CN104376388A - Ultra-short period wind power prediction method based on wind speed factor control model - Google Patents

Ultra-short period wind power prediction method based on wind speed factor control model Download PDF

Info

Publication number
CN104376388A
CN104376388A CN201410745990.1A CN201410745990A CN104376388A CN 104376388 A CN104376388 A CN 104376388A CN 201410745990 A CN201410745990 A CN 201410745990A CN 104376388 A CN104376388 A CN 104376388A
Authority
CN
China
Prior art keywords
mrow
msub
msup
ultra
mover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410745990.1A
Other languages
Chinese (zh)
Inventor
于炳霞
谭志萍
陈梅
陈志宝
程序
周海
丁杰
崔方
王知嘉
曹潇
丁宇宇
周强
丁煌
朱想
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
Original Assignee
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, China Electric Power Research Institute Co Ltd CEPRI filed Critical State Grid Corp of China SGCC
Priority to CN201410745990.1A priority Critical patent/CN104376388A/en
Publication of CN104376388A publication Critical patent/CN104376388A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Quality & Reliability (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Control Of Eletrric Generators (AREA)
  • Feedback Control In General (AREA)
  • Wind Motors (AREA)

Abstract

The invention provides an ultra-short period wind power prediction method based on a wind speed factor control model. The ultra-short period wind power prediction method includes performing an ultra-short period prediction according to an ARIMA (autoregressive integrated moving average) model; performing the ultra-short period power prediction according to a BP (back propagation) neutral network model; completing the ultra-short period wind power prediction based on the wind speed factor control model. In this way, at the premise that the ARIMA model and the BP neutral network model are evaluated, the ARIMA model and the BP neutral network model can be switched according to the running environment, so that accuracy of the ultra-short wind power prediction is improved.

Description

Wind power ultra-short-term power prediction method based on wind speed factor control model
Technical Field
The invention belongs to the technical field of wind power prediction, and particularly relates to a wind power ultra-short-term power prediction method based on a wind speed factor control model.
Background
The wind power ultra-short term prediction technology mainly aims at predicting wind power with time resolution of 15 minutes of 0-4 hours in the future, accurate ultra-short term prediction can provide guarantee for AGC control of a power grid, real-time adjustment of a power grid dispatching plan and arrangement of reserve capacity are facilitated, and safety, stability and economic operation of a system are improved.
At present, a single model for ultra-short-term prediction has relatively deep research, and research results of the single model are applied to provincial dispatching departments and stations of the large network. The invention patent with application number 201110388041.9 provides a wind power ultra-short-term prediction method, which comprises the steps of firstly, acquiring wind speed, wind direction and wind power data of a wind power plant to form a sample set; then, carrying out data preprocessing on the sample set; then, reducing the dimension of the preprocessed sample set by using a depth automatic encoder network; and finally, training a regression model of the relevance vector machine by using the reduced-dimension sample set, and predicting the ultra-short-term wind power by using the trained regression model of the relevance vector machine. The support vector machine method in the invention is suitable for solving the conditions of small samples and nonlinearity, the neural network model is favorable for solving the condition of a large sample training set, and the application condition determines that the accuracy of ultra-short-term power prediction can be reduced by a single model under certain conditions.
Disclosure of Invention
In order to overcome the defects of the prior art, the invention provides a wind power ultra-short-term power prediction method based on a wind speed factor control model, which can switch an ARIMA model and a BP neural network model aiming at the operating environment on the basis of evaluating the two models, thereby improving the accuracy of wind power ultra-short-term power prediction.
In order to achieve the purpose of the invention, the invention adopts the following technical scheme:
the invention provides a wind power ultra-short-term power prediction method based on a wind speed factor control model, which comprises the following steps:
step 1: performing ultra-short-term power prediction by using an ARIMA model;
step 2: carrying out ultra-short term power prediction by using a BP neural network model;
and step 3: and wind power ultra-short-term power prediction is completed through a wind speed factor control model.
The step 1 specifically comprises the following steps:
step 1-1: differentiating the measured power by adopting 96 points in the previous 24 hours to obtain a stable time sequence;
step 1-2: and establishing an ARIMA model to obtain the ultra-short-term power prediction result of 16 points in the future 4 hours.
The step 1-1 specifically comprises the following steps:
step-1-1: let Δ xtMeasured power x at time ttMeasured power x at time t-1t-1Is expressed as:
Δxt=xt-xt-1=xt-Lxt=(1-L)xt
thus, there are:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msup> <mi>&Delta;</mi> <mn>2</mn> </msup> <msub> <mi>x</mi> <mi>t</mi> </msub> <mo>=</mo> <msub> <mi>&Delta;x</mi> <mi>t</mi> </msub> <mo>-</mo> <msub> <mi>&Delta;x</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>L</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msub> <mi>x</mi> <mi>t</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>&Delta;</mi> <mi>d</mi> </msup> <msub> <mi>x</mi> <mi>t</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>L</mi> <mo>)</mo> </mrow> <mi>d</mi> </msup> <msub> <mi>x</mi> <mi>t</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </math>
wherein, L is a lag operator, and d is the difference times corresponding to the stable time sequence;
step 1-1-2: judging ARIMA order parameters according to the akage information quantity criterion, wherein the ARIMA order parameters comprise an autoregressive term number p, a moving average term number q and difference times d corresponding to a stationary time sequence;
step 1-1-3: the stationary time series is represented as:
wt=Δdxt=(1-L)dxt
wherein, wtRepresenting a stationary time series.
The step 1-2 specifically comprises the following steps:
step 1-2-1: establishing an ARIMA model, which can be expressed as:
wt=φ1wt-12wt-2+...+φiwt-i+...+φpwt-p++ut1ut-12ut-2+...+θjut-j+...+θqut-q
wherein, is a constant term; u. oftWhite noise is represented and follows a standard normal distribution; phi is aiIs a coefficient of the auto-regressive term, i ═ 1, 2.., p; thetajIs the coefficient of the moving average term, j ═ 1, 2.
Step 1-2-2: using maximum likelihood method to phii、θjAnd estimating respectively to make parameter set theta ═ phiijAnd constructing a likelihood function L (theta, sigma)2) The following were used:
<math> <mrow> <mi>L</mi> <mrow> <mo>(</mo> <mi>&Theta;</mi> <mo>,</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>)</mo> </mrow> <mrow> <mi>T</mi> <mo>/</mo> <mn>2</mn> </mrow> </msup> <msup> <mi>&sigma;</mi> <mi>T</mi> </msup> </mrow> </mfrac> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <msup> <mrow> <mn>2</mn> <mi>&sigma;</mi> </mrow> <mn>2</mn> </msup> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>w</mi> <mi>t</mi> </msub> <mo>-</mo> <msub> <mi>&mu;</mi> <mi>t</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msup> </mrow> </math>
wherein, sigma is a standard deviation, and T is the number of learning samples;
for L (theta, sigma)2) Taking natural logarithm to obtain l (theta, sigma)2) It is expressed as:
<math> <mrow> <mi>l</mi> <mrow> <mo>(</mo> <mi>&Theta;</mi> <mo>,</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>=</mo> <mi>ln</mi> <mi>L</mi> <mrow> <mo>(</mo> <mi>&Theta;</mi> <mo>,</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>ln</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mn>1</mn> <msup> <mrow> <mn>2</mn> <mi>&sigma;</mi> </mrow> <mn>2</mn> </msup> </mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>w</mi> <mi>t</mi> </msub> <mo>-</mo> <msub> <mi>&mu;</mi> <mi>t</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </math>
thus, the estimate of ΘExpressed as:
<math> <mrow> <mover> <mi>&Theta;</mi> <mo>^</mo> </mover> <mo>=</mo> <mi>arg</mi> <munder> <mi>max</mi> <mrow> <mi>&Theta;</mi> <mo>&Element;</mo> <msup> <mi>R</mi> <mrow> <mi>p</mi> <mo>+</mo> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </munder> <mi>l</mi> <mrow> <mo>(</mo> <mi>&Theta;</mi> <mo>,</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </math>
thereby obtaining phii、θjAnd respective estimated valuesAnd
thus, wtIs estimated value ofCan be expressed as:
<math> <mrow> <msub> <mover> <mi>w</mi> <mo>^</mo> </mover> <mi>t</mi> </msub> <mo>=</mo> <msub> <mover> <mi>&phi;</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <msub> <mi>w</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>&phi;</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <msub> <mi>w</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msub> <mover> <mi>&phi;</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <msub> <mi>w</mi> <mrow> <mi>t</mi> <mo>-</mo> <mi>i</mi> </mrow> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msub> <mover> <mi>&phi;</mi> <mo>^</mo> </mover> <mi>p</mi> </msub> <msub> <mi>w</mi> <mrow> <mi>t</mi> <mo>-</mo> <mi>p</mi> </mrow> </msub> <mo>+</mo> <mover> <mi>&delta;</mi> <mo>^</mo> </mover> <mo>+</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <msub> <mi>u</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <msub> <mi>u</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <msub> <mi>u</mi> <mrow> <mi>t</mi> <mo>-</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msub> <mi>&theta;</mi> <mi>q</mi> </msub> <msub> <mi>u</mi> <mrow> <mi>t</mi> <mo>-</mo> <mi>q</mi> </mrow> </msub> </mrow> </math>
by passingThe expressions are sequentially deduced, so that the stable time sequence of 16 points in the future 4 hours can be calculated, and the power prediction result in the future 4 hours can be obtained.
The step 2 specifically comprises the following steps:
step 2-1: inputting historical wind speed and predicted power results as learning samples, repeatedly adjusting and training the weight and the deviation of the network by using a back propagation algorithm to enable the output vector to be as close to the expected vector as possible, finishing training when the sum of squares of errors of the output layer of the network is smaller than a specified value of the error, and storing the weight and the deviation of the network;
step 2-2: and inputting the future predicted wind speed value from the numerical weather forecast into a BP neural network model to obtain an ultra-short-term power prediction result within 4 hours in the future.
The step 3 specifically comprises the following steps:
step 3-1: respectively calculating the error e between the ultra-short-term power prediction result obtained by the ARIMA model and the actual measurement power value obtained by the BP neural network model1(t)、e2(t) having:
e 1 ( t ) = P Ft - P P 1 t
e 2 ( t ) = P Ft - P P 2 t
wherein,for ultra-short term power prediction results obtained by an ARIMA model,for obtaining ultra-short term power prediction results through BP neural network model, PFtIs the measured power value;
step 3-2: e of 96 points in 24 hours in the previous day by utilizing BP neural network model1(t)、e2(t) training with a historical predicted wind speed value w to obtain a wind speed factor control model;
step 3-3: and switching the ARIMA model and the BP neural network model in real time by using the wind speed factor control model to obtain a final ultra-short-term power prediction result.
In the step 3-2, the historical predicted wind speed value w is taken as an input, and respective controllers of the ARIMA model and the BP neural network model are assumed to be C1And C2The corresponding control function is expressed as:
C1(t)=I(w,t)
C2(t)=1-C1(t)
wherein I (w, t) is a function of t and w, and the change of the function with time and wind speed is 0 or 1, so C1(t),C2(t)∈{0,1};
The final error e of the ultra-short term power prediction based on the wind speed factor control model is then expressed as:
e=C1(t)e1(t)+C2(t)e2(t)
e of 96 points in 24 hours in the previous day by utilizing BP neural network model1(t)、e2(t) and w are trained, and the training target is set as the sum of squares of e is minimum, namely, the target function Σ e of the wind speed factor control model is obtained2And finally, obtaining the wind speed factor control model through training.
Compared with the prior art, the invention has the beneficial effects that:
(1) the problem of single model error uneven distribution is solved, and the unstable factor of the single model is overcome through the switching of the models.
(2) The method is flexible to apply, can realize online automatic model selection, does not need manual intervention, and can switch the models through online model error analysis.
Drawings
FIG. 1 is a flow chart of a wind power ultra-short-term power prediction method based on a wind speed factor control model.
Detailed Description
The present invention will be described in further detail with reference to the accompanying drawings.
As shown in fig. 1, the invention provides a wind power ultra-short-term power prediction method based on a wind speed factor control model, which includes the following steps:
step 1: performing ultra-short-term power prediction by using an ARIMA model;
step 2: carrying out ultra-short term power prediction by using a BP neural network model;
and step 3: and wind power ultra-short-term power prediction is completed through a wind speed factor control model.
The step 1 specifically comprises the following steps:
step 1-1: differentiating the measured power by adopting 96 points in the previous 24 hours to obtain a stable time sequence;
step 1-2: and establishing an ARIMA model to obtain the ultra-short-term power prediction result of 16 points in the future 4 hours.
The step 1-1 specifically comprises the following steps:
step-1-1: let Δ xtMeasured power x at time ttAnd time t-1Measured power xt-1Is expressed as:
Δxt=xt-xt-1=xt-Lxt=(1-L)xt
thus, there are:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msup> <mi>&Delta;</mi> <mn>2</mn> </msup> <msub> <mi>x</mi> <mi>t</mi> </msub> <mo>=</mo> <msub> <mi>&Delta;x</mi> <mi>t</mi> </msub> <mo>-</mo> <msub> <mi>&Delta;x</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>L</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msub> <mi>x</mi> <mi>t</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>&Delta;</mi> <mi>d</mi> </msup> <msub> <mi>x</mi> <mi>t</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>L</mi> <mo>)</mo> </mrow> <mi>d</mi> </msup> <msub> <mi>x</mi> <mi>t</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </math>
wherein, L is a lag operator, and d is the difference times corresponding to the stable time sequence;
step 1-1-2: judging ARIMA order parameters according to the akage information quantity criterion, wherein the ARIMA order parameters comprise an autoregressive term number p, a moving average term number q and difference times d corresponding to a stationary time sequence;
step 1-1-3: the stationary time series is represented as:
wt=Δdxt=(1-L)dxt
wherein, wtRepresenting a stationary time series.
The step 1-2 specifically comprises the following steps:
step 1-2-1: establishing an ARIMA model, which can be expressed as:
wt=φ1wt-12wt-2+...+φiwt-i+...+φpwt-p++ut1ut-12ut-2+...+θjut-j+...+θqut-q
wherein, is a constant term; u. oftWhite noise is represented and follows a standard normal distribution; phi is aiIs a coefficient of the auto-regressive term, i ═ 1, 2.., p; thetajIs the coefficient of the moving average term, j ═ 1, 2.
Step 1-2-2: using maximum likelihood method to phii、θjAnd estimating respectively to make parameter set theta ═ phiijAnd constructing a likelihood function L (theta, sigma)2) The following were used:
<math> <mrow> <mi>L</mi> <mrow> <mo>(</mo> <mi>&Theta;</mi> <mo>,</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>)</mo> </mrow> <mrow> <mi>T</mi> <mo>/</mo> <mn>2</mn> </mrow> </msup> <msup> <mi>&sigma;</mi> <mi>T</mi> </msup> </mrow> </mfrac> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <msup> <mrow> <mn>2</mn> <mi>&sigma;</mi> </mrow> <mn>2</mn> </msup> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>w</mi> <mi>t</mi> </msub> <mo>-</mo> <msub> <mi>&mu;</mi> <mi>t</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msup> </mrow> </math>
wherein, sigma is a standard deviation, and T is the number of learning samples;
for L (theta, sigma)2) Taking natural logarithm to obtain l (theta, sigma)2) It is expressed as:
<math> <mrow> <mi>l</mi> <mrow> <mo>(</mo> <mi>&Theta;</mi> <mo>,</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>=</mo> <mi>ln</mi> <mi>L</mi> <mrow> <mo>(</mo> <mi>&Theta;</mi> <mo>,</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>ln</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mn>1</mn> <msup> <mrow> <mn>2</mn> <mi>&sigma;</mi> </mrow> <mn>2</mn> </msup> </mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>w</mi> <mi>t</mi> </msub> <mo>-</mo> <msub> <mi>&mu;</mi> <mi>t</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </math>
thus, the estimate of ΘExpressed as:
<math> <mrow> <mover> <mi>&Theta;</mi> <mo>^</mo> </mover> <mo>=</mo> <mi>arg</mi> <munder> <mi>max</mi> <mrow> <mi>&Theta;</mi> <mo>&Element;</mo> <msup> <mi>R</mi> <mrow> <mi>p</mi> <mo>+</mo> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </munder> <mi>l</mi> <mrow> <mo>(</mo> <mi>&Theta;</mi> <mo>,</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </math>
thereby obtaining phii、θjAnd respective estimated valuesAnd
thus, wtIs estimated value ofCan be expressed as:
<math> <mrow> <msub> <mover> <mi>w</mi> <mo>^</mo> </mover> <mi>t</mi> </msub> <mo>=</mo> <msub> <mover> <mi>&phi;</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <msub> <mi>w</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>&phi;</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <msub> <mi>w</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msub> <mover> <mi>&phi;</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <msub> <mi>w</mi> <mrow> <mi>t</mi> <mo>-</mo> <mi>i</mi> </mrow> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msub> <mover> <mi>&phi;</mi> <mo>^</mo> </mover> <mi>p</mi> </msub> <msub> <mi>w</mi> <mrow> <mi>t</mi> <mo>-</mo> <mi>p</mi> </mrow> </msub> <mo>+</mo> <mover> <mi>&delta;</mi> <mo>^</mo> </mover> <mo>+</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <msub> <mi>u</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <msub> <mi>u</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <msub> <mi>u</mi> <mrow> <mi>t</mi> <mo>-</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msub> <mi>&theta;</mi> <mi>q</mi> </msub> <msub> <mi>u</mi> <mrow> <mi>t</mi> <mo>-</mo> <mi>q</mi> </mrow> </msub> </mrow> </math>
by passingThe expressions are sequentially deduced, so that the stable time sequence of 16 points in the future 4 hours can be calculated, and the power prediction result in the future 4 hours can be obtained.
The step 2 specifically comprises the following steps:
step 2-1: inputting historical wind speed and predicted power results as learning samples, repeatedly adjusting and training the weight and the deviation of the network by using a back propagation algorithm to enable the output vector to be as close to the expected vector as possible, finishing training when the sum of squares of errors of the output layer of the network is smaller than a specified value of the error, and storing the weight and the deviation of the network;
step 2-2: and inputting the future predicted wind speed value from the numerical weather forecast into a BP neural network model to obtain an ultra-short-term power prediction result within 4 hours in the future.
The step 3 specifically comprises the following steps:
step 3-1: respectively calculating the error e between the ultra-short-term power prediction result obtained by the ARIMA model and the actual measurement power value obtained by the BP neural network model1(t)、e2(t) having:
e 1 ( t ) = P Ft - P P 1 t
e 2 ( t ) = P Ft - P P 2 t
wherein,for ultra-short term power prediction results obtained by an ARIMA model,to pass through BP nerveThe network model obtains the prediction result of the ultra-short term power, PFtIs the measured power value;
step 3-2: e of 96 points in 24 hours in the previous day by utilizing BP neural network model1(t)、e2(t) training with a historical predicted wind speed value w to obtain a wind speed factor control model;
step 3-3: and switching the ARIMA model and the BP neural network model in real time by using the wind speed factor control model to obtain a final ultra-short-term power prediction result.
In the step 3-2, the historical predicted wind speed value w is taken as an input, and respective controllers of the ARIMA model and the BP neural network model are assumed to be C1And C2The corresponding control function is expressed as:
C1(t)=I(w,t)
C2(t)=1-C1(t)
wherein I (w, t) is a function of t and w, and the change of the function with time and wind speed is 0 or 1, so C1(t),C2(t)∈{0,1};
The final error e of the ultra-short term power prediction based on the wind speed factor control model is then expressed as:
e=C1(t)e1(t)+C2(t)e2(t)
e of 96 points in 24 hours in the previous day by utilizing BP neural network model1(t)、e2(t) and w are trained, and the training target is set as the sum of squares of e is minimum, namely, the target function Σ e of the wind speed factor control model is obtained2And finally, obtaining the wind speed factor control model through training.
Finally, it should be noted that: the above embodiments are only intended to illustrate the technical solution of the present invention and not to limit the same, and a person of ordinary skill in the art can make modifications or equivalents to the specific embodiments of the present invention with reference to the above embodiments, and such modifications or equivalents without departing from the spirit and scope of the present invention are within the scope of the claims of the present invention as set forth in the claims.

Claims (7)

1. A wind power ultra-short-term power prediction method based on a wind speed factor control model is characterized by comprising the following steps: the method comprises the following steps:
step 1: performing ultra-short-term power prediction by using an ARIMA model;
step 2: carrying out ultra-short term power prediction by using a BP neural network model;
and step 3: and wind power ultra-short-term power prediction is completed through a wind speed factor control model.
2. The wind power ultra-short-term power prediction method based on the wind speed factor control model according to claim 1, characterized in that: the step 1 specifically comprises the following steps:
step 1-1: differentiating the measured power by adopting 96 points in the previous 24 hours to obtain a stable time sequence;
step 1-2: and establishing an ARIMA model to obtain the ultra-short-term power prediction result of 16 points in the future 4 hours.
3. The wind power ultra-short-term power prediction method based on the wind speed factor control model according to claim 2, characterized in that: the step 1-1 specifically comprises the following steps:
step-1-1: let Δ xtMeasured power x at time ttMeasured power x at time t-1t-1Is expressed as:
Δxt=xt-xt-1=xt-Lxt=(1-L)xt
thus, there are:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msup> <mi>&Delta;</mi> <mn>2</mn> </msup> <msub> <mi>x</mi> <mi>t</mi> </msub> <mo>=</mo> <mi>&Delta;</mi> <msub> <mi>x</mi> <mi>t</mi> </msub> <mo>-</mo> <msub> <mi>&Delta;x</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>L</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msub> <mi>x</mi> <mi>t</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>&Delta;</mi> <mi>d</mi> </msup> <msub> <mi>x</mi> <mi>t</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>L</mi> <mo>)</mo> </mrow> <mi>d</mi> </msup> <msub> <mi>x</mi> <mi>t</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </math>
wherein, L is a lag operator, and d is the difference times corresponding to the stable time sequence;
step 1-1-2: judging ARIMA order parameters according to the akage information quantity criterion, wherein the ARIMA order parameters comprise an autoregressive term number p, a moving average term number q and difference times d corresponding to a stationary time sequence;
step 1-1-3: the stationary time series is represented as:
wt=Δdxt=(1-L)dxt
wherein, wtRepresenting a stationary time series.
4. The wind power ultra-short-term power prediction method based on the wind speed factor control model according to claim 1, characterized in that: the step 1-2 specifically comprises the following steps:
step 1-2-1: establishing an ARIMA model, which can be expressed as:
wt=φ1wt-12wt-2+...+φiwt-i+...+φpwt-p++ut1ut-12ut-2+...+θjut-j+...+θqut-q
wherein, is a constant term; u. oftWhite noise is represented and follows a standard normal distribution; phi is aiIs a coefficient of the auto-regressive term, i ═ 1, 2.., p; thetajIs the coefficient of the moving average term, j ═ 1, 2.
Step 1-2-2: using maximum likelihood method to phii、θjAnd estimating respectively to make parameter set theta ═ phiijAnd constructing a likelihood function L (theta, sigma)2) The following were used:
<math> <mrow> <mi>L</mi> <mrow> <mo>(</mo> <mi>&Theta;</mi> <mo>,</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>)</mo> </mrow> <mrow> <mi>T</mi> <mo>/</mo> <mn>2</mn> </mrow> </msup> <msup> <mi>&sigma;</mi> <mi>T</mi> </msup> </mrow> </mfrac> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <msup> <mrow> <mn>2</mn> <mi>&sigma;</mi> </mrow> <mn>2</mn> </msup> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>w</mi> <mi>t</mi> </msub> <mo>-</mo> <msub> <mi>&mu;</mi> <mi>t</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msup> </mrow> </math>
wherein, sigma is a standard deviation, and T is the number of learning samples;
for L (theta, sigma)2) Taking natural logarithm to obtain l (theta, sigma)2) It is expressed as:
<math> <mrow> <mi>l</mi> <mrow> <mo>(</mo> <mi>&Theta;</mi> <mo>,</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mi>nL</mi> <mrow> <mo>(</mo> <mi>&Theta;</mi> <mo>,</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mn>1</mn> <mi>n</mi> <mrow> <mo>(</mo> <msup> <mrow> <mn>2</mn> <mi>&pi;&sigma;</mi> </mrow> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mn>1</mn> <msup> <mrow> <mn>2</mn> <mi>&sigma;</mi> </mrow> <mn>2</mn> </msup> </mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>w</mi> <mi>t</mi> </msub> <mo>-</mo> <msub> <mi>&mu;</mi> <mi>t</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </math>
thus, the estimate of ΘExpressed as:
<math> <mrow> <mover> <mi>&Theta;</mi> <mo>^</mo> </mover> <mo>=</mo> <mi>arg</mi> <munder> <mi>max</mi> <mrow> <mi>&Theta;</mi> <mo>&Element;</mo> <msup> <mi>R</mi> <mrow> <mi>p</mi> <mo>+</mo> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </munder> <mi>l</mi> <mrow> <mo>(</mo> <mi>&Theta;</mi> <mo>,</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </math>
thereby obtaining phii、θjAnd respective estimated valuesAnd
thus, wtIs estimated value ofCan be expressed as:
<math> <mrow> <msub> <mover> <mi>w</mi> <mo>^</mo> </mover> <mi>t</mi> </msub> <mo>=</mo> <msub> <mover> <mi>&phi;</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <msub> <mi>w</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>&phi;</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <msub> <mi>w</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msub> <mover> <mi>&phi;</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <msub> <mi>w</mi> <mrow> <mi>t</mi> <mo>-</mo> <mi>i</mi> </mrow> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msub> <mover> <mi>&phi;</mi> <mo>^</mo> </mover> <mi>p</mi> </msub> <msub> <mi>w</mi> <mrow> <mi>t</mi> <mo>-</mo> <mi>p</mi> </mrow> </msub> <mo>+</mo> <mover> <mi>&delta;</mi> <mo>^</mo> </mover> <mo>+</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <msub> <mi>u</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <msub> <mi>u</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <msub> <mi>u</mi> <mrow> <mi>t</mi> <mo>-</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msub> <mi>&theta;</mi> <mi>q</mi> </msub> <msub> <mi>u</mi> <mrow> <mi>t</mi> <mo>-</mo> <mi>q</mi> </mrow> </msub> </mrow> </math>
by passingThe expression of (A) is sequentially deduced, namely the calculation can be carried out within 4 hours in the futureAnd a 16-point stationary time sequence is obtained, so that a power prediction result in 4 hours in the future is obtained.
5. The wind power ultra-short-term power prediction method based on the wind speed factor control model according to claim 1, characterized in that: the step 2 specifically comprises the following steps:
step 2-1: inputting historical wind speed and predicted power results as learning samples, repeatedly adjusting and training the weight and the deviation of the network by using a back propagation algorithm to enable the output vector to be as close to the expected vector as possible, finishing training when the sum of squares of errors of the output layer of the network is smaller than a specified value of the error, and storing the weight and the deviation of the network;
step 2-2: and inputting the future predicted wind speed value from the numerical weather forecast into a BP neural network model to obtain an ultra-short-term power prediction result within 4 hours in the future.
6. The wind power ultra-short-term power prediction method based on the wind speed factor control model according to claim 1, characterized in that: the step 3 specifically comprises the following steps:
step 3-1: respectively calculating the error e between the ultra-short-term power prediction result obtained by the ARIMA model and the actual measurement power value obtained by the BP neural network model1(t)、e2(t) having:
e 1 ( t ) = P Ft - P P 1 t
e 2 ( t ) = P Ft - P P 2 t
wherein,for ultra-short term power prediction results obtained by an ARIMA model,for obtaining ultra-short term power prediction results through BP neural network model, PFtIs the measured power value;
step 3-2: e of 96 points in 24 hours in the previous day by utilizing BP neural network model1(t)、e2(t) training with a historical predicted wind speed value w to obtain a wind speed factor control model;
step 3-3: and switching the ARIMA model and the BP neural network model in real time by using the wind speed factor control model to obtain a final ultra-short-term power prediction result.
7. The wind power ultra-short-term power prediction method based on the wind speed factor control model according to claim 8, characterized in that: in the step 3-2, the historical predicted wind speed value w is taken as an input, and respective controllers of the ARIMA model and the BP neural network model are assumed to be C1And C2The corresponding control function is expressed as:
C1(t)=I(w,t)
C2(t)=1-C1(t)
wherein I (w, t) is a function of t and w, and the change of the function with time and wind speed is 0 or 1, so C1(t),C2(t)∈{0,1};
The final error e of the ultra-short term power prediction based on the wind speed factor control model is then expressed as:
e=C1(t)e1(t)+C2(t)e2(t)
e of 96 points in 24 hours in the previous day by utilizing BP neural network model1(t)、e2(t) and w are trained, and the training target is set as the sum of squares of e is minimum, namely, the target function Σ e of the wind speed factor control model is obtained2And finally, obtaining the wind speed factor control model through training.
CN201410745990.1A 2014-12-08 2014-12-08 Ultra-short period wind power prediction method based on wind speed factor control model Pending CN104376388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410745990.1A CN104376388A (en) 2014-12-08 2014-12-08 Ultra-short period wind power prediction method based on wind speed factor control model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410745990.1A CN104376388A (en) 2014-12-08 2014-12-08 Ultra-short period wind power prediction method based on wind speed factor control model

Publications (1)

Publication Number Publication Date
CN104376388A true CN104376388A (en) 2015-02-25

Family

ID=52555283

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410745990.1A Pending CN104376388A (en) 2014-12-08 2014-12-08 Ultra-short period wind power prediction method based on wind speed factor control model

Country Status (1)

Country Link
CN (1) CN104376388A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104794548A (en) * 2015-05-11 2015-07-22 中国科学技术大学 ARIMA (Autoregressive integrated moving average) model load prediction based parallelization computing method
CN105956708A (en) * 2016-05-12 2016-09-21 扬州大学 Grey correlation time sequence based short-term wind speed forecasting method
CN107133702A (en) * 2017-05-18 2017-09-05 北京唐浩电力工程技术研究有限公司 A kind of wind power plant whole audience power forecasting method
CN107145072A (en) * 2017-05-31 2017-09-08 威海海洋职业学院 Ship rudder roll damping adaptive control system
CN108263400A (en) * 2018-01-08 2018-07-10 北京佳讯飞鸿电气股份有限公司 High ferro train running speed control method, device, storage medium and high ferro train
CN109409596A (en) * 2018-10-22 2019-03-01 东软集团股份有限公司 Processing method, device, equipment and the computer readable storage medium of prediction of wind speed
CN109934422A (en) * 2019-04-25 2019-06-25 中国人民解放军国防科技大学 Neural network wind speed prediction method based on time series data analysis
CN110415013A (en) * 2019-06-12 2019-11-05 河海大学 A kind of combination forecasting method of net about vehicle trip requirements in short-term

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070119285A (en) * 2006-06-15 2007-12-20 한국에너지기술연구원 Forecasting method of wind power generation by classification of wind speed patterns
CN102880810A (en) * 2012-10-25 2013-01-16 山东电力集团公司电力科学研究院 Wind power prediction method based on time sequence and neural network method
CN103117546A (en) * 2013-02-28 2013-05-22 武汉大学 Ultrashort-term slide prediction method for wind power
CN103745274A (en) * 2014-01-08 2014-04-23 贵州电力试验研究院 Short-term power prediction method applied to dispersed wind power
CN103903071A (en) * 2014-04-17 2014-07-02 上海电机学院 Wind power forecast combination method and system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070119285A (en) * 2006-06-15 2007-12-20 한국에너지기술연구원 Forecasting method of wind power generation by classification of wind speed patterns
CN102880810A (en) * 2012-10-25 2013-01-16 山东电力集团公司电力科学研究院 Wind power prediction method based on time sequence and neural network method
CN103117546A (en) * 2013-02-28 2013-05-22 武汉大学 Ultrashort-term slide prediction method for wind power
CN103745274A (en) * 2014-01-08 2014-04-23 贵州电力试验研究院 Short-term power prediction method applied to dispersed wind power
CN103903071A (en) * 2014-04-17 2014-07-02 上海电机学院 Wind power forecast combination method and system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吴丹丹: "风电场输出功率组合算法的研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *
陈新娜: "基于时间序列的超短期功率预测方法研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104794548A (en) * 2015-05-11 2015-07-22 中国科学技术大学 ARIMA (Autoregressive integrated moving average) model load prediction based parallelization computing method
CN105956708A (en) * 2016-05-12 2016-09-21 扬州大学 Grey correlation time sequence based short-term wind speed forecasting method
CN107133702A (en) * 2017-05-18 2017-09-05 北京唐浩电力工程技术研究有限公司 A kind of wind power plant whole audience power forecasting method
CN107133702B (en) * 2017-05-18 2020-11-13 北京唐浩电力工程技术研究有限公司 Full-field power prediction method for wind power plant
CN107145072A (en) * 2017-05-31 2017-09-08 威海海洋职业学院 Ship rudder roll damping adaptive control system
CN108263400A (en) * 2018-01-08 2018-07-10 北京佳讯飞鸿电气股份有限公司 High ferro train running speed control method, device, storage medium and high ferro train
CN108263400B (en) * 2018-01-08 2019-11-15 北京佳讯飞鸿电气股份有限公司 High-speed rail train running speed control method, device, storage medium and high-speed rail train
CN109409596A (en) * 2018-10-22 2019-03-01 东软集团股份有限公司 Processing method, device, equipment and the computer readable storage medium of prediction of wind speed
CN109934422A (en) * 2019-04-25 2019-06-25 中国人民解放军国防科技大学 Neural network wind speed prediction method based on time series data analysis
CN110415013A (en) * 2019-06-12 2019-11-05 河海大学 A kind of combination forecasting method of net about vehicle trip requirements in short-term

Similar Documents

Publication Publication Date Title
CN104376388A (en) Ultra-short period wind power prediction method based on wind speed factor control model
CN105631483B (en) A kind of short-term electro-load forecast method and device
CN103279804B (en) The Forecasting Methodology of super short-period wind power
CN106529719B (en) Wind power prediction method based on particle swarm optimization algorithm wind speed fusion
CN110705772B (en) Regional power grid wind power generation power prediction optimization method and device
CN104699894A (en) JITL (just-in-time learning) based multi-model fusion modeling method adopting GPR (Gaussian process regression)
US20150302313A1 (en) Method of predicating ultra-short-term wind power based on self-learning composite data source
CN101480143B (en) Method for predicating single yield of crops in irrigated area
CN102479339A (en) Method and system for forecasting short-term wind speed of wind farm based on hybrid neural network
CN107705556A (en) A kind of traffic flow forecasting method combined based on SVMs and BP neural network
CN110751318A (en) IPSO-LSTM-based ultra-short-term power load prediction method
CN105305426B (en) Mapreduce two-step short-period load prediction method based on deviation control mechanism
CN104992244A (en) Airport freight traffic prediction analysis method based on SARIMA and RBF neural network integration combination model
CN103020743B (en) Wind energy turbine set ultra-short term wind speed forecasting method
CN110503251A (en) A kind of non-festivals or holidays load forecasting method based on Stacking algorithm
WO2015081660A1 (en) Method for forecasting residential quarter short-term load
CN109615124B (en) SCADA master station load prediction method based on deep learning
CN105139093A (en) Method for forecasting flood based on Boosting algorithm and support vector machine
CN103942461A (en) Water quality parameter prediction method based on online sequential extreme learning machine
CN103745101A (en) Improved neural network algorithm based forecasting method of set value of rolling force of medium plate
CN103778482A (en) Aquaculture dissolved oxygen short-term prediction method based on multi-scale analysis
CN104036356B (en) A kind of method that utilization fractal algorithm is predicted to the following running status of power network
WO2020118586A1 (en) Energy consumption prediction method and device
CN102509026A (en) Comprehensive short-term output power forecasting model for wind farm based on maximum information entropy theory
CN110705771A (en) Method and device for predicting and optimizing power generation power of new energy of regional power grid

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150225

RJ01 Rejection of invention patent application after publication