CN104460417A - Universal power source for ion optical system - Google Patents

Universal power source for ion optical system Download PDF

Info

Publication number
CN104460417A
CN104460417A CN 201410597189 CN201410597189A CN104460417A CN 104460417 A CN104460417 A CN 104460417A CN 201410597189 CN201410597189 CN 201410597189 CN 201410597189 A CN201410597189 A CN 201410597189A CN 104460417 A CN104460417 A CN 104460417A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
power supply
controllable
relay
high voltage
voltage power
Prior art date
Application number
CN 201410597189
Other languages
Chinese (zh)
Inventor
李明
唐兴斌
李凯
王希博
任立志
吕海马
Original Assignee
钢研纳克检测技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors

Abstract

The invention relates to a universal power source for an ion optical system, in particular to a universal power source for an ion optical system in an inductive coupling plasma quadrupole rod mass spectrometer. The power source comprises a microprocessor, a relay drive, a relay, a digital analog converter, a controllable positive high-voltage power module and a controllable negative high-voltage power module. The input end of the microprocessor is used for receiving an external control instruction, and the two output ends of the microprocessor are connected with the input end of the relay drive and the input end of the digital analog converter respectively. The output end of the digital analog converter is connected with the controllable positive high-voltage power module and the controllable negative high-voltage power module. The output end of the controllable positive high-voltage power module and the output end of the controllable negative high-voltage power module are connected with the second input end and the third input end of the relay respectively. The output end of the relay is connected with an instrument ion lens. The universal power source meets the requirements that the ion optical system in the inductive coupling plasma quadrupole rod mass spectrometer needs multi-path power sources, and the voltage adjustable ranges of the multi-path power sources are different, and the hardware cost and the technology complexity degree are reduced.

Description

一种用于离子光学系统的通用电源 Universal power supply for an ion optical system

技术领域 FIELD

[0001] 本发明涉及一种用于离子光学系统的通用电源,特别是一种用于电感耦合等离子体四极杆质谱仪中的离子光学系统的通用电源。 [0001] The present invention relates to a universal power supply for an ion optical system, in particular a universal power supply for inductively coupled plasma ion optical system in a quadrupole mass spectrometer.

背景技术 Background technique

[0002] 电感耦合等离子体四极杆质谱仪主要用于痕量元素分析,样品在电感耦合等离子体光源下被离子化,样品离子流经过采样锥、截取锥后到达离子光学系统。 [0002] The inductively coupled plasma mass spectrometer quadrupole mainly used for trace element analysis, the sample is ionized coupled in a plasma source inductor, the sample ions flow through the sampler cone, after the ion optical system reaches the skimmer. 离子光学系统对离子流进行偏转和聚焦,使离子流沿着既定的轨迹高效、无损失地传输到四极杆筛选器,从而实现质谱分析。 Ion optical system for focusing and deflecting the ion stream, the ion stream along a predetermined trajectory efficient transfer without loss to the quadrupole filter, enabling mass spectrometry.

[0003] 其中,离子光学系统由一些有序布置的金属电极所构成。 [0003] wherein the ion optical system is constituted by a metallic electrode orderly arrangement. 在这些电极上加载一定的电压后,可用于聚焦、偏转离子流,使离子流沿着既定的轨迹进行传输。 After loading a certain voltage to these electrodes, it can be used for focusing and deflecting the ion stream, the ion stream for transmission along a predetermined trajectory. 这些电极加载的电压范围在-2000V至+2000V间。 Electrode loading these voltage range between + 2000V to -2000V. 根据每个电极所处的位置和作用不同,其加载电压的可调范围及调节精度的要求也不相同。 The role and the position of each electrode, the levels of the adjustable range of the applied voltage and the regulation accuracy requirements are not the same. 例如,其中一个电极的电压要求-500V到+200V间可调,另外一个电极的电压要求是-100V到+300V间可调。 For example, wherein the voltage of one electrode -500V to + 200V required between adjustable voltage requirements other electrode is adjustable between -100V to + 300V.

[0004] 由于需求的电压范围较大,统一定制范围-2000V至+2000V可调电源的成本很高,并且损失了电压的调节精度。 [0004] Due to the large voltage range requirements, uniform customization range of + 2000V to -2000V costly adjustable power supply, and the loss of voltage regulation accuracy. 另外由于各电极的电压需求范围各不一样,分别针对定制的成本也很高。 In addition, as demand voltage range of the electrodes not the same, respectively, for customized cost is also high. 而单极性的高压可控电源的成本则相对低廉。 The cost of high-voltage unipolar power supply is controlled relatively low. 若能用两个极性不同的高压可控电源来实现其正负范围内的电压需求,则可降低硬件成本及降低技术的复杂程度。 If two different polarity high voltage power supply to achieve a controlled voltage demand within the range of positive and negative, can be reduced to reduce hardware costs and complexity of the technology.

发明内容 SUMMARY

[0005] 针对以上问题,本发明的目的是提供一种用于电感耦合等离子体四极杆质谱仪中离子光学系统的通用电源,其采用两个极性不同的高压可控电源。 [0005] To solve the above problems, an object of the present invention is to provide a universal power supply for inductively coupled plasma mass spectrometer quadrupole ion optical system, which employs two different polarity of high voltage controllable power source.

[0006] 为了达到上述目的,本发明提供了如下技术方案: [0006] To achieve the above object, the present invention provides the following technical solutions:

[0007] 一种用于离子光学系统的通用电源,其中: Universal Power Supply [0007] An ion optical system is provided, wherein:

[0008] 所述电源包括:微处理器,继电器驱动,继电器,数模转换器,可控正高压电源模块,可控负高压电源模块; [0008] The power source comprises: a microprocessor, a relay driver, the relay, a digital-controllable positive high voltage power supply module, a controllable negative high voltage power supply module;

[0009] 其中,微处理器有三个端口,入端用于接收外部控制命令,两个出端分别接继电器驱动和数模转换器的入端; [0009] wherein the microprocessor has three ports, the terminal for receiving an external control command, the two ends are connected to the DAC and the relay drive end;

[0010] 所述继电器驱动的出端接继电器的第一入端; [0010] The relay driving the terminating end of the first relay;

[0011] 所述数模转换器的出端分别接可控正高压电源模块和可控负高压电源模块的入端; [0011] The digital-analog converter are respectively connected ends of a controllable high voltage power supply module and a controllable positive negative high voltage power supply module into the terminal;

[0012] 所述可控正高压电源模块的出端接继电器的第二入端,可控负高压电源模块的出端接继电器的第三入端; [0012] The controlled positive high voltage power supply module into the second end terminating relay, controlled negative high voltage power supply module into a third relay terminal end;

[0013] 所述继电器的出端接仪器离子透镜; [0013] Termination of the relay apparatus illustrating an ion lens;

[0014] 其中,可控正高压电源模块输出电压极性为正,可控负高压电源模块输出电压极性为负,可控正高压电源模块和可控负高压电源模块的输出电压值大小由数模转换器来设定; [0014] wherein, a controllable high voltage power supply module the output voltage of the positive polarity is positive, the output power is controllable negative high voltage of negative polarity, the positive high voltage power supply module controllable negative high voltage power supply and control module by the magnitude of the output voltage DAC setting;

[0015] 微处理器根据外部控制命令的正负极性要求来控制继电器驱动,进而控制继电器,继电器选择相应极性的可控高压电源模块作为输出源,从而实现仪器离子透镜对电压极性的要求; [0015] The polarity of the microprocessor requires an external control command to control the relay driver, thereby controlling a relay, select the appropriate polarity controllable high voltage power supply module as an output source, enabling the instrument to the ion lens voltage polarity Claim;

[0016] 微处理器接受外部控制命令的同时也获得仪器离子透镜所需电压值的大小,微处理器根据电压值大小的要求控制数模转换器,数模转换器设定可控高压电源模块输出电压值的大小。 While [0016] The microprocessor also receives an external control command to obtain the size of the equipment required for the ion lens voltage value, the microprocessor controlled digital to analog converter in accordance with the desired voltage value of the size, setting digital to analog converter controlled high voltage power supply module magnitude of the output voltage value.

[0017] 微处理器的第一出端接多个并联的继电器驱动,第二出端接多个并联的数模转换器。 A first plurality of parallel terminating the relay [0017] The microprocessor-driven, the second end of the plurality of parallel digital to analog converter.

[0018] 所述微处理器采用单片机芯片、ARM芯片、可编程逻辑器件(CPLD)芯片及现场可编程门阵列(FPGA)芯片中的一种。 [0018] The single chip microprocessors An ARM chip, a programmable logic device (CPLD) chip and a field programmable gate array (FPGA) chip.

[0019] 所述数模转换器的输出范围是O〜+5V,数模转换芯片是16通道,数模转换精度12bitSo [0019] The DAC output range is O~ + 5V, a digital to analog converter chip 16 channel digital to analog conversion accuracy 12bitSo

[0020] 所述可控正高压电源模块的控制输入范围为O〜+5V,输出范围为O〜+2000V。 [0020] The control input of the controllable range of positive high voltage power supply module is O~ + 5V, the output range is O~ + 2000V.

[0021] 所述可控负高压电源模块的控制输入范围为O〜+5V,输出范围为O〜-2000V。 [0021] The controlled negative high voltage power supply module controls the input range is O~ + 5V, the output range O~-2000V.

[0022] 与现有技术相比,本发明的有益效果在于: [0022] Compared with the prior art, the beneficial effects of the present invention:

[0023] 本发明的用于离子光学系统的通用电源很好地适应了电感耦合等离子体四极杆质谱仪中离子光学系统需要多路电源,且对电压可调范围各不相同的需求,大幅降低了硬件成本和技术的复杂程度。 [0023] General power supply for the ion optical system of the present invention is well adapted to the inductance of the quadrupole mass spectrometer ion optical system require multiple power supply, and varies the voltage adjustable range needs coupled plasma, significantly reduce the cost and complexity of hardware technology.

附图说明 BRIEF DESCRIPTION

[0024] 图1示出根据本发明的第一实施例的用于离子光学系统的通用电源的结构框图; [0024] FIG 1 illustrates a general block diagram according to the power supply for the ion optical system of the first embodiment of the present invention;

[0025] 图2示出根据本发明的第二实施例的用于离子光学系统的通用电源的结构框图。 [0025] Figure 2 shows a block diagram of a general configuration for supply of the ion optical system of the second embodiment of the present invention.

具体实施方式 detailed description

[0026] 下面结合附图,对本发明的具体实施方式作进一步的说明,本发明并不局限于以下实施例。 [0026] below with the accompanying drawings, specific embodiments of the present invention will be further described, the present invention is not limited to the following embodiments.

[0027] 实施例1 [0027] Example 1

[0028] 图1示出根据本发明的第一实施例的用于离子光学系统的通用电源的结构框图。 [0028] FIG 1 illustrates a block diagram of a general configuration for supply of the ion optical system of the first embodiment of the present invention.

[0029] 如图1所示,根据本发明的第一实施例的用于离子光学系统的通用电源包括:有3个端口的微处理器101,继电器驱动102,有4个端口的继电器103,数模转换器104,可控正高压电源模块105,可控负高压电源模块106。 [0029] 1, according to the universal power supply for ion optical system according to the first embodiment of the present invention comprises: a microprocessor 101 has three ports, the relay driver 102, relay 103 has four ports, DAC 104, controllable positive high voltage power supply module 105, the negative high voltage power supply module 106 is controlled.

[0030] 其中,微处理器101的第I端口用于接收外部的控制命令,微处理器101的第2端口接继电器驱动102,微处理器101的第3端口接数模转换器104。 [0030] wherein, the microprocessor 101 of the first I-ports for receiving an external control command, the second port connected to the microprocessor 101 driving the relay 102, the microprocessor third port connected to the digital-104101. 继电器驱动102的另一端接继电器103的第I个端口。 The other end of the relay driver 102 relay port 103 of the I-th. 数模转换器104的另一端接可控正高压电源模块105和可控负高压电源模块106。 The other end 104 of DAC controlled positive high voltage power supply module 105 and a controllable negative high voltage power supply module 106. 可控正高压电源模块105的另一端接继电器103的第2个端口。 Controllable positive high voltage power supply module other end of the second port 105 of the relay 103. 可控负高压电源模块106的另一端接继电器103的第3个端口。 Controllable negative high voltage power supply module other end of the third port 106 of the relay 103. 继电器103的第4个端口接仪器尚子透镜。 A fourth port connected to the relay apparatus 103 is still sub-lens.

[0031] 其中,可控正高压电源模块105输出电压极性为正,输出电压值大小由数模转换器104来设定。 [0031] wherein n, the output voltage value of the size set by a digital to analog converter 104 controlled high voltage power supply module 105 outputs a positive voltage polarity. 可控负高压电源模块106输出电压极性为负,输出电压值大小由数模转换器104来设定。 A controllable high voltage power supply module 106 outputs a negative voltage polarity is negative, the output voltage value of the size set by the digital to analog converter 104.

[0032] 微处理器101通过外部控制命令获得仪器离子透镜需要的电压的正负极性,微处理器101根据外部命令的正负极性要求来控制继电器驱动102,进而控制继电器103,继电器103选择相应极性的可控高压电源模块作为输出源。 [0032] The microprocessor 101 is obtained by an external control command voltage polarity ion lens instruments required, microprocessor 101 controls the relay driver 102 in accordance with the polarity requirements of the external command, then control relay 103, relay 103 controllably select the polarity of the high voltage power supply module as an output source. 从而实现仪器离子透镜对电压极性的要求。 An ion lens in order to achieve the requirements of the instrument voltage polarity.

[0033] 微处理器101通过外部控制命令同时也会获得仪器离子透镜所需电压值的大小,微处理器101根据电压值大小的要求控制数模转换器104,数模转换器104设定可控高压电源模块输出电压值的大小。 [0033] The microprocessor 101 will also have the size of the equipment required for the ion lens by an external control voltage command value, the microprocessor 101 controls the digital to analog converter 104 in accordance with the size of the desired voltage value, digital to analog converter 104 may be set size of high voltage power supply control module output voltage value.

[0034] 微处理器101可采用单片机芯片,ARM芯片,复杂可编程逻辑器件(CPLD)芯片及现场可编程门阵列(FPGA)芯片中的一种。 [0034] Microprocessor 101 may employ single chip, the ARM chip, a complex programmable logic device (CPLD) chip and a field programmable gate array (FPGA) chip of one.

[0035] 数模转换器104的输出范围可以但不限于是O〜+5V,数模转换芯片可以但不限于是16通道,数模转换精度可以但不限于12bits。 Output range [0035] DAC 104 may be, but is not limited to O~ + 5V, a digital to analog converter chip 16 can be but is not limited channels, digital to analog conversion accuracy may be, but is not limited to 12bits.

[0036] 可控正高压电源模块105的控制输入范围可以但不限于O〜+5V,输出范围可以但不限于O〜+2000V。 [0036] controllable positive high voltage power supply control module 105 may input range, but is not limited to O~ + 5V, but is not limited to the output range may O~ + 2000V. 可控负高压电源模块106的控制输入范围可以但不限于O〜+5V,输出范围可以但不限于O〜-2000V。 Negative control input of the controllable range of the high voltage supply module 106 may be, but is not limited to O~ + 5V, but is not limited to the output range may O~-2000V. 例如,当仪器离子透镜所需要的电压范围是-350V〜+450V,为了达到最好的控制精度,则可控正高压电源模块105的输出范围选择为O〜+450V,可控负高压电源模块106的输出范围选择为O〜-350V。 For example, when the ion lens apparatus required voltage range -350V~ + 450V, in order to achieve better control accuracy, the controllable range of the positive high voltage power supply module 105 is selected to output O~ + 450V, controllable negative high voltage power supply module output range 106 is selected to O~-350V.

[0037] 实施例2 [0037] Example 2

[0038] 采用本发明的第一实施例的用于离子光学系统的通用电源可实现离子光学系统中其中一路电极的供电控制。 [0038] The present invention is a universal power supply for the ion optical system of the first embodiment of the ion optical system may be implemented in a way in which the electrode power supply control. 但是,通常情况下,电感耦合等离子体四极杆质谱仪中的离子光学系统需要不止一路电源。 However, in general, an inductively coupled plasma ion optical system quadrupole mass spectrometer needs more than one power. 这时,我们可以方便快速地扩展出第二路电源。 At this time, we can quickly and easily expand the secondary supply. 采用本发明的第二实施例的可用于离子光学系统的通用电源可实现离子光学系统中两路电极的供电控制。 According to the present invention may be used for general power supply of the ion optical system of the second embodiment may be implemented in the ion optical system control power supply two electrodes. 图2示出根据本发明的第二实施例的用于离子光学系统的通用电源的结构框图。 Figure 2 shows a block diagram according to the general power supply for the ion optical system of the second embodiment of the present invention.

[0039] 如图2所示,根据本发明的第二实施例的用于离子光学系统的通用电源包括:微处理器201,继电器驱动202a,继电器203a,数模转换器204a,可控正高压电源模块205a,可控负高压电源模块206a,继电器驱动202b,继电器203b,数模转换器204b,可控正高压电源模块205b,可控负高压电源模块206b。 [0039] As shown in FIG 2, the universal power supply for the ion optical system of the second embodiment of the present invention comprises: a microprocessor 201, a relay driver 202a, the relay 203a, DAC 204a, controllable positive high voltage power modules 205a, controllable negative high voltage power supply module 206a, relay driver 202b, the relay 203b, DAC 204b, controllable positive high voltage power supply module 205b, a controllable negative high voltage power supply module 206b.

[0040] 其中,微处理器201有3个端口,微处理器201的第I端口用于接收外部的控制命令,微处理器201的第2端口接继电器驱动202a及继电器驱动202b,微处理器201的第3端口接数模转换器204a及数模转换器204b。 [0040] wherein the microprocessor 201 has three ports, a first microprocessor I-ports for receiving an external control command 201, the second port connected to the microprocessor 201 of the relay and the relay driver 202a drives 202b, the microprocessor the third port 201 connected digital-analog converter 204a and 204b.

[0041] 继电器驱动202a的另一端接继电器203a的第I个端口。 [0041] I-th relay driving port 203a of the other end 202a of the relay. 数模转换器204a的另一端接可控正高压电源模块205a和可控负高压电源模块206a。 The other end 204a of the digital to analog converter controlled positive high voltage power supply module 205a and a controllable negative high voltage power supply module 206a. 可控正高压电源模块205a的另一端接继电器203a的第2个端口。 Controllable two relay ports 203a of the other end 205a of the positive high voltage power supply module. 可控负高压电源模块206a的另一端接继电器203a的第3个端口。 Controllable negative high voltage power module relay 203a 206a of the other end of the third port. 继电器203a的第4个端口接仪器离子透镜a。 A fourth relay port 203a connected to the instrument ion lens a.

[0042] 继电器驱动202b的另一端接继电器203b的第I个端口。 [0042] I-th relay drive ports 202b of the other end 203b of the relay. 数模转换器204b的另一端接可控正高压电源模块205b和可控负高压电源模块206b。 The other end 204b of the digital to analog converter controlled positive high voltage power supply module 205b and a controllable negative high voltage power supply module 206b. 可控正高压电源模块205b的另一端接继电器203b的第2个端口。 Controllable two relay ports other end of the positive high voltage power supply module 205b and 203b. 可控负高压电源模块206b的另一端接继电器203b第3个端口。 The other end of relay controlled negative high voltage power supply module 206b, a third port 203b. 继电器203b的第4个端口接仪器离子透镜b。 A fourth relay port 203b connected to the instrument ion lens b.

[0043] 微处理器201通过外部控制命令获得仪器离子透镜a或仪器离子透镜b所需电压值的极性,并通过继电器203a或继电器203b控制仪器离子透镜a或仪器离子透镜b连接到相应极性的可控高压电源模块。 [0043] The microprocessor 201 via an external control commands over a desired polarity ion lens apparatus or instrument voltage values ​​ion lens b, and is connected to a respective electrode 203a or relay by the relay device 203b controls the ion lens or a lens apparatus ions b of the controllable high voltage power supply module.

[0044] 微处理器201通过外部控制命令也会获得仪器离子透镜a或仪器离子透镜b所需电压值的大小。 [0044] The microprocessor 201 will obtain a size of the equipment required for the ion lens or an ion lens instrument voltage value b by an external control command. 根据电压值大小,微处理器201控制数模转换器204a或数模转换器204b,数模转换器204a或数模转换器204b设定a路可控高压电源模块(205a和206a)或b路可控高压电源模块(205b和206b)输出电压值的大小。 The voltage magnitude, the microprocessor 201 controls the digital-analog converter 204a or 204b, digital-analog converter 204a or 204b set to a high voltage power supply module controllable passage (205a and 206a) or path b a controllable high voltage power supply module (205b and 206b) of the magnitude of the output voltage.

[0045] 图2中微处理器201与图1中微处理器101是同一芯片。 [0045] The microprocessor 201 of FIG. 2 and FIG. 1 in the microprocessor 101 is the same chip. 可采用单片机芯片,ARM芯片,复杂可编程逻辑器件(CPLD)芯片及现场可编程门阵列(FPGA)芯片中的一种。 Single chip can be used, the ARM chip, a complex programmable logic device (CPLD) chip and a field programmable gate array (FPGA) A chip in.

[0046] 数模转换器204a和数模转换器204b可以是同一数模转换芯片的不同通道,也可以是不同的数模转换芯片。 [0046] The digital-analog converter 204a and 204b may be different channels of a digital-analog converter chip, or may be different DAC chip. 数模转换芯片的输出范围可以但不限于是O〜+5V,数模转换芯片可以但不限于是16通道,数模转换精度可以但不限于12bits。 Output range of DAC chip may be but is not limited O~ + 5V, a digital to analog converter chip 16 can be but is not limited channels, digital to analog conversion accuracy may be, but is not limited to 12bits.

[0047] 可控正高压电源模块205a的控制输入范围可以但不限于O〜+5V,输出范围可以但不限于O〜+2000V。 [0047] controllable positive high voltage power supply control input module 205a may range, but is not limited to O~ + 5V, but is not limited to the output range may O~ + 2000V. 可控负高压电源模块206a的控制输入范围可以但不限于O〜+5V,输出范围可以但不限于O〜-2000V。 Negative control input of the controllable range of high voltage power supply module 206a may be, but is not limited to O~ + 5V, but is not limited to the output range may O~-2000V. 例如,当仪器离子透镜a所需要的电压范围是-500V〜+700V,为了达到最好的控制精度,则可控正高压电源模块205a的输出范围选择为O〜+700V,可控负高压电源模块206a的输出范围选择为O〜-500V。 For example, when the ion lens apparatus a required voltage range -500V~ + 700V, in order to achieve better control accuracy, the controllable range of the positive high voltage power supply output module 205a is selected to O~ + 700V, the negative high voltage power supply controlled output module 206a is selected to range O~-500V.

[0048] 可控正高压电源模块205b的控制输入范围可以但不限于O〜+5V,输出范围可以但不限于O〜+2000V。 [0048] controllable positive high voltage power supply control input module 205b may be, but is not limited to the scope O~ + 5V, but is not limited to the output range may O~ + 2000V. 可控负高压电源模块206b的控制输入范围可以但不限于O〜+5V,输出范围可以但不限于O〜-2000V。 Negative control input of the controllable range of high voltage power supply module 206b may be but are not limited to O~ + 5V, but is not limited to the output range may O~-2000V. 例如,当仪器离子透镜b所需要的电压范围是-800V〜+1200V,为了达到最好的控制精度,则可控正高压电源模块205a的输出范围选择为O〜+1200V,可控负高压电源模块206b的输出范围选择为O〜-800V。 For example, when the ion lens b instrument required voltage range -800V~ + 1200V, in order to achieve better control accuracy, the controllable range of the positive high voltage power supply output module 205a is selected to O~ + 1200V, the controllable negative high voltage power supply output module 206b is selected to range O~-800V.

[0049] 采用本发明的第二实施例的可用于离子光学系统的通用电源可实现离子光学系统中两路电极的供电控制。 [0049] The present invention may be used for general power supply of the ion optical system of the second embodiment may be implemented in the ion optical system control power supply two electrodes. 依据本发明所给的两个实施例,本领域的普通技术人员不做任何创新的情况下,即可拓展出这种用于离子光学系统的通用电源的多路形式。 According to two embodiments of the present invention, the case of those of ordinary skill in the art without any innovation can develop such a universal power supply for multiple forms of the ion optical system.

Claims (6)

  1. 1.一种用于离子光学系统的通用电源,其特征在于: 所述电源包括:微处理器,继电器驱动,继电器,数模转换器,可控正高压电源模块,可控负高压电源模块; 其中,微处理器有三个端口,入端用于接收外部控制命令,两个出端分别接继电器驱动和数模转换器的入端; 所述继电器驱动的出端接继电器的第一入端; 所述数模转换器的出端分别接可控正高压电源模块和可控负高压电源模块的入端; 所述可控正高压电源模块的出端接继电器的第二入端,可控负高压电源模块的出端接继电器的第三入端; 所述继电器的出端接仪器离子透镜; 其中,可控正高压电源模块输出电压极性为正,可控负高压电源模块输出电压极性为负,可控正高压电源模块和可控负高压电源模块的输出电压值大小由数模转换器来设定; 微处理器根据外部控制命令的正负极性要求 1. A universal power supply for the ion optical system, wherein: said power source comprises: a microprocessor, a relay driver, the relay, a digital-controllable positive high voltage power supply module, a controllable negative high voltage power supply module; wherein the microprocessor has three ports, the terminal for receiving an external control command, the two terminals are connected into the relay drive and a digital terminal; the relay driving end terminating into the first relay; the end of the digital to analog converter are respectively connected controllable positive high voltage power supply module and a controllable high voltage power supply module into the negative terminal; positive high voltage of the controllable power supply module into the second relay terminal end, a controllable negative a termination end of the third high voltage power supply module of the relay; an end of the relay apparatus an ion lens; wherein, a controllable high voltage power supply module the output voltage of the positive polarity is positive, the output power is controllable negative high voltage polarity is negative, the positive high voltage power supply module, and a controllable negative high voltage power supply module controllable output voltage magnitude is set by digital to analog converter; the polarity of a microprocessor according to an external control commands required 控制继电器驱动,进而控制继电器,继电器选择相应极性的可控高压电源模块作为输出源,从而实现仪器离子透镜对电压极性的要求; 微处理器接受外部控制命令的同时也获得仪器离子透镜所需电压值的大小,微处理器根据电压值大小的要求控制数模转换器,数模转换器设定可控高压电源模块输出电压值的大小。 Control relay, then control relay, which controllably select the polarity of the high voltage power supply module as an output source, ion optics in order to achieve the requirements of the instrument voltage polarity; a microprocessor receiving an external control command while the instrument is also obtained by the ion lens size required voltage value, the microprocessor controlled digital to analog converter in accordance with the desired voltage value of the size, digital-sized high voltage power supply module controllable output voltage value.
  2. 2.根据权利要求1所述的用于离子光学系统的通用电源,其特征在于: 微处理器的第一出端接多个并联的继电器驱动,第二出端接多个并联的数模转换器。 Universal power supply according to claim 2 for the ion optical system according to claim 1, wherein: a first plurality of parallel terminating a relay microprocessor drive, a second digital to analog conversion of a plurality of parallel end device.
  3. 3.根据权利要求1所述的用于离子光学系统的通用电源,其特征在于: 所述微处理器采用单片机芯片、ARM芯片、可编程逻辑器件(CPLD)芯片及现场可编程门阵列(FPGA)芯片中的一种。 3. The universal power supply for the ion optical system according to claim 1, wherein: said single chip microprocessors, the ARM chip, Programmable Logic Device (CPLD) chip and a field programmable gate array (FPGA ) of one chip.
  4. 4.根据权利要求1所述的用于离子光学系统的通用电源,其特征在于: 所述数模转换器的输出范围是0〜+5V,数模转换芯片是16通道,数模转换精度12bits0 4. The universal power supply for the ion optical system according to claim 1, wherein: said digital to analog converter output range is 0~ + 5V, a digital to analog converter chip 16 channel digital to analog conversion accuracy 12bits0
  5. 5.根据权利要求1所述的用于离子光学系统的通用电源,其特征在于: 所述可控正高压电源模块的控制输入范围为0〜+5V,输出范围为0〜+2000V。 Universal power supply according to claim 5 for the ion optical system according to claim 1, wherein: said control input of the controllable range of positive high voltage power supply module is 0~ + 5V, the output range of 0~ + 2000V.
  6. 6.根据权利要求1所述的用于离子光学系统的通用电源,其特征在于: 所述可控负高压电源模块的控制输入范围为0〜+5V,输出范围为0〜-2000V。 Universal power supply according to claim 6 for the ion optical system according to claim 1, wherein: said control input of the controllable range of the negative high voltage power supply module is 0~ + 5V, the output range of 0~-2000V.
CN 201410597189 2014-10-30 2014-10-30 Universal power source for ion optical system CN104460417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201410597189 CN104460417A (en) 2014-10-30 2014-10-30 Universal power source for ion optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201410597189 CN104460417A (en) 2014-10-30 2014-10-30 Universal power source for ion optical system

Publications (1)

Publication Number Publication Date
CN104460417A true true CN104460417A (en) 2015-03-25

Family

ID=52906652

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201410597189 CN104460417A (en) 2014-10-30 2014-10-30 Universal power source for ion optical system

Country Status (1)

Country Link
CN (1) CN104460417A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070057176A1 (en) * 2003-09-05 2007-03-15 Grossenbacher John W Ion detection methods, mass spectrometry analysis methods, and mass spectrometry instrument circuitry
US7518107B2 (en) * 2006-10-11 2009-04-14 Applied Biosystems, Llc Methods and apparatus for time-of-flight mass spectrometer
CN102047378A (en) * 2008-05-30 2011-05-04 塞莫费雪科学(不来梅)有限公司 Mass spectrometer
CN102842481A (en) * 2012-08-30 2012-12-26 昆山禾信质谱技术有限公司 Rapid high-accuracy continuous control method for buffer gas in mass analyzer of mass spectrometer
CN103608894A (en) * 2011-02-14 2014-02-26 麻省理工学院 Methods, apparatus, and system for mass spectrometry
CN103780084A (en) * 2012-10-22 2014-05-07 中国地质科学院地质研究所 Double-end-outputting bipolarity power supply
CN103885409A (en) * 2014-03-13 2014-06-25 钢研纳克检测技术有限公司 Power control system based on Ethernet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070057176A1 (en) * 2003-09-05 2007-03-15 Grossenbacher John W Ion detection methods, mass spectrometry analysis methods, and mass spectrometry instrument circuitry
US7518107B2 (en) * 2006-10-11 2009-04-14 Applied Biosystems, Llc Methods and apparatus for time-of-flight mass spectrometer
CN102047378A (en) * 2008-05-30 2011-05-04 塞莫费雪科学(不来梅)有限公司 Mass spectrometer
CN103608894A (en) * 2011-02-14 2014-02-26 麻省理工学院 Methods, apparatus, and system for mass spectrometry
CN102842481A (en) * 2012-08-30 2012-12-26 昆山禾信质谱技术有限公司 Rapid high-accuracy continuous control method for buffer gas in mass analyzer of mass spectrometer
CN103780084A (en) * 2012-10-22 2014-05-07 中国地质科学院地质研究所 Double-end-outputting bipolarity power supply
CN103885409A (en) * 2014-03-13 2014-06-25 钢研纳克检测技术有限公司 Power control system based on Ethernet

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
李凯等: "直接数字频率合成技术在四极质谱仪射频电源中的应用", 《冶金分析》 *
谢春光等: "飞行时间质谱仪传输区射频电源的研制", 《分析测试学报》 *
赵栋等: "飞行时间质谱仪射频四极杆驱动器的研制", 《质谱学报》 *

Similar Documents

Publication Publication Date Title
US20130169160A1 (en) Led driver circuit and light apparatus having the same in
JP2004063427A (en) Static eliminator
CN86201937U (en) Combined voltage-tuning transformer
CN104409058A (en) Scanning drive circuit
CN202949606U (en) Impulse width modulation dimming circuit
CN101581924A (en) High-accuracy general soft-core digital power regulator of ionic accelerator
US20110273013A1 (en) Power supply arrangement with a first voltage supply device and a second voltage supply device
CN104392889A (en) Ion mobility spectrometer and method for controlling ion gate by using alternating current superposition method
CN103460331A (en) Time-of-flight mass spectrometer
CN201287244Y (en) Covered arc welding, argon arc welding and three-operating integral welding equipment of plasma cutting
CN103378616A (en) Lithium battery power management circuit
US9058964B2 (en) Mass spectrometer power sources with polarity switching
CN105119482A (en) Single-inductor multi-output boost-buck circuit and control method thereof
US20160360592A1 (en) System and method for controlling power supply
CN103781229A (en) Dimming circuit compatible with silicon controlled rectifier dimmer and control method
CN203747779U (en) Power tube drive circuit and direct-current solid state power controller
CN203287714U (en) Drive and control circuit applied in multichannel variable optical attenuator
CN204886900U (en) Space symmetry type high pressure nanosecond pulse source based on marx circuit
CN202975699U (en) PLC digital input circuit
CN202696578U (en) Proportional timing and sampling circuit and switching power supply using proportional timing and sampling circuit
RU120512U1 (en) Electrostatic charged-particle energy analyzer
CN204991151U (en) Device of control word line bleeder current
CN104410279A (en) Driving power source for power system fault detecting device
CN203481183U (en) Atmospheric pressure interface apparatus generating ion fragments

Legal Events

Date Code Title Description
C06 Publication
WD01