CN104458850B - 一种用于检测尿酸的丝网印刷电极及其制备方法 - Google Patents

一种用于检测尿酸的丝网印刷电极及其制备方法 Download PDF

Info

Publication number
CN104458850B
CN104458850B CN201410713892.XA CN201410713892A CN104458850B CN 104458850 B CN104458850 B CN 104458850B CN 201410713892 A CN201410713892 A CN 201410713892A CN 104458850 B CN104458850 B CN 104458850B
Authority
CN
China
Prior art keywords
electrode
screen printing
solution
uric acid
chitosan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410713892.XA
Other languages
English (en)
Other versions
CN104458850A (zh
Inventor
施晓文
刘桂亭
曹发
苏晓明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
QINGDAO CHENLAND MARINE BIOENGINEERING Co.,Ltd.
Original Assignee
Qingdao Haiyou Marine Biological Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Haiyou Marine Biological Engineering Co Ltd filed Critical Qingdao Haiyou Marine Biological Engineering Co Ltd
Priority to CN201410713892.XA priority Critical patent/CN104458850B/zh
Publication of CN104458850A publication Critical patent/CN104458850A/zh
Application granted granted Critical
Publication of CN104458850B publication Critical patent/CN104458850B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种壳聚糖基碳纳米管‑金复合膜修饰丝网印刷电极的电化学传感器及其制备方法,以及此修饰电极在抗坏血酸存在的条件下,对尿酸的电化学检测,其制备包括以下步骤:将丝网印刷电极用超纯水洗净,室温晾干;再采用恒电位沉积法,制备得到金修饰的丝网印刷电极;同样采用恒定电位成膜得到壳聚糖基碳纳米管‑金修饰的丝网印刷电极,该电极芯片用于在抗坏血酸存在的条件下检测尿酸。本发明具有制备方法简单、成本低、响应时间快、线性范围宽、重现性好、稳定性好等优点,能够实现在抗坏血酸存在的情况下对尿酸的快速检测。

Description

一种用于检测尿酸的丝网印刷电极及其制备方法
技术领域
本发明涉及电化学方法检测用的电极,特别是涉及一种壳聚糖基碳纳米管-金复合膜修饰丝网印刷电极及其制备方法。
背景技术
尿酸(UA)是人体内嘌呤代谢的最终产物。已经表明UA浓度的异常有可能引起以下疾病:痛风、高尿酸血症以及Lesch–Nyhan综合症。此外,UA作为还原剂可以消耗氧自由基,防止它们对组织和细胞的破坏行为。在医疗诊断中作为日常健康检测,已经研制出许多类型的UA传感器,并实现了商业化,比如:比色法、光谱法以及色谱分析法已经被广泛的用于UA检测。通常,伏安技术与以上传统方法相比具有以下优势:高选择性、低成本以及低耗时。然而,由于UA的氧化峰电位与抗坏血酸(AA)的极为相近,使得尿酸伏安传感器通常会受到AA的干扰。
发明内容
针对现有技术中存在的缺陷,本发明的目的是提供一种灵敏度高,响应时间短,重现性好,稳定性好,环境友好的检测尿酸的丝网印刷电极以及该丝网印刷电极的制备方法。
本发明采用如下技术方案:
一种用于检测尿酸的电化学丝网印刷电极,具体的制备方法如下:
(1)将SP电极用超纯水洗净,在室温下晾干;
(2)配置200mg/mL的氯金酸溶液,将洁净的SP电极置于氯金酸的溶液中,采用某恒定的电位沉积一定时间,超纯水洗净、晾干,得到Au/SP电极;
(3)用体积分数为0.5%的盐酸溶液配置1.0wt%的CS溶液,于磁力搅拌器上搅拌0.5h,用真空泵抽滤,取滤液;
(4)将CNTs分散在步骤(3)制备的CS溶液中,充分搅拌以混合均匀,并在细胞粉碎机上超声10min以更好地分散碳纳米管,再用1.0wt%NaOH调节其pH为一定值,制得一定浓度的壳聚糖-碳纳米管的分散液;
(5)将(2)中制备得到的Au/SP电极置于(4)中的壳聚糖-碳纳米管的分散液中,采用恒定的电位成膜一定时间,取出洗净、晾干,即得到CS-CNTs/Au/SP电极,用于检测尿酸;
步骤(2)中所用的氯金酸的沉积电位是-0.1~-0.6V,优选-0.2V,沉积时间是10~720s,优选180s。
步骤(4)中碳纳米管的浓度为0.1~2mg/mL,优选0.5mg/mL。
步骤(4)中壳聚糖-碳纳米管溶液的pH为3~6,优选为5。
步骤(5)中壳聚糖-碳纳米管膜的成膜电位是-0.9~-1.8V,优选为-1.2V,成膜时间是10~200s,优选为30s。
步骤(5)中壳聚糖-碳纳米管膜是采用电化学一步法恒电位制备的。
本发明的有益效果是:
1、本发明的制备方法工艺简单、制备时间短、成本低;2、本发明制备的丝网印刷电极可用于在大量抗坏血酸存在的情况下对尿酸的检测,而且对尿酸的检测表现出很好的电催化氧化活性,并具响应时间快、线性范围宽、重现性好、稳定性高,而且不受共存的电活性物质的干扰,对尿酸的检出限为5×10-6M,是一种优良的检测电极。本发明的制备方法是一个完整的不可分割的工艺,工艺中任何步骤、参数(浓度、时间、电位、pH值等)以及原料用量的改变都会破坏该工艺的完整性。
本发明用壳聚糖分散碳纳米管,既解决了碳纳米管的分散性差的问题,又提高了壳聚糖的导电性。而采用电化学成膜的方法,不仅可以使膜的厚度均一可控,更重要的是可以提高传感器的稳定性。在丝网印刷工作电极与壳聚糖-碳纳米管膜之间再修饰一层尺寸在纳米级的金,可以很好地促进基底与膜之间的电子转移,进一步加快电极与电活性物质之间的电子传递。所得修饰电极用于在抗坏血酸存在的情况下对尿酸的电化学检测。这种方法简单、快速。并且此修饰电极用于检测尿酸表现出很好的电催化氧化活性。
附图说明
本发明有如下附图:
图1是本发明制备的电极在有无尿酸的缓冲液中的循环伏安曲线;
图2是本发明制备的电极在抗坏血酸存在的情况下检测尿酸的微分脉冲伏安曲线(其中:内插图是本发明电极对尿酸检测的峰电流与浓度的关系图)。
具体实施方式
以下结合附图对本发明作进一步详细说明。
本实施例所用到的设备:CHI 850 D型电化学工作站、JN-3200DTD型超声波清洗器、84-1A磁力搅拌器、SHZ-D(III)循环水式真空泵、Master系列超纯水机、SCIENTE-II D超声波细胞粉碎机、雷磁pHS-3E pH计、玻璃仪器气流烘干器。
实施例1
(1)将SP电极用超纯水洗净,在室温下晾干;
(2)配置200mg/L的氯金酸溶液,将洁净的SP电极置于氯金酸的溶液中,采用-0.2V恒定的电位沉积180s,超纯水洗净、晾干,制备得到Au/SP电极;
(3)用体积分数为0.5%的盐酸溶液配置1.0wt%的CS溶液,于磁力搅拌器上搅拌0.5h,用真空泵抽滤,取滤液;
(4)将0.01g CNTs分散在20mL(3)的CS溶液中,充分搅拌以混合均匀,并在细胞粉碎机上超声10min以更好地分散碳纳米管,再用1.0wt%的NaOH调节其pH为5.0,制得0.5mg/mL壳聚糖-碳纳米管的分散液;
(5)将(2)中制备得到的Au/SP电极置于(4)中的壳聚糖-碳纳米管的分散液中,采用-1.2V的电位成膜30s,取出洗净、晾干,即得到CS-CNTs/Au/SP电极,用于检测尿酸;
实施例2
(1)将SP电极用超纯水洗净,在室温下晾干;
(2)配置200mg/L的氯金酸溶液,将洁净的SP电极置于氯金酸的溶液中,采用-0.3V恒定的电位沉积600s,超纯水洗净、晾干,制备得到Au/SP电极;
(3)用体积分数为0.5%的盐酸溶液配置1.0wt%的CS溶液,于磁力搅拌器上搅拌0.5h,用真空泵抽滤,取滤液;
(4)将0.01g CNTs分散在10mL(3)的CS溶液中,充分搅拌以混合均匀,并在细胞粉碎机上超声10min以更好地分散碳纳米管,再用1.0wt%的NaOH调节其pH为6.0,制得1mg/mL壳聚糖-碳纳米管的分散液;
(5)将(2)中制备得到的Au/SP电极置于(4)中的壳聚糖-碳纳米管的分散液中,采用-1.5V的电位成膜120s,取出洗净、晾干,即得到CS-CNTs/Au/SP电极,用于检测尿酸;
性能表征:以下测试所用到的CS-CNTs/Au/SP电极均为实施例1中制备得到的电极。
CS-CNTs/Au/SP电极对尿酸(UA)的检测:
(1)、电催化性能
将所制备的CS-CNTs/Au/SP电极对含有0.2mM UA的0.05MPBS(pH=7.4)溶液进行了电化学测试。具体见图2,在没有UA的0.05M PBS(pH=7.4)的溶液中是一条平滑的曲线(图1.a),而当加入0.2mM UA后可以观察到明显的氧化峰(图1.b),由此可知:此修饰电极对UA具有良好的催化性能。
(2)、检测限
为了得到最佳的灵敏度和较低的检测限,我们采用微分脉冲伏安法(图2)得到了该修饰电极在0.6mM AA存在的条件下对尿酸的线性范围以及检测限。从内插图上看出,在浓度为1.5×10-4到1.3×10-3M范围内CS-CNTs/Au/SP电极对UA具有很好的线性,检出限是5×10-6M(S/N=3)。
(3)选择性和干扰性
在实际样品的分析实验中,一些共存的电活性物质可能会干扰UA的检测结果,所以进行了选择性和干扰性实验。在CS-CNTs/Au/SP电极对0.2mM UA检测过程中分别加入了抗坏血酸、多巴胺、葡萄糖、尿素以及其他的无机离子作为干扰剂进行测试,由实验可知:在误差小于10%的条件下,0.6mM抗坏血酸、0.3mM多巴胺、6mM葡萄糖、50mM尿素以及大多数的无机离子(如:100mM的K+、Na+、Mg2+、Ca2+、NO3 -、Cl-;50mM的Cu2+、SO4 2-)均对UA的检测不造成明显干扰。说明此修饰电极检测UA具有很好的选择性以及抗干扰能力。
(4)、重现性以及稳定性测试
将同一根CS-CNTs/Au/SP电极对0.2mM UA进行5次平行试验,结果显示这5次实验的相对标准偏差小于5.2%;制备5根相同的电极同时检测0.2mM UA,相对标准偏差小于4.3%,上述结果说明了该电极具有很好的重现性。电极在使用过程中的稳定性,电极在初次测试完毕后放在-20℃下保存每周测试一次,结果发现第二天对0.2mM的UA催化的峰电流下降了8.2%,一个月后降为原来的88.2%;同时测试了电极放置过程的稳定性,在-20℃下放置一个月后再催化0.2mM UA,结果发现催化峰电流基本没有变化,由此说明了该电极具有较好的稳定性。
利用电沉积法制备的CS-CNTs/Au/SP电极实现了快速检测尿酸的目的,该丝网印刷电极具有成本低、实验方法简单,经济环保等优点,有效利用了壳聚糖基碳纳米管以及金纳米的优势,达到了对UA的电化学检测的目标。实验结果也表明了,该丝网印刷电极对尿酸的检测具有响应时间快,线性范围宽等优势。
以上所述为本发明的较佳实施例,但本发明不应该局限于该实施例所公开的内容。所以凡是不脱离本发明所公开的精神下完成的等效或修改,都落入本发明保护的范围。

Claims (3)

1.一种用于检测尿酸的丝网印刷电极,其特征在于具体的制备方法如下:
(1)将丝网印刷电极用超纯水洗净,在室温下晾干;
(2)配置浓度为200mg/L的氯金酸溶液,将洁净的SP电极置于氯金酸的溶液中,在-0.1~-0.6V的恒定电位下沉积10~720s,之后用超纯水洗净、晾干,得到金修饰的丝网印刷电极;
(3)用体积分数为0.5%的盐酸溶液配置质量分数为1%的壳聚糖溶液,在磁力搅拌器上搅拌0.5h,用真空泵抽滤,取滤液;
(4)将碳纳米管分散在步骤(3)制备的CS溶液中,充分搅拌混匀,并在细胞粉碎机上超声10min,再用1.0wt%的NaOH调节pH为3~6,制得碳纳米管的浓度为0.1~2mg/mL分散液;
(5)将步骤(2)中制备得到的电极置于步骤(4)中制备的壳聚糖-碳纳米管的分散液中,采用恒定的电位成膜一定时间,成膜电位是-0.9~-1.8V,成膜时间是10~200s,取出洗净、晾干,得到壳聚糖基碳纳米管-金修饰的丝网印刷电极。
2.根据权利要求1所述的一种用于检测尿酸的丝网印刷电极,其特征在于具体的制备方法如下:
(1)将SP电极用超纯水洗净,在室温下晾干;
(2)配置浓度为200mg/L的氯金酸溶液,将洁净的SP电极置于氯金酸的溶液中,在电位为-0.2V下沉积180s,之后用超纯水洗净、晾干,得到Au/SP电极;
(3)用体积分数为0.5%的盐酸溶液配置1wt%的CS溶液,在磁力搅拌器上搅拌0.5h,用真空泵抽滤,取滤液;
(4)将0.01g CNTs分散在20mL步骤(3)制备的CS溶液中,充分搅拌混匀,并在细胞粉碎机上超声10min以更好地分散碳纳米管,再用1.0wt%的NaOH调节pH为5.0,制得碳纳米管的浓度为0.5mg/mL分散液;
(5)将步骤(2)中制备得到的电极置于步骤(4)中制备的壳聚糖-碳纳米管的分散液中,采用-1.2V恒定的电位成膜30s,取出洗净、晾干,得到CS-CNTs/Au/SP电极。
3.一种由权利要求1或2任一项所述的丝网印刷电极,其特征在于,该丝网印刷电极可用于检测尿酸。
CN201410713892.XA 2014-11-28 2014-11-28 一种用于检测尿酸的丝网印刷电极及其制备方法 Active CN104458850B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410713892.XA CN104458850B (zh) 2014-11-28 2014-11-28 一种用于检测尿酸的丝网印刷电极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410713892.XA CN104458850B (zh) 2014-11-28 2014-11-28 一种用于检测尿酸的丝网印刷电极及其制备方法

Publications (2)

Publication Number Publication Date
CN104458850A CN104458850A (zh) 2015-03-25
CN104458850B true CN104458850B (zh) 2017-01-04

Family

ID=52905247

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410713892.XA Active CN104458850B (zh) 2014-11-28 2014-11-28 一种用于检测尿酸的丝网印刷电极及其制备方法

Country Status (1)

Country Link
CN (1) CN104458850B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136885B (zh) * 2015-09-21 2017-12-22 南京明茂英华生物科技有限公司 一种普鲁士蓝/n‑掺杂碳纳米复合材料的制备及应用
CN106248742B (zh) * 2016-09-23 2019-03-29 郑州轻工业学院 壳聚糖/胶体金复合体系、制备方法及应用
CN115290719A (zh) * 2022-08-26 2022-11-04 江苏鱼跃凯立特生物科技有限公司 一种用于尿酸检测的电化学试纸及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
An amperometric uric acid biosensor based on chitosan-carbon nanotubes electrospun nanofiber on silver nanoparticles;A. Numnuam et al.;《Analytical Bioanalytical Chemistry》;20140410;第406卷(第15期);全文 *
Novel sensitive electrochemical sensor for simultaneous determination of epinephrine and uric acid by using a nanocomposite of MWCNTs–chitosan and gold nanoparticles attached to thioglycolic acid;P.S. Dorraji, F. Jalali;《Sensors and Actuators B: Chemical》;20140424;第200卷;全文 *

Also Published As

Publication number Publication date
CN104458850A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
Messaoud et al. Electrochemical sensor based on multiwalled carbon nanotube and gold nanoparticle modified electrode for the sensitive detection of bisphenol A
Poo-Arporn et al. The development of disposable electrochemical sensor based on Fe3O4-doped reduced graphene oxide modified magnetic screen-printed electrode for ractopamine determination in pork sample
Govindasamy et al. Molybdenum disulfide nanosheets coated multiwalled carbon nanotubes composite for highly sensitive determination of chloramphenicol in food samples milk, honey and powdered milk
Khan et al. A glassy carbon electrode modified with a composite consisting of gold nanoparticle, reduced graphene oxide and poly (L-arginine) for simultaneous voltammetric determination of dopamine, serotonin and L-tryptophan
Khoshroo et al. Silver nanofibers/ionic liquid nanocomposite based electrochemical sensor for detection of clonazepam via electrochemically amplified detection
Wang et al. Phytic acid/graphene oxide nanocomposites modified electrode for electrochemical sensing of dopamine
Huang et al. Glucose sensing by electrochemically grown copper nanobelt electrode
Ping et al. Determination of ascorbic acid levels in food samples by using an ionic liquid–carbon nanotube composite electrode
Wen et al. Simultaneous analysis of uric acid, xanthine and hypoxanthine using voltammetric sensor based on nanocomposite of palygorskite and nitrogen doped graphene
Afraz et al. Optimization of modified carbon paste electrode with multiwalled carbon nanotube/ionic liquid/cauliflower-like gold nanostructures for simultaneous determination of ascorbic acid, dopamine and uric acid
Zhang et al. Fabrication of poly (orthanilic acid)–multiwalled carbon nanotubes composite film-modified glassy carbon electrode and its use for the simultaneous determination of uric acid and dopamine in the presence of ascorbic acid
CN104458850B (zh) 一种用于检测尿酸的丝网印刷电极及其制备方法
Sadeghi et al. Electrochemical determination of vitamin B6 in water and juice samples using an electrochemical sensor amplified with NiO/CNTs and Ionic liquid
El-Wekil et al. Advanced sensing nanomaterials based carbon paste electrode for simultaneous electrochemical measurement of esomeprazole and diclofenac sodium in human serum and urine samples
Thirumalai et al. De-bundled single-walled carbon nanotube-modified sensors for simultaneous differential pulse voltammetric determination of ascorbic acid, dopamine, and uric acid
Kucukkolbasi et al. A highly sensitive ascorbic acid sensor based on graphene oxide/CdTe quantum dots-modified glassy carbon electrode
Yousefi et al. Application of modified screen-printed carbon electrode with MWCNTs-Pt-doped CdS nanocomposite as a sensitive sensor for determination of natamycin in yoghurt drink and cheese
Zhe et al. A screen printed carbon electrode modified with a lamellar nanocomposite containing dendritic silver nanostructures, reduced graphene oxide, and β-cyclodextrin for voltammetric sensing of nitrite
Babaei et al. A multi-walled carbon nano-tube and nickel hydroxide nano-particle composite-modified glassy carbon electrode as a new sensor for the sensitive simultaneous determination of ascorbic acid, dopamine and uric acid
Ghoreishi et al. Electrochemical methods for simultaneous determination of trace amounts of dopamine and uric acid using a carbon paste electrode incorporated with multi-wall carbon nanotubes and modified with α-cyclodextrine
CN105842307A (zh) 一种高灵敏度酚类电化学传感器及其制备方法
You et al. Novel lanthanum vanadate-based nanocomposite for simultaneously electrochemical detection of dopamine and uric acid in fetal bovine serum
Lin et al. Titanium carbide nanoparticles/ion-exchange polymer-based sensor for catalytic stripping determination of trace iron in coastal waters
Rahmanifar et al. Application of CdO/SWCNTs nanocomposite ionic liquids carbon paste electrode as a voltammetric sensor for determination of benserazide
Ferreira et al. Using nanostructured carbon black-based electrochemical (bio) sensors for pharmaceutical and biomedical analyses: A comprehensive review

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200402

Address after: 266000 Shandong Province, Qingdao city Laoshan District Songling Road No. 333

Patentee after: QINGDAO CHENLAND MARINE BIOENGINEERING Co.,Ltd.

Address before: 6, 266000 floor, Science Park, Qingdao National University, 23 East Hongkong Road, Laoshan District, Shandong, Qingdao

Patentee before: QINGDAO HAIYOU MARINE BIOLOGICAL ENGINEERING Co.,Ltd.

TR01 Transfer of patent right