CN104409442A - 一种深槽结构电容及其制造方法 - Google Patents

一种深槽结构电容及其制造方法 Download PDF

Info

Publication number
CN104409442A
CN104409442A CN201410708808.5A CN201410708808A CN104409442A CN 104409442 A CN104409442 A CN 104409442A CN 201410708808 A CN201410708808 A CN 201410708808A CN 104409442 A CN104409442 A CN 104409442A
Authority
CN
China
Prior art keywords
groove structure
deep groove
electric capacity
metal
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410708808.5A
Other languages
English (en)
Inventor
郑涛
罗乐
徐高卫
韩梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN201410708808.5A priority Critical patent/CN104409442A/zh
Publication of CN104409442A publication Critical patent/CN104409442A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本发明提供一种深槽结构电容及其制造方法,所述制造方法包括步骤:1)提供一衬底,于所述衬底中刻蚀出深槽结构;2)于所述深槽结构内表面及衬底表面形成第一金属层,作为电容的下电极;3)于所述第一金属层表面形成介质层;4)于所述介质层表面形成金属粘附层及种子层,并于所述深槽结构中填充第二金属层,作为电容的上电极;5)依次图形化所述第二金属层、种子层、金属粘附层及介质层,完成电容的上电极及下电极的制备。本发明相比于传统方法制作的电容具有更小的寄生电阻和寄生电感,有效地提高了去耦电容的电性能,拓宽了电容去耦的频段。

Description

一种深槽结构电容及其制造方法
技术领域
本发明涉及无源器件的圆片级集成领域,特别是涉及一种深槽结构电容及其制造方法。
背景技术
随着无线通信的发展,射频微波电路在无线个人通讯,无线局域网(WLAN),卫星通信,汽车电子中得到了广泛应用。越来越多的功能正持续不断的被集成到各种手持设备中,同时设备的尺寸也在不停的缩小。小型化,低成本,低耗能,高性能的需求正在持续增加。
电容在电路中大量使用,尤其是去耦电容,由于其电容值较大(一般为1~1000nF),传统制作的平面电容面积很大,很难集成在芯片和封装体内。平面电容从面积到成本均已制约着集成电路的发展。集成无源高密度深槽电容以其小型化、薄膜型、寄生参数小及可靠性高的优点满足了当今电子产品低成本、重量轻、集成度高,超薄的需求,对改善芯片性能效果显著。
鉴于以上所述,本发明提供一种深槽结构电容的制造方法,采用金属作为电容的上电极和下电极,可以有效得减小电容的寄生电阻,并且上下电极都在芯片的正面,从而可以减小电容的寄生电感,大大提高了电容的去耦能力。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种深槽结构电容及其制造方法,用以降低电容的寄生电阻,并减小电容的寄生电感,提高了电容的去耦能力。
为实现上述目的及其他相关目的,本发明提供一种深槽结构电容的制造方法,所述制造方法包括步骤:
1)提供一衬底,于所述衬底中刻蚀出深槽结构;
2)于所述深槽结构内表面及衬底表面形成第一金属层,作为电容的下电极;
3)于所述第一金属层表面形成介质层;
4)于所述介质层表面形成金属粘附层及种子层,并于所述深槽结构中填充第二金属层,作为电容的上电极;
5)依次图形化所述第二金属层、种子层、金属粘附层及介质层,完成电容的上电极及下电极的制备。
作为本发明的深槽结构电容的制造方法的一种优选方案,步骤1)中,采用深反应离子刻蚀方法或电化学湿法腐蚀方法刻蚀出所述深槽结构。
作为本发明的深槽结构电容的制造方法的一种优选方案,所述深槽结构为圆孔,孔径为1~3um,深宽比为5~15。
作为本发明的深槽结构电容的制造方法的一种优选方案,步骤2)中,采用原子层沉积或带反溅的磁控溅射方法形成所述第一金属层,所述第一金属层的材料包括TiN及TaN的一种,所述第一金属层的厚度范围为10~50nm。
作为本发明的深槽结构电容的制造方法的一种优选方案,所述介质层包括采用低压化学气相沉积法沉积的SiN或SiO2材料,或采用原子层沉积法沉积的Al2O3、HfO2或Ta2O5材料,所述介质层的厚度范围为5~100nm。
作为本发明的深槽结构电容的制造方法的一种优选方案,步骤4)中,采用原子层沉积所述金属粘附层,所述金属粘附层的材料包括TiN或TaN,所述金属粘附层的厚度范围为5~30nm。
作为本发明的深槽结构电容的制造方法的一种优选方案,步骤4)中,采用原子层沉积或磁控溅射方法形成所述种子层,所述种子层的材料包括铜,所述种子层的厚度范围为5~50nm。
作为本发明的深槽结构电容的制造方法的一种优选方案,步骤4)中,采用电镀工艺于所述深槽结构中填充第二金属层,所述第二金属层的材料包括铜。
作为本发明的深槽结构电容的制造方法的一种优选方案,步骤5)中,刻蚀去除部分的第二金属层、种子层、金属粘附层及介质层以露出所述第一金属层,以形成电容的下电极引出。
本发明还提供一种深槽结构电容,包括:
衬底;
深槽结构,形成于所述衬底中;
第一金属层,结合于所述深槽结构内表面及衬底表面,作为电容的下电极;
介质层,结合于所述第一金属层;
金属粘附层,结合于所述介质层;
种子层,结合于所述金属粘附层;
第二金属层,结合于所述种子层,作为电容的上电极;
其中,所述衬底上去除了部分的第二金属层、种子层、金属粘附层及介质层以露出所述第一金属层,作为电容的下电极引出。
作为本发明的深槽结构电容的一种优选方案,所述深槽结构为圆孔,孔径为1~3um,深宽比为5~15。
作为本发明的深槽结构电容的一种优选方案,所述第一金属层包括TiN及TaN的一种,所述第一金属层的厚度范围为10~50nm。
作为本发明的深槽结构电容的一种优选方案,所述介质层的材料包括SiN、SiO2、Al2O3、HfO2或Ta2O5,所述介质层的厚度范围为5~100nm。
作为本发明的深槽结构电容的一种优选方案,所述金属粘附层的材料包括TiN或TaN,所述金属粘附层的厚度范围为5~30nm,所述种子层的材料包括铜,所述种子层的厚度范围为5~50nm。
作为本发明的深槽结构电容的一种优选方案,所述第二金属层的材料包括铜。
如上所述,本发明提供一种深槽结构电容及其制造方法,所述制造方法包括步骤:1)提供一衬底,于所述衬底中刻蚀出深槽结构;2)于所述深槽结构内表面及衬底表面形成第一金属层,作为电容的下电极;3)于所述第一金属层表面形成介质层;4)于所述介质层表面形成金属粘附层及种子层,并于所述深槽结构中填充第二金属层,作为电容的上电极;5)依次图形化所述第二金属层、种子层、金属粘附层及介质层,完成电容的上电极及下电极的制备。本发明相比于传统方法制作的电容具有更小的寄生电阻和寄生电感,有效地提高了去耦电容的电性能,拓宽了电容去耦的频段。
附图说明
图1~图2显示为本发明的深槽结构电容的制造方法步骤1)所呈现的结构示意图。
图3显示为本发明的深槽结构电容的制造方法步骤2)所呈现的结构示意图。
图4显示为本发明的深槽结构电容的制造方法步骤3)所呈现的结构示意图。
图5~图7显示为本发明的深槽结构电容的制造方法步骤4)所呈现的结构示意图。
图8显示为本发明的深槽结构电容的制造方法步骤5)所呈现的结构示意图。
元件标号说明
101     衬底
102     氧化层
103     深槽结构
104     第一金属层
105     介质层
106     金属粘附层
107     种子层
108     第二金属层
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图1~图8。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
如图1~图8所示,本实施例提供一种深槽结构电容的制造方法,所述制造方法包括步骤:
如图1~图2所示,首先进行步骤1),提供一衬底101,于所述衬底101中刻蚀出深槽结构103;
作为示例,所述深槽结构103为圆孔,孔径为1~3um,深宽比为5~15。
在本实施例中,所述衬底101为硅衬底101,具体步骤为:
1-1)于所述硅衬底101表面氧化2um的氧化层102作为掩膜;
1-2)进行光刻,图形化掩膜层,形成直径3um的圆孔阵列;
1-3)采用深反应离子刻蚀方法(DRIE)或电化学湿法腐蚀方法刻蚀出深度为40um的深槽结构103。
如图3所示,然后进行步骤2),于所述深槽结构103内表面及衬底101表面形成第一金属层104,作为电容的下电极;
作为示例,采用原子层沉积或带反溅的磁控溅射方法形成所述第一金属层104,所述第一金属层104的材料包括TiN及TaN的一种,所述第一金属层104的厚度范围为10~50nm。
在一具体的实施过程中,包括步骤:
2-1)湿法去掉掩膜氧化层102;
2-2)采用原子层沉积技术形成30nm后的TiN金属层均匀覆盖深槽的表面,作为电容的下电极。
如图4所示,接着进行步骤3),于所述第一金属层104表面形成介质层105;
作为示例,所述介质层105包括采用低压化学气相沉积法沉积的SiN或SiO2材料,或采用原子层沉积法沉积的Al2O3、HfO2或Ta2O5材料,所述介质层105的厚度范围为5~100nm,在本实施例中,采用低压化学气相沉积LPCVD方法沉积20nm厚的SiN,作为介质层105。
如图5~图7所示,接着进行步骤4),于所述介质层105表面形成金属粘附层106及种子层107,并于所述深槽结构103中填充第二金属层108,作为电容的上电极;
作为示例,采用原子层沉积所述金属粘附层106,所述金属粘附层106的材料包括TiN,所述金属粘附层106的厚度范围为5~30nm。采用原子层沉积或磁控溅射方法形成所述种子层107,所述种子层107的材料包括铜,所述种子层107的厚度范围为5~50nm。采用电镀工艺于所述深槽结构103中填充第二金属层108,所述第二金属层108的材料包括铜。
在一具体的实施过程中,采用原子层沉积技术形成10nm厚的TiN金属粘附层106和30nm厚的Cu种子层107,然后采用盲孔电镀工艺填充整个深槽,形成Cu第二金属层108。
如图8所示,最后进行步骤5),依次图形化所述第二金属层108、种子层107、金属粘附层106及介质层105,完成电容的上电极及下电极的制备。
作为示例,刻蚀去除部分的第二金属层108、种子层107、金属粘附层106及介质层105以露出所述第一金属层104,以形成电容的下电极引出。
在一具体的实施过程中,包括步骤:
5-1)旋涂光刻胶,光刻显影,然后湿法腐蚀去除部分的第二金属层108、种子层107与金属粘附层106,形成上电极;
5-2)旋涂光刻胶,光刻显影,然后采用反应离子刻蚀RIE去除部分的介质层105,露出第一金属层104,形成下电极引出。
如图8所示,本实施例还提供一种深槽结构电容,包括:
衬底101;
深槽结构,形成于所述衬底101中;
第一金属层104,结合于所述深槽结构内表面及衬底101表面,作为电容的下电极;
介质层105,结合于所述第一金属层104;
金属粘附层106,结合于所述介质层105;
种子层107,结合于所述金属粘附层106;
第二金属层108,结合于所述种子层107,作为电容的上电极;
其中,所述衬底101上去除了部分的第二金属层108、种子层107、金属粘附层106及介质层105以露出所述第一金属层104,作为电容的下电极引出。
作为示例,所述深槽结构为圆孔,孔径为1~3um,深宽比为5~15。
作为示例,所述第一金属层104包括TiN及TaN的一种,所述第一金属层104的厚度范围为10~50nm。
作为示例,所述介质层105的材料包括SiN、SiO2、Al2O3、HfO2或Ta2O5,所述介质层105的厚度范围为5~100nm。
作为示例,所述金属粘附层106的材料包括TiN或TaN,所述金属粘附层106的厚度范围为5~30nm,所述种子层107的材料包括铜,所述种子层107的厚度范围为5~50nm。
作为示例,所述第二金属层108的材料包括铜。
如上所述,本发明提供一种深槽结构电容及其制造方法,所述制造方法包括步骤:1)提供一衬底101,于所述衬底101中刻蚀出深槽结构103;2)于所述深槽结构103内表面及衬底101表面形成第一金属层104,作为电容的下电极;3)于所述第一金属层104表面形成介质层105;4)于所述介质层105表面形成金属粘附层106及种子层107,并于所述深槽结构103中填充第二金属层108,作为电容的上电极;5)依次图形化所述第二金属层108、种子层107、金属粘附层106及介质层105,完成电容的上电极及下电极的制备。本发明相比于传统方法制作的电容具有更小的寄生电阻和寄生电感,有效地提高了去耦电容的电性能,拓宽了电容去耦的频段。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (15)

1.一种深槽结构电容的制造方法,其特征在于,所述制造方法包括步骤:
1)提供一衬底,于所述衬底中刻蚀出深槽结构;
2)于所述深槽结构内表面及衬底表面形成第一金属层,作为电容的下电极;
3)于所述第一金属层表面形成介质层;
4)于所述介质层表面形成金属粘附层及种子层,并于所述深槽结构中填充第二金属层,作为电容的上电极;
5)依次图形化所述第二金属层、种子层、金属粘附层及介质层,完成电容的上电极及下电极的制备。
2.根据权利要求1所述的深槽结构电容的制造方法,其特征在于:步骤1)中,采用深反应离子刻蚀方法或电化学湿法腐蚀方法刻蚀出所述深槽结构。
3.根据权利要求1所述的深槽结构电容的制造方法,其特征在于:所述深槽结构为圆孔,孔径为1~3um,深宽比为5~15。
4.根据权利要求1所述的深槽结构电容的制造方法,其特征在于:步骤2)中,采用原子层沉积或带反溅的磁控溅射方法形成所述第一金属层,所述第一金属层的材料包括TiN及TaN的一种,所述第一金属层的厚度范围为10~50nm。
5.根据权利要求1所述的深槽结构电容的制造方法,其特征在于:所述介质层包括采用低压化学气相沉积法沉积的SiN或SiO2材料,或采用原子层沉积法沉积的Al2O3、HfO2或Ta2O5材料,所述介质层的厚度范围为5~100nm。
6.根据权利要求1所述的深槽结构电容的制造方法,其特征在于:步骤4)中,采用原子层沉积所述金属粘附层,所述金属粘附层的材料包括TiN或TaN,所述金属粘附层的厚度范围为5~30nm。
7.根据权利要求1所述的深槽结构电容的制造方法,其特征在于:步骤4)中,采用原子层沉积或磁控溅射方法形成所述种子层,所述种子层的材料包括铜,所述种子层的厚度范围为5~50nm。
8.根据权利要求1所述的深槽结构电容的制造方法,其特征在于:步骤4)中,采用电镀工艺于所述深槽结构中填充第二金属层,所述第二金属层的材料包括铜。
9.根据权利要求1所述的深槽结构电容的制造方法,其特征在于:步骤5)中,刻蚀去除部分的第二金属层、种子层、金属粘附层及介质层以露出所述第一金属层,以形成电容的下电极引出。
10.一种深槽结构电容,其特征在于,包括:
衬底;
深槽结构,形成于所述衬底中;
第一金属层,结合于所述深槽结构内表面及衬底表面,作为电容的下电极;
介质层,结合于所述第一金属层;
金属粘附层,结合于所述介质层;
种子层,结合于所述金属粘附层;
第二金属层,结合于所述种子层,作为电容的上电极;
其中,所述衬底上去除了部分的第二金属层、种子层、金属粘附层及介质层以露出所述第一金属层,作为电容的下电极引出。
11.根据权利要求10所述的深槽结构电容,其特征在于:所述深槽结构为圆孔,孔径为1~3um,深宽比为5~15。
12.根据权利要求10所述的深槽结构电容,其特征在于:所述第一金属层包括TiN及TaN的一种,所述第一金属层的厚度范围为10~50nm。
13.根据权利要求10所述的深槽结构电容,其特征在于:所述介质层的材料包括SiN、SiO2、Al2O3、HfO2或Ta2O5,所述介质层的厚度范围为5~100nm。
14.根据权利要求10所述的深槽结构电容,其特征在于:所述金属粘附层的材料包括TiN或TaN,所述金属粘附层的厚度范围为5~30nm,所述种子层的材料包括铜,所述种子层的厚度范围为5~50nm。
15.根据权利要求10所述的深槽结构电容,其特征在于:所述第二金属层的材料包括铜。
CN201410708808.5A 2014-11-28 2014-11-28 一种深槽结构电容及其制造方法 Pending CN104409442A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410708808.5A CN104409442A (zh) 2014-11-28 2014-11-28 一种深槽结构电容及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410708808.5A CN104409442A (zh) 2014-11-28 2014-11-28 一种深槽结构电容及其制造方法

Publications (1)

Publication Number Publication Date
CN104409442A true CN104409442A (zh) 2015-03-11

Family

ID=52647057

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410708808.5A Pending CN104409442A (zh) 2014-11-28 2014-11-28 一种深槽结构电容及其制造方法

Country Status (1)

Country Link
CN (1) CN104409442A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110092346A (zh) * 2019-04-17 2019-08-06 西安交通大学 一种硅基mems超级电容器及其制备方法
CN111864063A (zh) * 2020-07-09 2020-10-30 复旦大学 三维电容制备方法
CN111864064A (zh) * 2020-07-09 2020-10-30 复旦大学 三维电容
CN112018071A (zh) * 2020-07-31 2020-12-01 复旦大学 一种多功能tsv结构及其制备方法
CN113206196A (zh) * 2021-04-28 2021-08-03 上海交通大学 基于硅通孔技术的三维mim电容器及其制备方法
CN114157257A (zh) * 2021-12-03 2022-03-08 电子科技大学 一种集成lc滤波器及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100308435A1 (en) * 2009-06-08 2010-12-09 Qualcomm Incorporated Through Silicon Via With Embedded Decoupling Capacitor
CN102569250A (zh) * 2012-01-06 2012-07-11 无锡纳能科技有限公司 高密度电容器及其电极引出方法
CN103700643A (zh) * 2013-12-23 2014-04-02 华进半导体封装先导技术研发中心有限公司 一种基于tsv工艺的转接板深槽电容及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100308435A1 (en) * 2009-06-08 2010-12-09 Qualcomm Incorporated Through Silicon Via With Embedded Decoupling Capacitor
CN102569250A (zh) * 2012-01-06 2012-07-11 无锡纳能科技有限公司 高密度电容器及其电极引出方法
CN103700643A (zh) * 2013-12-23 2014-04-02 华进半导体封装先导技术研发中心有限公司 一种基于tsv工艺的转接板深槽电容及其制造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110092346A (zh) * 2019-04-17 2019-08-06 西安交通大学 一种硅基mems超级电容器及其制备方法
CN110092346B (zh) * 2019-04-17 2022-06-07 西安交通大学 一种硅基mems超级电容器及其制备方法
CN111864063A (zh) * 2020-07-09 2020-10-30 复旦大学 三维电容制备方法
CN111864064A (zh) * 2020-07-09 2020-10-30 复旦大学 三维电容
CN112018071A (zh) * 2020-07-31 2020-12-01 复旦大学 一种多功能tsv结构及其制备方法
CN112018071B (zh) * 2020-07-31 2022-04-12 复旦大学 一种多功能tsv结构及其制备方法
CN113206196A (zh) * 2021-04-28 2021-08-03 上海交通大学 基于硅通孔技术的三维mim电容器及其制备方法
CN114157257A (zh) * 2021-12-03 2022-03-08 电子科技大学 一种集成lc滤波器及其制造方法

Similar Documents

Publication Publication Date Title
CN104409442A (zh) 一种深槽结构电容及其制造方法
US9093419B2 (en) Semiconductor device containing MIM capacitor and fabrication method
CN109473486B (zh) 一种电容器结构及其制作方法
US8987862B2 (en) Methods of forming semiconductor devices having conductors with different dimensions
US20140203394A1 (en) Chip With Through Silicon Via Electrode And Method Of Forming The Same
CN102420210A (zh) 具有硅通孔(tsv)的器件及其形成方法
EP3627558A1 (en) Double-sided capacitor and manufacturing method therefor
US9583434B2 (en) Metal line structure and method
CN105489590B (zh) 嵌入式金属-绝缘体-金属电容器
US8575717B2 (en) Integrated circuit device and method of manufacturing the same
CN208706624U (zh) 电子集成电路芯片
JP2018515929A (ja) Finfet等の薄い垂直半導体構造から形成された高密度コンデンサ
CN105895507B (zh) 基于绝缘体上硅衬底的射频电容元件及其制备方法
US7763520B2 (en) Capacitor device with a layer structure disposed in a meander-shaped manner
CN112018089A (zh) 半导体电容器及其制作方法
US9460996B1 (en) Integrated device with inductive and capacitive portions and fabrication methods
US20180277620A1 (en) Densely stacked metal-insulator-metal capacitor and method of forming the same
US9881738B2 (en) Capacitor structures with embedded electrodes and fabrication methods thereof
CN113130444B (zh) 一种半导体结构及其形成方法
US20160181242A1 (en) Passive device and manufacturing method thereof
CN110098053B (zh) 电容器及制造该电容器的方法
CN102446709A (zh) 一种金属-氮化硅-金属电容的制造方法
CN106340508B (zh) 电感的形成方法及电感
CN105789189B (zh) 基于绝缘体上硅衬底的射频电感元件及其制备方法
Obata et al. A Novel Fabrication Process for High Density Silicon Capacitors by using Metal-Assisted Chemical Etching

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150311