CN104372203A - Novel alpha titanium alloy and preparation method of panel and bar of alpha titanium alloy - Google Patents
Novel alpha titanium alloy and preparation method of panel and bar of alpha titanium alloy Download PDFInfo
- Publication number
- CN104372203A CN104372203A CN201410691128.7A CN201410691128A CN104372203A CN 104372203 A CN104372203 A CN 104372203A CN 201410691128 A CN201410691128 A CN 201410691128A CN 104372203 A CN104372203 A CN 104372203A
- Authority
- CN
- China
- Prior art keywords
- titanium alloy
- titanium
- pure
- alpha titanium
- vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001069 Ti alloy Inorganic materials 0.000 title claims abstract description 35
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- 239000000956 alloy Substances 0.000 claims abstract description 15
- 239000011651 chromium Substances 0.000 claims abstract description 12
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 11
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 10
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 10
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 239000011572 manganese Substances 0.000 claims abstract description 5
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000001257 hydrogen Substances 0.000 claims abstract description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims abstract description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 3
- 239000001301 oxygen Substances 0.000 claims abstract description 3
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 3
- 239000010936 titanium Substances 0.000 claims description 23
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 21
- 229910052719 titanium Inorganic materials 0.000 claims description 21
- 238000001816 cooling Methods 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 9
- 238000000137 annealing Methods 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 7
- 229910052786 argon Inorganic materials 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 230000006698 induction Effects 0.000 claims description 4
- 238000005096 rolling process Methods 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 238000010891 electric arc Methods 0.000 claims description 3
- 238000001125 extrusion Methods 0.000 claims description 3
- 238000005242 forging Methods 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 3
- MECMQNITHCOSAF-UHFFFAOYSA-N manganese titanium Chemical compound [Ti].[Mn] MECMQNITHCOSAF-UHFFFAOYSA-N 0.000 claims description 3
- 230000001681 protective effect Effects 0.000 claims description 3
- 238000003466 welding Methods 0.000 claims description 3
- AHLIZUWPYRQFHY-UHFFFAOYSA-N 5-chloro-4-(4-methylphenyl)-1h-imidazole-2-carbonitrile Chemical compound C1=CC(C)=CC=C1C1=C(Cl)N=C(C#N)N1 AHLIZUWPYRQFHY-UHFFFAOYSA-N 0.000 claims description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 2
- 241001062472 Stokellia anisodon Species 0.000 claims description 2
- 238000005098 hot rolling Methods 0.000 claims description 2
- 239000000725 suspension Substances 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 238000003723 Smelting Methods 0.000 claims 1
- 238000005498 polishing Methods 0.000 claims 1
- 238000005275 alloying Methods 0.000 abstract description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 4
- 238000011161 development Methods 0.000 abstract description 3
- 229910052742 iron Inorganic materials 0.000 abstract description 2
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 2
- 229910052718 tin Inorganic materials 0.000 abstract description 2
- 229910052720 vanadium Inorganic materials 0.000 abstract description 2
- 229910052726 zirconium Inorganic materials 0.000 abstract description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 abstract 1
- 230000003014 reinforcing effect Effects 0.000 abstract 1
- 229910052729 chemical element Inorganic materials 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 241000784732 Lycaena phlaeas Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910000914 Mn alloy Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种新型α钛合金及其型材的制备方法,属于钛合金材料制备工艺技术领域。 The invention relates to a novel α-titanium alloy and a preparation method thereof, and belongs to the technical field of titanium alloy material preparation technology.
背景技术 Background technique
钛合金具有密度小、比强度高、耐高温、耐腐蚀以及良好的生物相容性等一系列优异的综合性能,所以在各个工业领域应用广泛,被称为“太空金属”、“海洋金属”、“智能金属”等。此外,自海绵钛工业化以来,钛的生产能力也在逐年提升,而且钛在自然界分布很广,钛在地壳中的含量为0.64%,在所有元素中排第九位,在金属元素中仅次于铝、铁和镁,居第四位,比常见的铜、铅、锌金属储量的总和还要多。截止到2009年,世界上探明的钛资源(以TiO2计)共有24.84亿吨,具有经济开采价值的经济储量为13.82亿吨,可以说是资源丰富,所以钛合金的开发利用前景十分广阔。 Titanium alloy has a series of excellent comprehensive properties such as low density, high specific strength, high temperature resistance, corrosion resistance and good biocompatibility, so it is widely used in various industrial fields, and is called "space metal" and "ocean metal". , "smart metal" and so on. In addition, since the industrialization of sponge titanium, the production capacity of titanium has been increasing year by year, and titanium is widely distributed in nature. The content of titanium in the earth's crust is 0.64%, ranking ninth among all elements and second only to metal elements. In terms of aluminum, iron and magnesium, it ranks fourth, which is more than the sum of common copper, lead and zinc metal reserves. As of 2009, the world's proven titanium resources (calculated as TiO 2 ) totaled 2.484 billion tons, and the economic reserves with economic mining value were 1.382 billion tons. It can be said that the resources are abundant, so the development and utilization of titanium alloys has a very broad prospect. .
经过长期实践,将强度和韧性一同考虑在内的损伤容限设计成为钛及钛合金材料应用时备受关注的问题,制备出强度更高、韧性更好的钛合金材料是不断追求的目标,在诸多改善和提高钛合金强韧化的技术手段中合金化是最根本的手段。钛合金按退火后的组织特点可以分为α、(α+β)和β型钛合金三大类,其中,α型钛合金是α相固溶体组成的单相合金,不论是在一般温度下还是在较高的实际应用温度下,基体相均为α相,组织稳定,α钛合金密度小,有良好的热强性、热稳定性以及优异的的室温、超低温和高温特性,所以α钛合金的研发一直是世界各国关注的焦点。 After long-term practice, the damage tolerance design that takes both strength and toughness into consideration has become a concern in the application of titanium and titanium alloy materials. The preparation of titanium alloy materials with higher strength and better toughness is the goal that is constantly pursued. Alloying is the most fundamental means among many technical means to improve and enhance the strength and toughness of titanium alloys. According to the microstructure characteristics after annealing, titanium alloys can be divided into three categories: α, (α+β) and β-type titanium alloys. Among them, α-type titanium alloys are single-phase alloys composed of α-phase solid solutions. Under high practical application temperature, the matrix phase is all α phase, the structure is stable, α titanium alloy has low density, good thermal strength, thermal stability and excellent room temperature, ultra-low temperature and high temperature characteristics, so the research and development of α titanium alloy It has always been the focus of attention from all over the world.
经过长期实践,将强度和韧性一同考虑在内的损伤容限设计成为钛及钛合金材料应用时备受关注的问题。制备出强度更高、韧性更好的钛合金材料是不断追求的目标。在诸多改善和提高钛合金强韧化的技术手段中合金化是最根本的手段,也是开发新型钛合金的重要方法。然而目前α钛合金的合金化元素的选择却一直局限于少数几种元素,如Sn、Mo、Zr、V、等,对于新型合金元素如Cr和Mn等元素的尝试较少,因此不断尝试不同种类的合金元素,进而研究其对钛合金的组织和性能的影响规律,是新型α钛合金研制方面需要着重解决的问题。 After long-term practice, the damage tolerance design that takes strength and toughness into account has become a concern in the application of titanium and titanium alloy materials. It is a constant pursuit to prepare titanium alloy materials with higher strength and better toughness. Alloying is the most fundamental means among many technical means to improve and enhance the toughness of titanium alloys, and it is also an important method to develop new titanium alloys. However, the selection of alloying elements for α-titanium alloys has been limited to a few elements, such as Sn, Mo, Zr, V, etc., and there are few attempts for new alloying elements such as Cr and Mn. It is a problem that needs to be solved in the development of new α-titanium alloys to determine the types of alloying elements and to study their influence on the microstructure and properties of titanium alloys.
发明内容 Contents of the invention
针对新型α钛合金研发方面存在的问题,本发明的目的是提供一种新型α钛合金,是一种含Cr和Mn合金元素的新型α钛合金。本发明一种新型α钛合金,其特征在于具有以下的组分和质量百分数:5.0~7.0 wt%的铝,4.0~5.0 wt%的铬,1.0~2.0 wt%的锰,其它氧、碳、氮、氢总量≤0.1 wt%,余量为钛; Aiming at the problems existing in the research and development of new α-titanium alloys, the object of the present invention is to provide a new α-titanium alloy, which is a new type of α-titanium alloy containing Cr and Mn alloy elements. A novel α-titanium alloy of the present invention is characterized in that it has the following components and mass percentages: 5.0-7.0 wt% aluminum, 4.0-5.0 wt% chromium, 1.0-2.0 wt% manganese, other oxygen, carbon, The total amount of nitrogen and hydrogen ≤ 0.1 wt%, and the balance is titanium;
本发明一种新型α钛合金型材制备方法其特征在于具有以下的制备过程: A kind of preparation method of novel α-titanium alloy profile of the present invention is characterized in that having following preparation process:
a. 板材的制备 a. Plate preparation
CCIM法(即真空感应悬浮熔炼法):将纯钛、纯铝、纯铬、纯锰,配料后在箱式电阻炉中预处理即在180℃保温12个小时,然后置于水冷铜坩埚中,反复洗炉4次后反冲0.006 MPa的氩气作为保护气体,在高于其熔点10-150℃温度范围内反复熔炼4次,得到椭圆形铸锭,所得铸锭加热到760℃,在横列式轧机上热轧,5道次轧完,一道次的变形率不超过15%,得到厚度为6~7mm的板材;然后将此板材再作真空退火热处理,退火温度为700℃,保温时间为2h,冷却方式为空冷; CCIM method (i.e. vacuum induction suspension melting method): pure titanium, pure aluminum, pure chromium, pure manganese are pretreated in a box-type resistance furnace after batching, that is, kept at 180°C for 12 hours, and then placed in a water-cooled copper crucible , wash the furnace repeatedly for 4 times, backflush 0.006 MPa argon as a protective gas, and repeatedly melt for 4 times in the temperature range of 10-150 °C higher than its melting point to obtain an oval ingot, which is heated to 760 °C, in Hot rolling on the horizontal rolling mill, after 5 passes, the deformation rate of each pass does not exceed 15%, and a plate with a thickness of 6~7mm is obtained; then the plate is subjected to vacuum annealing heat treatment, the annealing temperature is 700 ° C, the holding time 2h, the cooling method is air cooling;
b. 棒材的制备 b. Bar preparation
VAR法(即真空感应自耗熔炼法):将纯钛、纯铝、纯铬、钛锰中间合金,配料后采用挤压法压制成电极块,然后在真空-充氩箱内用电弧焊将电极块焊接在一起作为真空自耗电极,通电后自耗电极与熔池间电弧放电产生高温将电极熔化,得到金属钛锭,钛锭加热到1050℃开坯锻造2~3次,将锻坯反复镦粗和拔长锻造2~3火次得到φ20mm的轧制棒坯,将表面裂纹打磨干净,空冷至室温,得到成品棒材;然后将此棒材再作真空退火热处理,退火温度为700℃,保温时间为2h,冷却方式为空冷。 VAR method (that is, vacuum induction consumable melting method): pure titanium, pure aluminum, pure chromium, titanium-manganese intermediate alloys are pressed into electrode blocks by extrusion method after batching, and then welded by arc welding in a vacuum-argon filled box. The electrode blocks are welded together as a vacuum consumable electrode. After power-on, the arc discharge between the consumable electrode and the molten pool generates high temperature to melt the electrode to obtain metal titanium ingots. The titanium ingots are heated to 1050°C for 2 to 3 times, and the Repeated upsetting and elongation of the forged billet for 2~3 fires to obtain a rolled billet of φ20mm, the surface cracks are cleaned, and air cooled to room temperature to obtain the finished bar; then the bar is subjected to vacuum annealing heat treatment, the annealing temperature The temperature is 700°C, the holding time is 2h, and the cooling method is air cooling.
具体实施方式 Detailed ways
下面通过具体实施例对本发明作进一步说明。 The present invention will be further described below by specific examples.
实施例1Example 1
将纯钛、纯铝、纯铬、纯锰,按表1的成分配比进行配料,在普通的箱式电阻炉中预处理(180℃保温12个小时),去除合金原料中的自由水,然后置于水冷铜坩埚中,反复洗炉4次后反冲0.006 MPa的氩气作为保护气体,反复熔炼4次,得到椭圆形铸锭,所得铸锭加热到760℃,在横列式轧机上热轧,5道次轧完,一道次的变形率不超过15%,得到厚度为6~7mm的板材。轧制得到的板材按表2的热处理制度进行热处理后,取样并依照国标GB/T228-2002的要求进行室温力学性能测试,其力学性能见表2。 Pure titanium, pure aluminum, pure chromium, and pure manganese are mixed according to the composition ratio in Table 1, pretreated in an ordinary box-type resistance furnace (180°C for 12 hours), and free water in the alloy raw materials is removed. Then place it in a water-cooled copper crucible, wash the furnace repeatedly for 4 times, then recoil 0.006 MPa of argon as a protective gas, and repeatedly smelt it for 4 times to obtain an oval ingot. Rolling, after 5 passes of rolling, the deformation rate of one pass does not exceed 15%, and a plate with a thickness of 6~7mm is obtained. After the rolled plate is heat-treated according to the heat treatment system in Table 2, samples are taken and tested for mechanical properties at room temperature according to the requirements of the national standard GB/T228-2002. The mechanical properties are shown in Table 2.
the
表1 实施例1中合金的成分配比 The composition ratio of the alloy in Table 1 Example 1
表2 实施例1中板材的力学性能 Table 2 The mechanical properties of the plate in Example 1
实施例2Example 2
将纯钛、纯铝、纯铬、钛锰中间合金,按表3的成分配比进行配料,配料后采用挤压法压制成电极块,然后在真空-充氩箱内用电弧焊将电极块焊接在一起作为真空自耗电极,通电后自耗电极与熔池间电弧放电产生高温将电极熔化,得到金属钛锭,钛锭加热到1050℃开坯锻造2~3次,将锻坯反复镦粗和拔长锻造2~3火次得到φ20mm的棒坯,将表面裂纹打磨干净,空冷至室温,得到成品棒材。得到的棒材按表4的热处理制度热处理后,取样并依照国标GB/T228-2002的要求进行室温力学性能测试,其力学性能见表4。 Mix pure titanium, pure aluminum, pure chromium, and titanium-manganese intermediate alloys according to the composition ratio in Table 3. After the ingredients are mixed, they are pressed into electrode blocks by extrusion method, and then the electrode blocks are welded by arc welding in a vacuum-argon-filled box. Weld together as a vacuum consumable electrode. After power on, the arc discharge between the consumable electrode and the molten pool generates high temperature to melt the electrode to obtain metal titanium ingots. The titanium ingots are heated to 1050°C and forged for 2 to 3 times. Repeated upsetting and elongation forging for 2~3 times to obtain a φ20mm billet, polished the surface cracks, and air cooled to room temperature to obtain a finished bar. After the obtained bar was heat treated according to the heat treatment system in Table 4, samples were taken and tested for mechanical properties at room temperature in accordance with the requirements of the national standard GB/T228-2002. The mechanical properties are shown in Table 4.
表3 实施例2中合金的成分配比 The composition ratio of the alloy in Table 3 Example 2
表4 实施例2中棒材的力学性能 The mechanical property of bar in the table 4 embodiment 2
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410691128.7A CN104372203A (en) | 2014-11-26 | 2014-11-26 | Novel alpha titanium alloy and preparation method of panel and bar of alpha titanium alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410691128.7A CN104372203A (en) | 2014-11-26 | 2014-11-26 | Novel alpha titanium alloy and preparation method of panel and bar of alpha titanium alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104372203A true CN104372203A (en) | 2015-02-25 |
Family
ID=52551394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410691128.7A Pending CN104372203A (en) | 2014-11-26 | 2014-11-26 | Novel alpha titanium alloy and preparation method of panel and bar of alpha titanium alloy |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104372203A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105624467A (en) * | 2016-03-08 | 2016-06-01 | 上海大学 | Alpha titanium alloy containing Fe and Mn alloy elements |
CN106636743A (en) * | 2016-12-09 | 2017-05-10 | 安徽银龙泵阀股份有限公司 | Easy-to-cut titanium alloy |
CN107034382A (en) * | 2016-06-25 | 2017-08-11 | 上海大学 | The preparation method of alpha+beta titanium alloys and its sheet material and bar containing Fe, Cr, Zr alloying element |
CN109663832A (en) * | 2018-12-31 | 2019-04-23 | 陕西航宇有色金属加工有限公司 | Processing method of TC11 titanium alloy gun barrel |
CN110923506A (en) * | 2019-12-13 | 2020-03-27 | 陕西易莱德新材料科技有限公司 | High-ductility titanium alloy material and preparation method thereof |
CN111961916A (en) * | 2020-08-07 | 2020-11-20 | 顺科新能源技术股份有限公司 | Titanium alloy |
CN112080656A (en) * | 2020-09-10 | 2020-12-15 | 西北有色金属研究院 | Preparation method of high-strength titanium alloy rod for additive manufacturing powder |
CN112528465A (en) * | 2020-11-14 | 2021-03-19 | 辽宁石油化工大学 | Near alpha titanium alloy performance optimization and component reverse design method based on Leeb's theory |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1743482A (en) * | 2004-09-02 | 2006-03-08 | 盖恩斯马特有限公司 | High strength low cost titanium and method for making same |
JP2008542530A (en) * | 2005-05-23 | 2008-11-27 | ティッセンクルップ ティタニウム ゲー エム ベー ハー | Titanium alloy |
CN103938022A (en) * | 2014-03-24 | 2014-07-23 | 上海大学 | Novel alpha-titanium alloy containing Cr and Mn alloy elements |
CN104073684A (en) * | 2014-03-31 | 2014-10-01 | 上海大学 | Titanium alloy containing Cr and Mn elements and preparation method thereof |
-
2014
- 2014-11-26 CN CN201410691128.7A patent/CN104372203A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1743482A (en) * | 2004-09-02 | 2006-03-08 | 盖恩斯马特有限公司 | High strength low cost titanium and method for making same |
JP2008542530A (en) * | 2005-05-23 | 2008-11-27 | ティッセンクルップ ティタニウム ゲー エム ベー ハー | Titanium alloy |
CN103938022A (en) * | 2014-03-24 | 2014-07-23 | 上海大学 | Novel alpha-titanium alloy containing Cr and Mn alloy elements |
CN104073684A (en) * | 2014-03-31 | 2014-10-01 | 上海大学 | Titanium alloy containing Cr and Mn elements and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
江涛: ""Cr和Mn元素强化的α钛合金的制备及其组织性能"", 《中国科技论文》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105624467A (en) * | 2016-03-08 | 2016-06-01 | 上海大学 | Alpha titanium alloy containing Fe and Mn alloy elements |
CN107034382A (en) * | 2016-06-25 | 2017-08-11 | 上海大学 | The preparation method of alpha+beta titanium alloys and its sheet material and bar containing Fe, Cr, Zr alloying element |
CN106636743A (en) * | 2016-12-09 | 2017-05-10 | 安徽银龙泵阀股份有限公司 | Easy-to-cut titanium alloy |
CN109663832A (en) * | 2018-12-31 | 2019-04-23 | 陕西航宇有色金属加工有限公司 | Processing method of TC11 titanium alloy gun barrel |
CN110923506A (en) * | 2019-12-13 | 2020-03-27 | 陕西易莱德新材料科技有限公司 | High-ductility titanium alloy material and preparation method thereof |
CN111961916A (en) * | 2020-08-07 | 2020-11-20 | 顺科新能源技术股份有限公司 | Titanium alloy |
CN112080656A (en) * | 2020-09-10 | 2020-12-15 | 西北有色金属研究院 | Preparation method of high-strength titanium alloy rod for additive manufacturing powder |
CN112080656B (en) * | 2020-09-10 | 2021-06-25 | 西北有色金属研究院 | Preparation method of high-strength titanium alloy rod for additive manufacturing powder |
CN112528465A (en) * | 2020-11-14 | 2021-03-19 | 辽宁石油化工大学 | Near alpha titanium alloy performance optimization and component reverse design method based on Leeb's theory |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104372203A (en) | Novel alpha titanium alloy and preparation method of panel and bar of alpha titanium alloy | |
CN108315599B (en) | A kind of high-cobalt nickel base superalloy and preparation method thereof | |
CN104789833B (en) | High-strength magnesium-containing aluminum alloy material and treatment process thereof | |
CN101709427A (en) | Low-cost, high-strength, high-toughness and high-abrasion resistance cold-working die steel and preparation method thereof | |
CN102719642A (en) | Production process of high-strength high-toughness GH2132 rod/wire material | |
CN111826550B (en) | Moderate-strength nitric acid corrosion resistant titanium alloy | |
CN104561657B (en) | Titanium-aluminium alloy material and preparation technology thereof | |
CN109136653A (en) | For the nickel-base alloy of nuclear power generating equipment and its manufacturing method of hot rolled plate | |
CN108842095A (en) | low-cost high-strength α + β titanium alloy and preparation method thereof | |
CN104073684A (en) | Titanium alloy containing Cr and Mn elements and preparation method thereof | |
WO2021046928A1 (en) | Large pipe-diameter ni-v rotary target material containing trace elements and preparation method therefor | |
CN102409258B (en) | Structural homogeneity control method of boron-containing high strength hydrogen resistant brittle alloy | |
CN106636739A (en) | Moderate-intensity and high-impact-toughness titanium alloy in ocean engineering | |
JP2017508882A5 (en) | ||
CN105088014B (en) | A kind of low-cost high-strength Ti Fe alloy blanks and its preparation technology | |
CN106319282B (en) | A kind of low cost, high-ductility, seawater corrosion resistance titanium alloy | |
CN107058810A (en) | Corrosion-resistant low-resistivity aluminium bar | |
CN108893651A (en) | A kind of high-strength high-ductility corrosion titanium alloy and preparation method thereof | |
CN101633990B (en) | Al-Mo-W-Ti quaternary alloy for titanium alloy production | |
CN114086075B (en) | High-nitrogen austenitic nickel-saving stainless steel and hot working method of high-performance welding heat affected zone thereof | |
CN105839021A (en) | Rare-earth-containing high-chromium-content ferritic stainless steel and manufacturing method of steel pipe therefrom | |
CN101407880A (en) | Mg-Zn-Zr-Nd magnesium alloy and preparation thereof | |
CN106119601A (en) | Alpha titanium alloy containing Fe, Cr, Zr alloying element and sheet material thereof and the preparation method of bar | |
CN110184499A (en) | A kind of microalloying method improving TC4 titanium alloy strength level | |
CN114875318A (en) | Dispersed delta phase strengthened low-density high-strength and high-toughness steel and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150225 |
|
RJ01 | Rejection of invention patent application after publication |