-10-10 2009-01-13 Dalsa Corporation Method and apparatus for adaptive pixel correction of multi-color matrix
US20040075654A1 (en) 2002-10-16 2004-04-22 Silicon Integrated Systems Corp. 3-D digital image processor and method for visibility processing for use in the same
JP4171786B2 (en) 2002-10-25 2008-10-29 コニカミノルタホールディングス株式会社 Image input device
US7742088B2 (en) 2002-11-19 2010-06-22 Fujifilm Corporation Image sensor and digital camera
EP1570683A1 (en) 2002-11-21 2005-09-07 Vision III Imaging, Inc. Critical alignment of parallax images for autostereoscopic display
US20040105021A1 (en) 2002-12-02 2004-06-03 Bolymedia Holdings Co., Ltd. Color filter patterns for image sensors
US20040114807A1 (en) 2002-12-13 2004-06-17 Dan Lelescu Statistical representation and coding of light field data
US6878918B2 (en) 2003-01-09 2005-04-12 Dialdg Semiconductor Gmbh APS pixel with reset noise suppression and programmable binning capability
US7496293B2 (en) 2004-01-14 2009-02-24 Elbit Systems Ltd. Versatile camera for various visibility conditions
US7340099B2 (en) 2003-01-17 2008-03-04 University Of New Brunswick System and method for image fusion
DE10301941B4 (en) 2003-01-20 2005-11-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Camera and method for the optical recording of a screen
US7379592B2 (en) 2003-01-21 2008-05-27 United States Of America As Represented By The Secretary Of The Navy System and method for significant dust detection and enhancement of dust images over land and ocean
AU2003272936A1 (en) 2003-01-31 2004-08-23 The Circle For The Promotion Of Science And Engineering Method for creating high resolution color image, system for creating high resolution color image and program for creating high resolution color image
US7005637B2 (en) 2003-01-31 2006-02-28 Intevac, Inc. Backside thinning of image array devices
US7308157B2 (en) 2003-02-03 2007-12-11 Photon Dynamics, Inc. Method and apparatus for optical inspection of a display
US7595817B1 (en) 2003-02-12 2009-09-29 The Research Foundation Of State University Of New York Linear system based, qualitative independent motion detection from compressed MPEG surveillance video
JP2004266369A (en) 2003-02-21 2004-09-24 Sony Corp Solid-state image pickup unit and its driving method
US7106914B2 (en) 2003-02-27 2006-09-12 Microsoft Corporation Bayesian image super resolution
US7148861B2 (en) 2003-03-01 2006-12-12 The Boeing Company Systems and methods for providing enhanced vision imaging with decreased latency
US8218052B2 (en) 2003-03-07 2012-07-10 Iconix Video, Inc. High frame rate high definition imaging system and method
US7218320B2 (en) 2003-03-13 2007-05-15 Sony Corporation System and method for capturing facial and body motion
US6801719B1 (en) * 2003-03-14 2004-10-05 Eastman Kodak Company Camera using beam splitter with micro-lens image amplification
US7206449B2 (en) 2003-03-19 2007-04-17 Mitsubishi Electric Research Laboratories, Inc. Detecting silhouette edges in images
US7425984B2 (en) 2003-04-04 2008-09-16 Stmicroelectronics, Inc. Compound camera and methods for implementing auto-focus, depth-of-field and high-resolution functions
US7373005B2 (en) 2003-04-10 2008-05-13 Micron Technology, Inc. Compression system for integrated sensor devices
US7097311B2 (en) 2003-04-19 2006-08-29 University Of Kentucky Research Foundation Super-resolution overlay in multi-projector displays
US6958862B1 (en) 2003-04-21 2005-10-25 Foveon, Inc. Use of a lenslet array with a vertically stacked pixel array
US7428330B2 (en) 2003-05-02 2008-09-23 Microsoft Corporation Cyclopean virtual imaging via generalized probabilistic smoothing
SE525665C2 (en) 2003-05-08 2005-03-29 Forskarpatent I Syd Ab The matrix of pixels, and electronic image device comprising said matrix of pixels
EP1627526A1 (en) 2003-05-13 2006-02-22 Xceed Imaging Ltd. Optical method and system for enhancing image resolution
JP2004348674A (en) 2003-05-26 2004-12-09 Noritsu Koki Co Ltd Region detection method and its device
US20040239782A1 (en) 2003-05-30 2004-12-02 William Equitz System and method for efficient improvement of image quality in cameras
KR20040103786A (en) 2003-06-02 2004-12-09 펜탁스 가부시키가이샤 A multiple-focal-length imaging device, and a mobile device having the multiple-focal-length imaging device
JP2004363478A (en) 2003-06-06 2004-12-24 Sanyo Electric Co Ltd Manufacturing method of semiconductor device
KR100539234B1 (en) 2003-06-11 2005-12-27 삼성전자주식회사 A CMOS type image sensor module having transparent polymeric encapsulation material
US6818934B1 (en) 2003-06-24 2004-11-16 Omnivision International Holding Ltd Image sensor having micro-lens array separated with trench structures and method of making
US7362918B2 (en) 2003-06-24 2008-04-22 Microsoft Corporation System and method for de-noising multiple copies of a signal
US7090135B2 (en) 2003-07-07 2006-08-15 Symbol Technologies, Inc. Imaging arrangement and barcode imager for imaging an optical code or target at a plurality of focal planes
US7388609B2 (en) 2003-07-07 2008-06-17 Zoran Corporation Dynamic identification and correction of defective pixels
US20050007461A1 (en) 2003-07-11 2005-01-13 Novatek Microelectronic Co. Correction system and method of analog front end
JP3731589B2 (en) 2003-07-18 2006-01-05 ソニー株式会社 The imaging device and the synchronizing signal generator
US7233737B2 (en) * 2003-08-12 2007-06-19 Micron Technology, Inc. Fixed-focus camera module and associated method of assembly
US7643703B2 (en) 2003-09-03 2010-01-05 Battelle Energy Alliance, Llc Image change detection systems, methods, and articles of manufacture
WO2005024698A2 (en) 2003-09-04 2005-03-17 Sarnoff Corporation Method and apparatus for performing iris recognition from an image
WO2005027038A2 (en) 2003-09-08 2005-03-24 Honda Motor Co., Ltd. Systems and methods for directly generating a view using a layered approach
JP4020850B2 (en) 2003-10-06 2007-12-12 株式会社東芝 The method of manufacturing a magnetic recording medium manufacturing apparatus, the imprint stamper and a method of manufacturing the same
US7079251B2 (en) 2003-10-16 2006-07-18 4D Technology Corporation Calibration and error correction in multi-channel imaging
EP2466871A3 (en) 2003-10-22 2017-05-03 Panasonic Intellectual Property Management Co., Ltd. Imaging apparatus and method for producing the same, portable equipment, and imaging sensor and method for producing the same.
US7840067B2 (en) 2003-10-24 2010-11-23 Arcsoft, Inc. Color matching and color correction for images forming a panoramic image
CN1875638A (en) 2003-11-11 2006-12-06 奥林巴斯株式会社 Multi-spectrum image pick up device
US7490774B2 (en) 2003-11-13 2009-02-17 Metrologic Instruments, Inc. Hand-supportable imaging based bar code symbol reader employing automatic light exposure measurement and illumination control subsystem integrated therein
JP4235539B2 (en) 2003-12-01 2009-03-11 独立行政法人科学技術振興機構 Image composition apparatus and an image configuring
US7328288B2 (en) 2003-12-11 2008-02-05 Canon Kabushiki Kaisha Relay apparatus for relaying communication from CPU to peripheral device
US7453510B2 (en) 2003-12-11 2008-11-18 Nokia Corporation Imaging device
US20050128509A1 (en) 2003-12-11 2005-06-16 Timo Tokkonen Image creating method and imaging device
JP3859158B2 (en) 2003-12-16 2006-12-20 セイコーエプソン株式会社 The substrate with concave portions for microlenses, microlens substrate, a transmission screen, and rear projection
US7511749B2 (en) 2003-12-18 2009-03-31 Aptina Imaging Corporation Color image sensor having imaging element array forming images on respective regions of sensor elements
US7123298B2 (en) 2003-12-18 2006-10-17 Avago Technologies Sensor Ip Pte. Ltd. Color image sensor with imaging elements imaging on respective regions of sensor elements
US7376250B2 (en) 2004-01-05 2008-05-20 Honda Motor Co., Ltd. Apparatus, method and program for moving object detection
US8139142B2 (en) 2006-06-01 2012-03-20 Microsoft Corporation Video manipulation of red, green, blue, distance (RGB-Z) data including segmentation, up-sampling, and background substitution techniques
US8134637B2 (en) 2004-01-28 2012-03-13 Microsoft Corporation Method and system to increase X-Y resolution in a depth (Z) camera using red, blue, green (RGB) sensing
US7453688B2 (en) 2004-01-29 2008-11-18 Inventec Corporation Multimedia device for portable computers
US20050185711A1 (en) 2004-02-20 2005-08-25 Hanspeter Pfister 3D television system and method
SE527889C2 (en) 2004-03-17 2006-07-04 Thomas Jeff Adamo Apparatus for imaging an object
JP2006047944A (en) 2004-03-24 2006-02-16 Fuji Photo Film Co Ltd Photographing lens
WO2005096218A1 (en) 2004-03-31 2005-10-13 Canon Kabushiki Kaisha Imaging system performance measurement
US7633511B2 (en) 2004-04-01 2009-12-15 Microsoft Corporation Pop-up light field
JP4665422B2 (en) 2004-04-02 2011-04-06 ソニー株式会社 Imaging device
US8634014B2 (en) 2004-04-05 2014-01-21 Hewlett-Packard Development Company, L.P. Imaging device analysis systems and imaging device analysis methods
US7091531B2 (en) 2004-04-07 2006-08-15 Micron Technology, Inc. High dynamic range pixel amplifier
US8049806B2 (en) 2004-09-27 2011-11-01 Digitaloptics Corporation East Thin camera and associated methods
US7773143B2 (en) 2004-04-08 2010-08-10 Tessera North America, Inc. Thin color camera having sub-pixel resolution
US7620265B1 (en) 2004-04-12 2009-11-17 Equinox Corporation Color invariant image fusion of visible and thermal infrared video
JP2005303694A (en) 2004-04-13 2005-10-27 Konica Minolta Holdings Inc Compound eye imaging device
US7292735B2 (en) 2004-04-16 2007-11-06 Microsoft Corporation Virtual image artifact detection
US8218625B2 (en) 2004-04-23 2012-07-10 Dolby Laboratories Licensing Corporation Encoding, decoding and representing high dynamic range images
US20060034531A1 (en) 2004-05-10 2006-02-16 Seiko Epson Corporation Block noise level evaluation method for compressed images and control method of imaging device utilizing the evaluation method
CN1953708B (en) 2004-05-14 2010-06-16 皇家飞利浦电子股份有限公司 System and method for diagnosing breast cancer
US7355793B2 (en) 2004-05-19 2008-04-08 The Regents Of The University Of California Optical system applicable to improving the dynamic range of Shack-Hartmann sensors
WO2006083277A2 (en) 2004-05-25 2006-08-10 Sarnoff Corporation Low latency pyramid processor for image processing systems
JP2005354124A (en) 2004-06-08 2005-12-22 Seiko Epson Corp Production of high pixel density image from a plurality of low pixel density images
US7330593B2 (en) 2004-06-25 2008-02-12 Stmicroelectronics, Inc. Segment based image matching method and system
JP4479373B2 (en) 2004-06-28 2010-06-09 ソニー株式会社 Image sensor
JP4408755B2 (en) 2004-06-28 2010-02-03 Necエレクトロニクス株式会社 Deinterleave apparatus, the mobile communication terminal and de-interleaving method
US7447382B2 (en) 2004-06-30 2008-11-04 Intel Corporation Computing a higher resolution image from multiple lower resolution images using model-based, robust Bayesian estimation
JP2006033228A (en) 2004-07-14 2006-02-02 Victor Co Of Japan Ltd Picture imaging apparatus
JP2006033493A (en) 2004-07-16 2006-02-02 Matsushita Electric Ind Co Ltd Imaging apparatus
US7189954B2 (en) 2004-07-19 2007-03-13 Micron Technology, Inc. Microelectronic imagers with optical devices and methods of manufacturing such microelectronic imagers
JP2006033570A (en) 2004-07-20 2006-02-02 Olympus Corp Image generating device
US8027531B2 (en) 2004-07-21 2011-09-27 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and method for capturing a scene using staggered triggering of dense camera arrays
GB0416496D0 (en) 2004-07-23 2004-08-25 Council Of The Central Lab Of Imaging device
US20060023197A1 (en) 2004-07-27 2006-02-02 Joel Andrew H Method and system for automated production of autostereoscopic and animated prints and transparencies from digital and non-digital media
US7068432B2 (en) 2004-07-27 2006-06-27 Micron Technology, Inc. Controlling lens shape in a microlens array
DE102004036469A1 (en) 2004-07-28 2006-02-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Camera module, based on this array, and method for its production
US7333652B2 (en) 2004-08-03 2008-02-19 Sony Corporation System and method for efficiently performing a depth map recovery procedure
US20060028476A1 (en) 2004-08-03 2006-02-09 Irwin Sobel Method and system for providing extensive coverage of an object using virtual cameras
JP2006050263A (en) 2004-08-04 2006-02-16 Olympus Corp Image generation method and device
KR20070064319A (en) 2004-08-06 2007-06-20 유니버시티 오브 워싱톤 Variable fixation viewing distance scanned light displays
US7430339B2 (en) 2004-08-09 2008-09-30 Microsoft Corporation Border matting by dynamic programming
US7609302B2 (en) 2004-08-11 2009-10-27 Micron Technology, Inc. Correction of non-uniform sensitivity in an image array
US7645635B2 (en) 2004-08-16 2010-01-12 Micron Technology, Inc. Frame structure and semiconductor attach process for use therewith for fabrication of image sensor packages and the like, and resulting packages
US7061693B2 (en) 2004-08-16 2006-06-13 Xceed Imaging Ltd. Optical method and system for extended depth of focus
US20070247517A1 (en) 2004-08-23 2007-10-25 Sarnoff Corporation Method and apparatus for producing a fused image
US20070102622A1 (en) * 2005-07-01 2007-05-10 Olsen Richard I Apparatus for multiple camera devices and method of operating same
US7916180B2 (en) 2004-08-25 2011-03-29 Protarius Filo Ag, L.L.C. Simultaneous multiple field of view digital cameras
US8124929B2 (en) 2004-08-25 2012-02-28 Protarius Filo Ag, L.L.C. Imager module optical focus and assembly method
US7564019B2 (en) 2005-08-25 2009-07-21 Richard Ian Olsen Large dynamic range cameras
US20060054782A1 (en) 2004-08-25 2006-03-16 Olsen Richard I Apparatus for multiple camera devices and method of operating same
US7964835B2 (en) 2005-08-25 2011-06-21 Protarius Filo Ag, L.L.C. Digital cameras with direct luminance and chrominance detection
US7795577B2 (en) 2004-08-25 2010-09-14 Richard Ian Olsen Lens frame and optical focus assembly for imager module
US20070258006A1 (en) 2005-08-25 2007-11-08 Olsen Richard I Solid state camera optics frame and assembly
CN100489599C (en) 2004-08-26 2009-05-20 财团法人秋田企业活性化中心;独立行政法人科学技术振兴机构 Liquid crystal lens
JP4057597B2 (en) 2004-08-26 2008-03-05 独立行政法人科学技術振興機構 Optical element
US20060046204A1 (en) 2004-08-31 2006-03-02 Sharp Laboratories Of America, Inc. Directly patternable microlens
JP2006080852A (en) 2004-09-09 2006-03-23 Olympus Corp Apparatus and method of processing image, electronic camera, scanner and image processing program
US20060055811A1 (en) 2004-09-14 2006-03-16 Frtiz Bernard S Imaging system having modules with adaptive optical elements
US7145124B2 (en) 2004-09-15 2006-12-05 Raytheon Company Multispectral imaging chip using photonic crystals
JP3977368B2 (en) 2004-09-30 2007-09-19 クラリオン株式会社 Parking assist system
DE102004049676A1 (en) 2004-10-12 2006-04-20 Infineon Technologies Ag A method for computer-aided motion estimation in a plurality of temporally successive digital images, arrangement for computer-aided motion estimation, a computer program element and computer readable storage medium
JP2006119368A (en) 2004-10-21 2006-05-11 Konica Minolta Opto Inc Wide-angle optical system, imaging lens device, monitor camera and digital equipment
JP4534715B2 (en) 2004-10-22 2010-09-01 株式会社ニコン An imaging apparatus and an image processing program
DE102004052994C5 (en) 2004-11-03 2010-08-26 Vistec Electron Beam Gmbh Multibeam modulator for a particle beam, and use of the multi-beam modulator for maskless patterning substrate
KR100603601B1 (en) 2004-11-08 2006-07-24 한국전자통신연구원 Apparatus and Method for Production Multi-view Contents
US7538326B2 (en) 2004-12-03 2009-05-26 Fluke Corporation Visible light and IR combined image camera with a laser pointer
US7483065B2 (en) 2004-12-15 2009-01-27 Aptina Imaging Corporation Multi-lens imaging systems and methods using optical filters having mosaic patterns
US8854486B2 (en) 2004-12-17 2014-10-07 Mitsubishi Electric Research Laboratories, Inc. Method and system for processing multiview videos for view synthesis using skip and direct modes
US7728878B2 (en) 2004-12-17 2010-06-01 Mitsubishi Electric Research Labortories, Inc. Method and system for processing multiview videos for view synthesis using side information
US7773404B2 (en) 2005-01-07 2010-08-10 Invisage Technologies, Inc. Quantum dot optical devices with enhanced gain and sensitivity and methods of making same
CN101198964A (en) 2005-01-07 2008-06-11 格斯图尔泰克股份有限公司 Creating 3D images of objects by illuminating with infrared patterns
US7073908B1 (en) 2005-01-11 2006-07-11 Anthony Italo Provitola Enhancement of depth perception
US7767949B2 (en) 2005-01-18 2010-08-03 Rearden, Llc Apparatus and method for capturing still images and video using coded aperture techniques
US7671321B2 (en) 2005-01-18 2010-03-02 Rearden, Llc Apparatus and method for capturing still images and video using coded lens imaging techniques
US7602997B2 (en) 2005-01-19 2009-10-13 The United States Of America As Represented By The Secretary Of The Army Method of super-resolving images
US7408627B2 (en) 2005-02-08 2008-08-05 Canesta, Inc. Methods and system to quantify depth data accuracy in three-dimensional sensors using single frame capture
US7965314B1 (en) 2005-02-09 2011-06-21 Flir Systems, Inc. Foveal camera systems and methods
US7561191B2 (en) 2005-02-18 2009-07-14 Eastman Kodak Company Camera phone using multiple lenses and image sensors to provide an extended zoom range
AT518113T (en) 2005-03-11 2011-08-15 Creaform Inc scan Selbstreferenziertes system and apparatus for three-dimensional
JP2006258930A (en) 2005-03-15 2006-09-28 Nikon Corp Method for manufacturing microlens and method for manufacturing die for microlens
US7692147B2 (en) 2005-03-21 2010-04-06 Massachusetts Institute Of Technology Real-time, continuous-wave terahertz imaging using a microbolometer focal-plane array
JPWO2006100903A1 (en) 2005-03-23 2008-08-28 松下電器産業株式会社 Vehicle-mounted imaging device
US7297917B2 (en) 2005-03-24 2007-11-20 Micron Technology, Inc. Readout technique for increasing or maintaining dynamic range in image sensors
US7683950B2 (en) 2005-04-26 2010-03-23 Eastman Kodak Company Method and apparatus for correcting a channel dependent color aberration in a digital image
US7956871B2 (en) 2005-04-28 2011-06-07 Samsung Electronics Co., Ltd. Color disparity correction in image sensors methods and circuits
US7656428B2 (en) 2005-05-05 2010-02-02 Avago Technologies General Ip (Singapore) Pte. Ltd. Imaging device employing optical motion sensor as gyroscope
EP1882449A4 (en) 2005-05-18 2010-05-05 Hitachi Medical Corp Radiograph and image processing program
US8411182B2 (en) 2005-06-02 2013-04-02 Xerox Corporation System for controlling integration times of photosensors in an imaging device
US7968888B2 (en) 2005-06-08 2011-06-28 Panasonic Corporation Solid-state image sensor and manufacturing method thereof
JP2006345233A (en) 2005-06-09 2006-12-21 Fujifilm Holdings Corp Imaging device and digital camera
KR100813961B1 (en) 2005-06-14 2008-03-14 삼성전자주식회사 Method and apparatus for transmitting and receiving of video, and transport stream structure thereof
US7364306B2 (en) 2005-06-20 2008-04-29 Digital Display Innovations, Llc Field sequential light source modulation for a digital display system
JP4826152B2 (en) 2005-06-23 2011-11-30 株式会社ニコン Image composition method and imaging apparatus
JP4577126B2 (en) 2005-07-08 2010-11-10 オムロン株式会社 Generating apparatus and method for generating a projection pattern for stereo correspondence
WO2007014293A1 (en) 2005-07-25 2007-02-01 The Regents Of The University Of California Digital imaging system and method to produce mosaic images
CA2553473A1 (en) 2005-07-26 2007-01-26 Wa James Tam Generating a depth map from a tw0-dimensional source image for stereoscopic and multiview imaging
JP4903705B2 (en) 2005-07-26 2012-03-28 パナソニック株式会社 Compound-eye imaging device and manufacturing method thereof
US7969488B2 (en) 2005-08-03 2011-06-28 Micron Technologies, Inc. Correction of cluster defects in imagers
US7929801B2 (en) 2005-08-15 2011-04-19 Sony Corporation Depth information for auto focus using two pictures and two-dimensional Gaussian scale space theory
US20070041391A1 (en) 2005-08-18 2007-02-22 Micron Technology, Inc. Method and apparatus for controlling imager output data rate
US20070040922A1 (en) 2005-08-22 2007-02-22 Micron Technology, Inc. HDR/AB on multi-way shared pixels
US20070083114A1 (en) 2005-08-26 2007-04-12 The University Of Connecticut Systems and methods for image resolution enhancement
JP4804856B2 (en) 2005-09-29 2011-11-02 富士フイルム株式会社 Single focus lens
WO2007036055A1 (en) 2005-09-30 2007-04-05 Simon Fraser University Methods and apparatus for detecting defects in imaging arrays by image analysis
US7723662B2 (en) 2005-10-07 2010-05-25 The Board Of Trustees Of The Leland Stanford Junior University Microscopy arrangements and approaches
JP4773179B2 (en) 2005-10-14 2011-09-14 富士フイルム株式会社 Imaging device
US8300085B2 (en) 2005-10-14 2012-10-30 Microsoft Corporation Occlusion handling in stereo imaging
US7806604B2 (en) 2005-10-20 2010-10-05 Honeywell International Inc. Face detection and tracking in a wide field of view
KR100730406B1 (en) 2005-11-16 2007-06-19 광운대학교 산학협력단 Three-dimensional display apparatus using intermediate elemental images
JP4389865B2 (en) 2005-11-17 2009-12-24 ソニー株式会社 Signal processing device and signal processing method and imaging apparatus of the solid-state imaging device
CN101356831B (en) 2005-11-30 2010-09-01 意大利电信股份公司 Method for determining disperse optical parallax field of stereo vision
US7599547B2 (en) 2005-11-30 2009-10-06 Microsoft Corporation Symmetric stereo model for handling occlusion
US8059162B2 (en) 2006-11-15 2011-11-15 Sony Corporation Imaging apparatus and method, and method for designing imaging apparatus
JP4516516B2 (en) 2005-12-07 2010-08-04 本田技研工業株式会社 Human detection device, human detection method and the person detecting program
TWI296480B (en) 2005-12-19 2008-05-01 Quanta Comp Inc Image camera of an electronic device
JP4501855B2 (en) 2005-12-22 2010-07-14 ソニー株式会社 Image signal processing apparatus, an imaging apparatus, an image signal processing method and computer program
JP2007180730A (en) 2005-12-27 2007-07-12 Eastman Kodak Co Digital camera and data management method
EP1966648A4 (en) 2005-12-30 2011-06-15 Nokia Corp Method and device for controlling auto focusing of a video camera by tracking a region-of-interest
US7855786B2 (en) 2006-01-09 2010-12-21 Bae Systems Spectral Solutions Llc Single camera multi-spectral imager
US7675080B2 (en) 2006-01-10 2010-03-09 Aptina Imaging Corp. Uniform color filter arrays in a moat
WO2007083579A1 (en) 2006-01-20 2007-07-26 Matsushita Electric Industrial Co., Ltd. Compound eye camera module and method of producing the same
DE102006004802B4 (en) 2006-01-23 2008-09-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Image capture system and method for producing at least one image acquisition system
JP4834412B2 (en) 2006-02-03 2011-12-14 富士フイルム株式会社 Solid-state imaging device and electronic endoscope using the same
US20070201859A1 (en) 2006-02-24 2007-08-30 Logitech Europe S.A. Method and system for use of 3D sensors in an image capture device
US7391572B2 (en) 2006-03-01 2008-06-24 International Business Machines Corporation Hybrid optical/electronic structures fabricated by a common molding process
US7924483B2 (en) 2006-03-06 2011-04-12 Smith Scott T Fused multi-array color image sensor
DE102006011707B4 (en) 2006-03-14 2010-11-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and apparatus for generating a structure-free recording fiberscopic
US7616254B2 (en) 2006-03-16 2009-11-10 Sony Corporation Simple method for calculating camera defocus from an image scene
US8360574B2 (en) 2006-03-20 2013-01-29 High Performance Optics, Inc. High performance selective light wavelength filtering providing improved contrast sensitivity
JP4615468B2 (en) 2006-03-23 2011-01-19 富士フイルム株式会社 Imaging apparatus
US7606484B1 (en) 2006-03-23 2009-10-20 Flir Systems, Inc. Infrared and near-infrared camera hyperframing
US7342212B2 (en) 2006-03-31 2008-03-11 Micron Technology, Inc. Analog vertical sub-sampling in an active pixel sensor (APS) image sensor
US7916934B2 (en) 2006-04-04 2011-03-29 Mitsubishi Electric Research Laboratories, Inc. Method and system for acquiring, encoding, decoding and displaying 3D light fields
US8044994B2 (en) 2006-04-04 2011-10-25 Mitsubishi Electric Research Laboratories, Inc. Method and system for decoding and displaying 3D light fields
TW200740212A (en) 2006-04-10 2007-10-16 Sony Taiwan Ltd A stitching accuracy improvement method with lens distortion correction
US20070242141A1 (en) 2006-04-14 2007-10-18 Sony Corporation And Sony Electronics Inc. Adjustable neutral density filter system for dynamic range compression from scene to imaging sensor
CN101064780B (en) 2006-04-30 2012-07-04 台湾新力国际股份有限公司 Method and apparatus for improving image joint accuracy using lens distortion correction
US20070263114A1 (en) 2006-05-01 2007-11-15 Microalign Technologies, Inc. Ultra-thin digital imaging device of high resolution for mobile electronic devices and method of imaging
US7580620B2 (en) 2006-05-08 2009-08-25 Mitsubishi Electric Research Laboratories, Inc. Method for deblurring images using optimized temporal coding patterns
US9736346B2 (en) 2006-05-09 2017-08-15 Stereo Display, Inc Imaging system improving image resolution of the system with low resolution image sensor
US7889264B2 (en) 2006-05-12 2011-02-15 Ricoh Co., Ltd. End-to-end design of superresolution electro-optic imaging systems
US7916362B2 (en) 2006-05-22 2011-03-29 Eastman Kodak Company Image sensor with improved light sensitivity
IES20070229A2 (en) 2006-06-05 2007-10-03 Fotonation Vision Ltd Image acquisition method and apparatus
US20070177004A1 (en) 2006-06-08 2007-08-02 Timo Kolehmainen Image creating method and imaging device
JP4631811B2 (en) 2006-06-12 2011-02-23 株式会社日立製作所 Imaging device
JP5106870B2 (en) 2006-06-14 2012-12-26 株式会社東芝 Solid-state image sensor
FR2902530A1 (en) 2006-06-19 2007-12-21 St Microelectronics Rousset Polymer lens fabricating method for e.g. complementary MOS imager, involves realizing opaque zones on convex lens by degrading molecular structure of polymer material, where zones form diaphragm and diffraction network that forms filter
US7925117B2 (en) 2006-06-27 2011-04-12 Honeywell International Inc. Fusion of sensor data and synthetic data to form an integrated image
US20080024683A1 (en) 2006-07-31 2008-01-31 Niranjan Damera-Venkata Overlapped multi-projector system with dithering
JP2008039852A (en) 2006-08-01 2008-02-21 Agc Techno Glass Co Ltd Glass optical element and its manufacturing method
US20080030592A1 (en) 2006-08-01 2008-02-07 Eastman Kodak Company Producing digital image with different resolution portions
US8406562B2 (en) 2006-08-11 2013-03-26 Geo Semiconductor Inc. System and method for automated calibration and correction of display geometry and color
AT479980T (en) 2006-08-24 2010-09-15 Valeo Vision Method for determining the passage of a vehicle through a narrow passage
US8687087B2 (en) 2006-08-29 2014-04-01 Csr Technology Inc. Digital camera with selectively increased dynamic range by control of parameters during image acquisition
US8306063B2 (en) 2006-08-29 2012-11-06 EXFO Services Assurance, Inc. Real-time transport protocol stream detection system and method
KR100746360B1 (en) 2006-08-31 2007-07-30 삼성전기주식회사 Manufacturing method of stamper
NO326372B1 (en) 2006-09-21 2008-11-17 Polight As Polymer Lens
US7918555B2 (en) 2006-09-25 2011-04-05 Ophthonix, Inc. Methods and lenses for correction of chromatic aberration
JP4403162B2 (en) 2006-09-29 2010-01-20 株式会社東芝 The method for manufacturing a stereoscopic image display apparatus and a stereoscopic image
US20080080028A1 (en) 2006-10-02 2008-04-03 Micron Technology, Inc. Imaging method, apparatus and system having extended depth of field
US8031258B2 (en) 2006-10-04 2011-10-04 Omnivision Technologies, Inc. Providing multiple video signals from single sensor
CN101606086B (en) 2006-10-11 2012-11-14 珀莱特公司 Method for manufacturing adjustable lens
KR101360455B1 (en) 2006-10-11 2014-02-07 포라이트 에이에스 Design of compact adjustable lens
US8073196B2 (en) 2006-10-16 2011-12-06 University Of Southern California Detection and tracking of moving objects from a moving platform in presence of strong parallax
US7702229B2 (en) * 2006-10-18 2010-04-20 Eastman Kodak Company Lens array assisted focus detection
JP4349456B2 (en) 2006-10-23 2009-10-21 ソニー株式会社 The solid-state imaging device
JP4942221B2 (en) 2006-10-25 2012-05-30 国立大学法人東京工業大学 High resolution virtual focal plane image generation method
US7888159B2 (en) 2006-10-26 2011-02-15 Omnivision Technologies, Inc. Image sensor having curved micro-mirrors over the sensing photodiode and method for fabricating
JP4452951B2 (en) 2006-11-02 2010-04-21 富士フイルム株式会社 Distance image generating method and device
KR20080043106A (en) 2006-11-13 2008-05-16 삼성전자주식회사 Optical lens and manufacturing method thereof
US20080118241A1 (en) 2006-11-16 2008-05-22 Tekolste Robert Control of stray light in camera systems employing an optics stack and associated methods
US8538166B2 (en) 2006-11-21 2013-09-17 Mantisvision Ltd. 3D geometric modeling and 3D video content creation
KR20080047002A (en) 2006-11-24 2008-05-28 엘지이노텍 주식회사 Lens assembly and method manufacturing the same for camera module
US8559705B2 (en) 2006-12-01 2013-10-15 Lytro, Inc. Interactive refocusing of electronic images
JP4406937B2 (en) 2006-12-01 2010-02-03 富士フイルム株式会社 Imaging apparatus
JP5040493B2 (en) 2006-12-04 2012-10-03 ソニー株式会社 Imaging apparatus and imaging method
US8242426B2 (en) 2006-12-12 2012-08-14 Dolby Laboratories Licensing Corporation Electronic camera having multiple sensors for capturing high dynamic range images and related methods
US7646549B2 (en) 2006-12-18 2010-01-12 Xceed Imaging Ltd Imaging system and method for providing extended depth of focus, range extraction and super resolved imaging
US8213500B2 (en) 2006-12-21 2012-07-03 Sharp Laboratories Of America, Inc. Methods and systems for processing film grain noise
US8103111B2 (en) 2006-12-26 2012-01-24 Olympus Imaging Corp. Coding method, electronic camera, recording medium storing coded program, and decoding method
US20080158259A1 (en) 2006-12-28 2008-07-03 Texas Instruments Incorporated Image warping and lateral color correction
US7973823B2 (en) 2006-12-29 2011-07-05 Nokia Corporation Method and system for image pre-processing
US20080158698A1 (en) 2006-12-29 2008-07-03 Chao-Chi Chang Lens barrel array and lens array and the method of making the same
US20080165257A1 (en) 2007-01-05 2008-07-10 Micron Technology, Inc. Configurable pixel array system and method
US8655052B2 (en) 2007-01-26 2014-02-18 Intellectual Discovery Co., Ltd. Methodology for 3D scene reconstruction from 2D image sequences
JP5024992B2 (en) 2007-02-02 2012-09-12 株式会社ジャパンディスプレイセントラル Display device
US7956988B1 (en) 2007-02-06 2011-06-07 Alpha Technology, LLC Light detection and ranging systems and related methods
US7792423B2 (en) 2007-02-06 2010-09-07 Mitsubishi Electric Research Laboratories, Inc. 4D light field cameras
CN100585453C (en) 2007-02-09 2010-01-27 奥林巴斯映像株式会社 Decoding method and decoding apparatus
JP4386083B2 (en) 2007-02-27 2009-12-16 トヨタ自動車株式会社 Parking assist system
JP4153013B1 (en) 2007-03-06 2008-09-17 シャープ株式会社 An imaging lens, an image pickup unit and a portable information terminal including the same
US7755679B2 (en) 2007-03-07 2010-07-13 Altasens, Inc. Apparatus and method for reducing edge effect in an image sensor
US7729602B2 (en) 2007-03-09 2010-06-01 Eastman Kodak Company Camera using multiple lenses and image sensors operable in a default imaging mode
US7683962B2 (en) 2007-03-09 2010-03-23 Eastman Kodak Company Camera using multiple lenses and image sensors in a rangefinder configuration to provide a range map
US7859588B2 (en) 2007-03-09 2010-12-28 Eastman Kodak Company Method and apparatus for operating a dual lens camera to augment an image
US7676146B2 (en) 2007-03-09 2010-03-09 Eastman Kodak Company Camera using multiple lenses and image sensors to provide improved focusing capability
JP2008242658A (en) 2007-03-26 2008-10-09 Funai Electric Co Ltd Three-dimensional object imaging apparatus
JP4915859B2 (en) 2007-03-26 2012-04-11 国立大学法人大阪大学 Object distance deriving device
US7738017B2 (en) 2007-03-27 2010-06-15 Aptina Imaging Corporation Method and apparatus for automatic linear shift parallax correction for multi-array image systems
US8165418B2 (en) 2007-03-30 2012-04-24 Brother Kogyo Kabushiki Kaisha Image processor
US8055466B2 (en) 2007-03-30 2011-11-08 Mitutoyo Corporation Global calibration for stereo vision probe
WO2008120217A2 (en) 2007-04-02 2008-10-09 Prime Sense Ltd. Depth mapping using projected patterns
US8098941B2 (en) 2007-04-03 2012-01-17 Aptina Imaging Corporation Method and apparatus for parallelization of image compression encoders
US8213711B2 (en) 2007-04-03 2012-07-03 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Industry, Through The Communications Research Centre Canada Method and graphical user interface for modifying depth maps
CN101281282A (en) 2007-04-04 2008-10-08 鸿富锦精密工业(深圳)有限公司;鸿海精密工业股份有限公司 Lens module
JP2008258885A (en) 2007-04-04 2008-10-23 Texas Instr Japan Ltd Imaging apparatus and driving method of imaging apparatus
CN103839955B (en) 2007-04-18 2016-05-25 因维萨热技术公司 Materials for optoelectronic devices, systems and methods
WO2009023044A2 (en) 2007-04-24 2009-02-19 21 Ct, Inc. Method and system for fast dense stereoscopic ranging
KR100869219B1 (en) 2007-05-03 2008-11-18 동부일렉트로닉스 주식회사 Image Sensor and Method for Manufacturing thereof
US8462220B2 (en) 2007-05-09 2013-06-11 Aptina Imaging Corporation Method and apparatus for improving low-light performance for small pixel image sensors
US7812869B2 (en) 2007-05-11 2010-10-12 Aptina Imaging Corporation Configurable pixel array system and method
JP4341695B2 (en) 2007-05-17 2009-10-07 ソニー株式会社 Image input processing apparatus, image signal processing circuit, and a noise reduction method of an image signal
JP4337911B2 (en) 2007-05-24 2009-09-30 ソニー株式会社 Imaging device, an imaging circuit, and an imaging method
US20080298674A1 (en) 2007-05-29 2008-12-04 Image Masters Inc. Stereoscopic Panoramic imaging system
US7733575B2 (en) 2007-05-31 2010-06-08 Artificial Muscle, Inc. Optical systems employing compliant electroactive materials
TWI362550B (en) 2007-06-21 2012-04-21 Ether Precision Inc The method for manufacturing the image captures unit
US8290358B1 (en) 2007-06-25 2012-10-16 Adobe Systems Incorporated Methods and apparatus for light-field imaging
WO2009001255A1 (en) 2007-06-26 2008-12-31 Koninklijke Philips Electronics N.V. Method and system for encoding a 3d video signal, enclosed 3d video signal, method and system for decoder for a 3d video signal
US20100182406A1 (en) 2007-07-12 2010-07-22 Benitez Ana B System and method for three-dimensional object reconstruction from two-dimensional images
US9094675B2 (en) 2008-02-29 2015-07-28 Disney Enterprises Inc. Processing image data from multiple cameras for motion pictures
US8125619B2 (en) 2007-07-25 2012-02-28 Eminent Electronic Technology Corp. Integrated ambient light sensor and distance sensor
JP5006727B2 (en) 2007-07-26 2012-08-22 株式会社リコー Image processing apparatus and digital camera
US8019215B2 (en) 2007-08-06 2011-09-13 Adobe Systems Incorporated Method and apparatus for radiance capture by multiplexing in the frequency domain
EP2034338A1 (en) 2007-08-11 2009-03-11 ETH Zurich Liquid Lens System
EP2026563A1 (en) 2007-08-14 2009-02-18 Deutsche Thomson OHG System and method for detecting defective pixels
US7782364B2 (en) 2007-08-21 2010-08-24 Aptina Imaging Corporation Multi-array sensor with integrated sub-array for parallax detection and photometer functionality
US7973834B2 (en) 2007-09-24 2011-07-05 Jianwen Yang Electro-optical foveated imaging and tracking system
US20090079862A1 (en) * 2007-09-25 2009-03-26 Micron Technology, Inc. Method and apparatus providing imaging auto-focus utilizing absolute blur value
US20090086074A1 (en) 2007-09-27 2009-04-02 Omnivision Technologies, Inc. Dual mode camera solution apparatus, system, and method
US7940311B2 (en) 2007-10-03 2011-05-10 Nokia Corporation Multi-exposure pattern for enhancing dynamic range of images
JP5172267B2 (en) 2007-10-09 2013-03-27 富士フイルム株式会社 Imaging device
US8049289B2 (en) 2007-10-11 2011-11-01 Dongbu Hitek Co., Ltd. Image sensor and method for manufacturing the same
US7956924B2 (en) 2007-10-18 2011-06-07 Adobe Systems Incorporated Fast computational camera based on two arrays of lenses
US7787112B2 (en) * 2007-10-22 2010-08-31 Visiongate, Inc. Depth of field extension for optical tomography
US7920193B2 (en) 2007-10-23 2011-04-05 Aptina Imaging Corporation Methods, systems and apparatuses using barrier self-calibration for high dynamic range imagers
US7777804B2 (en) 2007-10-26 2010-08-17 Omnivision Technologies, Inc. High dynamic range sensor with reduced line memory for color interpolation
US20100223237A1 (en) 2007-11-05 2010-09-02 University Of Florida Research Foundation, Inc. Lossless data compression and real-time decompression
US20090128644A1 (en) 2007-11-15 2009-05-21 Camp Jr William O System and method for generating a photograph
US7852461B2 (en) 2007-11-15 2010-12-14 Microsoft International Holdings B.V. Dual mode depth imaging
US8351685B2 (en) 2007-11-16 2013-01-08 Gwangju Institute Of Science And Technology Device and method for estimating depth map, and method for generating intermediate image and method for encoding multi-view video using the same
US8126279B2 (en) 2007-11-19 2012-02-28 The University Of Arizona Lifting-based view compensated compression and remote visualization of volume rendered images
JP5010445B2 (en) 2007-11-29 2012-08-29 パナソニック株式会社 Manufacturing method of mold for microlens array
KR20090055803A (en) 2007-11-29 2009-06-03 광주과학기술원 Method and apparatus for generating multi-viewpoint depth map, method for generating disparity of multi-viewpoint image
GB2455316B (en) 2007-12-04 2012-08-15 Sony Corp Image processing apparatus and method
US8384803B2 (en) 2007-12-13 2013-02-26 Keigo Iizuka Camera system and method for amalgamating images to create an omni-focused image
TWI353778B (en) 2007-12-21 2011-12-01 Ind Tech Res Inst Moving object detection apparatus and method
US7880807B2 (en) 2007-12-26 2011-02-01 Sony Ericsson Mobile Communications Ab Camera system with mirror arrangement for generating self-portrait panoramic pictures
US20110031381A1 (en) 2007-12-28 2011-02-10 Hiok-Nam Tay Light guide array for an image sensor
TWI362628B (en) 2007-12-28 2012-04-21 Ind Tech Res Inst Methof for producing an image with depth by using 2d image
JP4413261B2 (en) 2008-01-10 2010-02-10 シャープ株式会社 The imaging device and the optical axis control method
JP5198295B2 (en) * 2008-01-15 2013-05-15 富士フイルム株式会社 Image sensor position adjustment method, camera module manufacturing method and apparatus, and camera module
US8189065B2 (en) 2008-01-23 2012-05-29 Adobe Systems Incorporated Methods and apparatus for full-resolution light-field capture and rendering
US7962033B2 (en) 2008-01-23 2011-06-14 Adobe Systems Incorporated Methods and apparatus for full-resolution light-field capture and rendering
JP4956452B2 (en) 2008-01-25 2012-06-20 富士重工業株式会社 Vehicle environment recognition device
US8824833B2 (en) 2008-02-01 2014-09-02 Omnivision Technologies, Inc. Image data fusion systems and methods
GB0802290D0 (en) 2008-02-08 2008-03-12 Univ Kent Canterbury Camera adapter based optical imaging apparatus
US8319301B2 (en) 2008-02-11 2012-11-27 Omnivision Technologies, Inc. Self-aligned filter for an image sensor
JP2009206922A (en) 2008-02-28 2009-09-10 Funai Electric Co Ltd Compound-eye imaging apparatus
CN101520532A (en) 2008-02-29 2009-09-02 鸿富锦精密工业(深圳)有限公司;鸿海精密工业股份有限公司 Composite lens
GB2491987B (en) 2008-03-03 2013-03-27 Videoiq Inc Method of searching data for objects identified by object detection
US20110018973A1 (en) 2008-03-26 2011-01-27 Konica Minolta Holdings, Inc. Three-dimensional imaging device and method for calibrating three-dimensional imaging device
US8497905B2 (en) 2008-04-11 2013-07-30 nearmap australia pty ltd. Systems and methods of capturing large area images in detail including cascaded cameras and/or calibration features
US8259208B2 (en) 2008-04-15 2012-09-04 Sony Corporation Method and apparatus for performing touch-based adjustments within imaging devices
US7843554B2 (en) 2008-04-25 2010-11-30 Rockwell Collins, Inc. High dynamic range sensor system and method
US8280194B2 (en) 2008-04-29 2012-10-02 Sony Corporation Reduced hardware implementation for a two-picture depth map algorithm
US8155456B2 (en) 2008-04-29 2012-04-10 Adobe Systems Incorporated Method and apparatus for block-based compression of light-field images
US8724921B2 (en) 2008-05-05 2014-05-13 Aptina Imaging Corporation Method of capturing high dynamic range images with objects in the scene
WO2009136989A1 (en) 2008-05-09 2009-11-12 Ecole Polytechnique Federale De Lausanne Image sensor having nonlinear response
JP2009273035A (en) 2008-05-09 2009-11-19 Toshiba Corp Image compression apparatus, image decompression apparatus, and image processor
US8208543B2 (en) 2008-05-19 2012-06-26 Microsoft Corporation Quantization and differential coding of alpha image data
CN101755190B (en) 2008-05-19 2012-02-22 松下电器产业株式会社 Calibration method, the calibration device and the calibration system includes a calibration device
CN103501416B (en) 2008-05-20 2017-04-12 派力肯成像公司 Imaging System
US8442355B2 (en) 2008-05-23 2013-05-14 Samsung Electronics Co., Ltd. System and method for generating a multi-dimensional image
US8125559B2 (en) 2008-05-25 2012-02-28 Avistar Communications Corporation Image formation for large photosensor array surfaces
US8131097B2 (en) 2008-05-28 2012-03-06 Aptina Imaging Corporation Method and apparatus for extended depth-of-field image restoration
US8244058B1 (en) 2008-05-30 2012-08-14 Adobe Systems Incorporated Method and apparatus for managing artifacts in frequency domain processing of light-field images
JP2009300268A (en) 2008-06-13 2009-12-24 Nippon Hoso Kyokai <Nhk> Three-dimensional information detection device
KR20100002032A (en) 2008-06-24 2010-01-06 삼성전자주식회사 Image generating method, image processing method, and apparatus thereof
US7710667B2 (en) 2008-06-25 2010-05-04 Aptina Imaging Corp. Imaging module with symmetrical lens system and method of manufacture
CN102016654A (en) 2008-06-25 2011-04-13 柯尼卡美能达精密光学株式会社 Imaging optical system, and imaging lens manufacturing method
KR101000531B1 (en) 2008-06-26 2010-12-14 에스디씨마이크로 주식회사 CCTV Management System Supporting Extended Data Transmission Coverage with Wireless LAN
US7916396B2 (en) 2008-06-27 2011-03-29 Micron Technology, Inc. Lens master devices, lens structures, imaging devices, and methods and apparatuses of making the same
US8326069B2 (en) 2008-06-30 2012-12-04 Intel Corporation Computing higher resolution images from multiple lower resolution images
US7773317B2 (en) 2008-07-01 2010-08-10 Aptina Imaging Corp. Lens system with symmetrical optics
US7920339B2 (en) 2008-07-02 2011-04-05 Aptina Imaging Corporation Method and apparatus providing singlet wafer lens system with field flattener
US8456517B2 (en) 2008-07-09 2013-06-04 Primesense Ltd. Integrated processor for 3D mapping
KR101445185B1 (en) 2008-07-10 2014-09-30 삼성전자주식회사 Flexible Image Photographing Apparatus with a plurality of image forming units and Method for manufacturing the same
JP5337243B2 (en) 2008-08-06 2013-11-06 クリアフォーム インコーポレイティッドCreaform Inc. Adaptive 3D scanning system for surface features
JP5566385B2 (en) 2008-08-20 2014-08-06 トムソン ライセンシングThomson Licensing Sophisticated depth map
CN101656259A (en) 2008-08-20 2010-02-24 鸿富锦精密工业(深圳)有限公司;鸿海精密工业股份有限公司 Image sensor packaging structure, packaging method and camera module
US7924312B2 (en) 2008-08-22 2011-04-12 Fluke Corporation Infrared and visible-light image registration
WO2010022503A1 (en) 2008-09-01 2010-03-04 Lensvector Inc. Wafer-level fabrication of liquid crystal optoelectronic devices
JP5105482B2 (en) 2008-09-01 2012-12-26 船井電機株式会社 Optical condition design method and compound eye imaging apparatus
US8098297B2 (en) 2008-09-03 2012-01-17 Sony Corporation Pre- and post-shutter signal image capture and sort for digital camera
KR20100028344A (en) 2008-09-04 2010-03-12 삼성전자주식회사 Method and apparatus for editing image of portable terminal
JP5238429B2 (en) 2008-09-25 2013-07-17 株式会社東芝 Stereoscopic image capturing apparatus and stereoscopic image capturing system
US8553093B2 (en) 2008-09-30 2013-10-08 Sony Corporation Method and apparatus for super-resolution imaging using digital imaging devices
US9064476B2 (en) 2008-10-04 2015-06-23 Microsoft Technology Licensing, Llc Image super-resolution using gradient profile prior
US8310525B2 (en) 2008-10-07 2012-11-13 Seiko Epson Corporation One-touch projector alignment for 3D stereo display
WO2010044963A1 (en) 2008-10-15 2010-04-22 Innovative Technology Distributors Llc Digital processing method and system for determination of optical flow
JP2010096723A (en) 2008-10-20 2010-04-30 Funai Electric Co Ltd Device for deriving distance of object
US8436909B2 (en) 2008-10-21 2013-05-07 Stmicroelectronics S.R.L. Compound camera sensor and related method of processing digital images
US8913657B2 (en) 2008-10-27 2014-12-16 Lg Electronics Inc. Virtual view image synthesis method and apparatus
US8063975B2 (en) 2008-10-29 2011-11-22 Jabil Circuit, Inc. Positioning wafer lenses on electronic imagers
KR101502597B1 (en) 2008-11-13 2015-03-13 삼성전자주식회사 Wide depth of field 3d display apparatus and method
US8644547B2 (en) 2008-11-14 2014-02-04 The Scripps Research Institute Image analysis platform for identifying artifacts in samples and laboratory consumables
AU2008246243B2 (en) 2008-11-19 2011-12-22 Canon Kabushiki Kaisha DVC as generic file format for plenoptic camera
US8570426B2 (en) 2008-11-25 2013-10-29 Lytro, Inc. System of and method for video refocusing
JP4852591B2 (en) 2008-11-27 2012-01-11 富士フイルム株式会社 Stereoscopic image processing apparatus, method, recording medium, and stereoscopic imaging apparatus
US8761491B2 (en) 2009-02-06 2014-06-24 Himax Technologies Limited Stereo-matching processor using belief propagation
US8289440B2 (en) 2008-12-08 2012-10-16 Lytro, Inc. Light field data acquisition devices, and methods of using and manufacturing same
US8013904B2 (en) 2008-12-09 2011-09-06 Seiko Epson Corporation View projection matrix based high performance low latency display pipeline
KR101200490B1 (en) 2008-12-10 2012-11-12 한국전자통신연구원 Apparatus and Method for Matching Image
US8149323B2 (en) 2008-12-18 2012-04-03 Qualcomm Incorporated System and method to autofocus assisted by autoexposure control
JP4631966B2 (en) 2008-12-22 2011-02-23 ソニー株式会社 Image processing apparatus, image processing method, and program
CN101770060B (en) 2008-12-27 2014-03-26 鸿富锦精密工业(深圳)有限公司 Camera module and assembly method thereof
US8405742B2 (en) 2008-12-30 2013-03-26 Massachusetts Institute Of Technology Processing images having different focus
US8259212B2 (en) 2009-01-05 2012-09-04 Applied Quantum Technologies, Inc. Multiscale optical system
US9177389B2 (en) 2009-01-09 2015-11-03 Konica Minolta Holdings, Inc. Motion vector generation apparatus and motion vector generation method
US9354490B2 (en) 2009-01-09 2016-05-31 New York University Method, computer-accessible, medium and systems for facilitating dark flash photography
US20100177411A1 (en) 2009-01-09 2010-07-15 Shashikant Hegde Wafer level lens replication on micro-electrical-mechanical systems
US8189089B1 (en) 2009-01-20 2012-05-29 Adobe Systems Incorporated Methods and apparatus for reducing plenoptic camera artifacts
US8315476B1 (en) 2009-01-20 2012-11-20 Adobe Systems Incorporated Super-resolution with the focused plenoptic camera
US8300108B2 (en) 2009-02-02 2012-10-30 L-3 Communications Cincinnati Electronics Corporation Multi-channel imaging devices comprising unit cells
US20100194860A1 (en) 2009-02-03 2010-08-05 Bit Cauldron Corporation Method of stereoscopic 3d image capture using a mobile device, cradle or dongle
US8290301B2 (en) 2009-02-06 2012-10-16 Raytheon Company Optimized imaging system for collection of high resolution imagery
KR101776955B1 (en) 2009-02-10 2017-09-08 소니 주식회사 Solid-state imaging device, method of manufacturing the same, and electronic apparatus
WO2010095440A1 (en) 2009-02-20 2010-08-26 パナソニック株式会社 Recording medium, reproduction device, and integrated circuit
KR20100099896A (en) 2009-03-04 2010-09-15 삼성전자주식회사 Metadata generating method and apparatus, and image processing method and apparatus using the metadata
US8207759B2 (en) 2009-03-12 2012-06-26 Fairchild Semiconductor Corporation MIPI analog switch for automatic selection of multiple inputs based on clock voltages
CN105681633B (en) 2009-03-19 2019-01-18 数字光学公司 Dual sensor camera and its method
US8106949B2 (en) 2009-03-26 2012-01-31 Seiko Epson Corporation Small memory footprint light transport matrix capture
US8450821B2 (en) 2009-03-26 2013-05-28 Micron Technology, Inc. Method and apparatus providing combined spacer and optical lens element
US7901095B2 (en) 2009-03-27 2011-03-08 Seiko Epson Corporation Resolution scalable view projection
JP4529010B1 (en) 2009-03-30 2010-08-25 シャープ株式会社 Imaging device
JP5222205B2 (en) 2009-04-03 2013-06-26 Kddi株式会社 Image processing apparatus, method, and program
US8896697B2 (en) 2009-04-07 2014-11-25 Chen Golan Video motion compensation and stabilization gimbaled imaging system
US20100259610A1 (en) 2009-04-08 2010-10-14 Celsia, Llc Two-Dimensional Display Synced with Real World Object Movement
US8294099B2 (en) 2009-04-10 2012-10-23 Bae Systems Information And Electronic Systems Integration Inc. On-wafer butted microbolometer imaging array
JP5463718B2 (en) 2009-04-16 2014-04-09 ソニー株式会社 Imaging device
US8717417B2 (en) 2009-04-16 2014-05-06 Primesense Ltd. Three-dimensional mapping and imaging
US20100265385A1 (en) 2009-04-18 2010-10-21 Knight Timothy J Light Field Camera Image, File and Configuration Data, and Methods of Using, Storing and Communicating Same
US20120249550A1 (en) 2009-04-18 2012-10-04 Lytro, Inc. Selective Transmission of Image Data Based on Device Attributes
US8908058B2 (en) 2009-04-18 2014-12-09 Lytro, Inc. Storage and transmission of pictures including multiple frames
AT551841T (en) 2009-04-22 2012-04-15 Raytrix Gmbh Digital imaging method for synthetizing an image using the data recorded by a plenoptical camera
CN101527046B (en) 2009-04-28 2012-09-05 青岛海信数字多媒体技术国家重点实验室有限公司 Motion detection method, device and system
KR101671021B1 (en) 2009-04-30 2016-11-10 삼성전자주식회사 Apparatus and method for transmitting stereoscopic image effectively
US8271544B2 (en) 2009-05-01 2012-09-18 Creative Technology Ltd Data file having more than one mode of operation
DE102009003110A1 (en) 2009-05-14 2010-11-18 Robert Bosch Gmbh An image processing method for determining depth information from at least two captured by a stereo camera system input images
US8203633B2 (en) 2009-05-27 2012-06-19 Omnivision Technologies, Inc. Four-channel color filter array pattern
KR20100130423A (en) 2009-06-03 2010-12-13 삼성전자주식회사 Wafer-level lens module and image module including the same
CN101931742B (en) 2009-06-18 2013-04-24 鸿富锦精密工业(深圳)有限公司 Image sensing module and image capture module
US20100321640A1 (en) 2009-06-22 2010-12-23 Industrial Technology Research Institute Projection display chip
JP5254893B2 (en) 2009-06-26 2013-08-07 キヤノン株式会社 Image conversion method and apparatus, and pattern identification method and apparatus
WO2011008443A2 (en) 2009-06-29 2011-01-20 Lensvector Inc. Wafer level camera module with active optical element
JP2011030184A (en) 2009-07-01 2011-02-10 Sony Corp Image processing apparatus, and image processing method
US8212197B2 (en) 2009-07-02 2012-07-03 Xerox Corporation Image sensor with integration time compensation
JP2011017764A (en) 2009-07-07 2011-01-27 Konica Minolta Opto Inc Imaging lens, imaging apparatus and portable terminal
US8345144B1 (en) 2009-07-15 2013-01-01 Adobe Systems Incorporated Methods and apparatus for rich image capture with focused plenoptic cameras
US20110019243A1 (en) 2009-07-21 2011-01-27 Constant Jr Henry J Stereoscopic form reader
CN101964866B (en) 2009-07-24 2013-03-20 鸿富锦精密工业(深圳)有限公司 Computation and image pickup type digital camera
GB0912970D0 (en) 2009-07-27 2009-09-02 Ltd Improvements in or relating to a sensor and sensor system for a camera
US8436893B2 (en) 2009-07-31 2013-05-07 3Dmedia Corporation Methods, systems, and computer-readable storage media for selecting image capture positions to generate three-dimensional (3D) images
US8577183B2 (en) 2009-08-05 2013-11-05 Raytheon Company Resolution on demand
WO2011018678A1 (en) 2009-08-11 2011-02-17 Ether Precision, Inc. Method and device for aligning a lens with an optical system
WO2011017806A1 (en) 2009-08-14 2011-02-17 Genesis Group Inc. Real-time image and video matting
JP2011044801A (en) 2009-08-19 2011-03-03 Toshiba Corp Image processor
US8154632B2 (en) 2009-08-24 2012-04-10 Lifesize Communications, Inc. Detection of defective pixels in an image sensor
KR101680300B1 (en) 2009-08-31 2016-11-28 삼성전자주식회사 Liquid lens and method for manufacturing the same
US9274699B2 (en) 2009-09-03 2016-03-01 Obscura Digital User interface for a large scale multi-user, multi-touch system
US8411146B2 (en) 2009-09-04 2013-04-02 Lockheed Martin Corporation Single camera color and infrared polarimetric imaging
FR2950153B1 (en) 2009-09-15 2011-12-23 Commissariat Energie Atomique An optical device has deformable membrane piezoelectric actuator
US20140076336A1 (en) 2009-09-17 2014-03-20 Ascentia Health, Inc. Ear insert for relief of tmj discomfort and headaches
US8754941B1 (en) 2009-09-22 2014-06-17 Altia Systems, Inc. Multi-imager video camera with frame-by-frame view switching
US9167226B2 (en) 2009-10-02 2015-10-20 Koninklijke Philips N.V. Selecting viewpoints for generating additional views in 3D video
DE102009049387B4 (en) 2009-10-14 2016-05-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus, image processing apparatus and method for optical imaging
WO2011046607A2 (en) 2009-10-14 2011-04-21 Thomson Licensing Filtering and edge encoding
US8199165B2 (en) 2009-10-14 2012-06-12 Hewlett-Packard Development Company, L.P. Methods and systems for object segmentation in digital images
US8502909B2 (en) 2009-10-19 2013-08-06 Pixar Super light-field lens
US20110207074A1 (en) 2009-10-26 2011-08-25 Olaf Andrew Hall-Holt Dental imaging system and method
US8546737B2 (en) 2009-10-30 2013-10-01 Invisage Technologies, Inc. Systems and methods for color binning
JP2013509804A (en) 2009-10-30 2013-03-14 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 3D display system
WO2011055655A1 (en) 2009-11-05 2011-05-12 コニカミノルタオプト株式会社 Image pickup device, optical unit, wafer lens laminated body, and method for manufacturing wafer lens laminated body
US8654195B2 (en) 2009-11-13 2014-02-18 Fujifilm Corporation Distance measuring apparatus, distance measuring method, distance measuring program, distance measuring system, and image pickup apparatus
TR200908688A2 (en) 2009-11-17 2011-06-21 Vestel Elektronik San. Ve Tic. A.Ş. Multiple display should stabilize at a depth of video noise reduction.
US8643701B2 (en) 2009-11-18 2014-02-04 University Of Illinois At Urbana-Champaign System for executing 3D propagation for depth image-based rendering
JP5399215B2 (en) 2009-11-18 2014-01-29 シャープ株式会社 Multi-lens camera device and electronic information device
US8514491B2 (en) 2009-11-20 2013-08-20 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
WO2011066275A2 (en) 2009-11-25 2011-06-03 Massachusetts Institute Of Technology Actively addressable aperture light field camera
KR101608970B1 (en) 2009-11-27 2016-04-05 삼성전자주식회사 Apparatus and method for processing image using light field data
US8730338B2 (en) 2009-12-01 2014-05-20 Nokia Corporation Set of camera modules hinged on a body and functionally connected to a single actuator
US8400555B1 (en) * 2009-12-01 2013-03-19 Adobe Systems Incorporated Focused plenoptic camera employing microlenses with different focal lengths
JP5446797B2 (en) 2009-12-04 2014-03-19 株式会社リコー Imaging device
US8446492B2 (en) 2009-12-10 2013-05-21 Honda Motor Co., Ltd. Image capturing device, method of searching for occlusion region, and program
JP5387377B2 (en) 2009-12-14 2014-01-15 ソニー株式会社 Image processing apparatus, image processing method, and program
WO2011081646A1 (en) 2009-12-15 2011-07-07 Thomson Licensing Stereo-image quality and disparity/depth indications
US20110153248A1 (en) 2009-12-23 2011-06-23 Yeming Gu Ophthalmic quality metric system
US8885067B2 (en) 2009-12-24 2014-11-11 Sharp Kabushiki Kaisha Multocular image pickup apparatus and multocular image pickup method
JP4983905B2 (en) 2009-12-25 2012-07-25 カシオ計算機株式会社 Imaging apparatus, 3D modeling data generation method, and program
KR101643607B1 (en) 2009-12-30 2016-08-10 삼성전자주식회사 Method and apparatus for generating of image data
CN102118551A (en) 2009-12-31 2011-07-06 鸿富锦精密工业(深圳)有限公司 Imaging device
CN102117576A (en) 2009-12-31 2011-07-06 鸿富锦精密工业(深圳)有限公司 Digital photo frame
CN102131044B (en) 2010-01-20 2014-03-26 鸿富锦精密工业(深圳)有限公司 Camera Module
US8649008B2 (en) 2010-02-04 2014-02-11 University Of Southern California Combined spectral and polarimetry imaging and diagnostics
US8593512B2 (en) 2010-02-05 2013-11-26 Creative Technology Ltd Device and method for scanning an object on a working surface
US8326142B2 (en) 2010-02-12 2012-12-04 Sri International Optical image systems
JP5387856B2 (en) * 2010-02-16 2014-01-15 ソニー株式会社 Image processing apparatus, image processing method, image processing program, and imaging apparatus
US8648918B2 (en) 2010-02-18 2014-02-11 Sony Corporation Method and system for obtaining a point spread function using motion information
EP2537332A1 (en) 2010-02-19 2012-12-26 Dual Aperture, Inc. Processing multi-aperture image data
US20140176592A1 (en) 2011-02-15 2014-06-26 Lytro, Inc. Configuring two-dimensional image processing based on light-field parameters
US9456196B2 (en) 2010-02-23 2016-09-27 Samsung Electronics Co., Ltd. Method and apparatus for providing a multi-view still image service, and method and apparatus for receiving a multi-view still image service
KR101802238B1 (en) 2010-02-23 2017-11-29 삼성전자주식회사 Apparatus and method for generating a three-dimension image data in portable terminal
JP2013521576A (en) 2010-02-28 2013-06-10 オスターハウト グループ インコーポレイテッド Local advertising content on interactive head-mounted eyepieces
US8817015B2 (en) 2010-03-03 2014-08-26 Adobe Systems Incorporated Methods, apparatus, and computer-readable storage media for depth-based rendering of focused plenoptic camera data
US8766808B2 (en) 2010-03-09 2014-07-01 Flir Systems, Inc. Imager with multiple sensor arrays
US20110222757A1 (en) 2010-03-10 2011-09-15 Gbo 3D Technology Pte. Ltd. Systems and methods for 2D image and spatial data capture for 3D stereo imaging
US20110221950A1 (en) 2010-03-12 2011-09-15 Doeke Jolt Oostra Camera device, wafer scale package
EP2548071A1 (en) 2010-03-17 2013-01-23 Pelican Imaging Corporation Fabrication process for mastering imaging lens arrays
US8736733B2 (en) 2010-03-19 2014-05-27 Invisage Technologies, Inc. Dark current reduction in image sensors via dynamic electrical biasing
US8890934B2 (en) 2010-03-19 2014-11-18 Panasonic Corporation Stereoscopic image aligning apparatus, stereoscopic image aligning method, and program of the same
CN102282857B (en) 2010-03-19 2014-03-12 富士胶片株式会社 Imaging device and method
US8285033B2 (en) 2010-04-01 2012-10-09 Seiko Epson Corporation Bi-affinity filter: a bilateral type filter for color images
US8896668B2 (en) 2010-04-05 2014-11-25 Qualcomm Incorporated Combining data from multiple image sensors
US9001227B2 (en) 2010-04-05 2015-04-07 Qualcomm Incorporated Combining data from multiple image sensors
US8520970B2 (en) 2010-04-23 2013-08-27 Flir Systems Ab Infrared resolution and contrast enhancement with fusion
US8600186B2 (en) 2010-04-26 2013-12-03 City University Of Hong Kong Well focused catadioptric image acquisition
US20110267264A1 (en) 2010-04-29 2011-11-03 Mccarthy John Display system with multiple optical sensors
US9053573B2 (en) 2010-04-29 2015-06-09 Personify, Inc. Systems and methods for generating a virtual camera viewpoint for an image
US20130250150A1 (en) 2010-05-03 2013-09-26 Michael R. Malone Devices and methods for high-resolution image and video capture
US9256974B1 (en) 2010-05-04 2016-02-09 Stephen P Hines 3-D motion-parallax portable display software application
US8885890B2 (en) 2010-05-07 2014-11-11 Microsoft Corporation Depth map confidence filtering
KR101756910B1 (en) 2010-05-11 2017-07-26 삼성전자주식회사 Apparatus and method for processing light field data using mask with attenuation pattern
KR20110124473A (en) 2010-05-11 2011-11-17 삼성전자주식회사 3-dimensional image generation apparatus and method for multi-view image
SG10201503516VA (en) 2010-05-12 2015-06-29 Pelican Imaging Corp Architectures for imager arrays and array cameras
JP5545016B2 (en) 2010-05-12 2014-07-09 ソニー株式会社 Imaging device
US20130147979A1 (en) 2010-05-12 2013-06-13 Pelican Imaging Corporation Systems and methods for extending dynamic range of imager arrays by controlling pixel analog gain
US20120062697A1 (en) 2010-06-09 2012-03-15 Chemimage Corporation Hyperspectral imaging sensor for tracking moving targets
WO2011142774A1 (en) 2010-05-14 2011-11-17 Omnivision Technologies, Inc. Alternative color image array and associated methods
US8576293B2 (en) 2010-05-18 2013-11-05 Aptina Imaging Corporation Multi-channel imager
SG176327A1 (en) 2010-05-20 2011-12-29 Sony Corp A system and method of image processing
US8602887B2 (en) 2010-06-03 2013-12-10 Microsoft Corporation Synthesis of information from multiple audiovisual sources
DE102010024666A1 (en) 2010-06-18 2011-12-22 Hella Kgaa Hueck & Co. A method for optical self-diagnosis of a camera system and device for implementing such a method
US20110310980A1 (en) 2010-06-22 2011-12-22 Qualcomm Mems Technologies, Inc. Apparatus and methods for processing frames of video data across a display interface using a block-based encoding scheme and a tag id
KR20120000485A (en) 2010-06-25 2012-01-02 광주과학기술원 Apparatus and method for depth coding using prediction mode
CN101883291B (en) 2010-06-29 2012-12-19 上海大学 Method for drawing viewpoints by reinforcing interested region
US8493432B2 (en) 2010-06-29 2013-07-23 Mitsubishi Electric Research Laboratories, Inc. Digital refocusing for wide-angle images using axial-cone cameras
EP2403234A1 (en) 2010-06-29 2012-01-04 Koninklijke Philips Electronics N.V. Method and system for constructing a compound image from data obtained by an array of image capturing devices
JP5492300B2 (en) 2010-06-30 2014-05-14 富士フイルム株式会社 Apparatus, method, and program for determining obstacle in imaging area at the time of imaging for stereoscopic display
GB2482022A (en) 2010-07-16 2012-01-18 St Microelectronics Res & Dev Method for measuring resolution and aberration of lens and sensor
US9406132B2 (en) 2010-07-16 2016-08-02 Qualcomm Incorporated Vision-based quality metric for three dimensional video
US8386964B2 (en) 2010-07-21 2013-02-26 Microsoft Corporation Interactive image matting
US20120019700A1 (en) 2010-07-26 2012-01-26 American Technologies Network Corporation Optical system with automatic mixing of daylight and thermal vision digital video signals
US20120026342A1 (en) 2010-07-27 2012-02-02 Xiaoguang Yu Electronic system communicating with image sensor
US20120026451A1 (en) 2010-07-29 2012-02-02 Lensvector Inc. Tunable liquid crystal lens with single sided contacts
US8428342B2 (en) 2010-08-12 2013-04-23 At&T Intellectual Property I, L.P. Apparatus and method for providing three dimensional media content
US8836793B1 (en) 2010-08-13 2014-09-16 Opto-Knowledge Systems, Inc. True color night vision (TCNV) fusion
US8493482B2 (en) 2010-08-18 2013-07-23 Apple Inc. Dual image sensor image processing system and method
US8665341B2 (en) 2010-08-27 2014-03-04 Adobe Systems Incorporated Methods and apparatus for rendering output images with simulated artistic effects from focused plenoptic camera data
US8724000B2 (en) 2010-08-27 2014-05-13 Adobe Systems Incorporated Methods and apparatus for super-resolution in integral photography
US8749694B2 (en) 2010-08-27 2014-06-10 Adobe Systems Incorporated Methods and apparatus for rendering focused plenoptic camera data using super-resolved demosaicing
GB2483434A (en) 2010-08-31 2012-03-14 Sony Corp Detecting stereoscopic disparity by comparison with subset of pixel change points
US20120056982A1 (en) 2010-09-08 2012-03-08 Microsoft Corporation Depth camera based on structured light and stereo vision
US9013550B2 (en) 2010-09-09 2015-04-21 Qualcomm Incorporated Online reference generation and tracking for multi-user augmented reality
CN103299619A (en) 2010-09-14 2013-09-11 汤姆逊许可公司 Compression methods and apparatus for occlusion data
US9013634B2 (en) 2010-09-14 2015-04-21 Adobe Systems Incorporated Methods and apparatus for video completion
WO2012037075A1 (en) * 2010-09-14 2012-03-22 Thomson Licensing Method of presenting three-dimensional content with disparity adjustments
US8780251B2 (en) 2010-09-20 2014-07-15 Canon Kabushiki Kaisha Image capture with focus adjustment
WO2012039043A1 (en) 2010-09-22 2012-03-29 富士通株式会社 Stereo image generating unit, method of generating stereo image, and stereo image generating computer program
US20120086803A1 (en) 2010-10-11 2012-04-12 Malzbender Thomas G Method and system for distance estimation using projected symbol sequences
US20140192238A1 (en) 2010-10-24 2014-07-10 Linx Computational Imaging Ltd. System and Method for Imaging and Image Processing
JP5657343B2 (en) 2010-10-28 2015-01-21 株式会社ザクティ Electronics
WO2012056437A1 (en) 2010-10-29 2012-05-03 École Polytechnique Fédérale De Lausanne (Epfl) Omnidirectional sensor array system
US9137503B2 (en) 2010-11-03 2015-09-15 Sony Corporation Lens and color filter arrangement, super-resolution camera system and method
US9065991B2 (en) 2010-11-04 2015-06-23 Lensvector Inc. Methods of adjustment free manufacture of focus free camera modules
US20120113232A1 (en) 2010-11-10 2012-05-10 Sony Pictures Technologies Inc. Multiple camera system and method for selectable interaxial separation
MY150361A (en) 2010-12-03 2013-12-31 Mimos Berhad Method of image segmentation using intensity and depth information
WO2012078126A1 (en) 2010-12-08 2012-06-14 Thomson Licensing System and method for trinocular depth acquisition with triangular sensor
US8878950B2 (en) 2010-12-14 2014-11-04 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using super-resolution processes
JP5963422B2 (en) 2010-12-17 2016-08-03 キヤノン株式会社 Imaging apparatus, display apparatus, computer program, and stereoscopic image display system
US9177381B2 (en) 2010-12-22 2015-11-03 Nani Holdings IP, LLC Depth estimate determination, systems and methods
US8682107B2 (en) 2010-12-22 2014-03-25 Electronics And Telecommunications Research Institute Apparatus and method for creating 3D content for oriental painting
US8565709B2 (en) 2010-12-30 2013-10-22 Apple Inc. Digital signal filter
JP5699609B2 (en) 2011-01-06 2015-04-15 ソニー株式会社 Image processing apparatus and image processing method
EP2666048A4 (en) 2011-01-20 2014-06-04 Fivefocal Llc Passively athermalized infrared imaging system and methods of manufacturing same
US8581995B2 (en) 2011-01-25 2013-11-12 Aptina Imaging Corporation Method and apparatus for parallax correction in fused array imaging systems
US8717467B2 (en) 2011-01-25 2014-05-06 Aptina Imaging Corporation Imaging systems with array cameras for depth sensing
JP5594477B2 (en) 2011-01-26 2014-09-24 Nltテクノロジー株式会社 Image display device, image display method, and program
US9235894B2 (en) 2011-01-27 2016-01-12 Metaio Gmbh Method for determining correspondences between a first and a second image, and method for determining the pose of a camera
US20120200726A1 (en) 2011-02-09 2012-08-09 Research In Motion Limited Method of Controlling the Depth of Field for a Small Sensor Camera Using an Extension for EDOF
CA2767023C (en) 2011-02-09 2014-09-09 Research In Motion Limited Increased low light sensitivity for image sensors by combining quantum dot sensitivity to visible and infrared light
US8698885B2 (en) 2011-02-14 2014-04-15 Intuitive Surgical Operations, Inc. Methods and apparatus for demosaicing images with highly correlated color channels
US8406548B2 (en) 2011-02-28 2013-03-26 Sony Corporation Method and apparatus for performing a blur rendering process on an image
CN102870417B (en) 2011-02-28 2014-05-14 富士胶片株式会社 Color imaging device
US8537245B2 (en) 2011-03-04 2013-09-17 Hand Held Products, Inc. Imaging and decoding device with quantum dot imager
CA2769358C (en) 2011-03-08 2016-06-07 Research In Motion Limited Quantum dot image sensor with dummy pixels used for intensity calculations
US9565449B2 (en) 2011-03-10 2017-02-07 Qualcomm Incorporated Coding multiview video plus depth content
KR101792501B1 (en) 2011-03-16 2017-11-21 한국전자통신연구원 Method and apparatus for feature-based stereo matching
US8824821B2 (en) 2011-03-28 2014-09-02 Sony Corporation Method and apparatus for performing user inspired visual effects rendering on an image
US20120249853A1 (en) 2011-03-28 2012-10-04 Marc Krolczyk Digital camera for reviewing related images
US9030528B2 (en) 2011-04-04 2015-05-12 Apple Inc. Multi-zone imaging sensor and lens array
FR2974449A1 (en) 2011-04-22 2012-10-26 Commissariat Energie Atomique Imageur integrated circuit and stereoscopic image capture device
US20120274626A1 (en) 2011-04-29 2012-11-01 Himax Media Solutions, Inc. Stereoscopic Image Generating Apparatus and Method
US8305456B1 (en) 2011-05-11 2012-11-06 Pelican Imaging Corporation Systems and methods for transmitting and receiving array camera image data
US8843346B2 (en) 2011-05-13 2014-09-23 Amazon Technologies, Inc. Using spatial information with device interaction
US8629901B2 (en) 2011-05-19 2014-01-14 National Taiwan University System and method of revising depth of a 3D image pair
US20120293489A1 (en) 2011-05-20 2012-11-22 Himax Technologies Limited Nonlinear depth remapping system and method thereof
JP5797016B2 (en) 2011-05-30 2015-10-21 キヤノン株式会社 image processing apparatus, image processing method, and program
JP5762142B2 (en) 2011-05-31 2015-08-12 キヤノン株式会社 Imaging apparatus, image processing apparatus and method thereof
JP5882455B2 (en) 2011-06-15 2016-03-09 マイクロソフト テクノロジー ライセンシング,エルエルシー High resolution multispectral image capture
JP2013005259A (en) 2011-06-17 2013-01-07 Sony Corp Image processing apparatus, image processing method, and program
US20130265459A1 (en) 2011-06-28 2013-10-10 Pelican Imaging Corporation Optical arrangements for use with an array camera
WO2014144157A1 (en) 2013-03-15 2014-09-18 Pelican Imaging Corporation Optical arrangements for use with an array camera
KR20140045458A (en) 2011-06-28 2014-04-16 펠리칸 이매징 코포레이션 Optical arrangements for use with an array camera
US8773513B2 (en) 2011-07-01 2014-07-08 Seiko Epson Corporation Context and epsilon stereo constrained correspondence matching
US9300946B2 (en) 2011-07-08 2016-03-29 Personify, Inc. System and method for generating a depth map and fusing images from a camera array
JP2013024886A (en) 2011-07-14 2013-02-04 Sanyo Electric Co Ltd Imaging apparatus
JP5780865B2 (en) 2011-07-14 2015-09-16 キヤノン株式会社 Image processing apparatus, imaging system, and image processing system
US9363535B2 (en) 2011-07-22 2016-06-07 Qualcomm Incorporated Coding motion depth maps with depth range variation
US9264689B2 (en) 2011-08-04 2016-02-16 Semiconductor Components Industries, Llc Systems and methods for color compensation in multi-view video
AU2012295044B2 (en) 2011-08-09 2016-06-16 Samsung Electronics Co., Ltd. Method and device for encoding a depth map of multi viewpoint video data, and method and device for decoding the encoded depth map
US8432435B2 (en) 2011-08-10 2013-04-30 Seiko Epson Corporation Ray image modeling for fast catadioptric light field rendering
US8866951B2 (en) 2011-08-24 2014-10-21 Aptina Imaging Corporation Super-resolution imaging systems
US8704895B2 (en) 2011-08-29 2014-04-22 Qualcomm Incorporated Fast calibration of displays using spectral-based colorimetrically calibrated multicolor camera
US9009952B2 (en) 2011-08-29 2015-04-21 Asm Technology Singapore Pte. Ltd. Apparatus for assembling a lens module and an image sensor to form a camera module, and a method of assembling the same
WO2013043751A1 (en) 2011-09-19 2013-03-28 Pelican Imaging Corporation Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
CN103119516B (en) 2011-09-20 2016-09-07 松下知识产权经营株式会社 Light field image pickup apparatus and the image processing apparatus
EP2760209B1 (en) 2011-09-21 2017-07-12 FUJIFILM Corporation Image processing device, method, program and recording medium, stereoscopic image capture device, portable electronic apparatus, printer, and stereoscopic image player device
US8724893B2 (en) 2011-09-27 2014-05-13 Thomson Licensing Method and system for color look up table generation
US9129183B2 (en) 2011-09-28 2015-09-08 Pelican Imaging Corporation Systems and methods for encoding light field image files
US8908083B2 (en) 2011-09-28 2014-12-09 Apple Inc. Dynamic autofocus operations
JP5831105B2 (en) 2011-09-30 2015-12-09 ソニー株式会社 Imaging apparatus and imaging method
US20130088637A1 (en) 2011-10-11 2013-04-11 Pelican Imaging Corporation Lens Stack Arrays Including Adaptive Optical Elements
EP2592823A3 (en) 2011-10-12 2013-06-19 Canon Kabushiki Kaisha Image-capturing device
US20130107061A1 (en) 2011-10-31 2013-05-02 Ankit Kumar Multi-resolution ip camera
US9692991B2 (en) 2011-11-04 2017-06-27 Qualcomm Incorporated Multispectral imaging system
JP5149435B1 (en) 2011-11-04 2013-02-20 株式会社東芝 Video processing apparatus and video processing method
EP2590138B1 (en) 2011-11-07 2019-09-11 Flir Systems AB Gas visualization arrangements, devices, and methods
US20140313315A1 (en) 2011-11-15 2014-10-23 Technion Research & Development Foundation Limited Method and system for transmitting light
US20130121559A1 (en) 2011-11-16 2013-05-16 Sharp Laboratories Of America, Inc. Mobile device with three dimensional augmented reality
US9661310B2 (en) 2011-11-28 2017-05-23 ArcSoft Hanzhou Co., Ltd. Image depth recovering method and stereo image fetching device thereof
EP2600316A1 (en) 2011-11-29 2013-06-05 Inria Institut National de Recherche en Informatique et en Automatique Method, system and software program for shooting and editing a film comprising at least one image of a 3D computer-generated animation
KR101862404B1 (en) 2011-12-09 2018-05-29 엘지이노텍 주식회사 Apparatus and method for eliminating noise of stereo image
US9117295B2 (en) * 2011-12-20 2015-08-25 Adobe Systems Incorporated Refinement of depth maps by fusion of multiple estimates
US8941722B2 (en) * 2012-01-03 2015-01-27 Sony Corporation Automatic intelligent focus control of video
WO2013119706A1 (en) 2012-02-06 2013-08-15 Pelican Imaging Corporation Systems and methods for extending dynamic range of imager arrays by controlling pixel analog gain
US9172889B2 (en) 2012-02-09 2015-10-27 Semiconductor Components Industries, Llc Imaging systems and methods for generating auto-exposed high-dynamic-range images
EP2817955B1 (en) 2012-02-21 2018-04-11 FotoNation Cayman Limited Systems and methods for the manipulation of captured light field image data
JP5860304B2 (en) 2012-02-23 2016-02-16 キヤノン株式会社 Imaging apparatus, control method therefor, program, and storage medium
JP6112824B2 (en) 2012-02-28 2017-04-12 キヤノン株式会社 Image processing method and apparatus, and program.
US8831377B2 (en) 2012-02-28 2014-09-09 Lytro, Inc. Compensating for variation in microlens position during light-field image processing
EP2637139A1 (en) 2012-03-05 2013-09-11 Thomson Licensing Method and apparatus for bi-layer segmentation
WO2013151883A1 (en) 2012-04-02 2013-10-10 Intel Corporation Systems, methods, and computer program products for runtime adjustment of image warping parameters in a multi-camera system
US9156168B2 (en) 2012-04-13 2015-10-13 Automation Engineering, Inc. Active alignment using continuous motion sweeps and temporal interpolation
ES2653924T3 (en) 2012-04-16 2018-02-09 Children's National Medical Center Dual mode stereo imaging system for monitoring and control in surgical and interventional procedures
CN104335246B (en) 2012-05-01 2018-09-04 Fotonation开曼有限公司 The camera model of pattern is formed with pi optical filters group
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
EP2845384A1 (en) 2012-05-02 2015-03-11 Koninklijke Philips N.V. Quality metric for processing 3d video
US9300932B2 (en) 2012-05-09 2016-03-29 Lytro, Inc. Optimization of optical systems for improved light field capture and manipulation
WO2013182873A1 (en) 2012-06-08 2013-12-12 Nokia Corporation A multi-frame image calibrator
EP2677734A3 (en) 2012-06-18 2016-01-13 Sony Mobile Communications AB Array camera imaging system and method
US9100635B2 (en) 2012-06-28 2015-08-04 Pelican Imaging Corporation Systems and methods for detecting defective camera arrays and optic arrays
JP5929553B2 (en) 2012-06-28 2016-06-08 ソニー株式会社 Image processing apparatus, imaging apparatus, image processing method, and program
US20140002674A1 (en) 2012-06-30 2014-01-02 Pelican Imaging Corporation Systems and Methods for Manufacturing Camera Modules Using Active Alignment of Lens Stack Arrays and Sensors
US8896594B2 (en) 2012-06-30 2014-11-25 Microsoft Corporation Depth sensing with depth-adaptive illumination
US9147251B2 (en) 2012-08-03 2015-09-29 Flyby Media, Inc. Systems and methods for efficient 3D tracking of weakly textured planar surfaces for augmented reality applications
US8988566B2 (en) 2012-08-09 2015-03-24 Omnivision Technologies, Inc. Lens array for partitioned image sensor having color filters
US8619082B1 (en) 2012-08-21 2013-12-31 Pelican Imaging Corporation Systems and methods for parallax detection and correction in images captured using array cameras that contain occlusions using subsets of images to perform depth estimation
WO2014032020A2 (en) 2012-08-23 2014-02-27 Pelican Imaging Corporation Feature based high resolution motion estimation from low resolution images captured using an array source
JP6458988B2 (en) 2012-08-31 2019-01-30 ソニー株式会社 Image processing apparatus, image processing method, and information processing apparatus
WO2014043641A1 (en) 2012-09-14 2014-03-20 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
US9143673B2 (en) 2012-09-19 2015-09-22 Google Inc. Imaging device with a plurality of pixel arrays
CN104685860A (en) 2012-09-28 2015-06-03 派力肯影像公司 Generating images from light fields utilizing virtual viewpoints
TW201415879A (en) 2012-10-12 2014-04-16 Wintek Corp Image capture device
WO2014070927A2 (en) 2012-10-31 2014-05-08 Invisage Technologies, Inc. Expanded-field-of-view image and video capture
WO2014078443A1 (en) 2012-11-13 2014-05-22 Pelican Imaging Corporation Systems and methods for array camera focal plane control
CN109963059A (en) 2012-11-28 2019-07-02 核心光电有限公司 The thin multiple aperture imaging system of high-resolution
US9001226B1 (en) 2012-12-04 2015-04-07 Lytro, Inc. Capturing and relighting images using multiple devices
US9088369B2 (en) 2012-12-28 2015-07-21 Synergy Microwave Corporation Self injection locked phase locked looped optoelectronic oscillator
US20140183334A1 (en) 2013-01-03 2014-07-03 Visera Technologies Company Limited Image sensor for light field device and manufacturing method thereof
US9547160B2 (en) 2013-01-05 2017-01-17 Light Labs Inc. Methods and apparatus for capturing and/or processing images
KR20140094395A (en) 2013-01-22 2014-07-30 삼성전자주식회사 photographing device for taking a picture by a plurality of microlenses and method thereof
US9497380B1 (en) 2013-02-15 2016-11-15 Red.Com, Inc. Dense field imaging
US9462164B2 (en) 2013-02-21 2016-10-04 Pelican Imaging Corporation Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
WO2014133974A1 (en) 2013-02-24 2014-09-04 Pelican Imaging Corporation Thin form computational and modular array cameras
US9638883B1 (en) 2013-03-04 2017-05-02 Fotonation Cayman Limited Passive alignment of array camera modules constructed from lens stack arrays and sensors based upon alignment information obtained during manufacture of array camera modules using an active alignment process
US9917998B2 (en) 2013-03-08 2018-03-13 Fotonation Cayman Limited Systems and methods for measuring scene information while capturing images using array cameras
US8866912B2 (en) 2013-03-10 2014-10-21 Pelican Imaging Corporation System and methods for calibration of an array camera using a single captured image
US9521416B1 (en) 2013-03-11 2016-12-13 Kip Peli P1 Lp Systems and methods for image data compression
WO2014160142A1 (en) 2013-03-13 2014-10-02 Pelican Imaging Corporation Systems and methods for using alignment to increase sampling diversity of cameras in an array camera module
US9106784B2 (en) 2013-03-13 2015-08-11 Pelican Imaging Corporation Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9519972B2 (en) 2013-03-13 2016-12-13 Kip Peli P1 Lp Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
WO2014164909A1 (en) 2013-03-13 2014-10-09 Pelican Imaging Corporation Array camera architecture implementing quantum film sensors
US9124831B2 (en) 2013-03-13 2015-09-01 Pelican Imaging Corporation System and methods for calibration of an array camera
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9100586B2 (en) 2013-03-14 2015-08-04 Pelican Imaging Corporation Systems and methods for photometric normalization in array cameras
WO2014150856A1 (en) 2013-03-15 2014-09-25 Pelican Imaging Corporation Array camera implementing quantum dot color filters
US20140267286A1 (en) 2013-03-15 2014-09-18 Pelican Imaging Corporation Systems and Methods for Providing an Array Projector
US9633442B2 (en) 2013-03-15 2017-04-25 Fotonation Cayman Limited Array cameras including an array camera module augmented with a separate camera
EP2973476A4 (en) 2013-03-15 2017-01-18 Pelican Imaging Corporation Systems and methods for stereo imaging with camera arrays
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US9445003B1 (en) 2013-03-15 2016-09-13 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US20150002734A1 (en) 2013-07-01 2015-01-01 Motorola Mobility Llc Electronic Device with Modulated Light Flash Operation for Rolling Shutter Image Sensor
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US20150098079A1 (en) 2013-10-09 2015-04-09 Hilti Aktiengesellschaft System and method for camera based position and orientation measurement
US20150104101A1 (en) 2013-10-14 2015-04-16 Apple Inc. Method and ui for z depth image segmentation
US9264592B2 (en) 2013-11-07 2016-02-16 Pelican Imaging Corporation Array camera modules incorporating independently aligned lens stacks
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
WO2015081279A1 (en) 2013-11-26 2015-06-04 Pelican Imaging Corporation Array camera configurations incorporating multiple constituent array cameras
US9979878B2 (en) 2014-02-21 2018-05-22 Light Labs Inc. Intuitive camera user interface methods and apparatus
JP6211435B2 (en) 2014-02-26 2017-10-11 株式会社アドバンテスト Manufacturing method of semiconductor device
WO2015134996A1 (en) 2014-03-07 2015-09-11 Pelican Imaging Corporation System and methods for depth regularization and semiautomatic interactive matting using rgb-d images
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US9992483B2 (en) 2014-09-03 2018-06-05 Intel Corporation Imaging architecture for depth camera mode with mode switching
CN107077743A (en) 2014-09-29 2017-08-18 快图凯曼有限公司 Systems and methods for dynamic calibration of array cameras

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040165090A1 (en) * 2003-02-13 2004-08-26 Alex Ning Auto-focus (AF) lens and process
US20100002126A1 (en) * 2004-11-16 2010-01-07 Aptina Imaging Corporation System and method for focusing a digital camera
CN101147392A (en) * 2005-03-24 2008-03-19 松下电器产业株式会社 Imaging device and lens array used therein
CN101102388A (en) * 2006-07-06 2008-01-09 三星电子株式会社 Image sensor and image sensing method using the same
TW200828994A (en) * 2006-12-22 2008-07-01 Ind Tech Res Inst Autofocus searching method
US20110080487A1 (en) * 2008-05-20 2011-04-07 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
CN102375199A (en) * 2010-08-11 2012-03-14 鸿富锦精密工业(深圳)有限公司 Camera module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106296711A (en) * 2016-08-22 2017-01-04 华南理工大学 Multi-axis active aligning method for mobile phone camera module
CN106296711B (en) * 2016-08-22 2019-04-09 华南理工大学 A kind of multiaxis active alignment method of mobile phone camera module group

Also Published As

Publication number Publication date
US20140002674A1 (en) 2014-01-02
US9766380B2 (en) 2017-09-19
KR20150031452A (en) 2015-03-24
US20190235138A1 (en) 2019-08-01
EP2867718A1 (en) 2015-05-06
US20180081090A1 (en) 2018-03-22
WO2014004134A1 (en) 2014-01-03
JP2015522178A (en) 2015-08-03
US20160266284A1 (en) 2016-09-15
EP2867718A4 (en) 2016-02-17
US10261219B2 (en) 2019-04-16

Similar Documents

Publication Publication Date Title
ES2685583T3 (en) Procedure for the optical reproduction of an object using a field of microlenses with at least two microlenses and an image sensor
US8730373B2 (en) Image forming apparatus
US8049801B2 (en) Image sensor and imaging apparatus
US8018524B2 (en) Image-pickup method and apparatus having contrast and phase difference forcusing methods wherein a contrast evaluation area is changed based on phase difference detection areas
US7873267B2 (en) Focus detection device, focusing state detection method and imaging apparatus
US20010036361A1 (en) Focus detecting device
CN101166235B (en) Lens apparatus, image capture apparatus, and method for correcting image quality
CN102246079B (en) Focus detection apparatus and method for controlling the same
US9571731B2 (en) Thin multi-aperture imaging system with auto-focus and methods for using same
US8687080B2 (en) Image pickup apparatus and signal processor
US8594388B2 (en) Large depth-of-field imaging system and iris recogniton system
US9124831B2 (en) System and methods for calibration of an array camera
US6281931B1 (en) Method and apparatus for determining and correcting geometric distortions in electronic imaging systems
US7702229B2 (en) Lens array assisted focus detection
US8563913B2 (en) Imaging systems having ray corrector, and associated methods
CN102227665B (en) Solid-state image sensing element and image sensing apparatus
JP5169499B2 (en) Imaging device and imaging apparatus
KR101846586B1 (en) Image pickup apparatus, solid-state image pickup device, and image pickup method
CN101802673B (en) Imaging apparatus
JP5458475B2 (en) Focus detection apparatus and imaging apparatus
JP2012043939A (en) Imaging element and imaging apparatus
CN102801929B (en) The image sensor and the imaging apparatus
CN101971610B (en) Image capturing apparatus and image processing method
JP4984491B2 (en) Focus detection apparatus and optical system
JP5066851B2 (en) Imaging device

Legal Events

Date Code Title Description
C06 Publication
EXSB Decision made by sipo to initiate substantive examination
WD01 Invention patent application deemed withdrawn after publication