CN104362393A - Rechargeable aqueous ion battery - Google Patents

Rechargeable aqueous ion battery Download PDF

Info

Publication number
CN104362393A
CN104362393A CN201410532824.3A CN201410532824A CN104362393A CN 104362393 A CN104362393 A CN 104362393A CN 201410532824 A CN201410532824 A CN 201410532824A CN 104362393 A CN104362393 A CN 104362393A
Authority
CN
China
Prior art keywords
electrolyte
battery
ion
according
drainage system
Prior art date
Application number
CN201410532824.3A
Other languages
Chinese (zh)
Inventor
朱用
车勇
戴翔
王青
方淳
袁超群
瞿培红
Original Assignee
恩力能源科技(南通)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 恩力能源科技(南通)有限公司 filed Critical 恩力能源科技(南通)有限公司
Priority to CN201410532824.3A priority Critical patent/CN104362393A/en
Publication of CN104362393A publication Critical patent/CN104362393A/en

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34

Abstract

The invention belongs to the field of chemical power supply, and relates to a rechargeable aqueous ion battery with long life and high energy density. The rechargeable aqueous ion battery comprises an positive pole film, a negative pole film, a diaphragm and electrolyte, and is characterized in that the electrolyte adopts an alkali metal ion aqueous solution containing a buffering agent; cations of the buffering agent are one or more kinds of lithium ions, sodium ions, potassium ions, hydrogen ions and ammonium; and anions of the buffering agent are one or more kinds of acetate, phosphate radical, carbonate, citrate and formate. The rechargeable aqueous ion battery has the characteristics that the electrolyte of the aqueous ion battery contains the buffering agent, the buffering agent can stabilize the pH value of the system in the battery charge-discharge process, and side reaction of oxygen evolution and hydrogen evolution is inhibited, so that the energy density of the battery is increased, and the cycle life is prolonged. The rechargeable aqueous ion battery has high electrochemical energy, good cycle performance, environmental protection and the like and has broad market prospect.

Description

-种可充放水系罔子电池 - turn on the water-based species can be filled subcell indiscriminately

技术领域 FIELD

[0001] 本发明涉及电池领域,尤其涉及一种长寿命高能量密度的可充放水系离子电池。 [0001] The present invention relates to batteries, and more particularly relates to a long-life and high energy density ion rechargeable battery drainage system.

背景技术 Background technique

[0002] 能源是经济和社会发展的重要物质基础。 [0002] Energy is an important material basis for economic and social development. 自工业革命以来全球煤炭、石油、天然气等化石能源资源消耗迅速,生态环境不断恶化,人类社会的可持续发展受到严重威胁。 Since the industrial revolution the world's coal, oil, natural gas and other fossil energy resources consumption rapidly deteriorating ecological environment, sustainable development of human society is seriously threatened. 因此,节约化石能源,提高化石能源利用效率,实现节能减排以及大规模利用可再生能源,实现能源多样化成为世界各国能源安全和经济可持续发展的重要战略。 Therefore, saving fossil fuels, fossil improve energy efficiency, to achieve energy conservation and large-scale use of renewable energy sources, energy diversification is an important strategy for sustainable development of the world energy security and the economy. 太阳能、风能等可再生能源具有资源丰富、清洁无污染等特点,被认为是解决能源问题的有效途径。 Solar, wind and other renewable energy resources is rich, clean and pollution-free characteristics, is considered to be an effective way to solve the energy problem. 然而,太阳能和风能等发电受到天气及时间段等自然因素影响,具有间歇性、不稳定、不可控等特点不仅加重了电网系统调峰难度,还会对电网的电压、频率、谐波等电能质量造成不良影响,严重时会危害电网负荷的安全稳定运行。 However, like solar and wind power generation affected by natural factors such as weather and time periods, with intermittent, unstable, uncontrollable and so not only increased the difficulty of peaking power grid system, but also on the power grid voltage, frequency, harmonics and other power adversely affect the quality, and in severe harm to the security and stability of the power grid load operation.

[0003] 大规模高效储能技术是解决可再生能源发电非稳态特性的重要途径,也是智能电网的必要组成部分。 [0003] efficient large-scale energy storage technology is an important way of non-steady-state characteristics of renewable energy generation solutions, but also a necessary part of the smart grid. 在所有的储能技术中,电化学储能技术具有建设周期短、能适应不同的电网功能需要等特点,已经成为目前使用最广泛的储能方式之一。 In all energy storage technologies, electrochemical energy storage technology has a short construction period, the grid can adapt to different functional needs and so on, has become one of the most widely used energy storage mode. 现有的电化学储能技术存在多种技术路线,如铅酸电池、液流电池、钠硫电池以及锂离子电池等。 Presence of a conventional electrochemical energy storage line variety of techniques, such as lead-acid battery, a flow battery, sodium-sulfur battery and a lithium ion battery or the like. 但是,从成本、寿命、安全、环境等因素综合衡量,这些电池体系仍无法满足实际需要。 However, a comprehensive measure of cost, life, safety, environmental and other factors, these battery systems still can not meet the actual needs.

[0004] 1994年,Dahn等首次提出水系锂离子电池的概念(参见:LiW.DahnJ R.ffainwrightDS.Rechargeablelithiumbatterieswithaqueouselectrolytes[J]. Science, 1994, 264:1115-1113.)。 Concepts [0004] In 1994, Dahn first proposed aqueous lithium ion batteries (see: LiW.DahnJ R.ffainwrightDS.Rechargeablelithiumbatterieswithaqueouselectrolytes [J] Science, 1994, 264:. 1115-1113.). 这种新型水系锂离子电池中,Li2S04或LiN03水溶液作为电解质,负极采用V02,正极采用LiMn204。 This new aqueous lithium ion batteries, Li2S04 or LiN03 aqueous solution as an electrolyte, a negative electrode using V02, positive use LiMn204. 与非水电解液锂离子二次电池相比,水系锂离子电池是以水溶液为电解质的二次电池,它克服了传统有机体系电池电解液昂贵、有毒、易燃、离子电导率低、制作成本高等缺点,在电网级别的大规模储能体系中具有潜在的应用前景。 Compared with the non-aqueous electrolyte lithium ion secondary batteries, lithium ion batteries is an aqueous solution of a secondary cell electrolyte, which overcomes the conventional organic electrolyte battery system expensive, low toxic, flammable, ion conductivity, the production cost disadvantages, have potential applications in large-scale energy storage systems in the grid level. 然而,该体系电池循环寿命短严重阻碍了它的商业化进程。 However, the short life cycle of the battery system a serious impediment to its commercialization process. 近年来,开发新型长寿命高性能水系锂离子电池材料及电池已成为国际研究的热点。 In recent years, development of new high-performance and long life-aqueous lithium-ion batteries and battery materials has become a focus of international research.

[0005] 中国专利授权公告号CN1328818C公开了一种混合型水系锂离子电池。 [0005] Chinese Patent Publication No. CN1328818C discloses authorizing a mixed aqueous lithium ion battery. 其工作原理是:对装成的电池,首先必须进行充电。 Its working principle is: The loaded into the cell must first be charged. 充电过程中,锂离子从正极脱出,通过电解液,锂离子吸附在活性碳等材料做成的负极。 During charging, lithium ions coming out from the positive electrode, through the electrolyte, the negative electrode in lithium ion adsorption material such as activated carbon made. 放电过程中,锂离子从负极上脱附,通过电解液,锂离子嵌入正极。 Discharge process, lithium ions are desorbed from the negative electrode through the electrolyte, a positive electrode of lithium ions. 充放电过程仅涉及锂离子在两电极间的转移。 Charge-discharge process involves only the transfer of lithium ions between the two electrodes. 该混合型水系锂离子电池的正极材料采用LiMr^tVLiCoOyLiCoMNi^Mn^OyLiMga^Mni.;^等能够可逆的嵌入脱出锂离子的材料,负极则采用比表面积在l〇〇〇m2/g以上的活性炭、介孔碳或碳纳米管等。 The hybrid positive electrode material of lithium ion batteries using aqueous LiMr ^ tVLiCoOyLiCoMNi ^ Mn ^ OyLiMga ^ Mni;. ^ Like can reversibly insert lithium ions extrusion material, the negative electrode surface area activated carbon in l〇〇〇m2 / g or more , mesoporous carbon, or carbon nanotubes.

[0006] 然而,锂资源储量有限并且分布不均,这对于发展大规模储能电池,可能会成为一个重要问题。 [0006] However, the limited reserves of lithium resources and uneven distribution, which for the development of large scale energy storage battery, could become an important issue. 近年来人们开始关注更为廉价的碱金属如钠,钠在地壳中的储量非常丰富, 约占2. 74%,为第六丰富元素,分布广泛,含钠的原料价格较低;以及和锂相似的电化学性质,接近的电极电势,钠离子电池渐渐成为了科研工作者研究热点。 In recent years, people began to focus on more expensive alkali metals such as sodium, sodium reserves in the crust is very rich, about 2.74 percent, as a sixth rich elements, widely distributed, low sodium-containing raw material prices; and lithium similar electrochemical properties, electrode potential close to, sodium ion battery gradually become a hot research scientists.

[0007] 中国专利公开号CN102027625A公开了一种以钠离子为主的水相电解质电化学二次能源储存装置,其包括阳极电极、能够使钠阳离子可逆性脱嵌的阴极电极、隔板和含有钠阳离子的水相电解质,其中初始活性阴极电极材料包含在该装置的初始充电期间使碱金属离子脱嵌的含碱金属的活性阴极电极材料。 [0007] Chinese Patent Publication No. CN102027625A discloses water phase electrolyte electrochemical energy storage device to the secondary sodium based, which includes an anode electrode, sodium cations can be release reversibility of the cathode electrode is embedded, and a separator comprising aqueous sodium cation of the electrolyte phase, wherein the initial active cathode electrode material during initial charging comprises means so that the removal of alkali metal ions alkali metal active cathode electrode material is embedded. 该活性阴极电极材料可以是掺铝的A-Mn02、 NaMn02 (水钠锰矿结构)、Na2Mn307、NaFeP04F、Na0.44Mn02。 The active cathode electrode material may be aluminum-doped A-Mn02, NaMn02 (birnassite structure), Na2Mn307, NaFeP04F, Na0.44Mn02. 该阳极电极包含多孔活性炭,且电解质包含硫酸钠。 The anode electrode comprises porous activated carbon, and the electrolyte comprises sodium sulfate.

[0008] 中国专利公开号CN1723578A公开了一种钠离子电池,包括正电极、负电极和电解质。 [0008] Chinese Patent Publication No. CN1723578A discloses a sodium ion battery, comprising a positive electrode, a negative electrode and an electrolyte. 正电极包括一种能够可逆性循环钠离子的电化学活性材料,负电极包括一种能够嵌入钠离子的碳。 The positive electrode comprises an electrochemically active material capable of reversible cycle sodium ions, a negative electrode capable of intercalating carbon comprising one of sodium ions. 该活性材料包括钠过渡金属磷酸盐。 The active material comprises a transition metal sodium phosphate. 过渡金属包括选自钒(V)、锰(Mn)、铁(Fe)、钴(Co)、铜(Cu)、镍(Ni)、钛(Ti)中的一种过渡金属及其混合物。 It comprises a transition metal selected from vanadium (V), manganese (Mn), iron (Fe), cobalt (Co), copper (Cu), Nickel (Ni), titanium (Ti) is a transition metal, and mixtures thereof.

[0009] 中国专利公开号CN101241802A公开了一种非对称型水系钠/钾离子电池电容器, 由正极、负极、隔膜和电解质组成。 [0009] Chinese Patent Publication No. CN101241802A discloses a non-symmetric aqueous sodium / potassium ion battery capacitor, a positive electrode, a negative electrode, a separator and an electrolyte composition. 正极的活性材料为NaMn02、NaC〇02、NaV308、NaVP04F和Na2V0P04。 The positive electrode active material is NaMn02, NaC〇02, NaV308, NaVP04F and Na2V0P04. 将正极活性材料与炭黑、粘结剂混合均匀,涂布在镍网集流体上,烘干后压成电极。 The positive electrode active material and carbon black, a binder mixed, coated on a nickel mesh current collector, dried and pressed into an electrode. 将活性炭与导电剂和粘结剂混合,均匀涂布在镍网集流体上,烘干后压成电极。 The activated carbon and a binder and the conductive agent, uniformly coated on a nickel mesh current collector, dried and pressed into an electrode. 采用无纺布作为隔膜,用氯化钠或硫酸钠作为电解液,组装成电池。 A nonwoven fabric as a separator, with sodium chloride or sodium sulfate as an electrolyte, a battery was assembled.

[0010] 以上被研究的水系电池均是采用活性炭作为负极活性材料,该材料价格高、容量低,在实际使用的时候器件成本难以降低,能量也不高。 [0010] studied the above aqueous battery are activated carbon as a negative electrode active material, the material having a high price, low capacity, it is difficult to reduce the cost of the device when in actual use, the energy is not high. 中国专利公开号CN101154745A公开了一种水系可充锂或钠离子电池,正极采用锂或钠离子嵌入化合物材料,负极采用核壳结构的LiTi2 (P04) 3材料,电解液采用锂或钠离子的水系电解质。 Chinese Patent Publication No. CN101154745A discloses an aqueous rechargeable lithium or sodium ion battery, a positive electrode using lithium or sodium ion intercalation compound material, a negative electrode using the core-shell structure LiTi2 (P04) 3 materials, using an aqueous electrolyte of a lithium or sodium ion electrolyte. 但是该负极材料对氧气很敏感,如果电池体系不除氧的话难以保证长期循环。 However, the negative electrode material is sensitive to oxygen, if the battery system is not oxygen, then it is difficult to ensure long-term cycle.

[0011] 现有技术中,水系离子电池作为储能电池,循环性能仍无法达到要求,需要改进。 [0011] In the prior art, aqueous ion battery as the storage battery, the cycle performance is still not meet the requirements, needs to be improved.

发明内容 SUMMARY

[0012] 本发明的目的在于开发一种长寿命高能量密度可充放水系离子电池。 [0012] The object of the present invention is to develop a long life and a high energy density ion rechargeable battery drainage system. 发明人发现,采用含有缓冲剂的碱金属离子水溶液作为电解液能够稳定水系离子电池体系的pH值, 有利于抑制析氧和析氢副反应,提高电池循环寿命。 The inventors have found that an aqueous solution containing alkali metal ions as an electrolyte buffer capable of stabilizing the pH of an aqueous system-ion battery, oxygen evolution is advantageous in suppressing hydrogen evolution reaction and improve battery cycle life.

[0013] 本发明涉及一种可充放水系离子电池,包括正极膜、负极膜、隔膜及电解液,其特征在于所述电解液采用含有缓冲剂的碱金属离子水溶液。 [0013] The present invention relates to a drainage system ion rechargeable battery, comprising a positive electrode film, negative electrode film, a separator and an electrolyte, wherein the electrolyte-containing aqueous alkali metal ion buffer. 该可充放水系离子电池具有长寿命高能量密度的性能。 The ion rechargeable battery having a drainage system performance long life and high energy density.

[0014] 本发明所述正极膜材料组成为,按质量比计,正极膜活性材料:导电剂:粘结剂= 80-95% :3-10% :2-10%。 The invention film material of the positive electrode [0014] The present composition, by mass ratio, a positive electrode active film material: conductive agent: binder = 80-95%: 3-10%: 2-10%. 所述正极膜采用能够发生离子可嵌入和脱出的化合物作为正极膜活性物质,正极膜活性物质为LiNi1/3Co1/3Mn1/302、LiNiuCc^Mna.^、LiMn204、LiFeP04、 LiC〇02、LiNi02、入-Mn02、NaMn02中的一种或几种(多种)。 The positive electrode film using a compound capable of inserting and extracting ions as the positive electrode active material film, the positive electrode active material film was LiNi1 / 3Co1 / 3Mn1 / 302, LiNiuCc ^ Mna. ^, LiMn204, LiFeP04, LiC〇02, LiNi02, the one or several (more) -Mn02, NaMn02 in. 正极用导电剂包括炭黑、石墨、 碳纳米管、石墨烯、非活性金属、导电聚合物。 The positive electrode conductive agent include carbon black, graphite, carbon nanotubes, graphene, inactive metal, conductive polymer. 正极用粘结剂包括聚偏氟乙烯、聚四氟乙烯、 聚烯烃、聚乙烯醇、羧甲基纤维素钠、丁苯橡胶。 The positive electrode binder include polyvinylidene fluoride, polytetrafluoroethylene, polyolefin, polyvinyl alcohol, sodium carboxymethyl cellulose, styrene-butadiene rubber.

[0015] 本发明所述负极膜材料组成为,按质量比计,负极膜活性材料:导电剂:粘结剂= 80-95% :3-10% :2-10%。 [0015] The negative electrode of the present invention film material composition, by mass ratio, the negative electrode active material film: conductive agent: binder = 80-95%: 3-10%: 2-10%. 本发明所述负极膜活性物质采用在碱金属离子水溶液中能够发生可逆氧化还原反应的化合物,或者具有电容性能的碳材料,以及二者的混合物。 The film of the present invention, the negative electrode active material capable of reversible oxidation using a compound in an aqueous solution of an alkali metal ion reduction reaction, or carbon materials having capacitive properties, as well as mixtures of the two. 负极膜采用的能够发生可逆氧化还原反应的化合物为NaTi2 (P04) 3、LiTi2 (P04) 3中的一种或几种(多种)。 Compounds capable of reversible redox reaction using a negative film is NaTi2 (P04) 3, LiTi2 (P04) in one or more of the 3 (s). 负极膜采用的具有电容性能的碳材料为活性炭、石墨烯、碳纳米管、碳纤维和介孔碳中的一种或多种。 Carbon material having capacitive properties of the negative film using activated carbon, graphene, carbon nanotubes, carbon fibers, and mesoporous carbon of one or more.

[0016] 本发明所述电解质阳离子是Li+、Na+中的一种或几种(多种)。 The [0016] present invention, the electrolyte cation is Li +, one or several (more) Na + in. 电解质阴离子是硫酸根、氯根、硝酸根中的一种或几种(多种)。 The electrolyte is a sulfate anion, one or several (more) chloride, the nitrate. 电解质浓度为〇. 1摩尔/升-5摩尔/升。 An electrolyte concentration of square. 1 mol / liter -5 mol / liter.

[0017] 本发明所述缓冲剂阳离子是锂离子、钠离子、氢离子的一种或几种(多种)。 The [0017] present invention, the buffer cation is lithium ion, sodium ion, one or more hydrogen ion (s). 所述缓冲剂阴离子是醋酸根、磷酸根的一种或几种(多种)。 The buffer anion is acetate, one or more (plurality) of phosphate. 缓冲剂浓度为0. 01摩尔/升-3摩尔/升。 Buffer concentration of 0.01 mol / liter of 3 moles / liter. 电解液pH值范围为4. 0-11.0。 4. The electrolytic solution pH in the range 0-11.0.

[0018] 本发明的目的在于开发一种长寿命高能量密度可充放水系离子电池,其特征是电解液含有缓冲剂。 [0018] The object of the present invention is to develop a long life and a high energy density ion rechargeable battery drainage system, wherein the electrolytic solution contains a buffer. 所述电池经过200次充放电循环后,容量保持率在90%以上,尤其在91% -95%之间。 After the battery was subjected to 200 charge-discharge cycles, the capacity retention rate of 90%, in particular between 91% -95%. 众所周知,电池电压、活性材料比容量和密度等是影响电池比能量的关键因素。 Is well known, the battery voltage, the active material density and specific capacity key factors affecting cell specific energy. 因此,尽可能的提高电压区间是制造高比能量电池的有限措施。 Therefore, improving the voltage range is limited as much as possible the measures the manufacture of high specific energy batteries. 但是,对于水系离子电池,如果正极电位高于水的稳定区间,正极发生析氧反应促使电池活性材料结构变化, 同时pH值降低,H+浓度增加导致电池材料腐蚀并溶解,而且02扩散到负极与LiTi2 (P04) 3、 NaTi2(P04)3等活性材料反应,这些因素缩短电池循环性能。 However, aqueous ion battery, if the positive electrode potential is higher than the stable section of water, the positive electrode occurs oxygen evolution reaction causes battery active material structural change, while the pH value decreases, the H + concentration results in the battery material erosion and dissolution, and 02 diffused in the anode and LiTi2 (P04) 3, NaTi2 (P04) 3 active material of the reaction and the like, these factors reduce the battery cycle characteristics. 如果负极电位低于水的稳定区间,负极发生析氢反应导致pH值升高,随着0H-浓度增加导致电池材料腐蚀,并且析氧电位发生偏移。 If the anode potential is lower than the stable section of water, the reaction results in the negative electrode hydrogen evolution occurs pH value increased with increasing concentration results in cell 0H- material erosion, and oxygen evolution potential shifted. pH值是影响水系离子电池电池循环性能的重要因素。 The pH is an important factor affecting the performance of the battery aqueous ion battery cycle. 发明人发现,在电解液中添加缓冲剂,能够稳定体系的pH值,抑制析氧和析氢副反应,从而提高电池循环寿命。 The inventors have found that adding a buffer in the electrolyte, pH of the system can be stabilized, suppressing oxygen evolution and hydrogen evolution reaction, thereby improving the battery cycle life.

附图说明 BRIEF DESCRIPTION

[0019] 图1示出本发明实施例1,活性炭/锰酸锂电池在1M硫酸锂水溶液中的首次充放电曲线,电流强度为30mA/g。 [0019] FIG. 1 shows an embodiment of the present invention, the activated carbon / lithium manganese oxide in the first charge and discharge 1M aqueous solution of lithium sulfate curve of current density 30mA / g.

[0020] 图2示出本发明实施例2,活性炭/锰酸锂电池在1M硫酸锂和0. 4M醋酸锂水溶液中的首次充放电曲线,电流强度为30mA/g。 [0020] FIG. 2 shows two embodiments of the present invention, the activated carbon / lithium manganese oxide in the first charge and discharge 1M lithium sulfate and 0. 4M lithium acetate aqueous solution, a curve, a current density of 30mA / g.

[0021] 图3示出本发明实施例1和2中电池循环性能曲线,电流强度为30mA/g。 [0021] Figure 3 shows the cell cycle performance curves 2, and current density in Example 1 of the present invention is the embodiment of 30mA / g.

[0022] 图4示出本发明实施例3,活性炭/锰酸锂电池在1M硫酸钠水溶液中的首次充放电曲线,电流强度为30mA/g。 [0022] FIG. 4 shows an embodiment of the present invention 3, the activated carbon / lithium manganese oxide in the initial charge and discharge curves in 1M aqueous sodium sulfate solution, current density of 30mA / g.

[0023] 图5示出本发明实施例4,活性炭/锰酸锂电池在1M硫酸钠和0. 2M磷酸二氢钠水溶液中的首次充放电曲线,电流强度为30mA/g。 [0023] FIG. 5 shows an embodiment 4 of the present invention, the activated carbon / lithium manganese oxide in the first charge and discharge 1M sodium dihydrogen phosphate and 0. 2M aqueous sodium curve, current intensity of 30mA / g.

[0024] 图6示出本发明实施例-7,活性炭/磷酸铁锂电池在1M硫酸钠和0. 4M醋酸锂水溶液中的首次充放电曲线,电流强度为30mA/g。 [0024] FIG. 6 illustrates an embodiment of the present invention, -7, activated carbon / lithium iron phosphate first charge and discharge curve, and the current intensity in 1M sodium 0. 4M lithium acetate aqueous solution is 30mA / g.

[0025] 图7示出本发明实施例10,磷酸钛锂/锰酸锂电池在1M硫酸钠和0. 4M醋酸锂水溶液中的三电极充放电曲线,电流强度为10mA/g,参比为饱和甘汞电极。 [0025] FIG. 7 shows an embodiment 10 of the present invention, lithium titanium phosphate / lithium manganese battery charge and discharge curves in a three-electrode 1M sodium and 0. 4M lithium acetate aqueous solution, a current density of 10mA / g, reference to saturated calomel electrode.

具体实施方式 Detailed ways

[0026] 以下用具体实施例来说明本发明的技术方案,但是本发明的保护范围并不局限于此: [0026] The particular embodiments of the aspect of the present invention will be described below, but the scope of the present invention is not limited thereto:

[0027] 实施例1 [0027] Example 1

[0028] 正极活性材料采用商业化的LiMn204。 [0028] The positive electrode active material used commercial LiMn204. 正极材料按照LiMn204 :乙炔黑:PTFE粘结剂=80:10:10的质量比均匀混合,烘干后将混合物辊压或碾压到不锈钢网上,然后制成0. 2mm厚的电极片。 LiMn204 cathode material according to: uniformly mixed mass ratio of 10, after drying the mixture to a rolling roll or a stainless steel mesh, and the electrode sheet made of 0. 2mm thick: acetylene black: PTFE binder = 80: 10. 负极材料采用商业化的活性炭,按照活性炭:导电炭黑:PTFE粘结剂= 80:10:10的质量比均匀混合,烘干后将混合物辊压或碾压到不锈钢网上,然后制成1mm厚的电极片。 The negative electrode material using commercial activated carbon, activated according to: conductive carbon black: PTFE binder mass = 80:10:10, after drying the mixture to a rolling roll or a stainless steel mesh, and then uniformly mixed made thicker than 1mm the electrode sheet. 采用分析纯的原料,配置1MLi2S04电解液,用LiOH调节电解液pH值为7. 50。 Using analytically pure material, arranged 1MLi2S04 electrolyte, adjusted with LiOH electrolyte solution pH of 7.50. 将正负极电极按照规格裁切,采用亲水处理过的PP基隔膜和上述配置的电解液,配对组装成电池。 The positive and negative electrode in accordance with the precut using hydrophilic group treated PP separator and the electrolyte of the above-described configuration, a battery was assembled pairing. 在0. 4-1. 8V的工作电压区间以30mA/g电流强度,进行充放电循环测试。 Operating voltage range 0. 4-1. 8V at 30mA / g current strength, charge and discharge cycle test. 首次放电比容量为60. 9mAh/g,首次效率为75. 7 %,平均电压为1. 03V,活性物质比能量为63. 7Wh/ g,首次充放电曲线如图1示。 The first discharge capacity was 60. 9mAh / g, for the first time efficiency was 75.7%, the average voltage of 1. 03V, a specific energy of the active material 63. 7Wh / g, an initial charge-discharge curves shown in FIG. 经过200次循环后,溶液的电解液pH经测试为5. 89,容量保持率为80. 6%,循环性能如图3中下方的曲线所示(性能对比详见表1)。 After 200 cycles, the electrolyte solution of pH 5.89 was tested, the capacity retention rate was 80.6%, the lower curve as shown in Figure 3, the cycle performance (performance comparison Table 1).

[0029] 实施例2 [0029] Example 2

[0030] 正极活性材料采用商业化的LiMn204。 [0030] The positive electrode active material used commercial LiMn204. 正极材料按照LiMn204 :乙炔黑:PTFE粘结剂=80:10:10的质量比均匀混合,烘干后将混合物辊压或碾压到不锈钢网上,然后制成0. 2mm厚的电极片。 LiMn204 cathode material according to: uniformly mixed mass ratio of 10, after drying the mixture to a rolling roll or a stainless steel mesh, and the electrode sheet made of 0. 2mm thick: acetylene black: PTFE binder = 80: 10. 负极材料采用商业化的活性炭,按照活性炭:导电炭黑:PTFE粘结剂= 80:10:10的质量比均匀混合,烘干后将混合物辊压或碾压到不锈钢网上,然后制成1mm厚的电极片。 The negative electrode material using commercial activated carbon, activated according to: conductive carbon black: PTFE binder mass = 80:10:10, after drying the mixture to a rolling roll or a stainless steel mesh, and then uniformly mixed made thicker than 1mm the electrode sheet. 采用分析纯的原料,配置1MLi2S04电解液,电解液中含0.4M醋酸锂溶液,用LiOH调节电解液pH值为7. 50。 Using analytically pure material, arranged 1MLi2S04 electrolyte, a lithium-containing 0.4M acetic acid solution, adjusted with LiOH electrolyte solution pH of 7.50. 将正负极电极按照规格裁切,采用亲水处理过的PP基隔膜和上述配置的电解液,配对组装成电池。 The positive and negative electrode in accordance with the precut using hydrophilic group treated PP separator and the electrolyte of the above-described configuration, a battery was assembled pairing. 在0. 4-1. 8V的工作电压区间以30mA/g电流强度,进行充放电循环测试。 Operating voltage range 0. 4-1. 8V at 30mA / g current strength, charge and discharge cycle test. 首次放电比容量为63. 8mAh/g,首次效率为84. 1%,平均电压为1. 05V,活性物质比能量为66. 9Wh/g,首次充放电曲线如图2示。 The first discharge capacity was 63. 8mAh / g, for the first time efficiency was 84.1%, the average voltage of 1. 05V, a specific energy of the active material 66. 9Wh / g, the first charge-discharge curves shown in FIG. 2. 经过200次循环后,溶液的电解液pH经测试为7. 48,容量保持率为93. 1 %,循环性能如图3上方的曲线所示(性能对比详见表1)。 After 200 cycles, the electrolyte solution of pH 7.48 was tested, the capacity retention rate was 93.1%, the curve 3 shown in FIG upward cycle performance (performance comparison Table 1).

[0031] 实施例3 [0031] Example 3

[0032] 正极活性材料采用商业化的LiMn204。 [0032] The positive electrode active material used commercial LiMn204. 正极材料按照LiMn204 :乙炔黑:PTFE粘结剂=80:10:10的质量比均匀混合,烘干后将混合物辊压或碾压到不锈钢网上,然后制成0. 2mm厚的电极片。 LiMn204 cathode material according to: uniformly mixed mass ratio of 10, after drying the mixture to a rolling roll or a stainless steel mesh, and the electrode sheet made of 0. 2mm thick: acetylene black: PTFE binder = 80: 10. 负极材料采用商业化的活性炭,按照活性炭:导电炭黑:PTFE粘结剂= 80:10:10的质量比均匀混合,烘干后将混合物辊压或碾压到不锈钢网上,然后制成1mm厚的电极片。 The negative electrode material using commercial activated carbon, activated according to: conductive carbon black: PTFE binder mass = 80:10:10, after drying the mixture to a rolling roll or a stainless steel mesh, and then uniformly mixed made thicker than 1mm the electrode sheet. 采用分析纯的原料,配置1MNa2S04电解液,用NaOH调节电解液pH值为7. 50。 Using analytically pure material, arranged 1MNa2S04 electrolyte, adjusted with NaOH pH value of electrolyte 7.50. 将正负极电极按照规格裁切,采用亲水处理过的PP基隔膜和上述配置的电解液,配对组装成电池。 The positive and negative electrode in accordance with the precut using hydrophilic group treated PP separator and the electrolyte of the above-described configuration, a battery was assembled pairing. 在0. 4-1. 8V的工作电压区间以30mA/g电流强度,进行充放电循环测试。 Operating voltage range 0. 4-1. 8V at 30mA / g current strength, charge and discharge cycle test. 首次放电比容量为29. 3mAh/g,首次效率为75. 1 %,平均电压为1. 13V,活性物质比能量为32.lWh/ g,首次充放电曲线如图4示。 The first discharge capacity was 29. 3mAh / g, for the first time efficiency was 75.1%, the average voltage of 1. 13V, a specific energy of the active substance 32.lWh / g, the first charge-discharge curves shown in Figure 4. 经过200次循环后,溶液的电解液pH经测试为6. 24,容量保持率为83. 6% (性能对比详见表1)。 After 200 cycles, the electrolyte solution of pH 6.24 was tested, the capacity retention rate was 83.6% (see Table 1 Comparative Performance).

[0033] 实施例4 [0033] Example 4

[0034] 正极活性材料采用商业化的LiMn204。 [0034] The positive electrode active material used commercial LiMn204. 正极材料按照LiMn204 :乙炔黑:PTFE粘结剂=80:10:10的质量比均匀混合,烘干后将混合物辊压或碾压到不锈钢网上,然后制成0. 2mm厚的电极片。 LiMn204 cathode material according to: uniformly mixed mass ratio of 10, after drying the mixture to a rolling roll or a stainless steel mesh, and the electrode sheet made of 0. 2mm thick: acetylene black: PTFE binder = 80: 10. 负极材料采用商业化的活性炭,按照活性炭:导电炭黑:PTFE粘结剂= 80:10:10的质量比均匀混合,烘干后将混合物辊压或碾压到不锈钢网上,然后制成1mm厚的电极片。 The negative electrode material using commercial activated carbon, activated according to: conductive carbon black: PTFE binder mass = 80:10:10, after drying the mixture to a rolling roll or a stainless steel mesh, and then uniformly mixed made thicker than 1mm the electrode sheet. 采用分析纯的原料,配置1MNa2S04电解液,电解液中含0. 2M磷酸二氢钠溶液, 用NaOH调节电解液pH值为7. 50。 Using analytically pure material, arranged 1MNa2S04 electrolyte, the electrolyte containing 0. 2M sodium dihydrogen phosphate solution, adjusted with NaOH pH value of electrolyte 7.50. 将正负极电极按照规格裁切,采用亲水处理过的PP基隔膜和上述配置的电解液,配对组装成电池。 The positive and negative electrode in accordance with the precut using hydrophilic group treated PP separator and the electrolyte of the above-described configuration, a battery was assembled pairing. 在〇. 4-1. 8V的工作电压区间以30mA/g电流强度,进行充放电循环测试。 Square operating voltage range. 4-1. 8V at 30mA / g current strength, charge and discharge cycle test. 首次放电比容量为30. 8mAh/g,首次效率为74. 6 %,平均电压为1. 24V,活性物质比能量为36. 7Wh/g,首次充放电曲线如图5示。 The first discharge capacity was 30. 8mAh / g, for the first time efficiency was 74.6%, the average voltage of 1. 24V, a specific energy of the active material 36. 7Wh / g, the first charge-discharge curves shown in FIG. 5. 经过200次循环后,溶液的电解液pH经测试为7. 52,容量保持率为94. 5% (性能对比详见表1)。 After 200 cycles, the electrolyte solution of pH 7.52 was tested, the capacity retention was 94.5% (see Table 1 Comparative Performance).

[0035] 实施例5 [0035] Example 5

[0036] 正极活性材料采用商业化的LiMn204。 [0036] The positive electrode active material used commercial LiMn204. 正极材料按照LiMn204 :乙炔黑:PTFE粘结剂=80:10:10的质量比均匀混合,烘干后将混合物辊压或碾压到不锈钢网上,然后制成0. 2mm厚的电极片。 LiMn204 cathode material according to: uniformly mixed mass ratio of 10, after drying the mixture to a rolling roll or a stainless steel mesh, and the electrode sheet made of 0. 2mm thick: acetylene black: PTFE binder = 80: 10. 负极材料采用NaTi2(P04)3,按照NaTi2(P04)3 :导电炭黑:PTFE粘结剂= 80:10:10的质量比均匀混合,烘干后将混合物辊压或碾压到不锈钢网上,然后制成0. 4mm 厚的电极片。 The negative electrode material employed NaTi2 (P04) 3, according to NaTi2 (P04) 3: conductive carbon black: PTFE mixed binder mass ratio = 80:10:10 uniformly, the mixture was dried rolled or laminated to a stainless steel mesh, then the electrode sheet made of 0. 4mm thick. 采用分析纯的原料,配置1MNa2S04电解液,用NaOH调节电解液pH值为6. 50。 Using analytically pure material, arranged 1MNa2S04 electrolyte, adjusted with NaOH pH value of electrolyte 6.50. 将正负极电极按照规格裁切,采用亲水处理过的PP基隔膜和上述配置的电解液,配对组装成电池。 The positive and negative electrode in accordance with the precut using hydrophilic group treated PP separator and the electrolyte of the above-described configuration, a battery was assembled pairing. 在1. 0-1. 8V的工作电压区间以30mA/g电流强度,进行充放电循环测试。 At 1. 0-1. 8V operating voltage range at 30mA / g current strength, charge and discharge cycle test. 首次放电比容量为45. 2mAh/g,首次效率为74. 7 %,平均电压为1. 41V,活性物质比能量为63. 7Wh/ g。 The first discharge capacity was 45. 2mAh / g, for the first time efficiency was 74.7%, the average voltage of 1. 41V, a specific energy of the active material 63. 7Wh / g. 经过200次循环后,溶液的电解液pH经测试为8. 12,容量保持率为82. 1 % (性能对比详见表1)。 After 200 cycles, the electrolyte solution of pH 8.12 was tested, the capacity retention rate was 82.1% (see Table 1 Comparative Performance).

[0037] 实施例6 [0037] Example 6

[0038] 正极活性材料采用商业化的LiMn204。 [0038] The positive electrode active material used commercial LiMn204. 正极材料按照LiMn204 :乙炔黑:PTFE粘结剂=80:10:10的质量比均匀混合,烘干后将混合物辊压或碾压到不锈钢网上,然后制成0. 2mm厚的电极片。 LiMn204 cathode material according to: uniformly mixed mass ratio of 10, after drying the mixture to a rolling roll or a stainless steel mesh, and the electrode sheet made of 0. 2mm thick: acetylene black: PTFE binder = 80: 10. 负极材料采用NaTi2(P04)3,按照NaTi2(P04)3 :导电炭黑:PTFE粘结剂= 80:10:10的质量比均匀混合,烘干后将混合物辊压或碾压到不锈钢网上,然后制成0. 4mm 厚的电极片。 The negative electrode material employed NaTi2 (P04) 3, according to NaTi2 (P04) 3: conductive carbon black: PTFE mixed binder mass ratio = 80:10:10 uniformly, the mixture was dried rolled or laminated to a stainless steel mesh, then the electrode sheet made of 0. 4mm thick. 采用分析纯的原料,配置1MNa2S04电解液,电解液中含0. 2M磷酸二氢钠溶液, 用NaOH调节电解液pH值为6. 50。 Using analytically pure material, arranged 1MNa2S04 electrolyte, the electrolyte containing 0. 2M sodium dihydrogen phosphate solution, adjusted with NaOH pH value of electrolyte 6.50. 将正负极电极按照规格裁切,采用亲水处理过的PP基隔膜和上述配置的电解液,配对组装成电池。 The positive and negative electrode in accordance with the precut using hydrophilic group treated PP separator and the electrolyte of the above-described configuration, a battery was assembled pairing. 在1. 0-1. 8V的工作电压区间以30mA/g电流强度,进行充放电循环测试。 At 1. 0-1. 8V operating voltage range at 30mA / g current strength, charge and discharge cycle test. 首次容量为45. 6mAh/g,首次效率为82. 5%,平均电压为1. 42V, 活性物质比能量为64. 7Wh/g。 Initial capacity of 45. 6mAh / g, for the first time efficiency was 82.5%, the average voltage of 1. 42V, a specific energy of the active material 64. 7Wh / g. 经过200次循环后,溶液的电解液pH经测试为6. 53,容量保持率为92. 5% (性能对比详见表1)。 After 200 cycles, the electrolyte solution of pH 6.53 was tested, the capacity retention was 92.5% (see Table 1 Comparative Performance).

[0039] 实施例7 [0039] Example 7

[0040] 正极活性材料采用商业化的LiFeP04。 [0040] The positive electrode active material used commercial LiFeP04. 正极材料按照LiFeP04 :乙炔黑:PTFE粘结剂=80:10:10的质量比均匀混合,烘干后将混合物辊压或碾压到不锈钢网上,然后制成0. 2mm厚的电极片。 LiFeP04 positive electrode material according to: 10 mass ratio were uniformly mixed, the mixture was dried after rolling or rolling a stainless steel web, and then the electrode sheet made 0. 2mm thick: acetylene black: PTFE binder = 80: 10. 负极材料采用商业化的活性炭,按照活性炭:导电炭黑:PTFE粘结剂= 80:10:10的质量比均匀混合,烘干后将混合物辊压或碾压到不锈钢网上,然后制成1mm厚的电极片。 The negative electrode material using commercial activated carbon, activated according to: conductive carbon black: PTFE binder mass = 80:10:10, after drying the mixture to a rolling roll or a stainless steel mesh, and then uniformly mixed made thicker than 1mm the electrode sheet. 采用分析纯的原料,配置1MLi2S04电解液,用LiOH调节电解液pH值为7. 50。 Using analytically pure material, arranged 1MLi2S04 electrolyte, adjusted with LiOH electrolyte solution pH of 7.50. 将正负极电极按照规格裁切,采用亲水处理过的PP基隔膜和上述配置的电解液,配对组装成电池。 The positive and negative electrode in accordance with the precut using hydrophilic group treated PP separator and the electrolyte of the above-described configuration, a battery was assembled pairing. 在0. 4-1. 2V的工作电压区间以10mA/g电流强度,进行充放电循环测试。 Operating voltage range 0. 4-1. 2V at 10mA / g current strength, charge and discharge cycle test. 首次放电比容量为36. 8mAh/g,首次效率为73. 0 %,平均电压为0. 68V,活性物质比能量为25.OWh/ g,首次充放电曲线如图6示。 The first discharge capacity was 36. 8mAh / g, for the first time efficiency was 73.0%, the average voltage of 0. 68V, a specific energy of the active substance 25.OWh / g, the first charge-discharge curves shown in FIG. 6. 经过200次循环后,溶液的电解液pH经测试为6. 43,容量保持率为87. 3% (性能对比详见表1)。 After 200 cycles, the electrolyte solution of pH 6.43 was tested, the capacity retention rate was 87.3% (see Table 1 Comparative Performance).

[0041] 实施例8 [0041] Example 8

[0042] 正极活性材料采用商业化的LiFeP04。 [0042] The positive electrode active material used commercial LiFeP04. 正极材料按照LiFeP04 :乙炔黑:PTFE粘结剂=80:10:10的质量比均匀混合,烘干后将混合物辊压或碾压到不锈钢网上,然后制成0. 2mm厚的电极片。 LiFeP04 positive electrode material according to: 10 mass ratio were uniformly mixed, the mixture was dried after rolling or rolling a stainless steel web, and then the electrode sheet made 0. 2mm thick: acetylene black: PTFE binder = 80: 10. 负极材料采用商业化的活性炭,按照活性炭:导电炭黑:PTFE粘结剂= 80:10:10的质量比均匀混合,烘干后将混合物辊压或碾压到不锈钢网上,然后制成1mm厚的电极片。 The negative electrode material using commercial activated carbon, activated according to: conductive carbon black: PTFE binder mass = 80:10:10, after drying the mixture to a rolling roll or a stainless steel mesh, and then uniformly mixed made thicker than 1mm the electrode sheet. 采用分析纯的原料,配置1MLi2S04电解液电解液中含0. 4M醋酸锂溶液,用LiOH 调节电解液pH值为7. 50。 Using analytically pure material, electrolytic solution containing an electrolyte disposed 1MLi2S04 0. 4M lithium acetate solution, adjusted with LiOH electrolyte solution pH of 7.50. 将正负极电极按照规格裁切,采用亲水处理过的PP基隔膜和上述配置的电解液,配对组装成电池。 The positive and negative electrode in accordance with the precut using hydrophilic group treated PP separator and the electrolyte of the above-described configuration, a battery was assembled pairing. 在〇. 4-1. 2V的工作电压区间以10mA/g电流强度,进行充放电循环测试。 Square operating voltage range. 4-1. 2V at 10mA / g current strength, charge and discharge cycle test. 首次放电比容量为37. 3mAh/g,首次效率为74. 2%,平均电压为0. 69V,活性物质比能量为25. 7Wh/g。 The first discharge capacity was 37. 3mAh / g, for the first time efficiency was 74.2%, the average voltage of 0. 69V, a specific energy of the active material 25. 7Wh / g. 经过200次循环后,溶液的电解液pH经测试为7. 47,容量保持率为95. 1% (性能对比详见表1)。 After 200 cycles, the electrolyte solution of pH 7.47 was tested, the capacity retention rate was 95.1% (see Table 1 Comparative Performance).

[0043] 实施例9 [0043] Example 9

[0044] 正极活性材料采用商业化的LiMn204。 [0044] The positive electrode active material used commercial LiMn204. 正极材料按照LiMn204 :乙炔黑:PTFE粘结剂=80:10:10的质量比均匀混合,烘干后将混合物辊压或碾压到不锈钢网上,然后制成0. 2mm厚的电极片。 LiMn204 cathode material according to: uniformly mixed mass ratio of 10, after drying the mixture to a rolling roll or a stainless steel mesh, and the electrode sheet made of 0. 2mm thick: acetylene black: PTFE binder = 80: 10. 负极材料采用LiTi2 (P04) 3,按照LiTi2 (P04) 3 :导电炭黑:PTFE粘结剂= 80:10:10的质量比均匀混合,烘干后将混合物辊压或碾压到不锈钢网上,然后制成0. 4mm 厚的电极片。 The negative electrode material employed LiTi2 (P04) 3, according to LiTi2 (P04) 3: conductive carbon black: PTFE binder = mass ratio of 80:10:10 were uniformly mixed, after drying the mixture to a rolling roll or a stainless steel mesh, then the electrode sheet made of 0. 4mm thick. 采用分析纯的原料,配置1MLi2S04电解液,用LiOH调节电解液pH值为6. 50。 Using analytically pure material, arranged 1MLi2S04 electrolyte, adjusted with LiOH electrolyte solution pH of 6.50. 将正负极电极按照规格裁切,采用亲水处理过的PP基隔膜和上述配置的电解液,配对组装成电池。 The positive and negative electrode in accordance with the precut using hydrophilic group treated PP separator and the electrolyte of the above-described configuration, a battery was assembled pairing. 在1. 0-1. 8V的工作电压区间以50mA/g电流强度,进行充放电循环测试。 At 1. 0-1. 8V operating voltage range at 50mA / g current strength, charge and discharge cycle test. 首次放电比容量为77.OmAh/g,首次效率为89. 8%,平均电压为1. 51V,活性物质比能量为116. 3Wh/ g。 The first discharge capacity was 77.OmAh / g, for the first time efficiency was 89.8%, the average voltage of 1. 51V, a specific energy of the active material 116. 3Wh / g. 经过200次循环后,溶液的电解液pH经测试为8. 74,容量保持率为77. 2% (性能对比详见表1)。 After 200 cycles, the electrolyte solution of pH 8.74 was tested, the capacity retention was 77.2% (see Table 1 Comparative Performance).

[0045] 实施例10 [0045] Example 10

[0046] 正极活性材料采用商业化的LiMn204。 [0046] The positive electrode active material used commercial LiMn204. 正极材料按照LiMn204 :乙炔黑:PTFE粘结剂=80:10:10的质量比均匀混合,烘干后将混合物辊压或碾压到不锈钢网上,然后制成0. 2mm厚的电极片。 LiMn204 cathode material according to: uniformly mixed mass ratio of 10, after drying the mixture to a rolling roll or a stainless steel mesh, and the electrode sheet made of 0. 2mm thick: acetylene black: PTFE binder = 80: 10. 负极材料采用LiTi2 (P04) 3,按照LiTi2 (P04) 3 :导电炭黑:PTFE粘结剂= 80:10:10的质量比均匀混合,烘干后将混合物辊压或碾压到不锈钢网上,然后制成0. 4mm 厚的电极片。 The negative electrode material employed LiTi2 (P04) 3, according to LiTi2 (P04) 3: conductive carbon black: PTFE binder = mass ratio of 80:10:10 were uniformly mixed, after drying the mixture to a rolling roll or a stainless steel mesh, then the electrode sheet made of 0. 4mm thick. 采用分析纯的原料,配置1MLi2S04电解液,电解液中含0. 4M醋酸锂溶液,用LiOH调节电解液pH值为6. 50。 Using analytically pure material, arranged 1MLi2S04 electrolyte, a lithium-containing 0. 4M acetic acid, adjusted with LiOH electrolyte solution pH of 6.50. 将正负极电极按照规格裁切,采用亲水处理过的PP基隔膜和上述配置的电解液,配对组装成电池。 The positive and negative electrode in accordance with the precut using hydrophilic group treated PP separator and the electrolyte of the above-described configuration, a battery was assembled pairing. 该电池在1. 0-1. 8V的工作电压区间以50mA/g电流强度,进行充放电循环测试。 The cell was 1. 0-1. 8V operating voltage range at 50mA / g current strength, charge and discharge cycle test. 首次放电比容量为80. 5mAh/g,首次效率为92. 2%,平均电压为1. 51V,活性物质比能量为120. 5Wh/g。 The first discharge capacity was 80. 5mAh / g, for the first time efficiency was 92.2%, the average voltage of 1. 51V, a specific energy of the active material 120. 5Wh / g. 经过200次循环后,溶液的电解液pH经测试为6. 58,容量保持率为90. 1% (性能对比详见表1)。 After 200 cycles, the electrolyte solution of pH 6.58 was tested, the capacity retention rate was 90.1% (see Table 1 Comparative Performance). 图7示出本发明实施例10中磷酸钛锂/锰酸锂电池在1M硫酸钠和0. 4M醋酸锂水溶液中的三电极充放电曲线,电流强度为10mA/ g,参比为饱和甘汞电极。 10 in FIG. 7 shows a lithium titanium phosphate / lithium manganese battery charge and discharge curves, current intensities embodiment of the invention a three-electrode in 1M sodium and 0. 4M lithium acetate aqueous solution is 10mA / g, a saturated calomel reference electrode.

[0047] 表1 [0047] TABLE 1

[0048] [0048]

Figure CN104362393AD00091

o o

Claims (10)

1. 一种可充放水系离子电池,包括正极膜、负极膜、隔膜及电解液,其特征在于:所述电解液采用含有缓冲剂的碱金属离子水溶液。 A drainage system ion rechargeable battery, comprising a positive electrode film, negative electrode film, a separator and an electrolyte, wherein: the electrolyte-containing aqueous alkali metal ion buffer.
2. 根据权利要求1所述的可充放水系离子电池,其特征在于,所述正极膜采用能够发生离子可嵌入和脱出的化合物,其为LiNi1/3Co1/3Mn1/30 2、LiNi^Co^MivA、LiMn204、 LiFeP04、LiCo02、LiNi02、X-Mn02、NaMn0 2 中的一种或几种。 The drainage system can be charged ion battery according to claim 1, wherein the positive electrode film using an ion capable of inserting and extracting the can, which was LiNi1 / 3Co1 / 3Mn1 / 30 2, LiNi ^ Co ^ MivA, LiMn204, LiFeP04, LiCo02, LiNi02, X-Mn02, NaMn0 2 of one or several.
3. 根据权利要求2所述的可充放水系离子电池,其特征在于,所述负极膜采用能够发生可逆氧化还原反应的化合物,其为NaTi2 (P04) 3、LiTi2 (P04) 3中的一种或几种。 Ion rechargeable battery drainage system according to claim 2, wherein said compound using a negative film reversible redox reaction can occur, in which is NaTi2 (P04) 3, LiTi2 (P04) 3 a one or several.
4. 根据权利要求2所述的可充放水系离子电池,其特征在于,所述负极膜采用具有电容性能的碳材料,所述碳材料为活性炭、石墨烯、碳纳米管、碳纤维和介孔碳中的一种或几种。 Ion rechargeable battery drainage system according to claim 2, wherein said film is made of carbon negative electrode material having capacitive properties, the carbon material is activated carbon, graphene, carbon nanotubes, carbon fibers, and mesoporous one or more of carbon.
5. 根据权利要求1所述的可充放水系离子电池,其特征在于,所述电解质的阳离子是Li+、Na+中的一种或几种,所述电解质的阴离子是硫酸根、氯根、硝酸根中的一种或几种。 The drainage system can be charged ion battery according to claim 1, wherein the cation of the electrolyte is one or more Li +, Na + in the anion of the electrolyte is a sulfate, chloride, nitrate one or several roots.
6. 根据权利要求1至5中任一项所述的可充放水系离子电池,其特征在于,所述电解质的浓度为〇. 1摩尔/升-5摩尔/升。 The ion rechargeable battery drainage lines 1 to 5 according to any one of the preceding claims, wherein the concentration of the electrolyte is square. 1 mol / liter -5 mol / liter.
7. 根据权利要求1至5中任一项所述的可充放水系离子电池,其特征在于,所述缓冲剂的阳离子是锂离子、钠离子、氢离子中的一种或几种;所述缓冲剂的阴离子是醋酸根、磷酸根中的一种或几种。 1 to 5 according to any one of the rechargeable battery drainage system as claimed in claim ion, wherein the buffer cations are lithium ions, sodium ions, hydrogen ions of one or more; the the anion of said buffer is one or more of acetate, phosphate of.
8. 根据权利要求1至5中任一项所述的可充放水系离子电池,其特征在于,所述缓冲剂的浓度为〇. 01摩尔/升-3摩尔/升。 8.1 to 5 according to one of the rechargeable battery as claimed in claim ion drainage system, wherein the buffering agent concentration is square. 01 mol / L -3 mol / liter.
9. 根据权利要求1或7所述的可充放水系离子电池,其特征在于,所述电池经过200次充放电循环后,容量保持率在90%以上,尤其在91 % -95%之间。 9. The rechargeable ion batteries or drainage system according to claim 17, wherein the battery after 200 charge-discharge cycles, the capacity retention rate of 90%, in particular between 91% -95% .
10. 根据权利要求1至5中任一项所述的可充放水系离子电池,其特征在于,所述电解液的pH值范围为4.0-11.0。 According to claim 1 to 5 according to any one of the drainage lines may be charged ion battery, wherein the electrolyte pH ranges of 4.0 to 11.0.
CN201410532824.3A 2014-10-10 2014-10-10 Rechargeable aqueous ion battery CN104362393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410532824.3A CN104362393A (en) 2014-10-10 2014-10-10 Rechargeable aqueous ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410532824.3A CN104362393A (en) 2014-10-10 2014-10-10 Rechargeable aqueous ion battery

Publications (1)

Publication Number Publication Date
CN104362393A true CN104362393A (en) 2015-02-18

Family

ID=52529634

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410532824.3A CN104362393A (en) 2014-10-10 2014-10-10 Rechargeable aqueous ion battery

Country Status (1)

Country Link
CN (1) CN104362393A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105322241A (en) * 2015-11-06 2016-02-10 安徽师范大学 Aqueous ion-exchange cell
CN106057477A (en) * 2016-07-22 2016-10-26 清华大学 Water system rechargeable sodion capacitor battery and preparation method thereof
WO2016179507A1 (en) * 2015-05-07 2016-11-10 Landsdowne Laboratories, Inc. Hydroxide-neutralizing batteries, systems and methods related thereto
WO2016179508A3 (en) * 2015-05-07 2016-12-29 Landsdowne Laboratories, Inc. Biocompatible water-deactivated batteries, systems and methods related thereto
CN106299493A (en) * 2015-05-18 2017-01-04 恩力能源科技(南通)有限公司 Repairable electrochemical energy storage device
CN107180966A (en) * 2017-05-09 2017-09-19 南京航空航天大学 Novel water system secondary battery taking lithium salt and sodium salt as electrode materials
CN107871903A (en) * 2017-05-15 2018-04-03 中国科学院金属研究所 Capacitor negative electrode/embedded positive electrode type water-based sodium-ion capacitor battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006111079A1 (en) * 2005-04-21 2006-10-26 Fudan University A hybrid aqueous energy storage device
CN101241802A (en) * 2008-03-13 2008-08-13 复旦大学 A non symmetric water natrium/kalium ion battery capacitor
US20090253025A1 (en) * 2008-04-07 2009-10-08 Carnegie Mellon University Sodium ion based aqueous electrolyte electrochemical secondary energy storage device
CN103022577A (en) * 2012-12-27 2013-04-03 武汉大学 Water system chargeable sodium-ion battery
CN103928681A (en) * 2014-04-03 2014-07-16 中南大学 Symmetric aqueous solution lithium ion battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006111079A1 (en) * 2005-04-21 2006-10-26 Fudan University A hybrid aqueous energy storage device
CN101241802A (en) * 2008-03-13 2008-08-13 复旦大学 A non symmetric water natrium/kalium ion battery capacitor
US20090253025A1 (en) * 2008-04-07 2009-10-08 Carnegie Mellon University Sodium ion based aqueous electrolyte electrochemical secondary energy storage device
CN103022577A (en) * 2012-12-27 2013-04-03 武汉大学 Water system chargeable sodium-ion battery
CN103928681A (en) * 2014-04-03 2014-07-16 中南大学 Symmetric aqueous solution lithium ion battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016179507A1 (en) * 2015-05-07 2016-11-10 Landsdowne Laboratories, Inc. Hydroxide-neutralizing batteries, systems and methods related thereto
WO2016179508A3 (en) * 2015-05-07 2016-12-29 Landsdowne Laboratories, Inc. Biocompatible water-deactivated batteries, systems and methods related thereto
CN106299493A (en) * 2015-05-18 2017-01-04 恩力能源科技(南通)有限公司 Repairable electrochemical energy storage device
CN105322241A (en) * 2015-11-06 2016-02-10 安徽师范大学 Aqueous ion-exchange cell
CN106057477A (en) * 2016-07-22 2016-10-26 清华大学 Water system rechargeable sodion capacitor battery and preparation method thereof
CN107180966A (en) * 2017-05-09 2017-09-19 南京航空航天大学 Novel water system secondary battery taking lithium salt and sodium salt as electrode materials
CN107871903A (en) * 2017-05-15 2018-04-03 中国科学院金属研究所 Capacitor negative electrode/embedded positive electrode type water-based sodium-ion capacitor battery

Similar Documents

Publication Publication Date Title
Wang et al. A new concept hybrid electrochemical surpercapacitor: Carbon/LiMn2O4 aqueous system
CN101540417B (en) Chargeable zinc ion battery
CN101079510A (en) A super capacitance cell
Tang et al. LiMn2O4 nanorods as a super-fast cathode material for aqueous rechargeable lithium batteries
CN1328818C (en) Mixed aquo-lithium ion battery
CN101859887A (en) Transition metal phosphate-clad composite lithium ion battery anode material
CN101154745A (en) Hydrographical rechargeable lithium or sodium ion battery
CN102110839A (en) Battery
CN101510625A (en) Ultra-high magnification lithium ion battery
CN102244300B (en) Lead acid battery taking graphene as additive
CN102683037B (en) Manganese dioxide and a preparation method asymmetric supercapacitor
CN101087018A (en) A water solution Na ion chargeable battery
CN102522553A (en) Sodium ion battery positive material
CN103050290B (en) An internal binding supercapacitor
EP2704248A1 (en) Polyimide capacitance battery and manufacturing method thereof
CN103236560B (en) A lithium sulfur battery of sulfur / carbon composite cathode material and its preparation method and application
CN103579590B (en) The method of preparing a positive electrode material coated with a lithium battery
CN103022577A (en) Water system chargeable sodium-ion battery
CN102544575B (en) Lithium-rich manganese-based power battery and manufacturing method thereof
US20170244102A1 (en) Battery
CN103545123B (en) One kind of hybrid energy storage device of both a zinc ion batteries and super capacitors
CN102055029A (en) High-safety aqueous and organic mixed lithium ion battery
CN101764258A (en) Secondary aluminium cell and preparation method thereof
CN102104140A (en) Power battery electrode and manufacturing method thereof
CN104201320A (en) Method for pre-lithiating electrode material of lithium ion battery

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
COR Change of bibliographic data
RJ01