CN104363555A - Method and device for reconstructing directions of 5.1 multi-channel sound sources - Google Patents

Method and device for reconstructing directions of 5.1 multi-channel sound sources Download PDF

Info

Publication number
CN104363555A
CN104363555A CN 201410524837 CN201410524837A CN104363555A CN 104363555 A CN104363555 A CN 104363555A CN 201410524837 CN201410524837 CN 201410524837 CN 201410524837 A CN201410524837 A CN 201410524837A CN 104363555 A CN104363555 A CN 104363555A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
sound
direction
sound source
signal
vector
Prior art date
Application number
CN 201410524837
Other languages
Chinese (zh)
Inventor
胡瑞敏
张茂胜
姚雪春
王晓晨
姜林
涂卫平
王松
杨乘
Original Assignee
武汉大学深圳研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention relates to a device and a method for reconstructing the directions of 5.1 multi-channel sound sources. The method includes establishing Cartesian rectangular coordinate systems in original sound fields according to known sound source signals s(t), and computing direction vectors v0 of sound sources received by sound listening points; selecting four loudspeakers comprising the directions, respectively multiplying the sound signals s(t) by four weight factors and then distributing the sound signals s(t) to the four selected loudspeakers; computing direction vectors v of sound sources sensed at the sound listening points after signals are emitted by the loudspeakers in reconstructed sound fields, building equivalent models of the direction vectors v0 of the original sound sources and the direction vectors v of sound images in the reconstructed sound fields and solving the models to obtain values of the weight factors; distributing signals of the loudspeakers by the aid of the solved values of the weight factors. Compared with the prior art, the device and the method have the advantages that parameters of direction information which can affect reconstruction of the sound images can be accurately extracted, and accordingly direction information of the sound sources in original sound source spaces can be accurately recovered; other irrelevant parameters and redundant parameters are abandoned, accordingly, the device and the method are high in computation efficiency and good in stability, and the device is simple in operation.

Description

一种5. 1多声道声源方向重建方法与装置 One kind of more than 5.1-channel sound source direction reconstruction methods and apparatus

技术领域 FIELD

[0001] 本发明涉及多媒体信号处理领域,尤其涉及一种5. 1多声道声源方向重建方法与装直。 [0001] The present invention relates to multimedia signal processing, and more particularly, to a more than 5.1-channel sound source direction of the linear reconstruction method and apparatus.

背景技术 Background technique

[0002] DolbyDigital环绕声系统是一个典型的多声道环绕声系统,在全球范围内得到了广泛的使用。 [0002] DolbyDigital surround sound system is a typical multi-channel surround sound system, has been widely used worldwide.

[0003] DolbyDigital环绕声系统由5个全频域声道和1个超低音声道组成,5个声道分别是左前、右前、前中置、左环绕和右环绕声道。 [0003] DolbyDigital surround system comprised of five full-range channels and a subwoofer channel composed of five channels are the left front, right front, center front, left surround and right surround channels. 超低音声道主要负责传送低音信息(< 120Hz),其目的是为了补充其他声道的低音内容,使一些包含爆炸、撞击等低音的场景的声效更好。 Sound a subwoofer for bass is mainly responsible for transmitting information (<120Hz), its purpose is to supplement the bass content of other channels, so that some contain the explosion, impact and other bass scene better. DoblyDigital将6个声道通过有损压缩的方式编码为一个数据流,它所采用的压缩算法将人耳不易听到的部分声音细节信息删除,从而能够实现10:1的压缩比。 DoblyDigital the 6 channels encoded by a lossy compression to data stream, the compression algorithm used by the human ear it difficult to hear the voice portion information deleting details, it is possible to achieve 10: 1 compression ratio. Dolby Digital标准在电影工业中得到了非常广泛的应用,在大多数DVD影碟中都能看到它的身影,而且几乎所有的DVD机都能支持这一标准。 Dolby Digital standard has been very widely used in the film industry, in most DVD discs can be seen in its shadow, and almost all DVD players can support this standard.

[0004] 尽管杜比5. 1多声道系统对各种背景声进行了大量渲染,能为用户带来一定程度上的音频环绕感,对音频质量的还原也十分出色,但是杜比5. 1系统并没有在音频重现上给用户带了明确的声像的方位信息,对于声源移动时也没有给用户感知到声源的变化,使得听众对声源的位置的动态感知十分模糊,严重削弱了用户的3D感受。 [0004] Although more than 5.1-channel Dolby system for a variety of background sound a lot rendering, audio can bring a certain degree of users around the sense of reducing the audio quality is also very good, but Dolby 5. 1 system is not on audio reproduction to the user with a clear sound image orientation information for sound source movement did not perceive the change in the sound source to the user so dynamic, location-aware audience for the sound source is very vague, seriously weakened the 3D experience of the user.

发明内容 SUMMARY

[0005] 本发明的目的在于为克服现有技术的缺陷,而提供一种5. 1多声道声源方向重建装置与方法。 [0005] The object of the present invention is to overcome the drawbacks of the prior art, and to provide a method for reconstructing means one kind of more than 5.1-channel sound source direction.

[0006] 为实现上述目的,本发明米用以下技术方案:一种5. 1多声道声源方向重建方法, 包括以下步骤: [0006] To achieve the above object, the present invention Mingmi following technical solution: A more than 5.1-channel sound source direction reconstruction method, comprising the steps of:

[0007] Sl:根据已知的声源信号s(t),在原始声场中以听音点为原点建立笛卡尔直角坐标系后,计算与声源距离为r的听音点处接收到的声源的方向矢量Vtl, [0007] Sl: the sound source signal according to known s (t), to establish a Cartesian coordinate system as the origin point of listening to the original sound field, calculating the distance to a sound source is received at a listening point r a sound source direction vector Vtl,

[0008] S2 :根据步骤1中计算的声源的方向矢量Vtl,选择包括该方向的4个扬声器L1,L2, L3,L4 ; [0008] S2: calculating an audio source direction vector 1 according to step Vtl, the direction selecting comprises four loudspeakers L1, L2, L3, L4;

[0009] S3 :由声源信号S(t)和步骤2中的扬声器L1,L2,L3,L4,将S(t)分别乘以4个权值因子Wl,w2,w3,W4后分配到所选的4个扬声器上; [0009] S3: L1 is the speaker by the sound source signal S (t) and Step 2, L2, L3, L4, the S (t) is multiplied by four weight factors Wl, w2, w3, W4 assigned to the selected on four speakers;

[0010] S4 :在回放端,计算重建声场中扬声器L1,L2,L3,L4发出信号后听音点处所感知的声像的方向矢量V; [0010] S4: at the end of playback, calculating a direction of the reconstructed sound field loudspeaker L1, L2, L3, L4 emit the signal sound image perceived listening point premises vector V;

[0011]S5 :根据步骤1计算的原始声源的方向矢量Vtl和步骤4中计算的重建声场中声像的方向矢量V,建立方向等价模型; [0011] S5: The step of vector and Vtl original sound source direction calculation in step 1 in the direction of the reconstructed sound field sound image in the vector calculation of 4 V, to establish a direction equivalent model;

[0012]S6 :在步骤5的方向等价模型中,以步骤3中设置的权值因子W1, w2, w3, W4为未知量,求解该模型获得权值因子的值; [0012] S6: In the step 5 in the direction of the equivalent model, the weight to the value set in step 3 factor W1, w2, w3, W4 is unknown, the model is solved to obtain the value of the weight factor;

[0013] S7 :利用步骤6中求解的权值因子^^〜,进行扬声器的信号分配^吏重建的声音方向与原声源的方向一致。 [0013] S7: assigning a weight signal using a step 6 in solving ^^ ~ factor value, a speaker for voice direction coincides with the direction of ^ the acoustic source reconstruction officials.

[0014] 进一步,在步骤S2中所述选择的4个扬声器L1,L2,L3,L4满足如下条件:分别将听音点r(x,y,z)与L1,L2,L3,L4连接,形成一多面体,声源的方向矢量Vci位于所述的多面体内部。 [0014] Further, in step S2 the selected four loudspeakers L1, L2, L3, L4 satisfy the following conditions: with respectively L1, L2, L3, L4 connecting the listening point r (x, y, z), direction forming a polyhedron, the sound source vector Vci located inside the polyhedron.

[0015] 进一步,所述步骤Sl中与声源距离为r的听音点处接收到的声源的方向矢量V。 [0015] Further, the direction to the sound source in step Sl received sound source listening point at a distance r vector V. 的方法包括以下步骤: The method comprises the steps of:

[0016] SlOl:利用傅立叶变换将声源的时域信号s(t)由时域转换到频域,得到频域信号s(c〇), [0016] SlOl: Fourier transform the time domain signal s (t) is a sound source from a time domain to frequency domain to obtain frequency-domain signal s (c〇),

[0017] s(ω) =FT(s(t)) [0017] s (ω) = FT (s (t))

[0018] 其中FT表示对时域信号s(t)进行傅立叶变换,将时间信号s(t)转换至频域; [0018] where FT represents the time domain signal s (t) Fourier transforming the time signal s (t) to the frequency domain;

[0019] S102 :以听音点为原点,即听音点的坐标r(x,y,z)为(0,0,0),由频域信号s(c〇) 及声源在声场中的位置向量ε= (εχ,ey,εζ)、听音点位置坐标(〇,〇,〇),根据声学物理属性粒子速度的定义,计算听音点处接收到的粒子速度PVci : [0019] S102: In the listening point is the origin, i.e., the coordinates of the listening point r (x, y, z) is (0,0,0), by the frequency domain signal s (c〇) and a sound source in a sound field position vector ε = (εχ, ey, εζ), the coordinates of the listening position (square, square, square), defined according to the physical properties of the acoustic particle velocity, calculated at the receiving point of listening to the particle velocity PVci:

Figure CN104363555AD00071

[0021] 其中k表示波数,与声音信号的频率和声速有关,e为常数,i为虚数单位,ω为信号s(t)的角频率,IεI表示声源与听音点之间的距离,ε= (εχ,ey,εζ)为声源在声场中的位置向量; [0021] where k denotes the wave number, the frequency and sound velocity of the sound signal relating to, e is a constant, i is the imaginary unit, [omega] is the signal s (t) is the angular frequency, IεI represents the distance between the sound source and the listening point, ε = (εχ, ey, εζ) for the sound source position vector in the sound field;

[0022] S103 :由于粒子速度的方向与声波的传播方向一致,由粒子速度PVci,计算得出声源的方向矢量: [0022] S103: Since the same direction of the acoustic wave propagation direction of the particle velocity, the particle velocity PVCI, calculated sound source direction vector:

Figure CN104363555AD00072

L0024」其屮k表不汲数,与戸晉信兮的频率和声速有关,e为常数,i为虚数单位,ω为信号s(t)的角频率,IεI表示声源与听音点之间的距离,ε= (εχ,ey,εζ)为声源在声场中的位置向量。 L0024 "which Che k table does not drain number, and Kobe fengjinxin Xi frequency and sound velocity related, e is a constant, i is the imaginary unit, [omega] is the signal s (t) is the angular frequency, IεI shows the sound source and the listening point of the distance between, ε = (εχ, ey, εζ) for the sound source position in the sound field vector.

[0025] 进一步,在步骤S3中将s(t)分别乘以4个权值因子WpWyWyW4后分配到步骤S2 中所选的4个扬声器上,得到四个扬声器预分配的信号qi (t),q2 (t),q3 (t),q4⑴; After step [0025] Further, in the s (t) in step S3 is multiplied by four factors WpWyWyW4 weights assigned to the selected S2, four speakers, to give a signal qi (t) pre-assigned four loudspeakers, q2 (t), q3 (t), q4⑴;

Figure CN104363555AD00073

[0027] 其中W表示权值向量,其值为: [0027] wherein W represents a weight vector, which is:

Figure CN104363555AD00081

[0029]q(t) = (qjt),q2(t),q3(t),q4(t))T 表示扬声器L1,L2,L3,L4 所分配的信号矢量, T表示转置运算。 [0029] q (t) = (qjt), q2 (t), q3 (t), q4 (t)) T represents a signal vector loudspeaker L1, L2, L3, L4 assigned, T represents a transpose operation.

[0030] 进一步,所述步骤S4中计算重建声场中由扬声器L1,L2,L3,L4发出信号后听音点处所感知的声像的方向矢量V具体包括以下步骤: [0030] Further, the step S4 is calculated by the reconstruction of the sound field speaker L1, L2, L3, L4 emitted signal after listening point premises perceived sound image in the direction of the vector V includes the following steps:

[0031]S401 :在回放端,以5. 1声道组成的环绕声系统的正中心为原点,建立笛卡尔坐标系,扬声器Li的坐标记为Li (Lix,Liy,Liz),听音点的位置与中心点的位置一致,即听音点的坐标为r(rx,ry,rz) = (0, 0, 0); [0031] S401: In the playback end to center of the composition of the 5.1 channel surround sound system as the origin, the establishment of a Cartesian coordinate system, the coordinate notation as speaker Li Li (Lix, Liy, Liz), sweet spot coincides with the position of the center point position, i.e. the coordinates of the listening point is r (rx, ry, rz) = (0, 0, 0);

[0032]S402:将扬声器L1,L2,L3,L4 发出的信号qjt),q2(t),q3(t),q4(t)转换至频域: [0032] S402: The signal qjt loudspeaker L1, L2, L3, L4 emitted), q2 (t), q3 (t), q4 (t) to the frequency domain:

Figure CN104363555AD00082

[0034] S403:由扬声器L1,L2,L3,L4发出信号Q1 (t),q2 (t),q3 (t),q4 (t)计算听音点处的粒子速度的频域pv: [0034] S403: by the loudspeaker L1, L2, L3, L4 signals Q1 (t), q2 (t), q3 (t), q4 (t) is calculated in the frequency domain pv particle velocity at the listening point:

Figure CN104363555AD00083

[0036] S404:提取粒子速度pv的方向,得到重建声场中听音点处感知到的声像的方向矢量V: [0036] S404: Particle velocity pv extraction to give directions reconstructed sound field at the listening point to a perceived sound image vectors V:

Figure CN104363555AD00084

[0038] 进一步,根据步骤S103计算的原始声源的方向矢量Vci和步骤S404中计算的重建声场中声像的方向矢量V,建立方向等价模型如下: [0038] Further, the steps of the vector Vci and original sound source direction calculation in step S103 S404 of reconstructing a sound field sound image of the calculated direction vector V, a direction to establish the equivalent model is as follows:

[0039] V=V0 [0039] V = V0

[0040]即 [0040] That is

Figure CN104363555AD00085

[0042] 求解的获得权值因子W1,w2,w3,W4,供扬声器L1,L2,L3,L4进行信号分配,使重建的声音方向与原声源的方向一致。 [0042] coincides with the direction obtained weight factors W1, w2, w3, W4, a speaker for L1, L2, L3, L4 for signal distribution, the sound source direction of the reconstructed acoustic solved.

[0043]进一步,所述扬声器L1, L2, L3, L4获得的信号如下式: [0043] Further, the speaker signals L1, L2, L3, L4 obtained by the following formula:

Figure CN104363555AD00091

[0045]-种5. 1多声道声源方向重建装置,包括声源空间听音点方向信息计算模块、扬声器选择模块、信号预分配模块、重建声场声源方向信息计算模块、模型建立模块、模型求解模块; [0045] - species more than 5.1-channel sound source direction reconstruction means comprising a sound source direction information calculating spatial listening point module, the speaker selection module, a signal pre-allocated module, a sound source direction calculation module reconstructed sound field information, model module The model optimization module;

[0046] 所述声源空间听音点方向信息计算模块用于计算原声源所在的声源空间中听音点感知到的声源的方向,根据声源的信号s(t)计算最佳位置的粒子速度,由粒子速度的方向确定声源的方向矢量V(l,并将方向矢量V(l输出至模型建立模块; [0046] The spatial listening point sound source direction information calculating means for calculating the direction of a sound source of a sound source in the space where the acoustic source perceived listening point, calculate the optimum position based on a signal s (t) of the sound source particle velocity, the particle velocity is determined by the direction of the sound source direction vector V (l, and the direction vector V (l is output to the model module;

[0047] 所述的扬声器选择模块用于建立重建的5. 1多声道系统中扬声器的选取原则,确定重建5. 1多声道系统中选择的扬声器L1, L2, L3, L4,并将所选择的扬声器输出至信号预分配模块; [0047] The speaker selection module configured to select the principle of over 5.1-channel speaker system established reconstruction, the reconstruction is determined more than 5.1-channel speaker system Ll selected, L2, L3, L4, and the selected speaker output signal to the pre-allocation module;

[0048]所述的信号预分配模块用于将原始音频信号s(t)乘以权重因素Wl,w2,w3,W4后分配给扬声器选择模块中选择出的扬声器L1, L2, L3, L4,然后将分配后的信号输出至重建声场声源方向信息计算模块; Signal pre-allocation module [0048] for the original audio signal s (t) is multiplied by weighting factors Wl, w2, w3, to the speaker selection module selects the loudspeaker L1 W4, L2, L3, L4, the output signal is then distributed to the reconstructed sound field sound source direction information calculation module;

[0049] 所述的重建声场声像方向信息计算模块用于计算多声道系统中听音点处接收到声像方向,根据信号预分配模块中对扬声器预分配的信号,计算重建的5. 1多声道系统中听音点处接收到声像的方向矢量V,并且将V输出至模型建立模块; [0049] The reconstructed sound field sound image direction information calculating means for calculating a multi-channel listening system, at a receiving point to the direction of the sound image, the signal from the signal pre-assigned to the speaker module preallocated 5 reconstruction calculation. receiving more than one channel system at a point of listening to the sound image direction vector V, and outputs to the V model module;

[0050] 所述的模型建立模块用于建立听音点处方向感知一致性模型,由声源空间听音点方向信息计算模块输出的声源方向矢量%,和重建声场声源方向信息计算模块中输出的声源方向矢量V,建立两者相等的模型,并将此模型输出至模型求解模块; Model [0050] establishing means for establishing said direction of the listening point at the perceptual consistency model, a sound source directions by the sound source output by the spatial information calculating module listening point direction vector.%, And reconstructing a sound field sound source direction information calculating module output the sound source direction vector V, is equal both model and solving the model outputs to the model module;

[0051] 所述的模型求解模块用于求解模型建立模块中建立的模型,进而得到四个权值因子W1, w2, w3, W4的值,最后将权值代入信号预分配模块可得到每个扬声器L1, L2, L3, L4的信号。 Model Solution Module [0051] The model for solving the model established in the module, then get four weight factors W1, w2, w3, W4 of the value, and finally the weight value into a signal for each pre-allocated module can be obtained loudspeaker L1, L2, L3, L4 signal.

[0052] 本发明与现有技术相比的有益效果是:本发明相对于现有技术,能够准确提取影响重建声像的方向信息的参数,从而能精确恢复原声源空间中的声源的方向信息。 [0052] Advantageous effects of the present invention compared to prior art are: the present invention relative to the prior art, it is possible to accurately extract the direction information reconstruction parameters affect the sound image, which can accurately recover the source direction of the sound source of the acoustic space information. 摒弃其它无关参数和冗余参数,计算效率高,操作简单,稳定性好。 Other parameters discard irrelevant and redundant parameters, computationally efficient, simple operation, good stability.

[0053] 下面结合附图和具体实施例对本发明作进一步描述。 [0053] conjunction with the accompanying drawings and the following specific embodiments of the present invention will be further described.

附图说明 BRIEF DESCRIPTION

[0054] 图1为本发明5. 1多声道声源方向重建方法的流程图; [0054] FIG. 1 more than 5.1-channel sound source direction flowchart of a method of reconstruction of the present invention;

[0055] 图2为本发明5. 1多声道声源方向重建装置的结构框图。 [0055] FIG. 2 more than 5.1-channel sound source direction of a block diagram of the reconstruction apparatus of the present invention.

具体实施方式 detailed description

[0056] 为了更充分理解本发明的技术内容,下面结合具体实施例对本发明的技术方案进一步介绍和说明。 [0056] For a fuller understanding of the technical content of the invention, in conjunction with the following examples of the technical solutions of the present invention is further described and illustrated specific embodiments.

[0057] 如图1所示,一种5. 1多声道声源方向重建方法,包括以下步骤: [0057] As shown in FIG. 1. A more than 5.1-channel sound source direction reconstruction method, comprising the steps of:

[0058] 在步骤SI中:根据已知的声源信号s(t),在原始声场中以听音点为原点建立笛卡尔直角坐标系后,计算与声源距离为r的听音点处接收到的声源的方向矢量Vtl,具体计算包括以下步骤: [0058] In the step SI: the sound source signal according to known s (t), to establish a Cartesian coordinate system in the listening point of origin in the original sound field, the sound source calculating the listening point a distance r receiving the sound source direction vector Vtl, the specific calculation comprising the steps of:

[0059] SlOl:利用傅立叶变换将声源的时域信号s(t)由时域转换到频域,得到频域信号s(c〇), [0059] SlOl: Fourier transform the time domain signal s (t) is a sound source from a time domain to frequency domain to obtain frequency-domain signal s (c〇),

[0060] s(ω) =FT(s(t)) [0060] s (ω) = FT (s (t))

[0061] 其中FT表示对时域信号s(t)进行傅立叶变换,将时间信号s(t)转换至频域; [0061] where FT represents the time domain signal s (t) Fourier transforming the time signal s (t) to the frequency domain;

[0062] S102 :以听音点为原点,即听音点的坐标r(x,y,z)为(0,0,0),由频域信号s(c〇) 及声源在声场中的位置向量ε= (εχ,ey,εζ)、听音点位置坐标(〇,〇,〇),根据声学物理属性粒子速度的定义,计算听音点处接收到的粒子速度PVci : [0062] S102: In the listening point is the origin, i.e., the coordinates of the listening point r (x, y, z) is (0,0,0), by the frequency domain signal s (c〇) and a sound source in a sound field position vector ε = (εχ, ey, εζ), the coordinates of the listening position (square, square, square), defined according to the physical properties of the acoustic particle velocity, calculated at the receiving point of listening to the particle velocity PVci:

Figure CN104363555AD00101

[0064] 其中k表示波数,与声音信号的频率和声速有关,e为常数,i为虚数单位,ω为信号s(t)的角频率,IεI表示声源与听音点之间的距离,ε= (εχ,ey,εζ)为声源在声场中的位置向量; [0064] where k denotes the wave number, the frequency and sound velocity of the sound signal relating to, e is a constant, i is the imaginary unit, [omega] is the signal s (t) is the angular frequency, IεI represents the distance between the sound source and the listening point, ε = (εχ, ey, εζ) for the sound source position vector in the sound field;

[0065] S103 :由于粒子速度的方向与声波的传播方向一致,由粒子速度Pvci,计算得出声源的方向矢量: [0065] S103: Since the same direction of the acoustic wave propagation direction of the particle velocity, the particle velocity Pvci, calculated sound source direction vector:

Figure CN104363555AD00102

[0067] 其中k表示波数,与声音信号的频率和声速有关,e为常数,i为虚数单位,ω为信号s(t)的角频率,IεI表示声源与听音点之间的距离,ε= (εχ,ey,εζ)为声源在声场中的位置向量。 [0067] where k denotes the wave number, the frequency and sound velocity of the sound signal relating to, e is a constant, i is the imaginary unit, [omega] is the signal s (t) is the angular frequency, IεI represents the distance between the sound source and the listening point, ε = (εχ, ey, εζ) for the sound source position in the sound field vector.

[0068] 在步骤S2中:根据步骤1中计算的声源的方向矢量Vtl,选择包括该方向的4个扬声器L1,L2,L3,L4 ;选择的4个扬声器L1,L2,L3,L4满足如下条件:分别将听音点r(x,y,ζ) 与L1,L2,L3,L4连接,形成一多面体,声源的方向矢量Vtl位于所述的多面体内部。 [0068] In step S2: the direction of a sound source is calculated in accordance with step 1 vector Vtl, selecting includes the direction four loudspeakers L1, L2, L3, L4; 4 selected loudspeakers L1, L2, L3, L4 satisfy the following conditions: the respective listening points r (x, y, ζ) with L1, L2, L3, L4 are connected, form a polyhedron, the sound source direction vector Vtl located inside the polyhedron.

[0069] 在步骤S3中:由声源信号s⑴和步骤2中的扬声器L1,L2,L3,L4,将s⑴分别乘以4个权值因子W1,w2,w3,W4后分配到所选的4个扬声器上,得到四个扬声器预分配的信号Qi (t),(½ (t),(½ (t),Q4 (t); [0069] In step S3: by the loudspeaker L1 in the second sound source signal s⑴ step L2, L3, L4, respectively by the s⑴, four weight factors W1, w2, w3, W4 assigned to the selected 4 speakers, to give a signal Qi (t), (½ (t), (½ (t), Q4 (t) pre-assigned four speakers;

Figure CN104363555AD00103

[0071] 其中W表示权值向量,其值为: [0071] wherein W represents a weight vector, which is:

Figure CN104363555AD00111

[0073]q(t) = (qjt),q2(t),q3(t),q4(t))T 表示扬声器L1,L2,L3,L4 所分配的信号矢量, T表示转置运算。 [0073] q (t) = (qjt), q2 (t), q3 (t), q4 (t)) T represents a signal vector loudspeaker L1, L2, L3, L4 assigned, T represents a transpose operation.

[0074] 在步骤S4中:在回放端,计算重建声场中扬声器L1,L2,L3,L4发出信号后听音点处所感知的声像的方向矢量V;具体包括以下步骤: [0074] In Step S4: In the playback end, the direction of the reconstructed sound field is calculated speaker L1, L2, L3, L4 emit the signal sound image perceived listening point premises vector V; includes the following steps:

[0075]S401:在回放端,以5. 1声道组成的环绕声系统的正中心为原点,建立笛卡尔坐标系,扬声器Li的坐标记为Li (Lix,Liy,Liz),听音点的位置与中心点的位置一致,即听音点的坐标为r(rx,ry,rz) = (0, 0, 0); [0075] S401: In the playback end to center of the composition of the 5.1 channel surround sound system as the origin, the establishment of a Cartesian coordinate system, the coordinate notation as speaker Li Li (Lix, Liy, Liz), sweet spot coincides with the position of the center point position, i.e. the coordinates of the listening point is r (rx, ry, rz) = (0, 0, 0);

[0076]S402:将扬声器L1,L2,L3,L4 发出的信号qjt),q2(t),q3(t),q4(t)转换至频域: [0076] S402: The signal qjt loudspeaker L1, L2, L3, L4 emitted), q2 (t), q3 (t), q4 (t) to the frequency domain:

Figure CN104363555AD00112

[0078] S403:由扬声器L1,L2,L3,L4发出信号Q1 (t),q2 (t),q3 (t),q4 (t)计算听音点处的粒子速度的频域pv: [0078] S403: by the loudspeaker L1, L2, L3, L4 signals Q1 (t), q2 (t), q3 (t), q4 (t) is calculated in the frequency domain pv particle velocity at the listening point:

Figure CN104363555AD00113

[0080] S404:提取粒子速度pv的方向,得到重建声场中听音点处感知到的声像的方向矢量V: [0080] S404: Particle velocity pv extraction to give directions reconstructed sound field at the listening point to a perceived sound image vectors V:

Figure CN104363555AD00114

[0082] 在步骤S5中:根据步骤S103计算的原始声源的方向矢量Vtl和步骤S404中计算的重建声场中声像的方向矢量V,建立方向等价模型如下: [0082] In Step S5: The step of vector and Vtl original sound source direction calculation in step S103 S404 of reconstructing a sound field sound image of the calculated direction vector V, a direction to establish the equivalent model is as follows:

[0083] V=V0 [0083] V = V0

[0084]即 [0084] That is

Figure CN104363555AD00115

[0086]在步骤S6中:在步骤5的方向等价模型中,以步骤3中设置的权值因子WpWyW3,W4为未知量,求解该模型获得权值因子的值,求解获得权值因子Wl,w2,w3,W4,供扬声器L1, L2,L3,L4进行信号分配。 [0086] In Step S6: In the step 5 in the direction of the equivalent model, the step 3 is provided with weight value factor WpWyW3, W4 is unknown, the model is solved to obtain the value of the weight factor, the weight factor is obtained solving Wl , w2, w3, W4, a speaker for L1, L2, L3, L4 for signal distribution.

[0087] 在步骤S7中:利用步骤6中求解的权值因子Wl,w2,w3,w4,进行扬声器的信号分配, 使重建的声音方向与原声源的方向一致,本实施例中,所有扬声器位于同一个球面上,即各扬声器与听音点之间的距离相等,因此信号分配过程无需进行延迟,所述扬声器L1,L2,L3, L4获得的信号如下式: [0087] In Step S7: using Step 6 solving weight factors Wl, w2, w3, w4, signal distribution speaker so that the sound direction and the acoustic source reconstructed in the same direction, in this embodiment, all of the speakers in the same sphere, i.e. the distance between the speaker and the listening point is equal, the signal assignment process without delay signal, the loudspeaker L1, L2, L3, L4 obtained by the following formula:

Figure CN104363555AD00121

[0089] 如图2所示,一种5. 1多声道声源方向重建装置,包括声源空间听音点方向信息计算模块10、扬声器选择模块20、信号预分配模块30、重建声场声源方向信息计算模块40、模型建立模块50、模型求解模块60 ; [0089] As shown a more than 5.1-channel sound source direction reconstruction means 2, comprising 10, 20, signal pre-allocation module 30, reconstructed excitation spatial sound field sound listening point direction information calculation module speaker selection module source direction information calculating module 40, module 50 model, the model solution module 60;

[0090] 所述声源空间听音点方向信息计算模块10用于计算原声源所在的声源空间中听音点感知到的声源的方向,根据声源的信号s(t)计算最佳位置的粒子速度,由粒子速度的方向确定声源的方向矢量Vo,并将方向矢量Vci输出至模型建立模块50 ; [0090] The spatial listening point sound source direction information of the sound source direction calculation module 10 is listening to a sound source perceived point acoustic source is located in the space for calculating, based on a signal s (t) calculates the optimum sound source particle velocity position, determined by the direction of the particle velocity Vo of the sound source direction vector, and the direction vector Vci module 50 outputs to the model;

[0091] 所述的扬声器选择模块20用于建立重建的5. 1多声道系统中扬声器的选取原则, 确定重建5. 1多声道系统中选择的扬声器L1,L2,L3,L4,并将所选择的扬声器输出至信号预分配模块30 ; [0091] The speaker selection module 20 for selecting principle more than 5.1-channel speaker system establishes reconstructed, the reconstruction is determined more than 5.1-channel speaker system selected from L1, L2, L3, L4, and the selected speaker output signal to the pre-allocation module 30;

[0092] 所述的信号预分配模块30用于将原始音频信号s (t)乘以权重因素W1, w2, w3, W4 后分配给扬声器选择模块20中选择出的扬声器L1,L2,L3,L4,然后将分配后的信号输出至重建声场声源方向信息计算模块40 ; Signal pre-allocation module [0092] 30 for the original audio signal s weight factors W1 (t) multiplied by a weight, w2, w3, W4 after distribution to the speaker selection module 20 selects the loudspeaker L1, L2, L3, L4, the output signal is then distributed to the reconstructed sound field sound source direction information calculating module 40;

[0093] 所述的重建声场声像方向信息计算模块40用于计算多声道系统中听音点处接收到声像方向,根据信号预分配模块30中对扬声器预分配的信号,计算重建的5. 1多声道系统中听音点处接收到声像的方向矢量v,并且将V输出至模型建立模块50 ; Reconstructing a sound field sound image orientation information [0093] The calculation module 40 for calculating a multi-channel listening system, at a receiving point to the direction of the sound image, the signal from the signal pre-assigned to the loudspeaker module 30 pre-assigned, calculated reconstruction over 5.1-channel system, the sound image at the receiving listening point direction vector v, and outputs 50 V to model module;

[0094] 所述的模型建立模块50用于建立听音点处方向感知一致性模型,由声源空间听音点方向信息计算模块输出的声源方向矢量Vci,和重建声场声源方向信息计算模块40中输出的声像方向矢量v,建立两者相等的模型,并将此模型输出至模型求解模块60 ; [0094] The model of the module 50 at a listening point for establishing a direction consistent perceptual model, the sound source direction by the space of the listening point sound source direction information output vector calculation module Vci is, the direction of the sound source and sound field information calculation reconstructed module 40 outputs sound image in the direction of the vector v, equivalent model of both the model and the output module 60 to the model solution;

[0095] 所述的模型求解模块60用于求解模型建立模块50中建立的模型,进而得到四个权值因子W1,W2,W3,W4的值,最后将权值代入信号预分配模块30可得到每个扬声器L1,L2,L3,L4的信号。 Model [0095] Solving the module 60 is used to solve the model 50 model modules, and thus obtain four weight factors W1, W2, W3, W4 of values, the weight values ​​are substituted into the last pre-allocated module 30 may signal to give each speaker L1, L2, L3, L4 signal.

[0096]以上所述仅以实施例来进一步说明本发明的技术内容,以便于读者更容易理解, 但不代表本发明的实施方式仅限于此,任何依本发明所做的技术延伸或再创造,均受本发明的保护。 [0096] The above embodiments merely to further illustrate the technical details of the present invention to facilitate easier understanding of the reader, but do not represent embodiments of the present invention be limited thereto, the invention made by any technique under this re-creation or extension , are protected by the present invention.

Claims (8)

  1. 1. 一种5. 1多声道声源方向重建方法,其特征在于,包括以下步骤: 51 :根据已知的声源信号s (t),在原始声场中以听音点为原点建立笛卡尔直角坐标系后,计算与声源距离为r的听音点处接收到的声源的方向矢量Vtl ; 52 :根据步骤1中计算的声源的方向矢量Vtl,选择包括该方向的4个扬声器L 1, L2, L3, L4 ; 53 :由声源信号s (t)和步骤2中的扬声器L1, L2, L3, L4,将s (t)分别乘以4个权值因子W1, w2, w3, W4后分配到所选的4个扬声器上; 54 :在回放端,计算重建声场中扬声器L1, L2, L3, L4发出信号后听音点处所感知的声像的方向矢量V ; 55 :根据步骤1计算的原始声源的方向矢量Vtl和步骤4中计算的重建声场中声像的方向矢量V,建立方向等价模型; 56 :在步骤5的方向等价模型中,以步骤3中设置的权值因子WpWyWyW4为未知量,求解该模型获得权值因子的值; 57 :利用步骤6中求解的权值因 A more than 5.1-channel sound source direction reconstruction method, characterized by comprising the steps of: 51: sound source signal in accordance with known s (t), to establish a flute listening point of origin in the original sound field Carr Cartesian coordinate system, calculates the distance to the sound source is received at a listening point r of the sound source direction vector Vtl; 52: sound source direction calculated according to step 1 Vt1 vector, including the selection direction 4 loudspeakers L 1, L2, L3, L4; 53: L1 is a speaker by the acoustic source signal s (t) and step 2, L2, L3, L4, the s (t) is multiplied by four weight factors W1, w2 , W3, W4 assigned to the four speakers selected; 54: playback end direction, the speaker sound field reconstruction calculation L1, L2, L3, L4 emit the signal sound image perceived listening point premises vector V; 55 : the step of vector and Vtl original sound source direction calculation in step 1 in the direction of the reconstructed sound field sound image in the vector calculation of 4 V, the direction of the equivalent model established; 56: direction equivalent model in step 5 to step 3 right set value of the factor WpWyWyW4 unknown quantity, the model is solved to obtain the value of the weight factor; 57: step 6 using weights by solving value 子Wl,w2, w3, W4,进行扬声器的信号分配,使重建的声音方向与原声源的方向一致。 Sub Wl, w2, w3, W4, the speaker signal distribution, the sound source direction of the reconstructed acoustic coincides with the direction.
  2. 2. 根据权利要求1所述的5. 1多声道声源方向重建方法,其特征在于,在步骤S2中所述选择的4个扬声器L1, L2, L3, L4满足如下条件:分别将听音点r(x, y, z)与L1, L2, L3, L4连接,形成一多面体,声源的方向矢量%位于所述的多面体内部。 The more than 5.1-channel sound source direction of the reconstruction method of claim 1, wherein, in the step S2 the selected four loudspeakers L1, L2, L3, L4 satisfy the following conditions: Listen respectively tone dot r (x, y, z) and the L1, L2, L3, L4 are connected, form a polyhedron, the sound source direction vector of the polyhedron located inside%.
  3. 3. -种权利要求1或2所述的5. 1多声道声源方向重建方法,其特征在于,所述步骤Sl中与声源距离为r的听音点处接收到的声源的方向矢量Vtl的方法包括以下步骤: 5101 :利用傅立叶变换将声源的时域信号s(t)由时域转换到频域,得到频域信号S(W), s〇) = FT(s(t)) 其中FT表示对时域信号s (t)进行傅立叶变换,将时间信号s (t)转换至频域; 5102 :以听音点为原点,即听音点的坐标r(x, y, z)为(0,0,0),由频域信号s〇)及声源在声场中的位置向量e = (ex,ey,〇、听音点位置坐标(〇,〇,〇),根据声学物理属性粒子速度的定义,计算听音点处接收到的粒子速度Pvci : 3. - more than 5.1-channel sound source direction of claim 1 or claim 2 kinds of reconstruction methods, wherein said step Sl to sound received in the sound source at a listening distance of a source point r the method of the direction vector Vtl comprises the following steps: 5101: Fourier transform the time domain signal s (t) is a sound source from a time domain to frequency domain to obtain frequency domain signal S (W), s〇) = FT (s ( t)) where FT represents the time domain signal s (t) Fourier transforming the time signal s (t) into the frequency domain; 5102: listening point to the origin, i.e. listening point coordinates r (x, y , z) is (0,0,0), the frequency domain signal s〇) and a sound source in the sound field position vector e = (ex, ey, square, coordinates of the listening position (square, square, square), the definition of physical properties of the acoustic particle velocity, calculated at the point of listening to the received particle velocity Pvci:
    Figure CN104363555AC00021
    其中k表示波数,与声音信号的频率和声速有关,e为常数,i为虚数单位,《为信号s(t)的角频率,I e I表示声源与听音点之间的距离,e = (ex,ey,ez)为声源在声场中的位置向量; 5103 :由于粒子速度的方向与声波的传播方向一致,由粒子速度Pvci,计算得出声源的方向矢量: Where k denotes the wave number, the frequency and sound velocity of the sound signal relating to, e is a constant, i is the imaginary unit, "is the angular frequency of the signal s (t) of, I e I represents the distance between the sound source and the listening point, E = (ex, ey, ez) of the acoustic sound source position vector field; 5103: Since the same direction of the acoustic wave propagation direction of the particle velocity, the particle velocity Pvci, calculated by the sound source direction vector:
    Figure CN104363555AC00022
    其中k表示波数,与声音信号的频率和声速有关,e为常数,i为虚数单位,《为信号S(t)的角频率,I e I表示声源与听音点之间的距离,e = (ex,ey,ez)为声源在声场中的位置向量。 Where k denotes the wave number, the frequency and sound velocity of the sound signal relating to, e is a constant, i is the imaginary unit, "the signal S (t) is the angular frequency, I e I represents the distance between the sound source and the listening point, E = (ex, ey, ez) of the acoustic sound source position vector field.
  4. 4. 根据权利要求3所述的5. 1多声道声源方向重建方法,其特征在于,在步骤S3中将s (t)分别乘以4个权值因子Wl,w2, w3, W4后分配到步骤S2中所选的4个扬声器上,得到4 个扬声器预分配的信号Q1 (t),q2 (t),q3 (t),q4 (t); The more than 5.1-channel sound source direction reconstruction method according to claim 3, wherein the weights are multiplied by four factors Wl, w2, w3 in the s (t) step S3, the rear W4 step S2 is assigned to the selected four speakers, four speakers to give pre-assigned signal Q1 (t), q2 (t), q3 (t), q4 (t);
    Figure CN104363555AC00031
    q(t) = (口1(1:),92(1:),93(1:),94(1:)) 1表示扬声器11,12,1^,14所分配的信号矢量,1'表示转置运算。 q (t) = (port 1 (1 :), 92 (1 :), 93 (1 :), 94 (1 :)) 11,12,1 ^ 1 denotes the speaker, the signal vector assigned to 14, 1 ' It represents a transpose operation.
  5. 5. 根据权利要求4所述的5. 1多声道声源方向重建方法,其特征在于,所述步骤S4中计算重建声场中由扬声器L1, L2, L3, L4发出信号后听音点处所感知的声源的方向矢量V具体包括以下步骤: 5401 :在回放端,以5. 1声道组成的环绕声系统的正中心为原点,建立笛卡尔坐标系, 扬声器Li的坐标记为Li (Lix,Liy,Liz),听音点的位置与中心点的位置一致,即听音点的坐标为r (rx,ry,rz) = (0, 0, 0); 5402 :将扬声器L1, L2, L3, L4发出的信号qi(t),q2(t),q3(t),q 4(t)转换至频域: The more than 5.1-channel sound source direction of the reconstruction method according to claim 4, wherein said calculating step S4 reconstructed sound field from the speaker L1, L2, L3, L4 emitted signal after listening point spaces perceived sound source direction vector V includes the following steps: 5401: the playback end to center of the composition of the 5.1 channel surround sound system as the origin, the establishment of a Cartesian coordinate system, the coordinate notation as speaker Li Li ( Lix, Liy, Liz), consistent with the position of the center of the listening point, i.e., the coordinates of the listening point is r (rx, ry, rz) = (0, 0, 0); 5402: loudspeaker L1, L2 , L3, signal qi (t) L4 emitted, q2 (t), q3 (t), q 4 (t) to the frequency domain:
    Figure CN104363555AC00032
    5403 :由扬声器L1, L2, L3, L4发出信号qjt),q2(t),q3(t),q4(t)计算听音点处的粒子速度的频域pv: 5403: by the loudspeaker L1, L2, L3, L4 signaling qjt), q2 (t), q3 (t), q4 (t) is calculated in the frequency domain pv particle velocity at the listening point:
    Figure CN104363555AC00033
    5404 :提取粒子速度pv的方向,得到重建声场中听音点处感知到的声像的方向矢量v: 5404: pv particle velocity extraction direction, to obtain reconstructed sound field at the listening point to the perceived sound image in the direction of the vector v:
    Figure CN104363555AC00041
  6. 6. 根据权利要求5所述的5. 1多声道声源方向重建方法,其特征在于,根据步骤S103 计算的原始声源的方向矢量V。 The more than 5.1-channel sound source direction reconstruction method according to claim 5, characterized in that the direction vector from the original sound source computing step S103 in V. 和步骤S404中计算的重建声场中声像的方向矢量V,建立方向等价模型如下: And a sound image in the direction of the reconstructed sound field calculated in step S404 is a vector V, to establish a direction equivalent model is as follows:
    Figure CN104363555AC00042
    求解的获得权值因子W1, W2, W3, W4,供扬声器L1, L2, L3, L4进行信号分配,使重建的声音方向与原声源的方向一致。 Solving the obtained weight factors W1, W2, W3, W4, a speaker for L1, L2, L3, L4 for signal distribution, the sound source direction of the reconstructed acoustic coincides with the direction.
  7. 7. 根据权利要求6所述的5. 1多声道声源方向重建方法,其特征在于,所述扬声器L1, L2, L3, L4获得的信号如下式: The more than 5.1-channel sound source direction reconstruction method according to claim 6, wherein the speaker signal L1, L2, L3, L4 obtained by the following formula:
    Figure CN104363555AC00043
  8. 8. -种5. 1多声道声源方向重建装置,其特征在于,包括声源空间听音点方向信息计算模块、扬声器选择模块、信号预分配模块、重建声场声源方向信息计算模块、模型建立模块、模型求解模块; 所述声源空间听音点方向信息计算模块用于计算原声源所在的声源空间中听音点感知到的声源的方向,根据声源的信号s(t)计算最佳位置的粒子速度,由粒子速度的方向确定声源的方向矢量%,并将方向矢量Vtl输出至模型建立模块; 所述的扬声器选择模块用于建立重建的5. 1多声道系统中扬声器的选取原则,确定重建5. 1多声道系统中选择的扬声器L1, L2, L3, L4,并将所选择的扬声器输出至信号预分配模块; 所述的信号预分配模块用于将原始音频信号s(t)乘以权重因素W1, w2, w3,《4后分配给扬声器选择模块中选择出的扬声器L1, L2, L3, L4,然后将分配后的信号输出至重建 8. - kind of more than 5.1-channel sound source reconstruction means direction, characterized in that it comprises a sound source direction information calculating spatial listening point module, the speaker selection module, a signal pre-allocated module, reconstructed sound field sound source direction information calculation module, model module, the model solution module; spatial listening point of the sound source direction information calculation module sound source direction of a sound source located in spatial acoustic source perceived listening point for calculating, according to a sound source signal s (t ) to calculate the optimum position of the particle velocity, the sound source is determined by the direction of the particle velocity vector direction of%, and outputs to the direction vector Vtl model module; the speaker selection module for establishing more than 5.1-channel reconstruction the principle of selecting the speaker system, the reconstruction is determined more than 5.1-channel system selected loudspeaker L1, L2, L3, L4, and outputs the selected signal to the speaker output of the pre-allocated module; said signal distribution means for pre- the original audio signal s weight factors W1 (t) multiplied by a weight, w2, w3, "assigned to the speaker selection module selected loudspeaker L1 post 4, L2, L3, L4, and then outputs the signal assigned to rebuild 声场声源方向信息计算模块; 所述的重建声场声像方向信息计算模块用于计算多声道系统中听音点处接收到声像的方向,根据信号预分配模块中对扬声器预分配的信号,计算重建的5. 1多声道系统中听音点处接收到声像的方向矢量V,并且将V输出至模型建立模块; 所述的模型建立模块用于建立听音点处方向感知一致性模型,由声源空间听音点方向信息计算模块输出的声源方向矢量%,和重建声场声源方向信息计算模块中输出的声源方向矢量V,建立两者相等的模型,并将此模型输出至模型求解模块; 所述的模型求解模块用于求解模型建立模块中建立的模型,进而得到四个权值因子W1, w2, w3, W4的值,最后将权值代入信号预分配模块可得到每个扬声器L1, L2, L3, L4的信号。 Sound field sound source direction information calculation module; of the reconstructed sound field sound image direction information calculating means for calculating a multi-channel listening system, at a receiving point in the direction of the sound image, the signal from the signal pre-assigned to the speaker module preallocated , more than 5.1-channel system calculates reconstructed at the receiving point of listening to the sound image direction vector V, and V is output to the model module; establishing means for establishing the direction of the listening point at the same perception model model, the sound source direction by the space of the listening point sound source direction information output vector calculation module.%, and computing the sound source direction information output module reconstructed sound field sound source direction vector V, is equal both model and this model solving module to the model output; means for solving the model solving module model established model, thereby to obtain four weight factors W1, w2, w3, W4 of the value, and finally the weight values ​​into the signal pre-allocated module obtained for each speaker L1, L2, L3, L4 signal.
CN 201410524837 2014-09-30 2014-09-30 Method and device for reconstructing directions of 5.1 multi-channel sound sources CN104363555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201410524837 CN104363555A (en) 2014-09-30 2014-09-30 Method and device for reconstructing directions of 5.1 multi-channel sound sources

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201410524837 CN104363555A (en) 2014-09-30 2014-09-30 Method and device for reconstructing directions of 5.1 multi-channel sound sources

Publications (1)

Publication Number Publication Date
CN104363555A true true CN104363555A (en) 2015-02-18

Family

ID=52530770

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201410524837 CN104363555A (en) 2014-09-30 2014-09-30 Method and device for reconstructing directions of 5.1 multi-channel sound sources

Country Status (1)

Country Link
CN (1) CN104363555A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105898669A (en) * 2016-03-18 2016-08-24 南京青衿信息科技有限公司 Coding method of sound object
CN105898668A (en) * 2016-03-18 2016-08-24 南京青衿信息科技有限公司 Coordinate definition method of sound field space
CN106211017A (en) * 2016-06-20 2016-12-07 北京奇幻科技有限公司 3D sound field establishment method
CN106454685A (en) * 2016-11-25 2017-02-22 武汉大学 Sound field reconstruction method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101251414A (en) * 2008-04-17 2008-08-27 上海交通大学 Method for rebuilding circulation calm sound source by wave overlapping method
CN102932730A (en) * 2012-11-08 2013-02-13 武汉大学 Method and system for enhancing sound field effect of loudspeaker group in regular tetrahedron structure
CN103347245A (en) * 2013-07-01 2013-10-09 武汉大学 Method and device for restoring sound source azimuth information in stereophonic sound system
CN103826194A (en) * 2014-02-28 2014-05-28 武汉大学 Method and device for rebuilding sound source direction and distance in multichannel system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101251414A (en) * 2008-04-17 2008-08-27 上海交通大学 Method for rebuilding circulation calm sound source by wave overlapping method
CN102932730A (en) * 2012-11-08 2013-02-13 武汉大学 Method and system for enhancing sound field effect of loudspeaker group in regular tetrahedron structure
CN103347245A (en) * 2013-07-01 2013-10-09 武汉大学 Method and device for restoring sound source azimuth information in stereophonic sound system
CN103826194A (en) * 2014-02-28 2014-05-28 武汉大学 Method and device for rebuilding sound source direction and distance in multichannel system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105898669A (en) * 2016-03-18 2016-08-24 南京青衿信息科技有限公司 Coding method of sound object
CN105898668A (en) * 2016-03-18 2016-08-24 南京青衿信息科技有限公司 Coordinate definition method of sound field space
CN105898669B (en) * 2016-03-18 2017-10-20 南京青衿信息科技有限公司 A method of encoding a sound object
CN106211017A (en) * 2016-06-20 2016-12-07 北京奇幻科技有限公司 3D sound field establishment method
CN106454685A (en) * 2016-11-25 2017-02-22 武汉大学 Sound field reconstruction method and system
CN106454685B (en) * 2016-11-25 2018-03-27 武汉大学 A sound field reconstruction method and system

Similar Documents

Publication Publication Date Title
US7257231B1 (en) Stream segregation for stereo signals
US20090252356A1 (en) Spatial audio analysis and synthesis for binaural reproduction and format conversion
US7567845B1 (en) Ambience generation for stereo signals
US7231054B1 (en) Method and apparatus for three-dimensional audio display
US6628787B1 (en) Wavelet conversion of 3-D audio signals
US20120213375A1 (en) Audio Spatialization and Environment Simulation
Davis et al. High order spatial audio capture and its binaural head-tracked playback over headphones with HRTF cues
Algazi et al. Headphone-based spatial sound
US20080298610A1 (en) Parameter Space Re-Panning for Spatial Audio
US20140358567A1 (en) Spatial audio rendering and encoding
US20100329466A1 (en) Device and method for converting spatial audio signal
Avendano et al. Frequency domain techniques for stereo to multichannel upmix
US20110026745A1 (en) Distributed signal processing of immersive three-dimensional sound for audio conferences
US20110116638A1 (en) Apparatus of generating multi-channel sound signal
JP2009531906A (en) Methods for binaural synthesis that takes into account the space effect
EP2104375A2 (en) Vertically or horizontally placeable combinative array speaker
US20110274278A1 (en) Method and apparatus for reproducing stereophonic sound
Bai et al. Upmixing and downmixing two-channel stereo audio for consumer electronics
CN102572676A (en) Real-time rendering method for virtual auditory environment
US20150350801A1 (en) Binaural audio processing
CN101874414A (en) Method and device for improved sound field rendering accuracy within a preferred listening area
KR20130045414A (en) A method of and a device for generating 3d sound
CN102883246A (en) Simplifying and laying method for loudspeaker groups of three-dimensional multi-channel audio system
US8243969B2 (en) Method of and device for generating and processing parameters representing HRTFs
CN105376690A (en) Method and device of generating virtual surround sound

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
RJ01