CN104375188B  Seismic wave transmission attenuation compensation method and device  Google Patents
Seismic wave transmission attenuation compensation method and device Download PDFInfo
 Publication number
 CN104375188B CN104375188B CN201410662666.3A CN201410662666A CN104375188B CN 104375188 B CN104375188 B CN 104375188B CN 201410662666 A CN201410662666 A CN 201410662666A CN 104375188 B CN104375188 B CN 104375188B
 Authority
 CN
 China
 Prior art keywords
 data
 attenuation
 seismic
 energy
 vertical
 Prior art date
 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
 Active
Links
 230000005540 biological transmission Effects 0.000 title claims abstract description 88
 238000010521 absorption reactions Methods 0.000 claims abstract description 43
 238000009792 diffusion process Methods 0.000 claims abstract description 39
 238000000034 method Methods 0.000 claims description 27
 230000000875 corresponding Effects 0.000 claims description 15
 238000004364 calculation method Methods 0.000 claims description 9
 238000006243 chemical reaction Methods 0.000 claims description 3
 150000002500 ions Chemical class 0.000 claims description 2
 280000398338 Seismic companies 0.000 abstract description 98
 238000010606 normalization Methods 0.000 abstract description 3
 230000037010 Beta Effects 0.000 description 10
 230000015572 biosynthetic process Effects 0.000 description 9
 238000005755 formation reactions Methods 0.000 description 9
 238000010586 diagrams Methods 0.000 description 6
 238000004458 analytical methods Methods 0.000 description 5
 239000010410 layers Substances 0.000 description 4
 238000003860 storage Methods 0.000 description 3
 238000005516 engineering processes Methods 0.000 description 2
 230000005284 excitation Effects 0.000 description 2
 230000001131 transforming Effects 0.000 description 2
 241000209094 Oryza Species 0.000 description 1
 235000007164 Oryza sativa Nutrition 0.000 description 1
 238000004891 communication Methods 0.000 description 1
 230000000694 effects Effects 0.000 description 1
 239000000686 essences Substances 0.000 description 1
 238000004519 manufacturing process Methods 0.000 description 1
 239000000203 mixtures Substances 0.000 description 1
 230000000704 physical effects Effects 0.000 description 1
 230000000644 propagated Effects 0.000 description 1
 235000009566 rice Nutrition 0.000 description 1
 239000011435 rock Substances 0.000 description 1
 238000009738 saturating Methods 0.000 description 1
 238000005303 weighing Methods 0.000 description 1
Abstract
The invention provides a seismic wave transmission attenuation compensation method and device. The method comprises the first step of obtaining vertical component data of vertical seismic data, the second step of obtaining the interval velocity of the vertical seismic data based on first arrival of longitudinal waves, the third step of conducting normalization processing on the vertical component data to obtain a total energy attenuation coefficient sequence, the fourth step of converting the vertical component data in a time domain into seismic data in a depth domain, the fifth step of obtaining a spherical diffusion attenuation coefficient sequence and a stratum absorption attenuation coefficient sequence of the seismic data in the depth domain, and the sixth step of using a result obtained by dividing a total energy attenuation coefficient by the product of the spherical diffusion attenuation coefficient sequence and the stratum absorption attenuation coefficient sequence as a stratum transmission coefficient, obtaining energy compensation for seismic wave transmission attenuation according to the stratum transmission coefficient and conducting transmission attenuation compensation on the seismic data. Through utilization of all embodiments involved in the method, effective and reliable energy compensation for stratum transmission attenuation can be obtained, and the stratum transmission coefficient is used for amplitude recovery processing on the seismic data.
Description
Technical field
The application belongs to seismic data process field in geophysical exploration, and more particularly, to a kind of seismic transmission decay is mended
Compensation method and device.
Background technology
During seismic wave is propagated in the earth formation, energy can gradually weaken.Under most of geological conditions, affect earthquake
The factor of energy decays mainly includes spherical diffusion decay, Earth's absorption and attenuation and the Transmission Attenuation of seismic wave.These decay
The recovery of seismic wave energy during followup data is processed will be affected, the research to reservoir attribute has very important meaning.
One or several highamplitude wave impedance layers often occur in some regional bed successions, this feature can cause sternly
The seismic transmission of weight is decayed so that the effective seismic wave under layer is faint, and for example more representational is igneous rock
High speed Screen theory.At present, spherical diffusion, the calculating of two kinds of attenuation coefficients of formation absorption and compensation method are more ripe, so
And, there is no the computational methods that real ripe, effective Transmission Attenuation compensates.
The energy that the Transmission Attenuation compensation method commonly used at present is mainly based upon on the seismic profile that mathematical statistics is carried out is put down
Weighing apparatus, but the method is only having certain restitution for weaker seismic wave energy, and applicability is limited.More importantly abovementioned
The estimated performance amount that method is only based on mathematical statistics compensates, and is not to obtain according to the real rule of stratum Transmission Attenuation
There is very big uncertainty in offset, therefore compensation result.
Content of the invention
The application purpose is to provide a kind of seismic transmission attenuation compensation method and device, can be used for calculating acquisition ground
The energy loss that seismic wave causes because of transmission, improves the computational accuracy of energy compensating and the reliability of result of calculation.
A kind of seismic transmission attenuation compensation method and device that the application provides is realized in：
A kind of seismic transmission attenuation compensation method, methods described includes：
S1：Obtain vertical seismic data, and carry out the vertical component data that sorting process obtains described vertical seismic data；
S2：Pick up the compressional wave first arrival of described vertical seismic data, described vertical seismic number is obtained based on described compressional wave first arrival
According to interval velocity；
S3：To described vertical component number on the basis of the energy of the minimum wave detector of geophone offset in described vertical component data
According to being normalized, obtain gross energy attenuation coefficient sequence；
S4：Described vertical component data is converted to by the interval velocity using the described vertical seismic data obtaining from timedomain
The geological data of Depth Domain；
S5：Obtain described Depth Domain geological data spherical diffusion attenuation coefficient sequence and Earth's absorption and attenuation coefficient sequence；
S6：With described gross energy attenuation coefficient sequence divided by described spherical diffusion decay sequence and described Earth's absorption and attenuation
The result that the product of coefficient sequence obtains, as stratum transmission coefficient, obtains seismic transmission based on described stratum transmission coefficient and declines
The energy compensating subtracting, carries out Transmission Attenuation compensation to geological data.
In preferred embodiment, after obtaining described vertical seismic data, methods described also includes：
S101：Described vertical seismic data is preferably repeated with big gun process；
Accordingly, the described vertical component data obtaining vertical seismic data includes obtaining hanging down after preferably repeating big gun process
The vertical component data of straight geological data.
In preferred embodiment, after obtaining described vertical component data, methods described also includes：
S102：Obtain the monitoring signature record corresponding to described vertical component data, and using described monitoring obtaining
Ripple record carries out energy difference correction between big gun to described vertical component data.
A kind of seismic transmission means for compensation of loss, described device includes：
Obtain and pretreatment module, for obtaining vertical seismic data, described vertical seismic data is preprocessed, and
Obtain the vertical component data of described vertical seismic data；
Interval velocity acquisition module, for picking up the compressional wave first arrival of described vertical seismic data, is obtained based on described compressional wave first arrival
Take the interval velocity of described vertical seismic data；
Data conversion module, for the interval velocity using the described vertical seismic data obtaining by described vertical component data
Be converted to the geological data of Depth Domain from timedomain；
Gross energy decay calculation module, for the energy of the wave detector of geophone offset minimum in described vertical component data being
Benchmark is normalized to described vertical component data, obtains gross energy attenuation coefficient；
Diffusive attenuation computing module, for obtaining the spherical diffusion attenuation coefficient of described Depth Domain geological data；
Attenuation by absorption computing module, for obtaining described Depth Domain geological data Earth's absorption and attenuation coefficient；
Transmission Attenuation compensation calculation module, for declining the described gross energy attenuation coefficient obtaining divided by described spherical diffusion
Subtract the result obtaining with the product of described Earth's absorption and attenuation coefficient as stratum transmission coefficient, based on described stratum transmission coefficient
Obtain the energy compensating of seismic transmission decay.
A kind of seismic transmission attenuation compensation method described herein adopts sorting process to obtain vertical seismic data
Vertical component data, is then converted into the geological data of Depth Domain, obtains the spherical diffusion of described Depth Domain geological data
Attenuation coefficient sequence and Earth's absorption and attenuation coefficient sequence.By the gross energy being calculated described vertical seismic data is decayed
Coefficient obtains stratum transmission coefficient sequence, base divided by described spherical diffusion attenuation coefficient sequence and Earth's absorption and attenuation coefficient sequence
Obtain the energy compensating of seismic transmission decay in described stratum transmission coefficient, Transmission Attenuation compensation is carried out to geological data.This
Apply for the basic thought based on the conservation of energy for the stratum transmission coefficient calculating, the Transmission Attenuation energy compensating result of calculating has
Effect, reliability, can improve the accuracy to earthquake data capacity attenuation analysis and amplitude compensation.
Brief description
In order to be illustrated more clearly that the embodiment of the present application or technical scheme of the prior art, below will be to embodiment or existing
Have technology description in required use accompanying drawing be briefly described it should be apparent that, drawings in the following description be only this
Some embodiments described in application, for those of ordinary skill in the art, in the premise not paying creative labor
Under, other accompanying drawings can also be obtained according to these accompanying drawings.
Fig. 1 is a kind of a kind of method flow schematic diagram of embodiment of the application seismic transmission attenuation compensation method；
Fig. 2 is the data record before vertical component data correction described herein；
Carry out the vertical component data after geophone offset energy difference correction using the monitoring wavelet of vertical component in Fig. 3 the application
Record figure；
Fig. 4 is a kind of a kind of modular structure schematic diagram of embodiment of the application seismic transmission means for compensation of loss；
Fig. 5 is a kind of modular structure schematic diagram of the application seismic transmission means for compensation of loss another kind embodiment；
Fig. 6 is the curve map of the stratum differential declines coefficient calculating in the embodiment of the present application.
Specific embodiment
In order that those skilled in the art more fully understand the technical scheme in the application, real below in conjunction with the application
Apply the accompanying drawing in example, the enforcement it is clear that described is clearly and completely described to the technical scheme in the embodiment of the present application
Example is only some embodiments of the present application, rather than whole embodiments.Based on the embodiment in the application, this area is common
The every other embodiment that technical staff is obtained under the premise of not making creative work, all should belong to the application protection
Scope.
In the application, the data of required process can include the geological data of vertical seismic (VSP) observed pattern acquisition.?
In described vertical seismic observed pattern, wave detector can be goed deep into the collection of downhole depths and obtain geological data.Which has and is subject to
To external interference less, when deep relation is relatively reliable, down going wave energy stabilization, propagation path close to vertical stratum the features such as, fit
Close the research carrying out Seismic wave attenuation in stratum.In recent years, many scholars utilize VSP data to spherical diffusion decay,
Layer attenuation by absorption has carried out studying and achieve some achievements.The application utilize VSP data and with reference to spherical diffusion attenuation coefficient,
Earth's absorption and attenuation coefficient is it is proposed that a kind of method that can calculate seismic transmission attenuation compensation.Arrive identical meter unified
After calculating platform, various AFs are parsed one by one, while obtaining reliable stratum attenuation coefficient of transmission, can also be real
Now separate seismic wave spherical diffusion, formation absorption, three decay factors of transmission.
Fig. 1 is a kind of method flow schematic diagram of seismic transmission attenuation compensation method described herein, as Fig. 1 institute
Show, methods described can include：
S1：Obtain vertical seismic (VSP) data, and carry out the vertical component that sorting process obtains described vertical seismic data
Data.
After obtaining vertical seismic (VSP) data, generally described geological data can be preprocessed, including data solution
Volume, road editor, the useless road of rejecting blownout shot etc..Then described vertical seismic data can be carried out with sorting process, obtain described vertical
Component (Z component) in vertical direction in geological data.Earthquake can be obtained during the pretreatment of abovementioned geological data
The information such as the channel number of each seismic channel, depth, geophone offset in data.Described data channel sorting process can include utilizing
Information data in abovementioned seismic channel by the seismic channel of whole geological data or meets described preprovisioning request according to preprovisioning request
Part seismic channel rearrange together, form new seismic data set.In the present embodiment, sorted by data channel
Process the vertical component data record obtaining in described vertical seismic data.
In another preferred embodiment, abovementioned vertical seismic data can also preferably be repeated with big gun and processed.
After the specific described vertical seismic data in acquisition, methods described can also include：
S101：Described vertical seismic data is preferably repeated with big gun process；
Accordingly, the described vertical component data obtaining vertical seismic data includes obtaining hanging down after preferably repeating big gun process
The vertical component data of straight geological data.
Described preferably repetition big gun, refers to the identical seismic data recording of parameter occurring in gatherer process is sieved
Choosing, only takes one of two or more qualified data seismic data recording.The conventional seismic data process process of prior art
In, since it is considered that the data of identical acquisition parameter can pass through overlapadd procedure, improve data SNR, generally not to earthquake number
Processed according to preferably repeating big gun.But in the present invention in order at utmost protect the energy relationship of initial data, improve stratum
The accuracy of attenuation coefficient of transmission result of calculation, can be carried out using to described vertical seismic data with avoidance data overlapadd procedure
Preferably repeat big gun to process.
In another preferred embodiment, after obtaining described vertical component data, methods described can also include：
S102：Obtain the monitoring signature record corresponding to described vertical component data, and using described monitoring obtaining
Ripple record carries out energy difference correction between big gun to described vertical component data.
The data component in all directions and signature record can be included, at this in the vertical seismic data of described acquisition
The monitoring signature record corresponding to described vertical component data can also further be obtained, then using acquisition in embodiment
Described monitoring signature record carries out energy difference correction between big gun to described vertical component data, eliminates the energy difference that human factor causes
Different, after being corrected vertical component geological data.Fig. 2 is the data note before vertical component data correction described herein
Record, carries out the vertical component data record after geophone offset energy difference correction using the monitoring wavelet of vertical component in Fig. 3 the application.
Energy difference between described big gun, typically refer to VSP not the epicenter excitation of homogeneous when, due to shot point position, excitation energy etc.
The energy difference that factor changes and causes.Between described big gun, the processing procedure of energy difference correction can be included at the beginning of monitoring signature record
Process to amplitude normalization, obtain normalization coefficient sequence, because Z component data is corresponded with monitoring wavelet data, therefore
This coefficient sequence correspondence is taken on Z component, will normalized coefficient each singleshot of Z component of being applied to corresponding thereto
On, obtain the Z component data after energy normalized, complete energy difference correction between the big gun described vertical component.
S2：Pick up the compressional wave first arrival of described vertical seismic data, described vertical seismic number is obtained based on described compressional wave first arrival
According to interval velocity.
Pickup VSP compressional wave first arrival t_{i}, and it is calculated interval velocity υ_{i}, as shown in (1), (2) formula.
Wherein, N is the sum of different depth observation station in well, and variable i is the sequence number of different Observational depths, h_{i}For corresponding
Wave detector depth, t_{i}First arrival time corresponding to wave detector, d_{i}For the distance of shot point to wave detector, l arrives well head for shot point
Distance.
The method of described first break pickup, specifically can include automatic tracing, constraint and interpolation method etc..Due to VSP number
According to takeoff is clearcut, first arrival clear, all can be obtained needed for the application relatively using any one method abovementioned therefore in the application
Highprecision first arrival data.It is then based on time and the depth relationship of obtained first arrival, calculated using abovementioned formula (1), (2)
Interval velocity to serial stratum.
S3：To described vertical component number on the basis of the energy of the minimum wave detector of geophone offset in described vertical component data
According to being normalized, obtain gross energy attenuation coefficient sequence α_{i}.
Can be normalized on the basis of the amplitude the strongest of energy in described vertical component data in the present embodiment,
Calculate and obtain described vertical component data gross energy attenuation coefficient sequence α in the earth formation_{i}.
The application provides a kind of calculating described gross energy attenuation coefficient sequence α_{i}Computational methods, specifically can include：
S301：Descending through preliminary wave peak amplitude value A of vertical component data described in pickup step_{i}：
S302：Scan dominant frequency f at described descending preliminary wave first arrival_{i}, closed using following formula (3) medium frequency, amplitude and energy
System is calculated ENERGY E_{i}：
In abovementioned formula (3), N is the sum of different depth observation station in well, and variable i is the sequence number of different Observational depths, k
For scale factor, this factor disappears in the energy ratio in following formula (4) calculates.
S303：ENERGY E with the minimum wave detector of geophone offset_{i}On the basis of be normalized, using following formula (4) calculate
Obtain gross energy attenuation coefficient sequence：
In abovementioned formula, N is the sum of different depth observation station in well, E_{1}Energy for the minimum wave detector of geophone offset.
Described geophone offset is minimum, may refer to detection in VSP gatherer process and reaches the most shallow depth location with shot point distance
Recorded data in shortterm.Because now geophone offset is minimum, therefore this data record energy is the strongest, suitably as in the present embodiment
Reference data.
Described frequency scanning method includes Fourier transformation, Short Time Fourier Transform, wavelet transformation etc., and said method is equal
Can complete in the present invention, to calculate dominant frequency requirement.
S4：Described vertical component data is converted to by the interval velocity using the described vertical seismic data obtaining from timedomain
The geological data of Depth Domain.
The timedomain of described geological data, can be with earth's surface for the face of starting in Depth Domain transfer process, i.e. earth's surface depth
For 0 meter, the time be 0 millisecond.Concrete grammar can be multiplied by obtained layer speed in S2 by the longitudinal axis time in timedomain section
Degree, the longitudinal axis is changed into depth, then by interpolation processing to data resampling, finally gives Depth Domain section, i.e. the ground of Depth Domain
Shake data.
S5：Obtain described Depth Domain geological data spherical diffusion attenuation coefficient sequence and Earth's absorption and attenuation coefficient sequence.
The present embodiment can provide a kind of described Depth Domain geological data spherical diffusion attenuation coefficient sequence of described acquisition
Computational methods.Specific computational methods can include：
S501：Based on the described Depth Domain geological data obtaining, using the spherical diffusion formula of seismic wave, it is calculated ball
Face diffusive attenuation sequence β_{i}, as shown in (5) formula, after then normalizing, obtain spherical diffusion attenuation coefficient sequence α '_{i}, as (6) formula institute
Show.
β_{i}=4 π γ^{2}=4 π (h_{i}h_{1})^{2}i∈[1,N] (5)
Wherein, 4 π γ^{2}For spherical diffusion formula, γ is propagation distance, γ=h_{i}h_{1}, N is different depth observation station in well
Sum, variable i is the sequence number of different Observational depths, h_{i}For corresponding registered depth, unit is rice, h_{1}Minimum for geophone offset
Wave detector registered depth.
Described Depth Domain spherical diffusion computational methods, are the calculating according to seismic wave spherical diffusion formula, wherein ignore
The impact to propagation path such as well constraint inversion, stratigraphic dip.The method is independent of first arrival energy and frequency, is not therefore inhaled by stratum
Receive decay, the interference of Transmission Attenuation.
The computational methods of the described Earth's absorption and attenuation coefficient sequence providing in the present embodiment, specific computational methods are permissible
Including：
S502：Based on the Depth Domain geological data of described acquisition, public using the Earth's absorption and attenuation shown in following formula (7), (8)
Formula computational methods calculate Earth's absorption and attenuation coefficient sequence β '_{i}, after being then normalized, obtain Earth's absorption and attenuation coefficient sequence
Row α "_{i}, such as shown in formula (9).
Wherein, N is the sum of different depth observation station in well, and variable i is the sequence number of different Observational depths, v_{i}For i depth
Corresponding VSP Pwave interval velocity, Q is formation absorption coefficient or quality factor.
Described Earth's absorption and attenuation computational methods, are the calculating being carried out according to formation interval velocity, and the method is independent of just
To energy and frequency, therefore do not disturbed by the decay of stratum spherical diffusion, Transmission Attenuation.
S6：With described gross energy attenuation coefficient sequence divided by described spherical diffusion decay sequence and described Earth's absorption and attenuation
The result that the product of coefficient sequence obtains, as stratum transmission coefficient, obtains seismic transmission based on described stratum transmission coefficient and declines
The energy compensating subtracting, carries out Transmission Attenuation compensation to geological data.
By spherical diffusion decay sequence α ' in step S5_{i}, Earth's absorption and attenuation sequence α "_{i}It is multiplied, obtain using in step S3
Gross energy attenuation coefficient sequence α_{i}Divided by the result obtaining after this product as stratum transmission coefficient sequence α " '_{i}, such as (10)
Shown in formula.
Wherein, N is the sum of different depth observation station in well, and variable i is the sequence number of different Observational depths.
In actual physical prospecting production application, the saturating of seismic wave can be calculated using described stratum transmission coefficient
Penetrate the energy compensating value of decay, carry out Transmission Attenuation compensation.For example can be using the energy compensating pair including described Transmission Attenuation
Geological data carries out true amplitude recovery process.Based on herein described stratum transmission coefficient, reservoir lithology can certainly be carried out
Analysis, determines reservoir hierarchy.
Seismic transmission attenuation compensation method described in abovedescribed embodiment adopts sorting process to obtain vertical seismic data
Vertical component data, be then converted into the geological data of Depth Domain, the sphere obtaining described Depth Domain geological data expands
Scattered attenuation coefficient sequence and Earth's absorption and attenuation coefficient sequence.By the gross energy being calculated described vertical seismic data is declined
Subtract coefficient and obtain stratum transmission coefficient divided by described spherical diffusion attenuation coefficient sequence and Earth's absorption and attenuation coefficient sequence, be based on
Described stratum transmission coefficient obtains the energy compensating of seismic transmission decay, carries out Transmission Attenuation compensation to geological data.This Shen
The stratum Transmission Attenuation that please calculate compensates, and result of calculation is effective, reliable, can improve the standard to geological data attenuation compensation
Really property.
Based on inventive concept, the application also provides a kind of seismic transmission means for compensation of loss, and Fig. 4 is herein described
A kind of modular structure schematic diagram of seismic transmission means for compensation of loss, as shown in figure 4, described device can include：
Obtain and pretreatment module 101, can be used for obtaining vertical seismic data, described vertical seismic data is carried out pre
Process, and obtain the vertical component data of described vertical seismic data；
Interval velocity acquisition module 102, can be used for picking up the compressional wave first arrival of described vertical seismic data, based on described compressional wave
First arrival obtains the interval velocity of described vertical seismic data；
Data conversion module 103, the interval velocity that can be used for using the described vertical seismic data obtaining will be described vertical
Component data is converted to the geological data of Depth Domain from timedomain；
Gross energy decay calculation module 104, can be used for the minimum wave detector of geophone offset in described vertical component data
Energy on the basis of described vertical component data is normalized, obtain gross energy attenuation coefficient；
Diffusive attenuation computing module 105, can be used for obtaining the spherical diffusion attenuation coefficient of described Depth Domain geological data；
Attenuation by absorption computing module 106, can be used for obtaining described Depth Domain geological data Earth's absorption and attenuation coefficient；
Transmission Attenuation compensation calculation module 107, can be used for the described gross energy attenuation coefficient obtaining divided by described ball
The result that the product of face diffusive attenuation and described Earth's absorption and attenuation coefficient obtains as stratum transmission coefficient, based on described stratum
Transmission coefficient obtains the energy compensating of seismic transmission decay.
In preferred embodiment, described device can also carry out geophone offset energy difference school to the vertical component of geological data
Just.Fig. 5 is a kind of modular structure schematic diagram of herein described seismic transmission means for compensation of loss another kind embodiment, such as schemes
Shown in 5, described device can also include：
Energy correction module 108, can be used for obtaining the monitoring signature record corresponding to described vertical component data, and profit
With the described monitoring signature record obtaining, described vertical component data is carried out with energy difference correction between big gun.
In a kind of seismic transmission means for compensation of loss described above, under described diffusive attenuation computing module 105 adopts
Formula obtains the spherical diffusion attenuation coefficient α ' of described Depth Domain geological data_{i}：
β_{i}=4 π γ^{2}=4 π (h_{i}h_{1})^{2}i∈[1,N]
Wherein, 4 π γ^{2}For spherical diffusion formula, γ is propagation distance, γ=h_{i}h_{1}, N is different depth observation station in well
Sum, variable i is the sequence number of different Observational depths, h_{i}For corresponding registered depth, h_{1}For the minimum wave detector of geophone offset
Registered depth.
In a kind of seismic transmission means for compensation of loss described above, under described attenuation by absorption computing module 106 adopts
Formula obtains described Depth Domain geological data Earth's absorption and attenuation factor alpha "_{i}：
In above formula, N is the sum of different depth observation station in well, and variable i is the sequence number of different Observational depths, v_{i}Deep for i
The corresponding VSP Pwave interval velocity of degree, Q is formation absorption coefficient or quality factor.
Fig. 6 is the curve map using the stratum differential declines coefficient calculating in the embodiment of the present application.Transverse axis represents survey
Amount depth, the longitudinal axis represents the attenuation coefficient on stratum, and L1 represents that gross energy is decayed, and L2 represents that spherical diffusion decays, and L3 represents stratum
Attenuation by absorption, L4 represents Transmission Attenuation.
One kind that the application provides utilizes vertical seismic data to calculate seismic transmission means for compensation of loss, can calculate and obtain
Take the stratum Transmission Attenuation factor, cause calculating and the compensation problem of energy loss for solving seismic wave because of transmission；Meanwhile, lead to
Cross accurate calculating and also separated seismic wave spherical diffusion, formation absorption, three decay factors of transmission completely, it is possible to use described three
Individual decay factor difference or combinatory analysis reservoir geology attribute, have great significance to formation physical property exploration analysis and provide
Reliable analysis foundation.
System or module that abovedescribed embodiment illustrates, specifically can be realized by computer chip or entity, or by having
The product of certain function is realizing.For convenience of description, it is divided into various modules to be respectively described with function when describing apparatus above.
Certainly, implement the application when the function of each module can be realized in same or multiple softwares and/or hardware it is also possible to
The module realizing same function is realized by the combination of multiple submodule or subelement.
It is also known in the art that in addition to controller is realized in pure computer readable program code mode, complete
Full controller can be made with gate, switch, special IC, programmable by method and step is carried out programming in logic
The form of logic controller and embedded microcontroller etc. is realizing identical function.Therefore this controller is considered one kind
Hardware component, and the device for realizing various functions that its inside is included can also be considered as the structure in hardware component.Or
The device being used for realizing various functions even, can be considered as not only being the software module of implementation method but also can be hardware by person
Structure in part.
The application can be described in the general context of computer executable instructions, such as program
Module.Usually, program module includes execution particular task or the routine realizing particular abstract data type, program, object, group
Part, data structure, class etc..The application can also be put into practice in a distributed computing environment, in these DCEs,
Execute task by the remote processing devices connected by communication network.In a distributed computing environment, program module can
With positioned in the local and remote computerreadable storage medium including storage device.
As seen through the above description of the embodiments, those skilled in the art can be understood that the application can
Mode by software plus necessary general hardware platform to be realized.Based on such understanding, the technical scheme essence of the application
On in other words prior art is contributed partly can be embodied in the form of software product, this computer software product
Can be stored in storage medium, such as ROM/RAM, magnetic disc, CD etc., include some instructions use so that a computer equipment
(can be personal computer, mobile terminal, server, or network equipment etc.) execution each embodiment of the application or enforcement
Some partly described methods of example.
Each embodiment in this specification is described by the way of going forward one by one, same or analogous portion between each embodiment
Divide mutually referring to what each embodiment stressed is the difference with other embodiment.The application can be used for crowd
How in general or special purpose computing system environments or configuration.For example：Personal computer, server computer, handheld device or
Portable set, laptop device, multicomputer system, the system based on microprocessor, set top box, programmable electronics set
Standby, network PC, minicom, mainframe computer, include DCE of any of the above system or equipment etc..
Although the application is depicted by embodiment, it will be appreciated by the skilled addressee that the application have many deformation and
Change is without deviating from spirit herein it is desirable to appended claim includes these deformation and change without deviating from the application's
Spirit.
Claims (6)
1. a kind of seismic transmission attenuation compensation method is it is characterised in that methods described includes：
S1：Obtain vertical seismic data, and carry out the vertical component data that sorting process obtains described vertical seismic data；
S2：Pick up the compressional wave first arrival of described vertical seismic data, described vertical seismic data is obtained based on described compressional wave first arrival
Interval velocity；
S3：On the basis of the energy of the minimum wave detector of geophone offset in described vertical component data, described vertical component data is entered
Row normalized, obtains gross energy attenuation coefficient sequence；
S4：Described vertical component data is converted to depth from timedomain by the interval velocity using the described vertical seismic data obtaining
The geological data in domain；
S5：Obtain described Depth Domain geological data spherical diffusion attenuation coefficient sequence and Earth's absorption and attenuation coefficient sequence；
S6：With described gross energy attenuation coefficient sequence divided by described spherical diffusion decay sequence and described Earth's absorption and attenuation coefficient
The result that the product of sequence obtains, as stratum transmission coefficient, obtains seismic transmission decay based on described stratum transmission coefficient
Energy compensating, carries out Transmission Attenuation compensation to geological data；
Wherein, the described computational methods obtaining described Depth Domain geological data spherical diffusion attenuation coefficient sequence include：
S501：Based on the described Depth Domain geological data obtaining, it is calculated spherical diffusion decay sequence β using following formula_{i}, normalizing
Change obtains spherical diffusion attenuation coefficient sequence α ' after processing_{i}：
β_{i}=4 π r^{2}=4 π (h_{i}h_{1})^{2}I ∈ [1, N]
Wherein, 4 π r^{2}For spherical diffusion formula, r is propagation distance, r=h_{i}h_{1}, N is the sum of different depth observation station in well,
Variable i is the sequence number of different Observational depths, h_{i}For corresponding registered depth, h_{1}Deep for the record of the minimum wave detector of geophone offset
Degree；
The described computational methods obtaining described Depth Domain geological data ball Earth's absorption and attenuation coefficient sequence include：
S502：Based on the Depth Domain geological data of described acquisition, Earth's absorption and attenuation coefficient sequence β ' is calculated using following formula_{i}, carry out
Earth's absorption and attenuation coefficient sequence α is obtained " after normalized_{i}：
In above formula, N is the sum of different depth observation station in well, and variable i is the sequence number of different Observational depths, v_{i}Right for i depth
The VSP Pwave interval velocity answered, Q is quality factor.
2. as claimed in claim 1 a kind of seismic transmission attenuation compensation method it is characterised in that obtain described in vertically
After shake data, methods described also includes：
S101：Described vertical seismic data is preferably repeated with big gun process；
Accordingly, the described vertical component data obtaining vertical seismic data includes obtaining and preferably repeats after big gun is processed vertically
The vertical component data of shake data.
3. as claimed in claim 1 a kind of seismic transmission attenuation compensation method it is characterised in that obtain described vertical point
After amount data, methods described also includes：
S102：Obtain the monitoring signature record corresponding to described vertical component data, and using the described monitoring wavelet note obtaining
Record carries out energy difference correction between big gun to described vertical component data.
4. as claimed in claim 1 a kind of seismic transmission attenuation compensation method it is characterised in that described with described vertical point
On the basis of the minimum energy of wave detector of geophone offset, described vertical component data is normalized in amount data, obtains total
The attenuation coefficient sequence method of energy includes：
S301：Descending through preliminary wave peak amplitude value A of vertical component data described in pickup step_{i}：
S302：Scan dominant frequency f at described descending preliminary wave first arrival_{i}, calculated using following formula medium frequency, amplitude and energy relationship
To ENERGY E_{i}：
In abovementioned formula, N is the sum of different depth observation station in well, and variable i is the sequence number of different Observational depths, and k is ratio
The factor；
S303：ENERGY E with the minimum wave detector of geophone offset_{i}On the basis of be normalized, total energy is calculated using following formula
Amount attenuation coefficient sequence：
In abovementioned formula, N is the sum of different depth observation station in well, E_{1}Energy for the minimum wave detector of geophone offset.
5. a kind of seismic transmission means for compensation of loss is it is characterised in that described device includes：
Obtain and pretreatment module, for obtaining vertical seismic data, described vertical seismic data is preprocessed, and obtains
The vertical component data of described vertical seismic data；
Interval velocity acquisition module, for picking up the compressional wave first arrival of described vertical seismic data, obtains institute based on described compressional wave first arrival
State the interval velocity of vertical seismic data；
Data conversion module, for using obtain described vertical seismic data interval velocity by described vertical component data from when
Between domain be converted to the geological data of Depth Domain；
Gross energy decay calculation module, on the basis of the energy for the wave detector minimum by geophone offset in described vertical component data
Described vertical component data is normalized, obtains gross energy attenuation coefficient；
Diffusive attenuation computing module, for obtaining the spherical diffusion attenuation coefficient of described Depth Domain geological data；
Attenuation by absorption computing module, for obtaining described Depth Domain geological data Earth's absorption and attenuation coefficient；
Transmission Attenuation compensation calculation module, for will obtain described gross energy attenuation coefficient divided by described spherical diffusion decay with
The result that the product of described Earth's absorption and attenuation coefficient obtains, as stratum transmission coefficient, is obtained based on described stratum transmission coefficient
The energy compensating of seismic transmission decay；
Described diffusive attenuation computing module adopts following formula to obtain the spherical diffusion attenuation coefficient α ' of described Depth Domain geological data_{i}：
β_{i}=4 π r^{2}=4 π (h_{i}h_{1})^{2}I ∈ [1, N]
Wherein, 4 π r^{2}For spherical diffusion formula, r is propagation distance, r=h_{i}h_{1}, N is the sum of different depth observation station in well,
Variable i is the sequence number of different Observational depths, h_{i}For corresponding registered depth, h_{1}Deep for the record of the minimum wave detector of geophone offset
Degree；
Described attenuation by absorption computing module adopts following formula to obtain described Depth Domain geological data Earth's absorption and attenuation coefficient a "_{i}：
In above formula, N is the sum of different depth observation station in well, and variable i is the sequence number of different Observational depths, v_{i}Right for i depth
The VSP Pwave interval velocity answered, Q is quality factor.
6. as claimed in claim 5 a kind of seismic transmission means for compensation of loss it is characterised in that described device also includes：
Energy correction module, for obtaining the monitoring signature record corresponding to described vertical component data, and using the institute obtaining
State monitoring signature record and described vertical component data is carried out with energy difference correction between big gun.
Priority Applications (1)
Application Number  Priority Date  Filing Date  Title 

CN201410662666.3A CN104375188B (en)  20141119  20141119  Seismic wave transmission attenuation compensation method and device 
Applications Claiming Priority (1)
Application Number  Priority Date  Filing Date  Title 

CN201410662666.3A CN104375188B (en)  20141119  20141119  Seismic wave transmission attenuation compensation method and device 
Publications (2)
Publication Number  Publication Date 

CN104375188A CN104375188A (en)  20150225 
CN104375188B true CN104375188B (en)  20170208 
Family
ID=52554216
Family Applications (1)
Application Number  Title  Priority Date  Filing Date 

CN201410662666.3A Active CN104375188B (en)  20141119  20141119  Seismic wave transmission attenuation compensation method and device 
Country Status (1)
Country  Link 

CN (1)  CN104375188B (en) 
Families Citing this family (9)
Publication number  Priority date  Publication date  Assignee  Title 

CN104698499B (en) *  20150401  20171031  成都理工大学  A kind of oil gas investigation method and device based on puncture mask layer seismic wave 
CN104949692B (en) *  20150625  20180501  江苏中海达海洋信息技术有限公司  Multibeam sounding system installs the computational methods of corrected value 
CN106291697B (en) *  20150626  20181225  中国石油化工股份有限公司  A kind of method and system of the value of definitely interval quality factors Q 
CN107024716B (en) *  20160201  20190402  中国石油化工股份有限公司  A kind of seismic wave field absorption compensation imaging method and system 
CN106443773B (en) *  20160831  20190215  中国石油天然气集团公司  A kind of method and device for suppressing coal seam screen effect in seismic profile data 
CN108732617B (en) *  20170421  20200407  中国石油化工股份有限公司  Seismic data waste channel rejection method and device 
CN109001798B (en) *  20170607  20200407  中国石油化工股份有限公司  Method and system for automatically identifying abnormal lane 
CN108427145B (en) *  20180126  20190521  吉林大学  Airground frequency domain electromagnetic methods controllable frequency source detection signal pulse duration modulation method 
CN110031897B (en) *  20190321  20200828  北京信息科技大学  Method and system for compensating and correcting amplitude energy of multicomponent seismic data in seawater 
Family Cites Families (3)
Publication number  Priority date  Publication date  Assignee  Title 

US5479376A (en) *  19930830  19951226  Western Atlas International, Inc.  Method for compensating seismic wavefield amplitudes for transmission losses in the overburden 
CN102998700B (en) *  20110908  20150923  中国石油天然气集团公司  A kind of earth's surfaceconsistent energy compensation process of vertical seismic profile data 
CN104090299B (en) *  20140716  20170125  中国石油集团川庆钻探工程有限公司地球物理勘探公司  Surface seismic data amplitude compensation method based on VSP primary waves 

2014
 20141119 CN CN201410662666.3A patent/CN104375188B/en active Active
Also Published As
Publication number  Publication date 

CN104375188A (en)  20150225 
Similar Documents
Publication  Publication Date  Title 

CN104375188B (en)  Seismic wave transmission attenuation compensation method and device  
Boore et al.  Estimated ground motion from the 1994 Northridge, California, earthquake at the site of the Interstate 10 and La Cienega Boulevard bridge collapse, West Los Angeles, California  
CN104345345B (en)  A kind of shale reservoir total organic carbon TOC content prediction methods  
CN102466816B (en)  Inversion method for stratum elasticity constant parameter of prestack seismic data  
US9659252B2 (en)  Method to characterize heterogeneous anisotropic media  
US10359529B2 (en)  Singularity spectrum analysis of microseismic data  
CN105277978B (en)  A kind of method and device for determining nearsurface velocity model  
CN102879819B (en)  Seismic data processing method and device for keeping kinematics characteristics of seismic wave field  
US20180024263A1 (en)  Seismic Spectral Balancing  
CN104678434A (en)  Method for predicting storage layer crack development parameters  
CN104316965A (en)  Prediction method and system for fissure azimuth and intensity  
CN104316966A (en)  Fluid identification method and system  
Stabile et al.  A comprehensive approach for evaluating network performance in surface and borehole seismic monitoring  
CN103869362A (en)  Method and equipment for obtaining body curvature  
CN102053262B (en)  Method for acquiring azimuth velocity of seismic converted wave and method for processing seismic data  
Wang et al.  Estimating site fundamental period from shear‐wave velocity profile  
CN106054252A (en)  Prestack time migration method and device  
CN102053260A (en)  Method for acquiring azimuth velocity of primary wave and method for processing earthquake data  
CN107576985A (en)  A kind of method and apparatus of seismic inversion  
CN102692651A (en)  Preliminary wave residual static correction method with spacevariant velocity  
CN106501851A (en)  A kind of optimum methods of seismic attributes and device  
CN107065013A (en)  A kind of interval velocity under earthquake scale determines method and device  
CN104570116A (en)  Geological marker bedbased time difference analyzing and correcting method  
CN108333627B (en)  Igneous rock area is broken recognition methods and the device of the true and false  
Cho  Compensating for the impact of incoherent noise in the spatial autocorrelation microtremor array method 
Legal Events
Date  Code  Title  Description 

PB01  Publication  
C06  Publication  
SE01  Entry into force of request for substantive examination  
C10  Entry into substantive examination  
GR01  Patent grant  
C14  Grant of patent or utility model 