CN104319236A - Method for forming self-alignment metal silicide - Google Patents

Method for forming self-alignment metal silicide Download PDF

Info

Publication number
CN104319236A
CN104319236A CN201410624243.2A CN201410624243A CN104319236A CN 104319236 A CN104319236 A CN 104319236A CN 201410624243 A CN201410624243 A CN 201410624243A CN 104319236 A CN104319236 A CN 104319236A
Authority
CN
China
Prior art keywords
metal silicide
annealing process
layer
forming
method
Prior art date
Application number
CN201410624243.2A
Other languages
Chinese (zh)
Inventor
肖天金
Original Assignee
上海华力微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海华力微电子有限公司 filed Critical 上海华力微电子有限公司
Priority to CN201410624243.2A priority Critical patent/CN104319236A/en
Publication of CN104319236A publication Critical patent/CN104319236A/en

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28097Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a metallic silicide
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current

Abstract

The invention discloses a method for forming a self-alignment metal silicide. The two times of annealing technologies are adopted, hydrogen isotope gas is introduced in the first time of annealing technology, the hydrogen isotope gas is used for reacting with trace oxygen in the atmosphere to eliminate the oxygen, metal layers such as Ni are prevented from being oxidized, and therefore surface defects (such as a pyramid shape) of the metal silicide are reduced or avoided, and the metal silicide with a flat appearance and good uniformity is formed; isotope atoms in the introduced hydrogen isotope gas can enter the interface of the metal silicide and a silicon substrate and are combined with Si to form a new key which can be hardly fractured, and therefore the defects at the interface are overcome and reduced, and the interface state (Dit) is improved.

Description

自对准金属硅化物的形成方法 The method of forming self-aligned metal silicide

技术领域 FIELD

[0001] 本发明涉及半导体制造技术领域,尤其涉及一种自对准金属硅化物的形成方法。 [0001] The present invention relates to semiconductor manufacturing technology, particularly to a method for forming self-aligned metal silicide.

背景技术 Background technique

[0002] 在半导体制造技术中,金属硅化物由于具有较低的电阻率且和其他材料具有很好的粘合性而被广泛应用于源/漏接触和栅极接触来降低接触电阻。 [0002] In the semiconductor manufacturing technology, and metal silicide, and other materials having excellent adhesiveness because of a low resistivity are widely used in the source / drain contacts and gate contact to reduce contact resistance. 高熔点的金属与硅发生反应生成金属硅化物,通过一步或者多步退火工艺可以形成低电阻率的金属硅化物。 The reaction occurs in a refractory metal and silicon to form metal silicide, may be formed of a low resistivity metal silicide by an annealing process one or more steps. 早期的TiSi 2由于其窄线条效应已经不适用于0. 18um的技术,被CoSi2取代。 Early TiSi 2 because of its narrow line effect has not available for the 0. 18um technology, substituted CoSi2. CoSi2B成相同厚度的硅化物需要消耗更多的多晶硅或硅衬底,已经不能满足源漏浅结及超浅结的需求; CoSi2在低于45纳米的多晶硅线条上表现出明显的窄线条效应;在45纳米及以下的技术中,由于热预算的考量,CoSi 2的形成温度(RTP2的工艺温度范围为600°C〜800°C )也不能满足器件需求。 CoSi2B to the same thickness requires more silicide or polycrystalline silicon substrate, the source and drain can not satisfy the shallow junction requirements and ultra-shallow junction; of CoSi2 narrow lines showed significant effect of less than 45 nanometers on the polysilicon lines; 45 nanometer technology and below, since the thermal budget considerations, the temperature of formation of CoSi 2 (RTP2 process temperature range of 600 ° C~800 ° C) can not meet the needs of the device. 随着半导体工艺水平的提高,特别是在45nm及其以下技术节点,为了获得更低的接触电阻,镍及镍的合金成为形成金属硅化物的主要材料。 With the improvement of the semiconductor technology level, especially in the 45nm technology node and below, in order to obtain lower contact resistance, nickel and nickel alloy as the main material for forming the metal silicide.

[0003] 与TiSijP CoSi2相比,NiSi具有以下的优点:1)硅化工艺温度低(350°C〜 750°C ) ;2)硅消耗量低(形成1纳米NiSi仅消耗0. 83纳米Si) ;3)尚未发现NiSi方块电阻随线条减小而变大;4)可以在较低的温度下与锗硅材料形成低阻值的硅化物。 [0003] Compared with TiSijP CoSi2, NiSi has the following advantages: 1) low temperature silicide process (350 ° C~ 750 ° C); 2) low consumption of silicon (NiSi formed consume only 1 nanometer 0.83 nanometers Si) ; 3) has not been found NiSi lines with reduced sheet resistance becomes large; 4) may form a low resistance silicide with silicon germanium material at a lower temperature. 与TiSi2 和CoSi2相似的地方是NiSi也采用两步RTP的工艺:首先在较低的温度下(220°C〜300°C) 和N 2氛围中进行第一步退火,通过Ni的扩散,生成主要以Ni2Si和NiSi共存的硅化物;然后通过选择性刻蚀去除侧墙上未反应的Ni或NiPt,在较高的温度下(350°C〜750°C )和队氛围中进行第二步退火,在源漏和栅极生成NiSi。 TiSi2 and CoSi2 and similar places NiSi also be employed a two-step process of RTP: The first step is first annealed (220 ° C~300 ° C) and N 2 atmosphere at lower temperature, the diffusion of Ni, generated mainly Ni2Si and NiSi silicide coexist; NiPt then removing unreacted Ni or by selective etching of the sidewall, the second step at a higher temperature (350 ° C~750 ° C) and the team atmosphere annealing, source and drain and generating a NiSi gate electrode.

[0004] 在已经公开的申请号为200780015617. 9的中国专利申请中公开了一种自对准金属娃化物(Salicide, self-aligned silicide)的形成方法,该方法选择镍合金作为形成金属硅化物的材料。 The method of forming [0004] discloses a baby self-aligned metal compound (Salicide, self-aligned silicide) in Chinese Patent Application No. 200780015617.9 been disclosed as in the method of selecting a nickel alloy as the metal silicide s material. 图1至图3给出了该方法形成自对准硅化物各阶段的剖面结构示意图。 1 to FIG. 3 shows a schematic cross-sectional structure of each of the stages of the method of the self-aligned silicide formation.

[0005] 如图1所示,首先提供半导体基底100,所述半导体基底100内形成有多个MOS晶体管(图1中仅以一个MOS晶体管为例),相邻的MOS晶体管之间形成有隔离区110,所述隔离区110内填充有绝缘材料;所述MOS晶体管包括:形成在半导体基底100上的栅介质层104,在所述栅介质层104上形成的栅电极103,在所述栅电极103及栅介质层104的两侧形成的侧墙105,所述栅电极103两侧半导体基底100内形成的源极101和漏极102。 [0005] As shown in FIG. 1, first a semiconductor substrate 100, a plurality of MOS transistors are formed (FIG. 1 only one MOS transistor as an example) of the semiconductor substrate 100, a MOS transistor is formed between adjacent isolation region 110, the inner isolation region 110 filled with an insulating material; said MOS transistor comprising: a gate dielectric layer 104 is formed on the semiconductor substrate 100, a gate electrode formed on said gate dielectric layer 104, 103 of the gate sidewall spacers 103 are formed on both sides of the electrode 104 and the gate dielectric layer 105, source 101 and drain 102 formed in the gate electrode 100 of the semiconductor substrate 103 on both sides.

[0006] 如图2所不,在所述半导体基底100的表面形成金属层106,所述金属层106覆盖所述源极101、漏极102、栅极103和侧墙105,所述金属层106的材料为镍钼合金。 [0006] FIG. 2 is not formed on the surface of the metal layer 106 of the semiconductor substrate 100, the metal layer 106 covers the source electrode 101, drain electrode 102, gate sidewall spacers 103 and 105, the metal layer material 106 is a nickel molybdenum alloy. 进一步地,可以在金属层106上形成保护层107,所述保护层107的材料为氮化钛(TiN),用来防止金属层106被氧化,保护层107的形成是可选的,可以被忽略。 Further, the protective layer 107 may be formed on the metal layer 106, the material of the protective layer 107 is titanium nitride (TiN), for preventing metal layer 106 is oxidized to form a protective layer 107 is optional, may be ignore.

[0007] 如图3所示,对所述半导体基底100进行退火工艺,通过退火,所述源极101、漏极102、栅极103表面上的金属层106材料与所述源极101、漏极102和栅极103中的硅材料发生反应生成金属硅化物层,分别为l〇la、102a、103a。 [0007] As shown in FIG. 3, the semiconductor substrate 100 is an annealing process, by annealing, the source electrode 101, drain electrode 102, a material of the metal layer 106 on the surface of the gate electrode 103 and the source 101, drain 102 and the gate electrode 103 of the silicon material reacts to form a metal silicide layer, respectively l〇la, 102a, 103a. 之后通过选择性刻蚀将没有发生反应的金属层106去除,使得形成的金属硅化物层101a、102a、103a暴露在所述半导体基底100 的表面。 After the metal layer 106 is removed by selective etching there will be no reaction occurs, so that the metal silicide layer 101a, 102a, 103a exposed on the surface of the semiconductor substrate 100.

[0008] 在自对准金属硅化物的制造工艺中,形貌平整和均匀性良好的金属硅化物不仅有利于降低接触电阻和串联电阻,而且有利于提高器件的可靠性。 [0008] In the manufacturing process of self-aligned metal silicide, the topography flatness and good uniformity of the metal silicide is not only beneficial to reduce the contact resistance and a series resistance, but also help to improve device reliability. 通过上述现有制造工艺获得的自对准金属硅化物,虽然通过氮化钛等保护层可以在一定程度上防止金属层被氧化, 但工艺过程中仍不可避免反应氛围中微量氧气接触到金属,并使其被氧化,造成金属硅化物形貌缺陷(如金字塔状),影响表面均匀性。 Obtained by the above-described conventional manufacturing process of self-aligned metal silicide, although the metal layer can be prevented from being oxidized to some extent through the protective layer of titanium nitride, but the process is still inevitable trace oxygen atmosphere in contact with the reaction to the metal, and it is oxidized, causing defects in the metal silicide morphology (e.g., pyramid shape), the impact surface uniformity.

[0009] 另一方面,NBTI (负偏压温度不稳定性,Negative Bias Temperature Instability)是半导体器件的一项重要指标。 [0009] On the other hand, NBTI (Negative Bias Temperature Instability, Negative Bias Temperature Instability) is an important indicator of the semiconductor device. 现有制造工艺中,金属娃化物与娃衬底的界面存在大量的空穴缺陷以及Si-H键,在进行NBTI测试时,Si-H键受热激发而断裂,形成Si 悬挂键,H原子之间结合并以氢气形式释放,进一步形成空穴缺陷,引起阈值电压的负向漂移,使得器件的NBTI性能较差。 Conventional manufacturing process, the interface between the metal compound and the baby doll substrate and a large number of hole defect Si-H bonds, is performed when the test NBTI, Si-H bond is broken excitation heated, to form a Si dangling bond, H atoms between the binding and release of hydrogen in the form of further forming a hole defects, cause a negative threshold voltage drift, so that the poor performance of the device NBTI.

发明内容 SUMMARY

[0010] 为了解决上述现有技术存在的问题,本发明提供一种自对准金属硅化物的形成方法,以降低金属硅化物的缺陷,可以得到形貌平整且均匀性良好的金属硅化物,同时,本发明还可以改善金属硅化物与硅之间的界面,提高NBTI性能。 [0010] In order to solve the aforementioned prior art problems, the present invention provides a method for forming self-aligned metal silicide, to reduce the defective metal silicide, the morphology can be obtained with good flatness and uniform metal silicide, Meanwhile, the present invention can also improve the interface between the metal silicide and the silicon, to improve the NBTI performance.

[0011] 本发明提供的自对准金属硅化物的形成方法,其包括以下步骤: [0011] The method of forming self-aligned metal silicide present invention provides, comprising the steps of:

[0012] 提供半导体衬底,所述半导体衬底表面至少有一硅区域; [0012] providing a semiconductor substrate, the semiconductor substrate surface has at least a silicon region;

[0013] 在所述硅区域的表面形成金属层; [0013] forming a metal layer on the surface of the silicon region;

[0014] 在含有氢的同位素气体的气氛下进行第一次退火工艺,在所述金属层和与之相接触的娃区域表面的娃结合形成第一金属娃化物层的同时,所述氢的同位素气体与气氛中存在的氧气结合以消除反应氛围中的氧气,并且在形成的所述第一金属硅化物层和硅区域之间界面处具有Si悬挂键,所述氢的同位素气体的原子X还与Si悬挂键相结合,形成Si-X 键; While [0014] performing a first annealing process in an atmosphere of a gas containing hydrogen isotopes, to form a first metal layer of the baby doll at the region of the surface and in contact therewith a metal layer, the hydrogen isotopes present in the atmosphere gas and the oxygen binding reaction atmosphere to remove oxygen, and forming the first metal silicide layer and the interface between the silicon region X Si atoms having dangling bonds, the isotopes of hydrogen gas Si dangling bonds and also combine to form a Si-X bond;

[0015] 去除未反应的金属层后,进行第二次退火工艺,使得所述第一金属硅化物层形成第二金属娃化物层。 [0015] After removal of the unreacted metal layer, a second annealing process, such that the first metal silicide layer is formed a second metal layer of the baby.

[0016] 进一步地,所述氢的同位素气体为気气、氣气或氣气。 [0016] Further, the gas is Genki isotopes of hydrogen gas, or gas gas gas gas. 优选氣气(D2)。 Preferably the gas gas (D2).

[0017] 进一步地,第一次退火工艺中氢的同位素气体在气氛中的体积百分含量为1-50%。 [0017] Further, the volume percentage of the first annealing process isotopes of hydrogen gas in the atmosphere is 1-50%.

[0018] 进一步地,第一次退火工艺中载气的流量为5-30slm(每分钟标准升),氢的同位素气体在气氛中的体积百分含量为2-10%。 [0018] Further, the first annealing process flow of the carrier gas is 5-30slm (standard liters per minute), the volume percentage of hydrogen isotopes in the gas atmosphere is 2-10%.

[0019] 进一步地,第一次退火工艺中气氛的载气选自氮气、氦气或氦气,退火工艺选自恒温退火工艺、尖峰退火工艺、闪光退火工艺或激光退火工艺中的一种。 [0019] Further, the first annealing process in an atmosphere of carrier gas is selected from nitrogen, helium, or helium, the annealing process selected temperature annealing process, a spike anneal process, a flash of the annealing process or the laser annealing process.

[0020] 进一步地,第二次退火工艺中气氛的载气选自氮气、氦气或氩气,退火工艺选自恒温退火工艺、尖峰退火工艺、闪光退火工艺或激光退火工艺中的一种。 [0020] Further, the annealing process of the atmosphere in the second carrier gas is selected from nitrogen, helium or argon, is selected from annealing temperature annealing process, a spike anneal process, a flash of the annealing process or the laser annealing process.

[0021] 进一步地,所述第一金属硅化物层含高阻相硅化物,所述第二金属硅化物层为低阻相硅化物。 [0021] Further, the first metal silicide layer having a high resistance silicide phase, the second metal silicide layer with low resistance silicide.

[0022] 进一步地,所述金属层为Ni。 [0022] Further, the metal layer is Ni.

[0023] 进一步地,所述金属层还含有1-10%的NiPt。 [0023] Further, the metal layer further comprises 1-10% NiPt.

[0024] 进一步地,所述第一金属硅化物层含有NiSi和Ni2Si,所述第二金属硅化物层含有NiSi0 [0024] Further, the first metal silicide layer comprises NiSi and of Ni2Si, said second metal silicide layer comprising NiSi0

[0025] 进一步地,第一次退火工艺之前还包括在所述金属层上形成保护层,第二次退火工艺之前还包括去除所述保护层。 [0025] Further, before the first annealing process further comprises forming a protective layer on the metal layer, further comprising a second annealing process prior to removing the protective layer.

[0026] 进一步地,所述保护层为Ti或TiN。 [0026] Further, the protective layer is Ti or TiN.

[0027] 进一步地,所述硅区域为栅极及其两侧的源漏区。 [0027] Further, the silicon region is a gate electrode and source and drain regions on both sides.

[0028] 进一步地,第二次退火工艺也在含有氢的同位素气体的气氛下进行。 [0028] Further, the second annealing process is also a gas atmosphere containing hydrogen isotopes is performed.

[0029] 与现有技术相比,本发明具有以下优点: [0029] Compared with the prior art, the present invention has the following advantages:

[0030] 本发明的自对准金属硅化物的形成方法,通过在第一次退火工艺中引入氢的同位素气体,如氘气,利用其与气氛中的微量氧气发生反应来消除氧气,防止Ni等金属层被氧化,从而减少或避免金属硅化物的表面缺陷(如金字塔状),形成形貌平整和均匀性良好的金属硅化物;引入的氢的同位素气体中该同位素原子,如D原子,能进入到金属硅化物和硅衬底的界面处,与Si悬挂键形成Si-D键,或取代已存在的Si-H键形成Si-D键,从而修复和减少界面处的缺陷,改善界面态(Dit);形成的Si-D键键能大于Si-H键,难于断裂,可以提高器件的NBTI性能。 The method of forming [0030] the present invention is self-aligned metal silicide, by introducing hydrogen in the first annealing process gases isotopes such as deuterium, using its reaction with the trace oxygen in the atmosphere to remove oxygen and prevent Ni a metal layer is oxidized, thereby reducing or avoiding surface defects in metal silicide (e.g., pyramid shape), is formed topography flatness and good uniformity of metal silicide; isotopes of hydrogen gas introduced in the isotope atoms, such as D atoms, can enter into the interface between the metal silicide and the silicon substrate, the Si dangling bonds and Si-D bonds are formed, or substituted Si-H bonds existing Si-D bonds are formed, and to repair defects are reduced at the interface, improving interface state (Dit); Si-D bond can be formed larger than the Si-H bonds, it is difficult to break, can be improved NBTI performance of the device.

附图说明 BRIEF DESCRIPTION

[0031] 为能更清楚理解本发明的目的、特点和优点,以下将结合附图对本发明的较佳实施例进行详细描述,其中: [0031] to be more clearly understood objects, features and advantages of the present invention, the following in conjunction with the accompanying drawings of the preferred embodiment of the present invention is described in detail, wherein:

[0032] 图1至图3是现有技术的自对准金属硅化物形成方法的各步骤剖面结构示意图; [0032] Figures 1 to 3 are schematic cross-sectional structure of each step of the prior art self-aligned metal silicide formation process;

[0033] 图4至图6是本发明实施例的自对准金属硅化物形成方法的各步骤剖面结构示意图。 [0033] FIGS. 4 to 6 are schematic cross-sectional structure of each step of self-aligned metal silicide embodiment of the present invention is a method of forming.

具体实施方式 Detailed ways

[0034] 本发明的实施例以现有常用的Ni作为形成金属硅化物的材料,并以两步退火工艺为基础,结合图4至图5,详细诠释本发明的技术方案的改进之处,但是本发明的技术方案并不受此限制。 [0034] Example embodiments of the present invention to the conventional Ni as commonly used material for forming a metal silicide, and a two-step annealing process is based, in conjunction with FIG. 4 to FIG. 5, a detailed interpretation of the improvement aspect of the present invention, the However aspect of the present invention is not so limited.

[0035] 本实施例的自对准金属硅化物的形成方法,包括以下步骤: The method of the present self-aligned metal silicide embodiment is formed [0035], comprising the steps of:

[0036] 步骤1,如图4所示,提供半导体衬底11,衬底11表面具有一硅区域,硅区域包括MOS晶体管的栅极12和栅极12两侧衬底11内形成的源区13和漏区14。 [0036] Step 1 and 4, a semiconductor substrate 11, the substrate 11 having a silicon surface region, comprising silicon region and the source region 12 formed in substrate 11 on both sides of the gate electrode 12 of the gate of the MOS transistor 13 and drain region 14. 栅极12包括栅介质层121、栅电极层122以及栅介质层和栅电极层两侧形成的侧墙123。 The gate 12 comprises a gate dielectric layer 121, spacer layer 122, and the gate electrode 123 and the gate dielectric layer is formed on both sides of the gate electrode layer.

[0037] 在进行金属层沉积之前,较佳地先对硅片进行预清洗,以使得需要形成所述硅区域的表面没有杂质或者氧化膜,避免影响形成金属层和金属硅化物层的质量。 [0037] Before performing the deposition of the metal layer, the silicon wafer is preferably first pre-cleaned so that the formation of the surface region of the silicon oxide film free from impurities or, to avoid affecting the quality of formation of the metal layer and the metal silicide layer. 预清洗可采用稀释的氢氟酸等。 Pre-cleaning diluted hydrofluoric acid and the like may be employed.

[0038] 步骤2,如图5所示,在所述硅区域的表面上形成Ni层15, Ni层15覆盖栅极12、 源区13和漏区14,使得栅极和源漏区的表面与金属Ni相接触,Ni层15的厚度为100A。 [0038] Step 2, as shown in FIG, Ni layer 15 is formed on the surface 5 of the silicon region, Ni layer 15 covers the gate electrode 12, source region 13 and drain region 14, so that the surface of the gate electrode and source and drain regions contact with the metal Ni, Ni layer 15 having a thickness of 100A. 其中,Ni层15中较佳地含有5%的NiPt,镍钼合金的存在可以使得后续形成金属硅化物的过程中,镍硅化物形成地更加致密、均匀,NiPt是可选的,含量可以为1-10%。 Wherein, Ni layer 15 is preferably 5% of the NiPt, the presence of nickel-molybdenum alloy may be formed such that the subsequent process of a metal silicide, a nickel silicide is formed to a more compact and uniform, the NiPt is optional, the content may be 1-10%. 本步骤采用本领域常规的沉积工艺,如化学气相沉积或物理气相沉积等,厚度可以是50-200A。 This deposition process step using conventional in the art, such as chemical vapor deposition, physical vapor deposition or the like, the thickness may be 50-200A. 在其他实施例中,金属层中的Ni也可以由Er、Yb、Pt、Ti或Co中的一种的金属或合金代替,随后生成的第一金属娃化物层含高阻相娃化物,第二金属娃化物层为低阻相娃化物。 In other embodiments, the metal layer may be formed of Ni, Yb, Pt Ti metal or alloy in place of Er, and Co, or one, then generates a first layer of metal compound-containing baby doll with high resistance thereof, the two metal compound layers is a baby doll with a low resistance thereof.

[0039] 较佳地,在Ni层上还可沉积形成一层保护层,如Ti或TiN,以保护Ni层在后续工艺过程中表面不被氧化,其厚度可以为30A,。 [0039] Preferably, the deposition on the Ni layer may also form a protective layer, such as Ti or TiN, in order to protect the surface of the Ni layer is not oxidized in the subsequent process, it may have a thickness of 30A ,. 形成保护层的工艺也可以为本领域常规的化学气相沉积工艺或物理气相沉积工艺。 Process of forming the protective layer may be present in conventional chemical vapor deposition process or a physical vapor deposition process art. 保护层在后续退火工艺中不参与反应,并可在去除多余的Ni层时一并被去除。 The protective layer does not participate in the reaction in a subsequent annealing process, and can be removed at a removal of excess Ni layer.

[0040] 后续进行退火工艺,本实施例采用两次退火:低温快速退火工艺(RTPl)以及高温快速退火工艺(RTP2)。 [0040] a subsequent annealing process, the present embodiment employs two annealing: temperature fast annealing (RTPL) and high-temperature RTA (RTP2). 以下详细说明: The following details:

[0041] 步骤3,如图6所示,在含有氘气的气氛下进行第一次退火工艺,使得Ni层15和与之相接触的栅极和源漏区表面的娃结合形成第一金属娃化物层16。 [0041] Step 3, 6, performing a first annealing process in an atmosphere containing deuterium, so that the Ni layer 15 and the gate contact therewith and the surface of the doll to form source and drain regions of a first metal layer 16 of the baby. 所述第一金属娃化物层16含有NiSi和Ni 2Si等富镍相硅化物。 The baby of the first metal layer 16 comprises Ni 2Si NiSi and the like Ni-rich phase silicide. 本步骤的气氛中引入了氘气,利用氘气与气氛中的微量氧气发生反应来消除氧气,防止Ni金属被氧化,从而减少或避免形成的第一金属硅化物层的表面缺陷(如金字塔状),形成形貌平整和均匀性良好的第一金属硅化物层;弓丨入的氘气中D原子能进入到第一金属硅化物层和栅极等硅区域的界面处,与Si的悬挂键形成Si-D键,也可取代已存在的Si-H键形成Si-D键,从而修复和减少界面处的缺陷,改善界面态(Dit);形成的Si-D键键能大于Si-H键,在NBTI测试中更难于断裂,可以提高器件的NBTI性能。 In this step the atmosphere of deuterium gas is introduced, the use of deuterium and oxygen in the atmosphere in the reaction to remove trace oxygen to prevent oxidation of Ni metal, thus reducing or avoiding surface defects of the first metal silicide layer is formed (e.g., pyramid ), forming topography flatness and good uniformity of the first metal silicide layer; Shu bow into the atomic deuterium into the D interface of the first metal silicide layer and a gate silicon region and the like, and the dangling bonds of Si forming Si-D bonds may also be substituted with Si-H bonds existing in the formed Si-D bonds, to repair and reduced defects at the interface, improving interface state (Dit); Si-D bond is formed can be greater than the Si-H key, the more difficult to break NBTI test can be improved NBTI performance of the device.

[0042] 本实施例提供的是一种具有栅极的半导体器件,栅极下方存在栅氧与硅衬底的Si/Si02界面,该界面处也存在空穴和Si-H键,本实施例氘气中的D原子也可进入该界面处,并与Si悬挂键形成Si-D键,或取代Si-H键形成Si-H键,从而改善Si/Si0 2的界面态。 [0042] The present embodiment provides a semiconductor device having a gate electrode, the presence of Si / Si02 interface gate oxide and the silicon substrate below the gate, there is a hole at the interface and the Si-H bond, the present embodiment D is deuterium atoms may enter the interface, the Si dangling bonds and Si-D bonds are formed, Si-H bonds or substituted Si-H bonds are formed, to improve the interface state Si / Si0 2 in.

[0043] 本步骤气氛中的载气为氮气,工艺过程中氘气的流量为2slm,氮气的流量为15slm,氘气在气氛中的体积百分含量为11.76%。 [0043] In this step, the atmosphere is nitrogen as carrier gas, the flow process is deuterium 2 slm, the flow rate of nitrogen gas is 15 slm, the volume percentage of deuterium gas atmosphere is 11.76%. 实际应用中,载气和氘气可由各自的管道通入反应炉管内,其中,载气的流量较佳地为5-30slm,氘气在整个气氛中的体积百分含量较佳地为1-50%,更佳地为2-10%,最优5%左右,少则达不到效果,多则造成浪费。 In practical applications, the carrier gas and deuterium gas may be introduced into the respective pipe within the reactor tube, wherein the flow of the carrier gas is preferably a 5-30slm, deuterium gas atmosphere throughout the volume percentage of preferably 1- 50%, more preferably 2-10%, about 5% of the best, at least not achieve results, as many as wasteful. 在其它实施例中,引入的气体还可以是氢的其他同位素气体,如氕气、氚气,但优选氘气,其与Si形成的Si-D键比氕气更强、更难于断裂,且其比氚气更易获得,成本也更低;载气还可以是氦气、氩气等惰性气体。 In other embodiments, the introduced gas may also be hydrogen isotopes of other gases, such as protium gas, tritium gas, but is preferably deuterium, Si-D bonds formed with protium gas stronger than Si, more difficult to break, and which is more readily available than tritium, lower cost; carrier gas may be helium, argon and other inert gases. 本步骤采用低温快速退火工艺,退火温度一般在220-300°C范围内,本实施例中为290°C,退火时间一般在3-120s,本实施例中为25s。 This rapid low temperature annealing process step, the annealing temperature is generally in the range of 220-300 ° C, the present embodiment is 290 ° C, the annealing time is generally 3-120s, the present embodiment is 25s.

[0044] 步骤4,通过选择性刻蚀,去除未反应的Ni层15,防止其在第二次退火时继续与硅区域反应。 [0044] Step 4, by selective etching, removing the non-reacted Ni layer 15, which is prevented from continuing to react with silicon region in the second annealing. 之后,进行第二次退火工艺,使得第一金属硅化物层16形成第二金属硅化物层, 即使富镍相硅化物相变成单镍相硅化物NiSi,所述第二金属硅化物层即为NiSi。 Thereafter, a second annealing process, such that the first metal silicide layer 16 is formed a second metal silicide layer, even when the Ni-rich phase of nickel silicide phases into a single phase silicide NiSi, said second metal silicide layer i.e. as NiSi.

[0045] 本步骤气氛中的载气为氮气,工艺过程中氮气的流量为15slm。 [0045] In this step, the atmosphere is nitrogen as carrier gas, the flow rate of nitrogen as the process 15slm. 实际应用中,载气的流量较佳地为5-30slm。 In practical applications, the flow rate of the carrier gas is preferably 5-30slm. 在其他实施例中,载气还可以是氦气、氩气等惰性气体。 In other embodiments, the carrier gas may be helium, argon and other inert gases. 本步骤采用高温快速退火工艺,退火温度一般在350-750°C范围内,本实施例中为390°C,退火时间一般在3-120s,本实施例中为25s。 This step employs rapid temperature annealing process, the annealing temperature is generally in the range of 350-750 ° C, the present embodiment is 390 ° C, the annealing time is generally 3-120s, the present embodiment is 25s.

[0046] 本实施例中的第一次退火工艺采用恒温退火工艺,在其他实施例中,还可采用其他退火工艺,如尖峰退火工艺、闪光退火工艺或激光退火工艺中的一种。 [0046] The first embodiment of the present embodiment uses an annealing process temperature annealing process, in other embodiments, other annealing process may also be employed, such as a spike anneal process, a flash of the annealing process or the laser annealing process. 其中,采用尖峰退火工艺时,退火温度为300-400°C,退火时间为1. 5-2秒;采用闪光退火工艺时,退火温度为400-650°C,退火时间为3-100毫秒;采用激光退火工艺时,退火温度为500-700°C,退火时间为0. 25-l. 6晕秒。 Wherein, when using the spike annealing process, an annealing temperature of 300-400 ° C, an annealing time of 1. 5-2 seconds; with a flash annealing process, an annealing temperature of 400-650 ° C, the annealing time is 3-100 ms; when the laser annealing process, an annealing temperature of 500-700 ° C, the annealing time is 0. 25-l. 6 halo seconds.

[0047] 本实施例中的第二次退火工艺采用恒温退火工艺,在其他实施例中,还可采用其他退火工艺,如尖峰退火工艺、闪光退火工艺或激光退火工艺中的一种。 [0047] The second embodiment of the present annealing process constant temperature annealing process, in other embodiments, other annealing process may also be employed, such as one spike anneal process, a flash annealing process or the laser annealing process in the embodiment. 其中,采用尖峰退火工艺时,退火温度为500-800°C,退火时间为1. 5-2秒;采用闪光退火工艺时,退火温度为700-850°C,退火时间为3-100毫秒;采用激光退火工艺时,退火温度为750-900°C,退火时间为0. 25-1. 6晕秒。 Wherein, when using the spike annealing process, an annealing temperature of 500-800 ° C, an annealing time of 1. 5-2 seconds; with a flash annealing process, an annealing temperature of 700-850 ° C, the annealing time is 3-100 ms; when the laser annealing process, an annealing temperature of 750-900 ° C, annealing time is 0. 25-1. 6 halo seconds.

[0048] 优选的,在其他实施例中,第二次退火工艺也在含有氢的同位素气体的气氛下进行,可以防止生成的金属硅化物被氧化,并进一步改善界面态。 [0048] Preferably, in other embodiments, the second annealing process is also performed in an atmosphere containing hydrogen gas isotopes, can prevent the generation of metal silicide is oxidized, and to further improve the interface state.

Claims (10)

1. 一种自对准金属硅化物的形成方法,其特征在于,其包括以下步骤: 提供半导体衬底,所述半导体衬底表面至少有一硅区域; 在所述硅区域的表面形成金属层; 在含有氢的同位素气体的气氛下进行第一次退火工艺,在所述金属层和与之相接触的娃区域表面的娃结合形成第一金属娃化物层的同时,所述氢的同位素气体与气氛中存在的氧气结合以消除反应氛围中的氧气,并且在形成的所述第一金属硅化物层和硅区域之间界面处具有Si悬挂键,所述氢的同位素气体的原子X还与Si悬挂键相结合,形成Si-X键; 去除未反应的金属层后,进行第二次退火工艺,使得所述第一金属硅化物层形成第二金属娃化物层。 CLAIMS 1. A method for forming self-aligned metal silicide, characterized in that it comprises the steps of: providing a semiconductor substrate, the semiconductor substrate surface has at least a silicon region; forming a metal layer on the surface of the silicon region; simultaneously performing a first annealing process in an atmosphere of hydrogen gas contains the isotope, are combined to form a first metal layer of the baby doll at the region of the surface and in contact therewith a metal layer, and said hydrogen isotope gas combined with oxygen present in the atmosphere to remove oxygen in the reaction atmosphere, and forming the first metal silicide layer and the interface between the silicon region having a Si dangling bonds, the isotopes of hydrogen gas but also with Si atom X dangling bonds combined to form Si-X bond; after removal of the unreacted metal layer, a second annealing process, such that the first metal silicide layer is formed a second metal layer of the baby.
2. 根据权利要求1所述的自对准金属硅化物的形成方法,其特征在于:所述氢的同位素气体为氣气。 2. The method of claim 1 forming self-aligned metal silicide claim, wherein: said gas is gas isotopes of hydrogen gas.
3. 根据权利要求1或2所述的自对准金属硅化物的形成方法,其特征在于:第一次退火工艺中氢的同位素气体在气氛中的体积百分含量为1-50%。 3. The method of claim 12 or forming self-aligned metal silicide claim, wherein: the volume percentage of the first annealing process isotopes of hydrogen gas in the atmosphere is 1-50%.
4. 根据权利要求3所述的自对准金属硅化物的形成方法,其特征在于:第一次退火工艺中载气的流量为5-30slm,氢的同位素气体在气氛中的体积百分含量为2-10%。 4. The method of forming self-aligned metal silicide according to claim 3, wherein: the first flow of the carrier gas in the annealing process is 5-30slm, the volume percentage of hydrogen isotopes in the gas atmosphere 2-10%.
5. 根据权利要求4所述的自对准金属硅化物的形成方法,其特征在于:第一次退火工艺中气氛的载气选自氮气、氦气或氦气,退火工艺选自恒温退火工艺、尖峰退火工艺、闪光退火工艺或激光退火工艺中的一种;第二次退火工艺中气氛的载气选自氮气、氦气或氦气, 退火工艺选自恒温退火工艺、尖峰退火工艺、闪光退火工艺或激光退火工艺中的一种。 5. The method of claim 4 forming self-aligned metal silicide claim, wherein: the carrier gas in the first annealing process atmosphere is selected from nitrogen, helium, or helium, the annealing process selected temperature annealing process , spike annealing process, a laser annealing or flash annealing process of one process; annealing process atmosphere in the second carrier gas is selected from nitrogen, helium, or helium, the annealing process selected temperature annealing process, a spike anneal process, a flash one kind or a laser annealing process in the annealing process.
6. 根据权利要求1所述的自对准金属硅化物的形成方法,其特征在于:所述第一金属硅化物层含高阻相硅化物,所述第二金属硅化物层为低阻相硅化物。 6. The method of claim 1 forming self-aligned metal silicide claim, wherein: said first metal silicide layer having a high resistance silicide phase, the second layer is a low resistance metal silicide phase silicide.
7. 根据权利要求6所述的自对准金属硅化物的形成方法,其特征在于:所述金属层为Ni,所述第一金属硅化物层含NiSi和Ni2Si,所述第二金属硅化物层为NiSi。 7. The method of forming self-aligned metal silicide according to claim 6, wherein: the metal layer is Ni, the first metal silicide layer containing NiSi and of Ni2Si, said second metal silicide layer is NiSi.
8. 根据权利要求7所述的自对准金属硅化物的形成方法,其特征在于:所述金属层还含有1-10%的NiPt。 8. The method of forming self-aligned metal silicide according to claim 7, wherein: the metal layer further contains 1-10% NiPt.
9. 根据权利要求1所述的自对准金属硅化物的形成方法,其特征在于:第一次退火工艺之前还包括在所述金属层上形成保护层,第二次退火工艺之前还包括去除所述保护层。 9. A method for forming a self-aligned metal silicide 1 claim, wherein: the first annealing process further comprising, prior to forming a protective layer on the metal layer, further comprising removing the second annealing process prior to the protective layer.
10. 根据权利要求1至9任一项所述的自对准金属硅化物的形成方法,其特征在于:第二次退火工艺也在含有氢的同位素气体的气氛下进行。 According to any one of claims 1 to 9 in a method of forming the self-aligned metal silicide, characterized in that: a second annealing processes are performed under an atmosphere containing hydrogen gas isotopes.
CN201410624243.2A 2014-11-07 2014-11-07 Method for forming self-alignment metal silicide CN104319236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410624243.2A CN104319236A (en) 2014-11-07 2014-11-07 Method for forming self-alignment metal silicide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410624243.2A CN104319236A (en) 2014-11-07 2014-11-07 Method for forming self-alignment metal silicide

Publications (1)

Publication Number Publication Date
CN104319236A true CN104319236A (en) 2015-01-28

Family

ID=52374450

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410624243.2A CN104319236A (en) 2014-11-07 2014-11-07 Method for forming self-alignment metal silicide

Country Status (1)

Country Link
CN (1) CN104319236A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972765A (en) * 1997-07-16 1999-10-26 International Business Machines Corporation Use of deuterated materials in semiconductor processing
US20090004850A1 (en) * 2001-07-25 2009-01-01 Seshadri Ganguli Process for forming cobalt and cobalt silicide materials in tungsten contact applications
CN102487047A (en) * 2010-12-01 2012-06-06 中芯国际集成电路制造(北京)有限公司 Method for forming semiconductor structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972765A (en) * 1997-07-16 1999-10-26 International Business Machines Corporation Use of deuterated materials in semiconductor processing
US20090004850A1 (en) * 2001-07-25 2009-01-01 Seshadri Ganguli Process for forming cobalt and cobalt silicide materials in tungsten contact applications
CN102487047A (en) * 2010-12-01 2012-06-06 中芯国际集成电路制造(北京)有限公司 Method for forming semiconductor structure

Similar Documents

Publication Publication Date Title
US6653700B2 (en) Transistor structure and method of fabrication
JP4128771B2 (en) Ultra-shallow junction formation method using a laser annealing
EP2022085B1 (en) Method for forming self-aligned metal silicide contacts
CN100550422C (en) The semiconductor structure
KR100441681B1 (en) Method of forming a metal gate
US6878627B1 (en) Semiconductor device with cobalt silicide contacts and method of making the same
US20060163670A1 (en) Dual silicide process to improve device performance
TW494493B (en) Process for producing semiconductor integrated circuit device and semiconductor integrated circuit device
CN100375240C (en) Method for forming metal silication grid and transistor with metal silication grid
US20070052034A1 (en) Integrated circuit containing polysilicon gate transistors and fully silicidized metal gate transistors
JP2008235568A (en) Semiconductor device and its manufacturing method
JPH10284732A (en) Method for forming improved cobalt silicide layer on integrated circuit structure using two capping layers
CN101026162A (en) Semiconductor device and its making method
JPH07245277A (en) Manufacture of semiconductor device
CN101416286A (en) Silicon oxynitride gate dielectric formation using multiple annealing steps
CN102103995B (en) Method for fabricating an integrated circuit device
JP2692554B2 (en) A method of manufacturing a semiconductor device
US7208414B2 (en) Method for enhanced uni-directional diffusion of metal and subsequent silicide formation
JPH08116054A (en) Semiconductor device comprising cobalt silicide film and its manufacture
JP5286664B2 (en) A method of manufacturing a semiconductor device
JP2877104B2 (en) A method of manufacturing a semiconductor device
JP5270086B2 (en) Semiconductor structure and a manufacturing method thereof using a metal oxynitride as a pFET material
CN100479189C (en) Manufacturing method of semiconductor device
CN100539187C (en) Metal oxide semiconductor device and method of manufacturing the same
US20070123042A1 (en) Methods to form heterogeneous silicides/germanides in cmos technology

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
RJ01