CN104308368B - The multi-pulse laser ablation method for removing metal cladding quantitative - Google Patents

The multi-pulse laser ablation method for removing metal cladding quantitative Download PDF

Info

Publication number
CN104308368B
CN104308368B CN201410447320.1A CN201410447320A CN104308368B CN 104308368 B CN104308368 B CN 104308368B CN 201410447320 A CN201410447320 A CN 201410447320A CN 104308368 B CN104308368 B CN 104308368B
Authority
CN
China
Prior art keywords
laser
pulse
ablation
multi
depth
Prior art date
Application number
CN201410447320.1A
Other languages
Chinese (zh)
Other versions
CN104308368A (en
Inventor
贾振元
刘巍
赵凯
王泠
丁立超
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to CN201410447320.1A priority Critical patent/CN104308368B/en
Publication of CN104308368A publication Critical patent/CN104308368A/en
Application granted granted Critical
Publication of CN104308368B publication Critical patent/CN104308368B/en

Links

Abstract

本发明多脉冲激光烧蚀金属覆层定量去除方法属于数控激光加工技术领域,涉及一种在数控激光加工中定量去除工程塑料表面覆层金属的方法。 The present invention is a multi-pulse laser ablation method for removing metal cladding quantitative CNC laser machining belonging to the technical field relates to a method for coating the plastic surface of the metal removed quantitatively CNC laser machining. 该方法根据能量守恒定律及纳秒尺度脉冲激光与材料作用的烧蚀机理,得到单脉冲激光烧蚀深度预测模型;通过分析多脉冲激光经过定点位置时激光脉冲的堆叠过程,建立多脉冲激光烧蚀深度预测模型,从而确定烧蚀深度与加工参数之间的对应关系,通过调节加工参数来控制去除量。 The law of conservation method and scale nanosecond pulsed laser ablation mechanism acting material according to the energy, to give a single pulsed laser ablation depth prediction model; analysis by multi-pulse laser laser pulses through the stacking process when pointing position, establishing a multi-pulse laser burn etch depth prediction model to determine a correspondence between the ablation depth and processing parameters, is controlled by adjusting the amount of removal processing parameters. 本发明针对实际加工中在同一位置激光脉冲的多重烧蚀作用,非均匀的激光能量分布特性,以及激光光斑位置相对于工件始终保持移动的加工过程,实现了纳秒级多脉冲激光烧蚀中目标材料去除量精确控制,从而提高加工效率、降低制造成本。 The present invention is directed to the actual processing action in the same position multiple ablation laser pulse, a non-uniform energy distribution characteristics of the laser, and the laser spot position with respect to a workpiece kept moving process, to achieve a multi-nanosecond pulsed laser ablation precise control of the target material removal, thereby improving the processing efficiency and reduce manufacturing costs.

Description

多脉冲激光烧蚀金属覆层定量去除方法 The multi-pulse laser ablation method for removing metal cladding quantitative

技术领域 FIELD

[0001] 本发明属于数控激光加工技术领域,设及一种在数控激光加工中定量去除工程塑料表面覆层金属的方法。 [0001] The present invention belongs to the field of CNC laser machining technology, and provided a method for coating the plastic surface of the metal removed quantitatively CNC laser machining.

背景技术 Background technique

[0002] 将工程塑料表面的金属覆层图形化去除后可实现传感器、天线等零件的制造,而多脉冲激光加工是实现运类零件的有效制造方法。 [0002] The metallic coating of the plastic surface of the pattern can be achieved for producing sensors, antennas, etc. After removing the parts, and the multi-pulse laser machining operation is implemented method for efficiently producing type parts. 激光加工具有影响因素多、加工过程中材料性质与形态变化复杂、作用时间短导致实时监测困难等特性,使得加工结果难W被准确预测和控制。 The laser processing has many factors, material properties and morphology changes complex processing, short duration of action leads to difficulty monitoring real-time characteristics, so that the processing result W is difficult to accurately predict and control. 而在将多脉冲激光烧蚀应用于去除工程塑料表面金属覆层时,需要将表面金属覆层彻底去除W形成功能化金属图形,同时还应尽量减少对工程塑料基底的过烧蚀。 And when the multi-pulse laser ablation surface of the plastic used to remove metallic coating, metallic coating surface required to completely remove the metal pattern forming function W, while the plastic substrate should minimize excessive ablation. 因此,基于多脉冲激光烧蚀实现工程塑料表面金属覆层的精确定量去除,是同时保证零件功能性和机械性能的关键因素。 Therefore, accurate quantitation based on multi-pulse laser ablation to achieve plastic surface of the metal coating is removed, while ensuring that the key factor is the functional parts and mechanical properties. 常规的激光烧蚀深度控制方法通常采用实验法,在确定激光器及待加工材料后,进行大量反复的试加工实验,通过比较烧蚀结果和目标值,选择合适的加工参数。 Conventional laser ablation process generally employed depth control experiment, after determining the laser and the material to be processed, a large number of trial machining repeated experiments, and by comparing the results of the ablation target, select the appropriate processing parameters. 该方法的不足之处在于由于影响激光加工结果的因素很多,需要进行大量的加工实验才能确定合适的加工参数组合,当加工目标材料或目标值发生变化时,往往需要重新进行实验,效率较低且成本较高。 Disadvantage of this method is that due to the many factors influencing the result of laser processing, requires a lot of experiments to determine the appropriate processing parameter combination process, when the processing target material or target changes, often require the experiment, less efficient and higher costs. 因此,实验法已不再适用于该类零件的高精高效加工。 Thus, experimental method is no longer applicable to the category of high-precision parts efficient processing.

[0003] 近年来,通过对激光烧蚀过程的数值模拟计算来实现烧蚀深度控制的方法被广泛研究。 [0003] In recent years, methods to achieve ablation depth is controlled by the numerical simulation of laser ablation process has been extensively studied calculated. 如吴东江等人专利公告号为CN103268064A的"一种超短脉冲激光烧蚀氮化娃的模拟计算方法"的专利中,建立超短脉冲激光烧蚀氮化娃的烧蚀模型,对计算参数进行初始化;定义等离子体密度边界条件,并通过模型计算在不同模拟参数下的烧蚀阔值、深度和体积;基于计算结果和残留高度模型,对激光烧蚀残留高度进行分析评价,并给出指导参数。 Wudong Jiang et al patent as Patent Publication No. CN103268064A the "simulation method of ultrashort pulsed laser ablation nitride baby", by establishing ultrashort pulsed laser ablation of the ablation model baby nitride, calculation parameters initialized; plasma density defines the boundary conditions, and calculated by the model at different simulated values ​​of the parameters of the ablation width, depth and volume; calculation model and the residual height, the height of the laser ablation residue were analyzed and evaluated, and are given guidance parameters. 然而,该类方法多针对的是在工件同一位置进行烧蚀过程的仿真,且多采用单一脉冲烧蚀过程作为研究对象。 However, such methods for multiple simulation is performed at the same position of the ablation process a workpiece, and more single pulse ablation process study. 而对于工程塑料表面金属覆层的图形化去除加工中,同一位置的激光脉冲数较多,且激光光斑持续移动等问题,该类方法具有一定的局限性,不能实现对金属覆层定量去除的精确控制。 For the plastic surface of the patterned metal coating removal processing, a large number of laser pulses in the same position, and the continuous movement of the laser spot and so on, such methods have some limitations, can not be achieved for the quantitative removal of the metal coating precise control.

发明内容 SUMMARY

[0004] 本发明的目的是针对纳秒级多脉冲激光烧蚀工程塑料表面金属覆层时,去除量难W被准确预测并控制的技术难题,克服原有反复实验法在工程应用中效率过低、成本较高等缺点。 [0004] The object of the present invention is for a nanosecond pulsed laser ablation of plastic surface of multi-metallic coating, removal is difficult to accurately predict and control the W technical problems, overcoming the previous experiment is repeated in the application efficiency through Engineering low, high cost and other shortcomings. 解决原有烧蚀深度模拟计算方法中针对单脉冲烧蚀及定点烧蚀所导致的在工程应用中的局限性,发明了一种多脉冲激光烧蚀金属覆层定量去除方法。 Original solution ablation depth simulation method for a single pulse ablation and the ablation point resulting in a limitation in engineering applications, the laser ablation of the invention the metallic coating quantitative method for removing a multi-pulse. 该方法针对实际加工中在同一位置激光脉冲的多重烧蚀作用,非均匀的激光能量分布特性,W及激光光斑位置相对于工件始终保持移动的加工过程。 The actual method of processing the same position in a multi-effect laser pulse ablation, non-uniform distribution characteristics of laser energy, W, and the position of the laser spot with respect to a workpiece kept moving process. 根据烧蚀过程中的能量守恒关系及激光光斑移动过程中激光束与材料的相互作用过程,建立了纳秒级多脉冲激光加工工程塑料表面覆层金属的烧蚀深度预测模型,实现对激光烧蚀中目标材料去除量精确控制,从而提高了加工效率, 并降低了制造成本。 Conversation and the movement of the laser spot of the laser beam interacts with the material in the process according to the process of ablation energy, the ablation is established multi-nanosecond pulse laser surface coating of metal plastic working depth prediction model, to achieve the laser burn etching target material removal precise control, thereby improving the processing efficiency and reducing manufacturing costs.

[0005] 本发明所采用的技术方案是:一种多脉冲激光烧蚀金属覆层定量去除方法,其特征在于,首先根据能量守恒定律及纳秒尺度脉冲激光与材料作用的烧蚀机理,得到单脉冲激光烧蚀深度预测模型;通过分析多脉冲激光经过定点位置时激光脉冲的堆叠过程,建立多脉冲激光烧蚀深度预测模型,从而确定烧蚀深度与加工参数之间的对应关系,通过调节加工参数来控制去除量。 [0005] The technical proposal of the present invention: a multi-pulse laser ablation quantitative method for removing metal cladding, characterized in that the first and the law of conservation of ablation mechanism nanosecond pulsed laser scale function of the energy and materials, to give single pulse laser ablation depth prediction model; analysis by multi-pulse laser laser pulses through the stacking process when pointing position established multi-pulse laser ablation depth prediction model to determine a correspondence between the ablation depth and processing parameters, by adjusting the processing parameters to control removal. 基于纳秒级多脉冲激光烧蚀的塑料表面金属覆层定量去除控制方法具体步骤如下: Based on the plastic surface of multi-nanosecond pulsed laser ablation of metallic coating quantitative removal control method the following steps:

[0006] (1)单一脉冲去除材料厚度的计算 [0006] (1) a single pulse calculated thickness of the material removed

[0007] 因采用的激光光源发射的脉冲作用时间为纳秒级,能量传递为热传递,热穿透深度: [0007] time due to the pulsed laser light source emitting heat transfer nanosecond transfer, energy, heat penetration depth:

Figure CN104308368BD00051

W W

[0008] 其中,D为热扩算率,tp为脉冲持续时间;采用一维热传递方程建立激光烧蚀模型; 当目标材料表面厚度为It的材料从室溫T^b加热至烙化溫度Tm时,目标材料的烧蚀阔值为: [0008] where, D is the thermal expansion rate calculation, tp is the pulse duration; laser ablation establish a one-dimensional heat transfer model equation; when the thickness of the surface material of the target material is heated from It rt T ^ b to a temperature bake Tm, the width of the ablated target material is:

Figure CN104308368BD00052

[0009] 其中,P为覆层金属密度,Cp为比热容,R为热传递系数;脉冲激光能量呈高斯剖面,其空间分布为: [0009] wherein, P is the density of the metal coating, the specific heat capacity Cp, R is the heat transfer coefficient; Gaussian sectional pulsed laser energy, the spatial distribution of:

Figure CN104308368BD00053

(3) (3)

[0011] 其中,W为光束束腰半径,F。 [0011] where, W is the beam waist radius, F. 为激光能量密度;依据能量守恒定律,当单一激光脉冲与金属层的表面相互作用时,厚度为h的材料将被气化; Density of laser energy; based on the law of conservation of energy, when the surface of the metal layer with a single laser pulse interaction, h is a thickness of material to be vaporized;

[ [

Figure CN104308368BD00054

(4) (4)

[0013] 其中,Pg为覆层金属固态密度,AHd为覆层金属烙化赌,P1为覆层金属液态密度,AHh为覆层金属气化赌; [0013] wherein, Pg is the density of the solid metal coating, a metal coating is baked AHD of gambling, P1 is the density of the liquid metal coating, AHh is a metal vapor coating gambling;

[0014] (2)建立多脉冲激光烧蚀深度模型及烧蚀深度的精确控制 [0014] (2) establishing a multi-precise control of laser pulse ablation depth and ablation depth model

[0015] 设定多脉冲激光相邻两个激光脉冲的移动距离为AX,则第n个激光脉冲的能量F。 Movement distance [0015] The multi-pulse laser beam is set two adjacent laser pulses to AX, the energy of the n-th laser pulse F. 在位置Q上的能量分布表达式为: Q at position energy distribution expression is:

Figure CN104308368BD00055

巧) Qiao)

[0016]将公式(5)带入单脉冲激光烧蚀深度表达式(4),得到第n个激光脉冲在同一位置Q上的烧蚀深度为: [0016] Equation (5) single pulse laser ablation depth into the expression (4), to give the n-th laser pulse ablation depth in the same position Q is:

Figure CN104308368BD00056

W W

[0017] 当多脉冲激光脉冲扫过位置Q时,设将金属覆层完全烧蚀所需要的脉冲个数为村W n_=化m+1,则累积烧蚀深度为:婚=Za;令F。 The number of pulses [0017] When the multi-pulse laser pulse sweeps position Q, provided the complete ablation of the metal coating layer required for the village of W n_ = m + 1, the cumulative ablation depth: marriage = Za; Order F. ^Fth,得到所需的激光脉冲总数为: 巧惭(7) ^ Fth, give the total number of laser pulses required to: Qiao ashamed (7)

[0019] 相邻两脉冲激光的位移为Ax=v/f,其中,V为进给速度,f为脉冲重复频率;因此,在同一位置Q处建立的激光烧蚀深度模型为: [0019] displacement of two adjacent laser pulses is Ax = v / f, where, V is the feed rate, f is the pulse repetition frequency; therefore, the depth of laser ablation model in the same position Q is:

Figure CN104308368BD00061

C8) C8)

[0021] 在加工中,通过调节激光能量密度F。 [0021] In the process, by adjusting the laser energy density F. ,进给速度V,脉冲重复频率f来完成烧蚀深度的精确控制。 , Feed speed V, the pulse repetition frequency f are precisely controlled ablation depth.

[0022] 本发明的有益效果是解决原有烧蚀深度模拟计算方法中针对单脉冲烧蚀及定点烧蚀所导致的在工程应用中的局限性,建立了纳秒级多脉冲激光加工工程塑料表面覆层金属的烧蚀深度预测模型,实现对激光烧蚀中目标材料去除量精确控制,提高了加工效率和质量,并降低了制造成本。 [0022] Advantageous effects of the present invention is to solve the original ablation depth simulation method for a single pulse ablation and the ablation point resulting in limitations engineering applications, the establishment of a multi-nanosecond pulse laser processing plastic ablation depth prediction model of the surface coating of metal, removal of laser ablation to achieve the target amount of material precise control, improve the processing efficiency and quality, and reducing manufacturing costs.

附图说明 BRIEF DESCRIPTION

[0023] 图1是多脉冲激光烧蚀原理图,X-激光光束进给方向,Y-激光入射方向,Q-目标材料上固定位置,1-多脉冲激光在目标材料固定位置Q上的烧蚀曲线,2-目标材料。 [0023] FIG. 1 is a schematic diagram of a multi-pulse laser ablation, X- feed direction of the laser beam, Y- laser beam incident direction, a fixed position on the target material Q-, 1- multi-pulse laser in a fixed position on the target material burning Q isocorrosion, 2 target material.

[0024] 图2是多脉冲激光烧蚀预测结果,其中,纵坐标为烧蚀深度,横坐标为距离光斑中屯、的距离,Adapl-AdaplS代表第1-15个脉冲的烧蚀深度。 [0024] FIG. 2 is a multi-pulse laser ablation prediction results, wherein the ordinate is the depth of ablation, the abscissa is the distance from the spot in the village, a, Adapl-AdaplS 1-15 represents the pulse ablation depth.

具体实施方式 Detailed ways

[0025] W下结合技术方案和附图详细叙述本发明的具体实施方式。 The combination of technology and figures [0025] W detailed description of specific embodiments of the present invention. 图1是多脉冲激光烧蚀原理图,激光光束沿X方向进给,激光光束沿Y方向入射到目标材料2上固定位置Q处,1 为多脉冲激光在目标材料固定位置Q上的烧蚀曲线。 FIG 1 is a schematic diagram of a multi-pulse laser ablation, the laser beam in the X direction feed, the laser beam is incident in the Y direction to the fixed position Q on the target material 2, a multi-pulse laser ablation of a target material in a fixed position on the Q curve.

[0026] 实施例加工实验条件如下:金属覆层为10ym厚锻铜层,基底材料为聚酷亚胺,激光光源波长532皿,脉宽10ns,重复频率10-40化Z,能量密度0-70J/cm2。 [0026] Example processing experimental conditions as follows: the metallic coating is 10ym thick wrought copper layer, the substrate material is a polyethylene imine cool, the wavelength of the laser light source boat 532, 10ns pulse width, repetition frequency of 10-40 Z, the energy density 0- 70J / cm2. 进给速度0-6m/ min。 Feed speed 0-6m / min. 激光光斑直径40um。 Laser spot diameter 40um. 多脉冲激光烧蚀金属覆层定量去除方法具体实施步骤如下: The multi-pulse laser ablation method for removing metal cladding quantitative specific embodiment the following steps:

[0027] (1)单一脉冲去除材料厚度的计算 [0027] (1) a single pulse calculated thickness of the material removed

[0028] 由于所采用的激光光源发射的脉冲作用时间为纳秒级,能量传递主要为热传递。 [0028] Since the pulse duration of action of the laser light emitted is used nanosecond, the major energy transfer is the heat transfer. 覆层金属与工程塑料间的热传递困难,根据热穿透深度/rS^/^^计算得到该脉冲激光能量在铜层中的热穿透深度小于2um,远小于光斑直径,证明可将热力学模型简化至一维。 Heat transfer between the hard metal and plastic coating, thermal penetration depth / rS ^ / ^^ calculated heat of the laser pulse energy is in the copper layer penetration depth of less than 2um, much smaller than the spot diameter can be proved thermodynamics simplified to a one-dimensional model. 当目标材料表面厚度为It的材料从室溫加热至烙化溫度1358K时,计算得到目标材料的烧蚀阔值为0. 76J/cm2。 When the thickness of the surface of the target material It is baked material is heated from room temperature to temperature 1358K, the calculated value of the width of the target material ablation 0. 76J / cm2. 选定激光能量密度F。 Selected laser fluence F. = 20J/cm2,脉冲重复频率f= 10化Z,进给速度V =Im/min。 = 20J / cm2, pulse repetition frequency of f = 10 Z, feed speed V = Im / min. 根据烧蚀深度预测模型,当单一激光脉冲与金属层的表面相互作用时,可预测得到每一个脉冲在同一位置烧蚀的深度及所有激光脉冲烧蚀的累积深度, The ablation depth prediction model, when the surface of the metal layer with a single laser pulse interaction can be predicted accumulated per one pulse in the same position the ablation depth and the depth of all of the laser pulse ablation,

[0029] (2)建立多脉冲激光烧蚀深度模型及烧蚀深度的精确控制 [0029] (2) establishing a multi-precise control of laser pulse ablation depth and ablation depth model

[0030]当采用多脉冲激光脉冲扫过位置Q时,根据公式巧)、化)、(7)、(8)得到所需的激光脉冲总数和在同一位置Q处建立的激光烧蚀深度模型。 [0030] When using a multi-pulse laser pulse sweeps position Q, according to the formula Qiao), chemical), (7), (8) to give the total number of laser pulses and the desired depth of laser ablation model in the same position Q .

[003。 [003. 取选定工作台加工中的进给速度为Im/min,激光重复频率为ICffliz, 根据烧蚀深度预测模型,在同一位置Q处建立的激光烧蚀深度模型为 Take the selected table machining feedrate is from Im / min, laser repetition frequency ICffliz, according to the prediction model ablation depth, the laser ablation depth at the same model as the position Q

Figure CN104308368BD00071

此时求取激光束能量密度的表达式为 At this time, the energy density of the laser beam is obtained as the expression

Figure CN104308368BD00072

>当铜层厚度为IOum时,计算得到将铜层刚好去除需要的激光能量密度为F。 > When the thickness of the copper layer IOum, the laser energy density is calculated just need to remove the copper layer is F. = 41. 5J/cm2。 = 41. 5J / cm2. 根据计算选取能量密度后,即可实现对烧蚀深度的精确巧制。 The calculation of the selected energy density to achieve precise ablation depth clever system.

[0032] 附图2给出了多脉冲激光烧蚀预测结果。 [0032] Figure 2 shows the multi-pulse laser ablation prediction result. 图2中,纵坐标为烧蚀深度,横坐标为距离光斑中屯、的距离。 In FIG. 2, the ordinate is the depth of ablation, the abscissa is the distance from the spot in the village, the. 当激光能量密度F。 When the laser energy density F. = 20J/cm2,脉冲重复频率f=lOKHz,进给速度V =Im/min时,Adapl-AdaplS代表第1-15个脉冲的烧蚀深度,其中最大的单脉冲烧蚀深度在AdapS处取得。 = 20J / cm2, pulse repetition frequency f = lOKHz, when the feed rate V = Im / min, Adapl-AdaplS 1-15 represents the pulse ablation depth, the largest single pulse ablation depth at acquires AdapS.

Claims (1)

  1. I. 一种多脉冲激光烧蚀金属覆层定量去除方法,其特征在于,首先根据能量守恒定律及纳秒尺度脉冲激光与材料作用的烧蚀机理,得到单脉冲激光烧蚀深度预测模型;通过分析多脉冲激光经过定点位置时激光脉冲的堆叠过程,建立多脉冲激光烧蚀深度预测模型, 确定烧蚀深度与加工参数之间的对应关系,通过调节加工参数来控制去除量;多脉冲激光烧蚀金属覆层定量去除方法具体步骤如下: (1) 单一脉冲去除材料厚度的计算因采用的激光光源发射的脉冲作用时间为纳秒级,能量传递为热传递,热穿透深度: I. A multi-pulse laser ablation quantitative method for removing metal cladding, characterized in that the first and the law of conservation of ablation mechanism nanosecond pulsed laser scale function material according to the energy, to give a single pulsed laser ablation depth prediction model; by analysis of the multi-pulse laser laser pulses through the stacking process when pointing position established multi-pulse laser ablation depth prediction model to determine the correspondence between the ablation depth and processing parameters, by adjusting the processing parameters to control removal; multi-pulse laser burn quantitative etching method for removing metal cladding the following steps: (1) the removal of a single pulse time calculating impulse action due to the material thickness using the laser light source emitting a nanosecond, the energy transfer as heat transfer, the thermal penetration depth:
    Figure CN104308368BC00021
    (1) 其中,D为热扩算率,tp为脉冲持续时间;采用一维热传递方程建立激光烧蚀模型;当目标材料表面厚度为It的材料从室溫Tgmb加热至烙化溫度Tm时,目标材料的烧蚀阔值为: (1) where, D is the thermal expansion rate calculation, tp is the pulse duration; one-dimensional heat transfer model equations established laser ablation; Tm when the surface of the target material thickness of the material It is heated from room temperature to the bake temperature Tgmb , ablation of the target material is broad:
    Figure CN104308368BC00022
    :2) 其中,P为覆层金属密度,Cp为比热容,R为热传递系数;脉冲激光能量呈高斯剖面,其空间分布为: : 2) wherein, P is the density of the metal coating, the specific heat capacity Cp, R is the heat transfer coefficient; Gaussian sectional pulsed laser energy, the spatial distribution of:
    Figure CN104308368BC00023
    (3) 其中,W为光束束腰半径,F。 (3) where, W is the beam waist radius, F. 为激光能量密度;依据能量守恒定律,当单一激光脉冲与金属层的表面相互作用时,厚度为h的材料将被气化; Density of laser energy; based on the law of conservation of energy, when the surface of the metal layer with a single laser pulse interaction, h is a thickness of material to be vaporized;
    Figure CN104308368BC00024
    (车) 其中,PS为覆层金属固态密度,AHd为覆层金属烙化赌,P1为覆层金属液态密度,AHh为覆层金属气化赌; (2) 建立多脉冲激光烧蚀深度模型及烧蚀深度的精确控制设定多脉冲激光相邻两个激光脉冲的移动距离为AX,则第n个激光脉冲的能量F。 (Vehicles) wherein, PS is the solid state density metallic coating, a metal coating is baked AHD of gambling, P1 is the density of the liquid metal coating, AHh of cladding metal gasification bet; (2) establishing a multi-pulse laser ablation depth model and precise control of ablation depth is set multi-pulse laser laser pulses of two adjacent moving distance AX, the energy of the n-th laser pulse F. 在位置Q上的能量分布表达式为: Q at position energy distribution expression is:
    Figure CN104308368BC00025
    巧) 将公式(5)带入单脉冲激光烧蚀深度表达式(4),得到第n个激光脉冲在同一位置Q上的烧蚀深度为: Qiao) Equation (5) single pulse laser ablation depth into the expression (4), to give the n-th laser pulse ablation depth in the same position Q is:
    Figure CN104308368BC00026
    化) 当多脉冲激光脉冲扫过位置Q时,设将金属覆层完全烧蚀所需要的脉冲个数为而^二2nm+l,则累积烧蚀深度为:^ ;令F。 The number of pulses) when the multi-pulse laser pulse sweeps position Q, provided the complete ablation of the metal coating is required and two ^ 2nm + l, the cumulative ablation depth is: ^; Order F. ^Fth,得到所需的激光脉冲总数为: .-馬,. (7) 相邻两脉冲激光的位移为AX=v/f,其中,V为进给速度,f为脉冲重复频率;因此,在同一位置Q处建立的激光烧蚀深度模型为: ^ Fth, to give the total number of laser pulses required to: .- Ma, (7) the displacement of two adjacent laser pulses AX = v / f, where, V is the feed rate, f is the pulse repetition frequency; Thus,. the depth of laser ablation model in the same position Q as follows:
    Figure CN104308368BC00031
    (忽》 在加工中,通过调节激光能量密度F。,进给速度V,脉冲重复频率f来完成烧蚀深度的精确控制。 (Suddenly "in the process, by adjusting the laser energy density F., feed speed V, the pulse repetition frequency f are precisely controlled ablation depth.
CN201410447320.1A 2014-09-03 2014-09-03 The multi-pulse laser ablation method for removing metal cladding quantitative CN104308368B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410447320.1A CN104308368B (en) 2014-09-03 2014-09-03 The multi-pulse laser ablation method for removing metal cladding quantitative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410447320.1A CN104308368B (en) 2014-09-03 2014-09-03 The multi-pulse laser ablation method for removing metal cladding quantitative

Publications (2)

Publication Number Publication Date
CN104308368A CN104308368A (en) 2015-01-28
CN104308368B true CN104308368B (en) 2015-12-30

Family

ID=52363753

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410447320.1A CN104308368B (en) 2014-09-03 2014-09-03 The multi-pulse laser ablation method for removing metal cladding quantitative

Country Status (1)

Country Link
CN (1) CN104308368B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1617783A (en) * 2001-12-04 2005-05-18 通用原子公司 Method and apparatus for increasing the material removal rate in laser machining
CN101107093A (en) * 2005-01-21 2008-01-16 通明国际科技有限公司 High-speed, precise, laser-based material processing method and system
CN102203943A (en) * 2008-10-29 2011-09-28 欧瑞康太阳能股份公司(特吕巴赫) Method for dividing a semiconductor film formed on a substrate into plural regions by multiple laser beam irradiation
CN103268064A (en) * 2013-03-18 2013-08-28 大连理工大学 Analog calculation method of ablating silicon nitride by ultrashort pulse laser
CN103493182A (en) * 2011-03-31 2014-01-01 伊雷克托科学工业股份有限公司 Laser direct ablation with picosecond laser pulses at high pulse repetition frequencies

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7671295B2 (en) * 2000-01-10 2010-03-02 Electro Scientific Industries, Inc. Processing a memory link with a set of at least two laser pulses
US8513045B1 (en) * 2012-01-31 2013-08-20 Sunpower Corporation Laser system with multiple laser pulses for fabrication of solar cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1617783A (en) * 2001-12-04 2005-05-18 通用原子公司 Method and apparatus for increasing the material removal rate in laser machining
CN101107093A (en) * 2005-01-21 2008-01-16 通明国际科技有限公司 High-speed, precise, laser-based material processing method and system
CN102203943A (en) * 2008-10-29 2011-09-28 欧瑞康太阳能股份公司(特吕巴赫) Method for dividing a semiconductor film formed on a substrate into plural regions by multiple laser beam irradiation
CN103493182A (en) * 2011-03-31 2014-01-01 伊雷克托科学工业股份有限公司 Laser direct ablation with picosecond laser pulses at high pulse repetition frequencies
CN103268064A (en) * 2013-03-18 2013-08-28 大连理工大学 Analog calculation method of ablating silicon nitride by ultrashort pulse laser

Also Published As

Publication number Publication date
CN104308368A (en) 2015-01-28

Similar Documents

Publication Publication Date Title
Dahotre et al. Laser fabrication and machining of materials
JP5432285B2 (en) Method of laser processing glass into a shape with chamfered edges
Pham et al. Laser milling of ceramic components
Kamlage et al. Deep drilling of metals by femtosecond laser pulses
Yao et al. Time scale effects in laser material removal: a review
Almeida et al. Innovative process model of Ti–6Al–4V additive layer manufacturing using cold metal transfer (CMT)
Uriarte et al. Comparison between microfabrication technologies for metal tooling
Campanelli et al. Experimental analysis of the laser milling process parameters
Raciukaitis et al. Use of high repetition rate and high power lasers in microfabrication: How to keep the efficiency high?
Chen et al. Parametric studies on pulsed near ultraviolet frequency tripled Nd: YAG laser micromachining of sapphire and silicon
Dhara et al. An artificial neural network approach on parametric optimization of laser micro-machining of die-steel
Weber et al. Heat accumulation during pulsed laser materials processing
Neuenschwander et al. Processing of metals and dielectric materials with ps-laserpulses: results, strategies, limitations and needs
Sharma et al. Optimization of kerf quality characteristics during Nd: YAG laser cutting of nickel based superalloy sheet for straight and curved cut profiles
Di Niso et al. Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates
Dubey et al. Robust parameter design and multi-objective optimization of laser beam cutting for aluminium alloy sheet
DE102012010635A1 (en) Three dimensional structuring or shaping of hard, brittle, and optical materials, comprises patterning surface of a hard, brittle and optical material with an ultra-short pulse laser, where surface of structure is smoothed by plasma jet
Hanon et al. Experimental and theoretical investigation of the drilling of alumina ceramic using Nd: YAG pulsed laser
Leone et al. AISI 304 stainless steel marking by a Q-switched diode pumped Nd: YAG laser
Bandyopadhyay et al. A statistical approach to determine process parameter impact in Nd: YAG laser drilling of IN718 and Ti-6Al-4V sheets
Li et al. Modeling of waterjet guided laser grooving of silicon
Lee et al. Femtosecond laser micromilling of Si wafers
Samant et al. Computational predictions in single-dimensional laser machining of alumina
Tseng et al. Fabrication of high-aspect-ratio microstructures using excimer laser
CN104148636B (en) A method of controlling thermal deformation of metal parts scan path generation method for additive manufacturing

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model