CN104471676B - 低温下立方和六方InN及其与AlN的合金的等离子体辅助原子层外延 - Google Patents

低温下立方和六方InN及其与AlN的合金的等离子体辅助原子层外延 Download PDF

Info

Publication number
CN104471676B
CN104471676B CN201380032385.3A CN201380032385A CN104471676B CN 104471676 B CN104471676 B CN 104471676B CN 201380032385 A CN201380032385 A CN 201380032385A CN 104471676 B CN104471676 B CN 104471676B
Authority
CN
China
Prior art keywords
inn
nitrogen
cube
precursor
addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201380032385.3A
Other languages
English (en)
Other versions
CN104471676A (zh
Inventor
倪瑞·尼泊尔
查尔斯·R·埃迪
纳迪姆拉·A·马哈迪克
赛义德·B·卡德里
迈克尔·J·梅尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Navy
Original Assignee
US Department of Navy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Navy filed Critical US Department of Navy
Publication of CN104471676A publication Critical patent/CN104471676A/zh
Application granted granted Critical
Publication of CN104471676B publication Critical patent/CN104471676B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • H01L21/02661In-situ cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/205Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy using reduction or decomposition of a gaseous compound yielding a solid condensate, i.e. chemical deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • C30B25/205Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer the substrate being of insulating material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides

Abstract

本发明描述了生长氮化铟(InN)材料的方法,其通过在低于300℃的温度下使用脉冲生长方法生长六方和/或立方InN。还描述了一种材料,其包含具有NaCl型晶相的面心立方晶格晶体结构的InN。

Description

低温下立方和六方InN及其与AlN的合金的等离子体辅助原子 层外延
相关申请的交叉引用
本申请要求2012年6月18日提交的第61/661,016号美国临时申请的权益。
背景
在III族氮化物半导体中,氮化铟(InN)的直接带隙最小,电子饱和速度和迁移率最大,并且电子有效质量最小。长期以来,其已是用于光学、电学和光电设备技术如太阳能电池以及高电子迁移率和高频设备的有吸引力的材料。InN的热力学最稳定相是纤锌矿结构(六方相),然而,在450℃下通过等离子体辅助分子束外延(MBE)已证明闪锌矿(立方相)InN在InAs/GaAs上的生长。立方InN具有更小的带隙和优良的电子性质,因为其晶格是各向同性的且具有较低的声子散射。
简要概述
在一个实施方案中,生长氮化铟(InN)材料的方法包括在低于300℃的温度下使用脉冲生长方法生长六方和/或立方InN。
附图简要说明
图1示出三甲基铟(TMI)脉冲为0.06秒时生长率(GR)和In/N比的变化。
图2描述了源自三个样品,即Tg=183℃的GaN/Al2O3模板上(顶层)以及Tg=240℃(中间)和183℃(底层)的a-平面A12O3上的InN(60nm)的x-射线衍射(XRD)峰。
图3示出面心立方(fcc)InN晶相可能的结构的示意图以及其如何对齐至a-平面蓝宝石单位晶格。
图4描述了在由x射线光电子光谱测定的x的全部范围中AlxIn1-xN中Al含量随AlN/InN循环比的变化。AlN和InN层按权利要求1-5中所声明的生长。InN首先在GaN上生长,然后在AlN上生长。使InN和AlN的层数变化,以获得所需的Al含量浓度。
详细说明
定义
在详细描述本发明之前,应理解说明书中使用的术语是用于描述具体实施方案的目的,并不用于限制。尽管在本发明的实践中可以使用与本文描述的类似的、改良的或等同的许多方法、结构和材料而无需过度的实验,但本文还描述了优选的方法、结构和材料。在本发明的描述和权利要求中,将根据下面列出的定义使用以下术语。
本文中使用的“低温”指低于300℃的温度,且如另有特别说明,还可指更低的温度如低于280℃、低于260℃、低于240℃、低于220℃、低于200℃、低于180℃等。
铟前体包括三甲基铟(TMI)和本领域中已知的其它铟前体。
铝前体包括三甲基铝(TMA)和本领域中已知的其它铝前体。
除非上下文另外明确指明,本说明书和所附的权利要求中所用的单数形式“一个/种(a/an)”和“该(the)”,不排除复数指示物(plural referent)。
本文中使用的术语“和/或(and/or)”包括有关的列出项中的任意一种或一种或多种的所有组合。
本文中使用的术语“约(about)”当与规定的数值或范围共同使用时,指比所规定的数值或范围稍多一些或稍少一些,即在所规定的数值或范围的±10%的范围内。
说明
使用剑桥纳米技术(CNT)Fiji 200原子层沉积/外延(ALE)系统在a-平面蓝宝石、半绝缘Si(111)和GaN/蓝宝石模板上同时生长InN层。使用蓝宝石基板以确保清楚地表征绝缘体上ALE InN层的电运输性质。在任何其它表面预处理之前,晶片已用溶剂清洗,并用去离子(DI)水冲洗。用HF、HF和15%HC1、以及溶剂分别对Si(111)、GaN/蓝宝石和蓝宝石表面进行预处理。在超高纯(UHP)氩(Ar)环境中进行生长。在非原位表面预处理之后,InN生长之前,于300瓦特用50sccm N2等离子体处理基板。使用约150-1100个ALE沉积循环(见下文)以同时在不同基板上合成InN膜。本段中给出的参数值是例值,也可用其它值。
图1示出三甲基铟(TMI)脉冲为0.06秒时生长率(GR)和In/N比的变化。随着温度从160℃升至183℃,GR从降至对于小温度窗,GR保持恒定,并于220℃再次降低至对于220-260℃之间的Tg,GR保持恒定。220-260℃之间的温度范围是第二原子层外延(ALE)窗。在第一低温ALE窗中,InN生长是富N的(In/N<1),而对于高温ALE窗,其是富In的(In/N>1)。已测定MBE生长的InN的In/N比为2.8±0.7(参见Piper et al.,J.Vac.Sci.Technol.A 23,617(2005))。因此,ALE InN具有较好的化学计量组成。
图2描述了三个样品,即Tg=183℃时GaN/Al2O3模板上(顶层)以及Tg=240℃(中间)和183℃(底层)时a-平面A12O3上的InN(60nm)的XRD峰。在底图中,有能指示具有指数(200)和(400)的面心立方(FCC)结构或具有指数(index)(110)和(220)的CsCl结构的一组峰。还测定了以透射以及掠入射反射模式的该样品的24小时长劳厄衍射(LD)图案。在两种模式中都观察到劳厄斑,说明该样品具有外延性,没有粉末/多晶性。这也由底图中的已解析到(resolved)Kα1和Kα2组分的二阶峰(插图)证实。通过15求和扫描获得所述峰以增强信号。一阶和二阶峰的FWHM值分别是494和371弧秒(arc-sec)。所述一阶峰是两个Kα组分的卷积(convolution)。为了证实所述结构,检验三阶峰,所述三阶峰是不可测得的,因为其发生在高得多的角度,而样品只有60nm厚。同样,头两个峰的d-间距与ICDD数据库中的任何InN晶相都不匹配。该结果表明183℃下蓝宝石上的InN具有高度定向的外延结构。所述数据的进一步分析揭示第一峰的d-间距与已报道的国际衍射数据中心(ICDD)数据库中的任何已知的InN晶相都不匹配,而是与之前未报道过的面心立方(FCC)结构对应。如Cryst.Growth Des.2013,13,1485-1490所描述的,通过电子显微镜印证了该XRD数据,所述文献通过引用并入本文。
图3示出面心立方(fcc)InN晶相单位晶格与a-平面蓝宝石基板单位晶格对齐的示意图。由所测定的假设为FCC结构的InN膜的晶格参数,我们看到其仅仅与蓝宝石的面内c-向有2.8%失配,与面内m-向有18.9%失配。这进一步说明其是a-平面蓝宝石上生长的InN膜的最可能的相。
以前报道(参见引用文献21)已有于450℃下通过等离子体辅助分子束外延(MBE)在InAs/GaAs上生长立方InN,但是已证明所述InN具有ZnS(闪锌矿)晶相而不是本文中获得的NaCl型晶相。
表1总结了要合成各种材料的不同参数及其值。每个ALE循环首先由加到恒定的30和100sccm UHP氩载气流中的60ms三甲基铟(TMI)脉冲(经验上认为是自限型ALE生长模式,较长脉冲并不提供显著更好的生长)组成。每次TMI脉冲之后,主泵浦阀关闭5秒,从而能用In原子饱和该表面。使用20秒长300瓦特N2等离子体暴露以向铟饱和的表面提供氮前体。要除去未反应的前体,每次脉冲后用UHP氩将沉积室吹扫(purge)10秒。电阻式加热反应器卡盘,并使用热电偶,通过CNT用高温计校准温度。给定的参数值是例值。可以用其它值。
对于AlInN的ALE生长,以数字化合金(digital alloy)的方式逐层生长InN和AlN层。为生长Al0.90In0.10N,交替地生长AlN和InN。对于每两个InN循环一层A1N,生成Al0.79In0.21N。对于每三个InN循环一层AlN,生成Al0.68In0.32N。因此,通过改变InN和AlN层数组合,可以由原子层外延获得广范围的x的AlxIn1-xN膜。这样,在整个所需化学计量学范围中实现AlInN三元合金,这被认为是首次完成的。给定的参数值是例值。可以用其它值。
表1:InN的ALE的生长参数
参数 TMI脉冲 吹扫 300W N2等离子体 等离子体脉冲 吹扫 循环数
研究范围 0.015-0.1秒 5-15秒 50-150sccm 10-30秒 5-15秒 150-1100
确定值 0.06秒 10秒 100sccm 20秒 10秒 -
表2:AlN的ALE的生长参数
参数 TMI脉冲 吹扫 300W N2/H2等离子体 等离子体脉冲 吹扫
研究范围 0.03-0.1秒 5-40秒 仅N2—N2:H2=1:3 10-30秒 5-40秒
确定值 0.06秒 10秒 42/8sccm 20秒 10秒
本文中描述的技术预期通过非原位和原位表面处理提供一种具有低氧杂质的晶体材料。此外,可以用原子氢、氮、氢和氮的混合物和/或氨等离子体进行原位表面处理。可使吹扫时间随泵速变化来控制碳杂质。
结论
本文中提及的所有文献通过引用的方式并入,目的在于公开和描述所引用的文献的具体材料和方法。
虽然本发明已通过其优选实施方案进行了描述,但本领域技术人员将知晓在不偏离本发明的精神和范围的情况下,可进行未特别描述的增加、删除、改进和替代。本文中使用的术语不应被解释为“方法(means)+功能”的表达,除非在表达上使用与其有关的术语“方法(means)”。
引用文献
通过引用将下面的每个文献并入本文中,特别是用于对所引用文献的教导。
1.Y.Nanishi,Y.Saito,and T.Yamaguchi,Jpn.J.Appl.Phys.42,2549(2003)andthe references therein.
2.A.G.Bhuiyan,A.Hashimoto,and A.Yamamoto,J.Appl.Phys.94,2779(2003).
3.N.Dietz,M.Alevli,V.Woods,M.Strassburg,H.Kang,and I.T.Ferguson,Phys.Status Solidi B 242,2985(2005).
4.R.P.Bhatta,B.D.Thorns,A.Weerasekera,A.G.U.Perera,M.Alevli,andN.Dietz,J.Vac.Sci.Technol.25,967(2007).
5.Shou-Yi Kuo,Fang-I Lai,Wei-Chun Chen,Woei-Tyng Lin,Chien-Nan Hsiao,Hsin-I Lin,and Han-Chang Pan,Diamond&Related Materials 20,1188(2011).
6.M.A.Hafez and H.E.Elsayed-Ali,J.Vac.Sci.Technol.A 27,696(2009).
7.K.S.Boutros,F.G.Mcintosh,J.C.Roberts,S.M.Bedair,E.L.Piner,andN.A.El-Masry.Appl.Phys.Lett.67,1856(1995).
8.C.Ozgit,I.Donmez,M.Alevli,and N.Biyikli,J.Vac.Sci.Technol.A30,01A124(2012).
9.N.H.Karam,T.Parodos,P.Colter,D.McNulty,W.Rowland,J.Schetzina,N.El-Masry,and S.M.Bedair,Appl.Phys.Lett.67,94(1995).
10.K.Kim,N.Kwak,and S.Lee,Electron.Mater.Lett.5,83(2009).
11.M.Alevli,C.Ozgit,I.Donmez,and N.Biyikli,Phys.Status Solidi A209,266(2012).
12.O.Ambacher,M.S.Brandt,R.Dimitrov,T.Metzger,M.Stutzmann,R.A.Fischer,A.Miehr,A.Bergmaier,and G.Dollinger,J.Vac.Sci.Technol.B 14,3532(1996).InN dissociation temp 630
13.M.Y.Duan,L He,M.Xu,M.Y.Xu,Shuyan Xu,and K.Ostrikov,Phys.Rev.B 81,033102(2010).
14.A.Yamamoto,T.Shin-ya,T.Sugiura,A.Hashimoto,J.Cryst.Growth,189/190,461(1998).
15.J.G.Lozano,F.M.Morales,R.Garcia,D.Gonzalez,V.Lebedev,Ch.Y.Wang,V.Cimalla,and O Ambacher,Appl.Phys.Lett.90,091901(2007).
16.A.Janotti and C,G.Van de Walle,Appl.Phys.Lett.92,032104(2008).
17.L.F.J.Piper,T.D.Veal,M.Walker,I.Mahboob,C.F.McConville,H.Lu,andW.J.Schaff,J.Vac.Sci.Technol.A 23,617(2005)
18.C.G.Van de Walle,J.L.Lyons,and A.Janotti,Solidi A 207,1024(2010).
19.T.Matsuoka,H.Okamoto,M.Nakao,H.Harima,and E.Kurimoto,Appl.Phys.Lett.81,1246(2002).
20.M.C.Lee,H.C.Lin,Y.C.Pan,C.K.Shu,J.Ou,W.H.Chen,and W.K.Chen,Appl.Phys.Lett.73,2606(1998).
21.A.P.Lima,A.Tabata,J.R.Leite,S.Kaiser,D.Schikora,B.Schottker,T.Frey,D.J.As,and K.Lischka,J.Cryst.Growth,201/202,396(1999).

Claims (19)

1.生长氮化铟(InN)材料的方法,包括在低于300℃的温度下使用脉冲生长方法生长六方和/或立方InN或AlxIn(1-x)N,其中所述脉冲生长方法的特征在于等离子体辅助原子层外延,其涉及(1)氮前体和(2)铟前体或铝前体的交替脉冲以及吹扫以除去脉冲之间未反应的前体,其中所述生长方法包括所述铟前体的至少一个脉冲。
2.如权利要求1所述的方法,使用N2等离子体作为氮前体。
3.如权利要求1所述的方法,使用三甲基铟作为所述铟前体。
4.如权利要求1所述的方法,其中所述六方和/或立方InN由均相的六方或立方InN组成。
5.如权利要求1所述的方法,其中在生长期间特意使所述温度变化,以控制所述六方或立方InN的导电性。
6.如权利要求1所述的方法,还包括用原子氢、氮、氢和氮的混合物和/或氨等离子体进行原位表面处理。
7.如权利要求1所述的方法,还包括使吹扫时间随泵速变化,从而控制碳杂质的形成。
8.如权利要求1所述的方法,其中所述温度低于200℃。
9.如权利要求8所述的方法,使用N2等离子体作为氮前体。
10.如权利要求8所述的方法,其中所述六方和/或立方InN由均相的六方或立方InN组成。
11.如权利要求8所述的方法,其中在生长期间特意使所述温度变化,以控制所述六方和/或立方InN的导电性。
12.如权利要求8所述的方法,还包括用原子氢、氮、氢和氮的混合物和/或氨等离子体进行原位表面处理。
13.如权利要求8所述的方法,还包括使吹扫时间随泵速变化,从而控制碳杂质的形成。
14.如权利要求1所述的方法,其中所述脉冲生长方法包括于低于300℃的温度下脉冲生长AlxIn1-xN膜。
15.如权利要求14所述的方法,使用N2等离子体作为所述氮前体。
16.如权利要求14所述的方法,其中所述膜具有均相。
17.如权利要求14所述的方法,还包括用原子氢、氮、氢和氮的混合物和/或氨等离子体进行原位表面处理。
18.如权利要求14所述的方法,还包括使吹扫时间随泵速变化,从而控制碳杂质的形成。
19.通过权利要求1-18中任一项所述的方法生长的氮化铟材料。
CN201380032385.3A 2012-06-18 2013-06-13 低温下立方和六方InN及其与AlN的合金的等离子体辅助原子层外延 Expired - Fee Related CN104471676B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261661016P 2012-06-18 2012-06-18
US61/661,016 2012-06-18
PCT/US2013/045569 WO2013192001A1 (en) 2012-06-18 2013-06-13 Plasma-assisted atomic layer epitaxy of cubic and hexagonal inn films and its alloys with ain at low temperatures

Publications (2)

Publication Number Publication Date
CN104471676A CN104471676A (zh) 2015-03-25
CN104471676B true CN104471676B (zh) 2017-09-29

Family

ID=49755138

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380032385.3A Expired - Fee Related CN104471676B (zh) 2012-06-18 2013-06-13 低温下立方和六方InN及其与AlN的合金的等离子体辅助原子层外延

Country Status (6)

Country Link
US (4) US9773666B2 (zh)
EP (1) EP2862199A4 (zh)
JP (1) JP2015525484A (zh)
CN (1) CN104471676B (zh)
SG (1) SG11201408484TA (zh)
WO (1) WO2013192001A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10347722B2 (en) * 2015-03-04 2019-07-09 Lehigh University Artificially engineered III-nitride digital alloy
CN106024583B (zh) * 2016-05-13 2018-08-14 西北大学 一种在Si(100)衬底上制备不同晶相择优生长InN的方法
JP7245501B2 (ja) * 2018-03-02 2023-03-24 国立大学法人東海国立大学機構 Iii族窒化物半導体素子の製造方法および基板の洗浄方法
JP2023020447A (ja) * 2021-07-30 2023-02-09 国立大学法人東海国立大学機構 Iii族窒化物半導体素子の製造方法
CN113897677B (zh) * 2021-09-30 2023-04-28 中国科学院苏州纳米技术与纳米仿生研究所 氮化铟晶体及其生长方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260622A (ja) * 1985-05-15 1986-11-18 Res Dev Corp Of Japan GaAs単結晶薄膜の成長法
JP3752810B2 (ja) * 1997-11-26 2006-03-08 昭和電工株式会社 エピタキシャルウェハおよびその製造方法並びに半導体素子
JP4214585B2 (ja) * 1998-04-24 2009-01-28 富士ゼロックス株式会社 半導体デバイス、半導体デバイスの製造方法及び製造装置
JP3898575B2 (ja) * 2002-06-12 2007-03-28 ソニー株式会社 GaInN層の成膜方法
US20070257264A1 (en) 2005-11-10 2007-11-08 Hersee Stephen D CATALYST-FREE GROWTH OF GaN NANOSCALE NEEDLES AND APPLICATION IN InGaN/GaN VISIBLE LEDS
CN101443887B (zh) * 2006-03-10 2011-04-20 Stc.Unm公司 Gan纳米线的脉冲式生长及在族ⅲ氮化物半导体衬底材料中的应用和器件
CA2643439C (en) * 2006-03-10 2015-09-08 Stc.Unm Pulsed growth of gan nanowires and applications in group iii nitride semiconductor substrate materials and devices
JPWO2007119433A1 (ja) * 2006-03-20 2009-08-27 財団法人神奈川科学技術アカデミー Iii−v族窒化物層およびその製造方法
JP4888857B2 (ja) * 2006-03-20 2012-02-29 国立大学法人徳島大学 Iii族窒化物半導体薄膜およびiii族窒化物半導体発光素子
JP2007284305A (ja) * 2006-04-18 2007-11-01 Osaka Univ 磁性を有するアルカリ土類金属窒化物とその製造方法
JP2008177525A (ja) * 2006-12-20 2008-07-31 Showa Denko Kk Iii族窒化物半導体発光素子の製造方法、及びiii族窒化物半導体発光素子、並びにランプ
JP2008177523A (ja) * 2006-12-20 2008-07-31 Showa Denko Kk Iii族窒化物化合物半導体発光素子の製造方法、及びiii族窒化物化合物半導体発光素子、並びにランプ
GB0702560D0 (en) 2007-02-09 2007-03-21 Univ Bath Production of Semiconductor devices
CN101445956A (zh) * 2007-11-28 2009-06-03 中国科学院半导体研究所 一种氮化物薄膜外延生长的方法
US20100038656A1 (en) * 2008-08-04 2010-02-18 Goldeneye Nitride LEDs based on thick templates
US8541817B2 (en) * 2009-11-06 2013-09-24 Nitek, Inc. Multilayer barrier III-nitride transistor for high voltage electronics
US8507365B2 (en) 2009-12-21 2013-08-13 Alliance For Sustainable Energy, Llc Growth of coincident site lattice matched semiconductor layers and devices on crystalline substrates
JP2011198885A (ja) * 2010-03-18 2011-10-06 Mitsui Eng & Shipbuild Co Ltd 原子層堆積装置及び原子層堆積方法
US8945305B2 (en) * 2010-08-31 2015-02-03 Micron Technology, Inc. Methods of selectively forming a material using parylene coating
KR101883840B1 (ko) * 2011-08-31 2018-08-01 엘지이노텍 주식회사 발광소자

Also Published As

Publication number Publication date
EP2862199A1 (en) 2015-04-22
US20180040472A1 (en) 2018-02-08
WO2013192001A1 (en) 2013-12-27
US20220406591A1 (en) 2022-12-22
US9773666B2 (en) 2017-09-26
US20200294792A1 (en) 2020-09-17
JP2015525484A (ja) 2015-09-03
US11443942B2 (en) 2022-09-13
EP2862199A4 (en) 2016-02-24
CN104471676A (zh) 2015-03-25
US20130334666A1 (en) 2013-12-19
SG11201408484TA (en) 2015-05-28

Similar Documents

Publication Publication Date Title
Keller et al. Influence of sapphire nitridation on properties of gallium nitride grown by metalorganic chemical vapor deposition
US20200294792A1 (en) Indium Nitride Material
Zeuner et al. Structural and optical properties of epitaxial and bulk ZnO
EP1697965A1 (en) NON-POLAR (A1, B, In, Ga)N QUANTUM WELLS
KR20110021961A (ko) 육방정 우르차이트 단결정
Madapu et al. Effect of strain relaxation and the Burstein–Moss energy shift on the optical properties of InN films grown in the self-seeded catalytic process
Adachi et al. Elimination of rotational domain in AlN layers grown from Ga–Al flux and effects of growth temperature on the layers
US10937649B2 (en) Epitaxial growth of cubic and hexagonal InN films and their alloys with AlN and GaN
Netzel et al. Strong charge carrier localization interacting with extensive nonradiative recombination in heteroepitaxially grown m-plane GaInN quantum wells
Zhao et al. Growth of cubic GaN by phosphorus-mediated molecular beam epitaxy
JP7120598B2 (ja) 窒化アルミニウム単結晶膜及び半導体素子の製造方法
Koblmüller et al. Molecular beam epitaxy of nitrides for advanced electronic materials
Lee et al. Single-phase deposition of α-gallium nitride by a laser-induced transport process
Parala et al. An Efficient Chemical Solution Deposition Method for Epitaxial Gallium Nitride Layers Using a Single‐Molecule Precursor
Buegler et al. Reactor pressure: growth temperature relation for InN epilayers grown by high-pressure CVD
Park et al. X-ray diffraction analysis of the defect structure in AlxGa1-xN films grown by metalorganic chemical vapor deposition
Gergova Growth and characterization of group III-nitrides by migration enhanced afterglow epitaxy
Ahmad Migration Enhanced Plasma Assisted Metal Organic Chemical Vapor Deposition of Indium Nitride
Hagedorn et al. HVPE growth of AlxGa1–xN alloy layers
Pant Characterization of the Nucleation Layer in GaN/Sapphire Heterostructures
Korbutowicz et al. Thick GaN layers on sapphire with various buffer layers
Chen et al. Growth of Semipolar InN (1013) on LaAlO3 (112) Substrate
Kirilyuk Optical characterization of Gallium nitride
Nastase et al. The influence of nucleation parameters on GaN buffer layer properties used for HEMT application
Kuppulingam et al. Preparation of GaN on GaAs (100) substrate by annealing and post-nitridation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170929

Termination date: 20180613