CN104238594B - 一种燃料电池的温度控制及测试系统及方法 - Google Patents

一种燃料电池的温度控制及测试系统及方法 Download PDF

Info

Publication number
CN104238594B
CN104238594B CN201410475394.6A CN201410475394A CN104238594B CN 104238594 B CN104238594 B CN 104238594B CN 201410475394 A CN201410475394 A CN 201410475394A CN 104238594 B CN104238594 B CN 104238594B
Authority
CN
China
Prior art keywords
temperature
fuel cell
water
collector plate
water cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410475394.6A
Other languages
English (en)
Other versions
CN104238594A (zh
Inventor
陶文铨
母玉同
林鸿
曹涛锋
陈黎
何雅玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201410475394.6A priority Critical patent/CN104238594B/zh
Publication of CN104238594A publication Critical patent/CN104238594A/zh
Application granted granted Critical
Publication of CN104238594B publication Critical patent/CN104238594B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种燃料电池的温度控制及测试系统,包括燃料电池、两个水腔、恒温水槽、两个集流板、若干温度传感器、若干半导体制冷器件、驱动电路、换向电路、温度控制器及数据采集系统;本发明还公开了一种燃料电池的温度控制及测试方法。本发明可以使燃料电池表面温度的均匀分布,并缩短温度控制的响应时间,拓宽温度控制范围。

Description

一种燃料电池的温度控制及测试系统及方法
技术领域
本发明涉及一种温度控制及测试系统及方法,具体涉及一种燃料电池的温度控制及测试系统及方法。
背景技术
在燃料电池、能源及电子等领域中,需要做到对元器件温度精确控制,温控范围快,温度响应快。以燃料电池为例,燃料电池的热管理是影响其工程应用的重要问题之一。电池热管理的主要工作之一是温度控制。电池温度控制常用的方法或手段有:加热棒(垫)、空气冷却、循环水及恒温箱。以上方法的主要缺点在于:燃料电池的温度控制方式多为对流换热方法,温度分布不均匀,使得电池试验的重复性差;燃料电池温度控制响应时间较长,尤其不利于电池变工况和动态特性的研究;燃料电池可控温度范围较窄,无法实现燃料电池的低温冷启动试验。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供了一种燃料电池的温度控制及测试系统及方法,该系统及方法可以使燃料电池表面温度的均匀分布,并缩短温度控制的响应时间,拓宽温度控制范围。
为达到上述目的,本发明所述的燃料电池的温度控制及测试系统包括燃料电池、两个水腔、恒温水槽、两个集流板、若干温度传感器、若干半导体制冷器件、驱动电路、换向电路、温度控制器及数据采集系统;
两个集流板位于两个水腔之间,且两个集流板及两个水腔固定连接,燃料电池夹持于两个集流板之间,各半导体制冷器件均匀分布于两个集流板内,两个水腔上均设有入水口及出水口,恒温水槽的出水口与第一个水腔的入水口相连通,第一个水腔的出水口与第二个水腔的入水口相连通,第二个水腔的出水口与恒温水槽的入水口相连通,两个集流板上均开设有若干测温孔,温度传感器位于所述测温孔内;
各温度传感器的输出端与数据采集系统的输入端相连接,数据采集系统的输出端与温度控制器的输入端相连接,温度控制器的输出端与换向电路的控制端相连接,换向电路的输出端与驱动电路的输入端相连接,驱动电路的输出端与各半导体制冷器件的控制端相连接。
所述半导体制冷器件的数量为八个,每个集流板内均均匀设有四个半导体制冷器件;
每个集流板上的测温孔的数量为十六个,每个集流板均匀分为四个区域,四个半导体制冷器件位于不同的区域内,且每个区域内均有四个温度传感器。
两个集流板及两个水腔上均开设有螺纹孔,螺栓依次穿过第一个水腔上的螺纹孔、第一个集流板上的螺纹孔、第二个集流板上的螺纹孔及第二个水腔上的螺纹孔将两个集流板及两个水腔固定连接。
所述温度传感器的输出端与数据采集系统的输入端通过导线相连接,集流板的侧面开设有传感器出线槽,导线内嵌于所述传感器出线槽内。
所述恒温水槽的出水口与第一个水腔的入水口之间通过水泵相连接。
所述温度控制器为PID控制器。
本发明所述的燃料电池的温度控制及测试方法包括以下步骤:
各温度传感器实时检测燃料电池不同位置的温度信息,数据采集系统获取各温度传感器检测到的燃料电池不同位置的温度信息,然后将所述燃料电池不同位置的温度信息转发至温度控制器中,温度控制器根据燃料电池不同位置的温度信息得与各区域相接触的燃料电池表面的平均温度,当与任意一个区域相接触的燃料电池表面的平均温度大于或等于预设阀值时,则产生第一控制信号,然后将所述第一控制信号输入到换向电路中,换向电路根据所述第一控制信号控制输入到驱动电路中的电流的方向,使驱动电路驱动所述半导体制冷器件对与该区域相接触的燃料电池的表面进行降温;当与任意一个区域相接触的燃料电池表面的平均温度小于或等于预设阀值时,则产生第二控制信号,并将所述第二控制信号输入到换向电路中,换向电路根据所述第二控制信号控制输入到驱动电路中的电流的方向,使驱动电路驱动所述半导体制冷器件对与该区域相接触的燃料电池的表面进行升温;
同时恒温水槽中的水经第一个水腔的入水口进入第一个水腔中,实现对第一个集流板中的各半导体制冷器件进行降温,第一个水腔中的水依次经第一个水腔的出水口及第二个水腔的入水口进入到第二个水腔中,实现对第二个集流板中的各半导体制冷器件进行降温,然后再经第二个水腔的出水口进入到恒温水槽中。
本发明具有以下有益效果:
本发明所述的燃料电池的温度控制及测试系统及方法在控制燃料电池表面温度的过程中,先通过温度传感器实时的检测燃料电池表面各位置的温度信息,然后将所述燃料电池表面各位置的温度信息经数据采集系统转发至温度控制器中,温度控制器根据燃料电池表面各位置的温度信息得到与各区域相接触的燃料电池表面的平均温度,当与任意一个区域相接触的燃料电池的表面的平均温度不在预设范围内时,则通过换向电路及驱动电路驱动该区域的对应的半导体制冷器件调整与该区域相接触的燃料电池的表面的平均温度,从而实现对燃料电池表面温度的控制,缩短温度控制的响应时间,拓宽温度控制的范围。另外,所述各半导体制冷器件均匀分布于两个集流板内,从而可以有效的使燃料电池表面温度的均匀分布。
附图说明
图1为本发明的结构示意图;
图2为本发明中水腔5的结构示意图;
图3为本发明中集流板4的结构示意图;
图4为采用本发明对燃料电池2加热及冷却效果图;
图5为采用本本发明对温度扰动的响应时间图。
其中,1为温度传感器、2为燃料电池、3为半导体制冷器件、4为集流板、5为水腔、6为驱动电路、7为换向电路、8为数据采集系统、9为温度控制器、10为恒温水槽、11为水腔的入水口、12为水腔的出水口、13为螺纹孔、14为测温孔、15为传感器出线槽。
具体实施方式
下面结合附图对本发明做进一步详细描述:
参考图1、图2及图3,本发明所述的燃料电池的温度控制及测试系统包括燃料电池2、两个水腔5、恒温水槽10、两个集流板4、若干温度传感器1、若干半导体制冷器件3、驱动电路6、换向电路7、温度控制器9及数据采集系统8;两个集流板4位于两个水腔5之间,且两个集流板4及两个水腔5固定连接,燃料电池2夹持于两个集流板4之间,各半导体制冷器件3均匀分布于两个集流板4内,两个水腔5上均设有入水口11及出水口12,恒温水槽10的出水口与第一个水腔5的入水口11相连通,第一个水腔5的出水口12与第二个水腔5的入水口11相连通,第二个水腔5的出水口12与恒温水槽10的入水口相连通,两个集流板4上均开设有若干测温孔14,温度传感器1位于所述测温孔14内;各温度传感器1的输出端与数据采集系统8的输入端相连接,数据采集系统8的输出端与温度控制器9的输入端相连接,温度控制器9的输出端与换向电路7的控制端相连接,换向电路7的输出端与驱动电路6的输入端相连接,驱动电路6的输出端与各半导体制冷器件3的控制端相连接。
需要说明的是,所述半导体制冷器件3的数量为八个,每个集流板4内均均匀设有四个半导体制冷器件3;每个集流板4上的测温孔14的数量为十六个,每个集流板4均匀分为四个区域,四个半导体制冷器件3位于不同的区域内,且每个区域内均有四个温度传感器1,两个集流板4及两个水腔5上均开设有螺纹孔13,螺栓依次穿过第一个水腔5上的螺纹孔13、第一个集流板4上的螺纹孔13、第二个集流板4上的螺纹孔13及第二个水腔5上的螺纹孔13将两个集流板4及两个水腔5固定连接,温度传感器1的输出端与数据采集系统8的输入端通过导线相连接,集流板4的侧面开设有传感器出线槽15,导线内嵌于所述传感器出线槽15内,恒温水槽10的出水口与第一个水腔5的入水口11之间通过水泵相连接,温度控制器9为PID控制器。
本发明所述的燃料电池的温度控制及测试方法包括以下步骤:
各温度传感器1实时检测燃料电池2不同位置的温度信息,数据采集系统8获取各温度传感器1检测到的燃料电池2不同位置的温度信息,然后将所述燃料电池2不同位置的温度信息转发至温度控制器9中,温度控制器9根据燃料电池2不同位置的温度信息得与各区域相接触的燃料电池2表面的平均温度,当与任意一个区域相接触的燃料电池2表面的平均温度大于或等于预设阀值时,则产生第一控制信号,然后将所述第一控制信号输入到换向电路7中,换向电路7根据所述第一控制信号控制输入到驱动电路6中的电流的方向,使驱动电路6驱动所述半导体制冷器件3对与该区域相接触的燃料电池2的表面进行降温;当与任意一个区域相接触的燃料电池2表面的平均温度小于或等于预设阀值时,则产生第二控制信号,并将所述第二控制信号输入到换向电路7中,换向电路7根据所述第二控制信号控制输入到驱动电路6中的电流的方向,使驱动电路6驱动所述半导体制冷器件3对与该区域相接触的燃料电池2的表面进行升温;
同时恒温水槽10中的水经第一个水腔5的入水口11进入第一个水腔5中,实现对第一个集流板4中的各半导体制冷器件3进行降温,第一个水腔5中的水依次经第一个水腔5的出水口12及第二个水腔5的入水口11进入到第二个水腔5中,实现对第二个集流板4中的各半导体制冷器件3进行降温,然后再经第二个水腔5的出水口12进入到恒温水槽10中。
本发明具有以下的特点:
1)采用一种温度信息的反馈机制实现燃料电池2表面温度的自动调节;2)集流板4内均匀地布置4块半导体制冷器件3(TEC112706),其尺寸为40×40×4mm,其热端与冷端可实现67℃的温差;3)水腔5、集流板4及燃料电池2通过螺栓压紧后成为一个整体,温度测试与控温系统结构紧凑;4)温度测试系统精确度高,控温均匀,响应较快,可用于电池冷启动及动态特性的试验研究。
本发明的实验结果如图4、图5及表1所示。图4为采用本系统对电池加热及冷却效果图。由图4可以看出,燃料电池2的加热和冷却均能在1~2分钟内完成。若采用常规控温手段,譬如加热棒,控温时间则需要2~3小时,由此可以看出本系统能够显著提高控温速度。图5为在燃料电池2一端控温区域进行持续2℃的扰动,燃料电池2另一端在本系统控制下的温度响应。该温度响应时间表明温控设施电池内部不均匀温度分布调控能力的快慢,由图5可以看出,温度响应时间均在200秒以内;表1为采用本系统得到的电池表面温度分布,由表1可以看出温度的最大不均匀度为0.66℃。
表1
通过以上的分析可知:本发明利用半导体材料的帕尔贴效应,能够精确控制电池表面温度的均匀分布,缩短温度控制的响应时间,拓宽温度控制范围。水腔5只有一个进口,一个出口,最大程度的保证在使用过程中不发生泄漏。此外,本发明的加工过程简单,其他关键组件,如温度控制器9、温度传感器1及数据采集系统8等均可直接购买获得。

Claims (7)

1.一种燃料电池的温度控制及测试系统,包括若干温度传感器(1)、燃料电池(2)、温度控制器(9)及若干半导体制冷器件(3),其特征在于,还包括两个水腔(5)、恒温水槽(10)、两个集流板(4)、驱动电路(6)、换向电路(7)及数据采集系统(8);
两个集流板(4)位于两个水腔(5)之间,且两个集流板(4)及两个水腔(5)固定连接,燃料电池(2)夹持于两个集流板(4)之间,各半导体制冷器件(3)均匀分布于两个集流板(4)内,两个水腔(5)上均设有入水口(11)及出水口(12),恒温水槽(10)的出水口与第一个水腔(5)的入水口(11)相连通,第一个水腔(5)的出水口(12)与第二个水腔(5)的入水口(11)相连通,第二个水腔(5)的出水口(12)与恒温水槽(10)的入水口相连通,两个集流板(4)上均开设有若干测温孔(14),温度传感器(1)位于所述测温孔(14)内;
各温度传感器(1)的输出端与数据采集系统(8)的输入端相连接,数据采集系统(8)的输出端与温度控制器(9)的输入端相连接,温度控制器(9)的输出端与换向电路(7)的控制端相连接,换向电路(7)的输出端与驱动电路(6)的输入端相连接,驱动电路(6)的输出端与各半导体制冷器件(3)的控制端相连接。
2.根据权利要求1所述的燃料电池的温度控制及测试系统,其特征在于,
所述半导体制冷器件(3)的数量为八个,每个集流板(4)内均均匀设有四个半导体制冷器件(3);
每个集流板(4)上的测温孔(14)的数量为十六个,每个集流板(4)均匀分为四个区域,四个半导体制冷器件(3)位于不同的区域内,且每个区域内均有四个温度传感器(1)。
3.根据权利要求1所述的燃料电池的温度控制及测试系统,其特征在于,两个集流板(4)及两个水腔(5)上均开设有螺纹孔(13),螺栓依次穿过第一个水腔(5)上的螺纹孔(13)、第一个集流板(4)上的螺纹孔(13)、第二个集流板(4)上的螺纹孔(13)及第二个水腔(5)上的螺纹孔(13)将两个集流板(4)及两个水腔(5)固定连接。
4.根据权利要求1所述的燃料电池的温度控制及测试系统,其特征在于,所述温度传感器(1)的输出端与数据采集系统(8)的输入端通过导线相连接,集流板(4)的侧面开设有传感器出线槽(15),导线内嵌于所述传感器出线槽(15)内。
5.根据权利要求1所述的燃料电池的温度控制及测试系统,其特征在于,所述恒温水槽(10)的出水口与第一个水腔(5)的入水口(11)之间通过水泵相连接。
6.根据权利要求1所述的燃料电池的温度控制及测试系统,其特征在于,所述温度控制器(9)为PID控制器。
7.一种燃料电池的温度控制及测试方法,其特征在于,基于权利要求2所述的燃料电池的温度控制及测试系统,包括以下步骤:
1)各温度传感器(1)实时检测燃料电池(2)不同位置的温度信息,数据采集系统(8)获取各温度传感器(1)检测到的燃料电池(2)不同位置的温度信息,然后将所述燃料电池(2)不同位置的温度信息转发至温度控制器(9)中,温度控制器(9)根据燃料电池(2)不同位置的温度信息得与各区域相接触的燃料电池(2)表面的平均温度,当与任意一个区域相接触的燃料电池(2)表面的平均温度大于或等于预设阀值时,则产生第一控制信号,然后将所述第一控制信号输入到换向电路(7)中,换向电路(7)根据所述第一控制信号控制输入到驱动电路(6)中的电流的方向,使驱动电路(6)驱动所述半导体制冷器件(3)对与该区域相接触的燃料电池(2)的表面进行降温;当与任意一个区域相接触的燃料电池(2)表面的平均温度小于或等于预设阀值时,则产生第二控制信号,并将所述第二控制信号输入到换向电路(7)中,换向电路(7)根据所述第二控制信号控制输入到驱动电路(6)中的电流的方向,使驱动电路(6)驱动所述半导体制冷器件(3)对与该区域相接触的燃料电池(2)的表面进行升温;
同时恒温水槽(10)中的水经第一个水腔(5)的入水口(11)进入第一个水腔(5)中,实现对第一个集流板(4)中的各半导体制冷器件(3)进行降温,第一个水腔(5)中的水依次经第一个水腔(5)的出水口(12)及第二个水腔(5)的入水口(11)进入到第二个水腔(5)中,实现对第二个集流板(4)中的各半导体制冷器件(3)进行降温,然后再经第二个水腔(5)的出水口(12)进入到恒温水槽(10)中。
CN201410475394.6A 2014-09-17 2014-09-17 一种燃料电池的温度控制及测试系统及方法 Active CN104238594B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410475394.6A CN104238594B (zh) 2014-09-17 2014-09-17 一种燃料电池的温度控制及测试系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410475394.6A CN104238594B (zh) 2014-09-17 2014-09-17 一种燃料电池的温度控制及测试系统及方法

Publications (2)

Publication Number Publication Date
CN104238594A CN104238594A (zh) 2014-12-24
CN104238594B true CN104238594B (zh) 2016-08-24

Family

ID=52226883

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410475394.6A Active CN104238594B (zh) 2014-09-17 2014-09-17 一种燃料电池的温度控制及测试系统及方法

Country Status (1)

Country Link
CN (1) CN104238594B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110544782B (zh) * 2019-09-06 2020-10-16 北京机械设备研究所 一种空冷式燃料电池温控系统和温控方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095487A (ja) * 2005-09-29 2007-04-12 Toshiba Corp 流量調整システム及び燃料電池システム
DE102007006369A1 (de) * 2007-02-08 2008-08-14 Enerday Gmbh Modul zur thermischen Konditionierung von Brennstoff
DE102013007561A1 (de) * 2013-05-02 2013-11-28 Daimler Ag Verfahren zum Betreiben eines Brennstoffzellenstapels und Brennstoffzellenstapel
CN203377328U (zh) * 2013-07-24 2014-01-01 中科宇图天下科技有限公司 带恒温控制的微生物燃料电池

Also Published As

Publication number Publication date
CN104238594A (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
CN201152650Y (zh) 固体多点阵冷热转换设备
CN103941778B (zh) 微型恒温箱的温度控制系统和方法
CN104422520B (zh) 高精度多模黑体辐射源
He et al. An approximate and efficient characterization method for temperature-dependent parameters of thermoelectric modules
CN104503508A (zh) 一种太阳电池测试台温控系统及温控方法
CN102122169A (zh) 一种温控器耐久性测试仪
CN104111269A (zh) 一种用于高温大热流环境的热流传感器标定装置
CN111060798B (zh) 一种mos管自动功率老化测试系统及测试方法
CN206741339U (zh) 一种微型生化分析仪样品检测室温度快速精确控制系统
CN104238594B (zh) 一种燃料电池的温度控制及测试系统及方法
CN104029921B (zh) 微型恒温箱
CN205809259U (zh) 一种锂离子电池充放电测试用恒温装置
CN108426914B (zh) 一种导热系数及比热容的测定仪器
CN203465005U (zh) 高精度多模黑体辐射源
CN209514429U (zh) 一种检测池恒温控制装置
CN112254826A (zh) 一种用于抑制探测器温度漂移的红外热像仪温度控制系统
Hu et al. Experimental investigation on two-stage thermoelectric cooling system adopted in isoelectric focusing
CN205538770U (zh) 耐高温测试装置
CN105116008A (zh) 基于完成对不同厚度待测样品导热系数的测量的系统组件
CN207571063U (zh) 一种高温传热性能测定仪
CN104331110A (zh) 一种基于半导体温控系统的温室大棚温度调控方法
CN209487925U (zh) 易潮解晶体的控温装置
CN114297888A (zh) 一种功率模块压接型功率器件结温测量方法
CN204882430U (zh) 一种不良导体导热系数测量装置
CN107300479B (zh) 一种svg热管散热器特性的测试平台及其应用方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant