CN104224089A - Endoscope system with anti-interference capacity and surgical navigation function - Google Patents

Endoscope system with anti-interference capacity and surgical navigation function Download PDF

Info

Publication number
CN104224089A
CN104224089A CN 201410465885 CN201410465885A CN104224089A CN 104224089 A CN104224089 A CN 104224089A CN 201410465885 CN201410465885 CN 201410465885 CN 201410465885 A CN201410465885 A CN 201410465885A CN 104224089 A CN104224089 A CN 104224089A
Authority
CN
China
Prior art keywords
endoscope
system
positioning
output
inertial navigation
Prior art date
Application number
CN 201410465885
Other languages
Chinese (zh)
Other versions
CN104224089B (en
Inventor
陈晓冬
杜承阳
汪毅
郁道银
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Priority to CN201410465885.2A priority Critical patent/CN104224089B/en
Publication of CN104224089A publication Critical patent/CN104224089A/en
Application granted granted Critical
Publication of CN104224089B publication Critical patent/CN104224089B/en

Links

Abstract

The invention provides an endoscope system with an anti-interference capacity and a surgical navigation function. A surgical navigation subsystem is realized by an inertial navigation module, and the inertial navigation module comprises three sensors, i.e., a triaxial accelerometer, a triaxial gyroscope and a triaxial magnetometer. Depending on a micro-electro-mechanical system technique, the navigation subsystem can be integrated in a handle of an endoscope, so that the endoscope has a positioning function. In a positioning algorithm, through proper anti-interference treatment, positioning errors caused by external magnetic fields and movement of the endoscope are reduced, and the positioning stability and accuracy are improved.

Description

-种具备抗干扰能力的带有手术导航功能的内窥镜系统 - have the kind of anti-jamming capability with endoscopic surgical navigation system function

技术领域 FIELD

[0001] 本发明属于计算机辅助的内窥镜手术导航技术领域。 [0001] The present invention pertains to computer-assisted endoscopic surgical navigation art.

背景技术 Background technique

[0002] 随着现代医学的发展,W内窥镜系统为主要实施工具的微创手术得到了广泛的认可与快速的普及。 [0002] With the development of modern medicine, W endoscope system has been widely recognized by the rapid popularity as the main tool for the implementation of minimally invasive surgery. 为了更好地达到微创的目的,医生必须精确的获取当前内窥镜的姿态及位置,故常常需要借助手术定位与导航技术。 In order to achieve the purpose of minimally invasive physician must obtain accurate current position and posture of the endoscope, it is often required by surgical techniques positioning and navigation. 因此,现代内窥技术与医学导航技术是相辅相成的,在手术期间也常常需要同时两套系统相互配合。 Therefore, in the modern spy technology and navigation technology are complementary medicine, surgery is often necessary during the same time two systems complement each other.

[0003] 中国专利CN200910198524号公开了一种《将手术导航系统与内窥镜系统结合的装置及其应用》,该专利给出了一种将光学定位系统与内窥镜相结合的方法:通过特殊的机械结构,将光学定位球固定于内窥镜手柄上。 [0003] Chinese Patent No. CN200910198524 discloses a "surgical navigation system in combination with the endoscope apparatus and its application", which patent shows a method for positioning the optical system of the endoscope in combination: by special mechanical structure, the optical positioning ball fixed on the endoscope handle. 在使用过程中,需通过摄像机组对光学定位球进行跟踪,从而对内窥镜定位的目的。 During use, the need for optical positioning of the ball track by a camera set, so that the purpose of positioning the endoscope.

[0004] 上述专利在实际应用中存在如下问题:一、机械结构的引入导致内窥镜手柄部分的体积大大增加,可能会对正常的内镜操作带来影响。 [0004] The above patent has a problem in practical use: First, the introduction of the mechanical structure of the handle portion causing the volume of the endoscope is greatly increased, might affect normal operation of the endoscope. 二、光学定位在原理上需要保证摄像机与定位球之间存在无遮挡的视线,该条件将限制系统的定位范围,可能产生多个不可定位区域。 Second, optical positioning in principle the need to ensure the presence of unobstructed line of sight between the camera and positioning the ball, the condition to limit the scope of the positioning system, may not be generating a plurality of location areas. H、光学定位在原理上需要借助多个摄像机完成定位任务,该将会给手术室带来不必要的空间压力。 H, optical positioning in principle need to use multiple cameras positioned to complete the task, which will bring unnecessary pressure to the operating room space.

发明内容 SUMMARY

[0005] 本发明的目的是解决现有技术存在的上述问题,提供一种具备抗干扰能力的带有手术导航功能的内窥镜系统。 [0005] The object of the present invention is to solve the aforementioned problems of the prior art, to provide an endoscopic surgical navigation system with a function to have the anti-jamming capability.

[0006] 首先,该系统通过将由惯性导航模块构成的定位子系统集成于内窥系统内部,克服了定位子系统对内镜操作的影响,且消除了光学定位中的不可定位区域,同时也避免了光学定位带来的空间压力。 [0006] First, through the system by positioning inertial navigation subsystem modules integrated in the endoscopic system, to overcome the impact of location subsystem endoscopic operation, and eliminates the optical regions not positioned in the positioning, but also to avoid positioning the optical space to bring pressure. 另一方面,对于惯性导航自身而言,工作空间中的电子设备及铁质器械W及内窥镜的非惯性运动都会直接影响到定位的精度与稳定性,因此本发明在算法实现部分,提供相应的抗干扰设计,W提高定位的鲁棒性。 On the other hand, for inertial navigation itself, the working space of the electronic apparatus and instruments W iron and non-inertial motion of the endoscope will directly affect the positioning accuracy and stability, and thus the present invention is implemented in the algorithm part, provided corresponding anti-jamming design, W improve the robustness of positioning.

[0007] 本发明提供的具备抗干扰能力的带有手术导航功能的内窥镜系统包括,内窥镜和负责控制与定位解算的上位机,在所述内窥镜手柄内预留有导航模块安装平台,借助微机电极小化后安装于内窥镜手柄内部安装平台上的惯性导航模块,惯性导航模块包含H轴加速度计、H轴巧螺仪和H轴磁强计H种传感器,W及带有无线通信功能的片上系统和微型天线,片上系统采集H种传感器输出的传感数据,并依靠微型天线将传感数据发送给上位机;所述的上位机包括电脑、带有无线通信功能的片上系统、W及天线,带有无线通信功能的片上系统通过天线接收惯性导航模块输出的传感数据,并将传感数据打包传输给电脑, 电脑通过已设计好的定位算法进行定位解算。 [0007] The endoscope surgical system having a navigation function includes interference rejection capability provided by the invention comprises, an endoscope, and is responsible for controlling the position resolution of the host computer, in the handle of the endoscope is reserved for navigation module mounting platform, by means of the microcomputer to minimize inertial navigation module electrode mounted on the inside of the endoscope handle mounting platform, inertial navigation module axis accelerometer comprising H, H and H instrument shaft axis clever spiro magnetometer types of sensors H, W and a system on a chip, and miniature antennas with a wireless communication function, the system-on-chip H species collected sensor data the sensor output, and rely on miniature antenna transmits the sensed data to the host computer; said host computer comprises a computer with wireless communication on-chip system function, W, and an antenna system on a chip with a wireless communication function module through the receiving antenna output inertial navigation sensor data and transmit sensor data to the computer package, a good localization algorithm has been designed by the computer positioning Solutions count.

[0008] 所述电脑中的定位算法具备抗干扰能力,能够抑制磁场崎变W及内窥镜非惯性运动带来的传感器输出噪声;当通过地磁矢量与比力矢量对内窥镜的姿态进行收敛时,将地磁矢量输出的相对误差W及比力矢量输出的相对误差作为收敛观测函数的权重,W调整收敛方向,自适应地获取姿态收敛结果;通过巧螺仪及加速度计的输出将比力矢量分解为线性加速度、重力加速度及向也加速度H项,并通过对线性加速度进行二次积分,获取位置结果。 [0008] The computer includes anti-interference ability of the location algorithm, the magnetic field of distortion can be suppressed noise sensor output W, and the endoscope caused by the non-inertial motion; and when the attitude of the endoscope is performed by a ratio of a geomagnetic vector force vector when convergence, the relative error of the geomagnetic vector W output power and a ratio of the relative error of the output of the weight vector converges observed as a function of the weight, W adjust the convergence direction, the adaptive convergence result acquired posture; spiro instrument and by clever accelerometer output than force vector into linear acceleration and gravitational acceleration can also result to item H, and linear accelerations by double integration, acquisition position.

[0009] 具体实施上,本方法将传统用于载体导航的惯性导航系统应用于手术定位领域。 On [0009] In particular embodiments, the present methods conventionally used for the support of the inertial navigation positioning is applied to the field of surgery. 将由H轴巧螺仪、H轴加速度计和H轴磁强计组成的微机电惯性传感单元固定于内窥镜手柄内部,W获取传感数据。 MEMS inertial sensing unit by clever spiro instrument axis H, H H shaft axis accelerometer and magnetometer composed of a handle fixed to the endoscope, W acquired sensor data. 传感数据再通过无线通信方式传输给上位机,上位机通过算法实现,进行全维度定位。 Sensor data and then transmitted to the host computer via wireless communication, the host computer through the algorithm, full dimensional positioning. 定位算法可大致分为两步。 Location algorithms can be roughly divided into two steps. 第一步,通过巧螺仪输出对姿态进行更新, 并通过加速度计输出与磁强计输出对姿态四元数进行收敛。 The first step is updated by the scanner output spiro clever posture, and converged by quaternion attitude accelerometer output and magnetometer output. 收敛过程中,通过测量加速度计输出及磁强计输出的相对误差,控制加速度矢量及地磁矢量在收敛过程中的权重,W得到具备抗噪特性的自适应姿态结果。 Convergence process, by measuring the relative error accelerometer output and magnetometer output, a geomagnetic vector and acceleration vector control in the convergence process of the right weight, W ADAPTIVE result obtained with anti-noise properties. 第二步,基于已得到的姿态结果,W及加速度计和巧螺仪的输出,通过构建刚体运动方程,对H维度的位置进行解算。 The second step, the result has been obtained based on the attitude, W, and the output of an accelerometer and a clever spiro instrument, on the position of the dimension H is constructed by solving equations of motion of rigid body. 该部分并未直接利用地磁测量结果,故可进一步避免可能的磁干扰。 This part does not directly use the geomagnetic measurement results, it may be possible to further avoid magnetic interference.

[0010] 本发明的优点和积极效果: [0010] The advantages of the present invention and the positive effects:

[0011] 针对已公开专利存在的瓶颈,本发明将惯性传感引入医学导航领域,并将借助微机电技术极小化的惯性传感模块安装至内窥镜手柄内部。 [0011] For existing bottleneck published patent, the present invention will be introduced into the medical field of navigation inertial sensing, and a handle mounted to the interior of the endoscope by means of MEMS technology minimizing inertial sensing module. 通过加速度、巧螺仪及磁强计实时测量比力、角速度及地磁矢量;被采集的传感器数据通过无线通信发送给上位机,并通过算法解算得到内窥镜的实时姿态与位置。 By an acceleration, Qiao spiro instrument and magnetometer than the force measured in real time, and the angular velocity of a geomagnetic vector; the collected sensor data to the host computer via wireless communication, and the attitude calculated in real time by an endoscope position solution algorithm.

[0012] 本发明将导航系统嵌入至内窥系统内部,并不会改变内窥镜的外形,故防止了导航系统对内窥系统的影响。 [0012] The present invention is fitted to an internal navigation system endoscopic system, and does not change the shape of the endoscope, so that the effect of preventing the internal endoscopic navigation system. 同时,惯性导航并不存在光学定位中的视线需求,且无需再布置外围设备(如光学定位系统中的摄像机组等),减轻了手术室的空间压力。 Meanwhile, there is no inertial navigation requirements of the optical line of sight positioning, and no longer arranged peripheral devices (such as optical camera positioning system groups, etc.), reducing the pressure in the space in the operating room.

[0013] (1)克服传统手术导航方法的临床困难。 [0013] (1) conventional navigation methods to overcome the difficulties in clinical surgery. 传统手术导航方法包括光学定位与电磁定位。 Traditional surgical navigation method comprises positioning an optical and electromagnetic position. 前者有严格的视线要求,后者需严格控制工作空间的电磁干扰源。 The former sight strict requirements, which should be strictly controlled electromagnetic interference source workspace. 该两点在实际的手术环境是难W达到的。 The two points in the actual operating environment W is difficult to achieve. 然而,惯性导航能够有效的避免该些问题:一方面,惯性系统在使用中并不受到视线条件的限制;另一方面,多传感信息的融合可降低系统对磁传感的依赖, 借助有效的算法设计,系统对噪声的响应可被进一步削弱。 However, inertial navigation which can effectively avoid these problems: on the one hand, the inertia system is not limited by line of sight, in use conditions; on the other hand, multi-sensor information fusion system may decrease the dependence on the magnetic sensor, by means of effective algorithm design, the noise response of the system may be further weakened. 最终,可构建一套能够用于全空间范围的输出稳定的手术定位系统。 Finally, the surgical positioning system can be constructed for a set of stable output can be full spatial range.

[0014] (2)内窥系统与导航系统相互不干扰。 [0014] (2) The endoscopic system and the navigation system interfere with each other. 由于在本装置中,导航系统被安装在内窥镜系统的内部,并不会改变内窥镜的外形,因而不会对医生的操作带来不便。 Since in the present apparatus, the navigation system is installed in the interior of the endoscope system, and does not change the shape of the endoscope, and thus will not inconvenience the operation of the doctor. 同时,内窥系统可W在全空间任意运动,并不会存在光学定位系统中遮挡观察视线的问题。 Meanwhile, in the endoscopic system W may be any full-motion space, and there is no problem in the optical positioning system observation line of sight blocking.

[0015] (3)抗干扰能力强,鲁棒性高。 [0015] (3) anti-interference ability, high robustness. 系统引入惯性传感,通过信息融合技术提高系统的稳定性。 Inertial sensing system is introduced, to improve the stability of the system through information fusion technique. 在融合过程中,通过观察磁强计及加速度计输出的相对误差,考察信息源的可信度。 During fusion, the relative error was observed by a magnetometer and the accelerometer output, examining the reliability information source. 根据相对误差大小,控制收敛的方向与程度,得到对噪声自适应的最优姿态解。 The degree direction relative magnitude of the error, the convergence control, the optimal adaptive noise attitude solution. 综上, 通过硬件与软件层面的方法实现,尽可能的提高系统整体的鲁棒性。 In summary, implemented in hardware and software aspects of the methods to improve the overall robustness of the system as much as possible.

[001引(4)实时性化适应性强。 [001 primer (4) of the real-time adaptability. 相对于已公开的具有抗噪特性的惯性定位方法,本方法避免了复杂的滤波过程,降低算法复杂度,W获得更好的实时性。 With respect to the inertial positioning method having antinoise properties have been disclosed, the present method avoids the complex filtering process, reducing the complexity of the algorithm, W better real-time performance. 与此同时,本方法并不需要事先的标定过程,因而也避免了在更换使用环境时需重复标定的问题,提高了系统对不同环境的适应性。 At the same time, this method does not require prior calibration process, thus avoiding problems when changing environment need to repeat calibration, improved adaptability to different environments.

附图说明 BRIEF DESCRIPTION

[0017] 图1是手术定位系统的系统组成框架图。 [0017] FIG. 1 is a system view of a surgical frame composition positioning system.

[0018] 图2是导航单元的安装方式示意图,图中,1为内窥镜(局部),2为安装于内窥镜手柄的惯性传感单元。 [0018] FIG. 2 is a schematic diagram of the navigation unit mounting, FIG, 1 is an endoscope (topical), an inertial sensing unit 2 is attached to an endoscope handle.

[0019] 图3是基于传感融合的自适应跟踪方法的整体流程图。 [0019] FIG. 3 is an overall flowchart illustrating a method of adaptive tracking sensor fusion.

具体实施方式 Detailed ways

[0020] 实施例1 : [0020] Example 1:

[0021] 如图1和图2所示,本发明提供的具备抗干扰能力的带有手术导航功能的内窥镜系统包括,内窥镜和负责控制与定位解算的上位机,在所述内窥镜手柄内预留有导航模块安装平台,借助微机电极小化后安装于内窥镜手柄内部安装平台上的惯性导航模块,惯性导航模块包含H轴加速度计、H轴巧螺仪和H轴磁强计H种传感器,W及带有无线通信功能的片上系统和微型天线,片上系统采集H种传感器输出的传感数据,并依靠微型天线将传感数据发送给上位机;所述的上位机包括电脑、带有无线通信功能的片上系统、W及天线,带有无线通信功能的片上系统通过天线接收惯性导航模块输出的传感数据,并将传感数据打包传输给电脑,电脑通过已设计好的定位算法进行定位解算。 [0021] and FIG. 1, an endoscope with a surgical navigation system includes anti-interference ability of the present invention comprises, an endoscope, and is responsible for controlling the position resolution of the PC 2, the is reserved endoscope handle navigation module mounting platform, by means of the microcomputer to minimize inertial navigation module electrode mounted on the inside of the endoscope handle mounting platform, inertial navigation module axis accelerometer comprising H, H and H instrument shaft spiro clever H axis magnetometer types of sensors, with the sheet W, and a wireless communication function and a miniature antenna system, the system acquisition H species on sensor data output from the sensor chip, and rely on miniature antenna transmits the sensed data to the host computer; the PC computers, system on a chip, W, and an antenna with a wireless communication function, a system on chip with a wireless communication function of inertial navigation sensor data is received by the antenna module outputs, and sensing the data package transmitted to the computer, the computer by positioning algorithm has been designed to locate solver.

[0022] 本发明在内窥镜手柄组装完成前,在其内部加工出一个尺寸与惯性导航模块尺寸一致,两边分别与内窥镜镜管平行或垂直的矩形凹槽,作为矩形的惯性导航模块的安装平台。 [0022] Before the present invention is an endoscopic handle assembly is completed, the internal processing in accordance with a size of an inertial navigation module size, respectively, on both sides of the endoscope rectangular grooves perpendicular or parallel to the mirror tube, a rectangular inertial navigation module mounting platform.

[0023] 本发明将惯性传感器单元W特定方式固定于内窥镜手柄内部,采用片上系统采集传感数据并通过无线通信传输给上位机。 [0023] The present invention is an inertial sensor unit secured to the W-specific manner inside the handle of the endoscope, on-chip sensor data acquisition system and transmitted via the wireless communication to the host computer. 上位机通过本发明提出的算法进行6自由度的位置解算,W实现对内窥镜的实时定位导航。 PC algorithm proposed by the present invention is a position resolver 6 DOF, W real-time navigation of the endoscope. 算法部分,通过H轴巧螺仪输出对姿态进行初步估计,并通过H轴磁强计和H轴加速度计输出分别对姿态进行测量,收敛估计值,W获取姿态测量值。 Algorithm part, by the output H clever screw shaft instrument preliminary estimate the attitude, the attitude and separately measured by the H-axis magnetometer and accelerometer output axis H, the convergence estimate, W attitude measurement value acquisition. 收敛过程中,磁强计输出与地磁场的相对误差及加速度计输出与重力加速度的相对误差作为自适应因子,判断噪声的大小,调整收敛权重,得到自适应收敛结果。 Convergence process, the relative error and the relative error gravitational accelerometer output and magnetometer output as an adaptive factor geomagnetic field, the size of the noise is determined, the weight adjust the convergence, the adaptive convergence result obtained. 获得实时姿态结果后,分离加速度计的各输出分量,W构建运动学微分方程。 After obtaining the results of real attitude, separated accelerometer output components, W Differential kinematics construct. 进而,解算线性加速度分量,并对其关于时间进行数值积分,得到当前位置。 Furthermore, solving the linear acceleration components, and its numerical integration with respect to time to obtain the current position.

[0024] 一、系统硬件构成 [0024] First, the hardware configuration

[0025] 请见图1所示,系统在硬件上分为两个部分。 [0025] See Figure 1, the system is divided into two portions on the hardware. 第一部分为安装于内窥镜手柄内部的传感器单元;其由传感器模组、无线发射模组及微型天线组成。 The first part of the sensor unit is attached to the inside of the endoscope handle; which consists of a sensor module, a wireless transmitter module and miniature antenna. 传感器模组包含H个微机电传感器,即加速度计、巧螺仪与磁强计。 The sensor module includes a micro electromechanical sensor H, i.e. an accelerometer, Qiao spiro instrument and magnetometer. 无线发射模组主要为一个带有无线发射功能的片上系统。 A wireless transmission module mainly for a system on chip with a radio function. 第二部分为负责数据解算与显示的上位机;其由通讯控制中也、无线发射模组及天线组成。 The second part is responsible for data solver PC and displayed; which is also controlled by communication, a wireless transmitter module and antenna. 通信控制中也为本系统的中枢,负责系统控制与数据处理。 The communication control system is also present center, responsible for system control and data processing. 无线接收模组也主要由一个带有无线发射功能的片上系统构成。 Wireless receiving module mainly consists of a system on a chip configuration with a radio function.

[0026] 请见图2所示,在将导航系统安装至内窥系统内部时,需要将两套系统的坐标轴进行严格对准。 [0026] Please see FIG. 2, when the navigation system is mounted to the interior of the endoscopic system, two systems of axes need to be strictly aligned. 对准的原则的是:传感器单元的X轴平行于内窥镜工作镜管,Z轴垂直于内窥镜工作镜管且背向手柄的方向。 Alignment principles are: X-axis is parallel to the sensor unit endoscope working mirror tunnel, Z axis is perpendicular to the working direction of the endoscope tube and facing away from the handle of the mirror. 为了达到对准目的,在内窥镜手柄内部加工出矩形的凹槽,其两边长与矩形的惯性导航模块的两边长一致,作为惯性导航模块的安装平台,安装平台一边平行于内镜工作镜管,一边垂直于工作镜管。 In order to achieve alignment purposes, in the interior of the endoscope handle machined rectangular recess, which is consistent on both sides of the long sides of the long inertial navigation module and rectangular as a mounting platform inertial navigation module, while the platform is mounted parallel to the work mirror endoscopy tube, perpendicular to the working side of the mirror tunnel. 呈矩形的传感器单元电路板通过螺钉固定于安装平台,其各边分别与安装平台各边对齐。 Rectangular sensor unit circuit board is fixed by screws to the mounting platform, each side of which the sides are aligned with the mounting platform. 为了保证传感器单元电路板完全贴紧与安装平台,电路板所有电子元件全部分部于电路板一面。 In order to ensure complete contact with the circuit board of the sensor unit and the mounting platform, a circuit board all the electronic components all locations on the circuit board side.

[0027] 二、系统工作流程 [0027] Second, the system workflow

[0028] 系统工作时,无线发射模组通过特定通信方式,采集传感器模组的输出,并将其通过微型天线向上位机发射。 When the [0028] system operating the wireless transmitter through a specific communication module, the sensor output acquisition module, and transmitted through the upper computer miniature antenna. 上位机的无线接收模组通过天线接收到数据后,再发送给通讯控制中也,并由其进行解算,得到定位结果。 After the wireless receiving module of the host computer receives the data through the antenna, and then also sent to the communication control by the solver that performs, positioning result obtained. 例如,可W使用支持Zi浊ee协议的片上系统作为无线发射模组与无线接收模组,并使用Zi浊ee协议作为系统两部分之间的通信方式;W 台式电脑作为通讯控制中也;无线发射模组与传感器模组W I2C或SPI协议进行通信;无线接收模组与通讯控制中也W USB协议进行通信。 For example, W can be supported using on-chip system as Zi voiced ee protocol wireless transmitter module and receiver module using Zi cloud ee protocol as a communication scheme between the two parts of the system; W as desktop computers also controlling communications; wireless transmitter module and the sensor module W I2C or SPI protocols for communication; wireless receiving module and also W USB communication control protocol.

[0029] H、自适应的姿态定位方法 [0029] H, adaptive attitude positioning method

[0030] 整体定位流程请见图3所示。 [0030] See Figure 3 for the overall positioning process shown in FIG. 本发明使用重力矢量和地磁矢量对传感器的姿态四元数进行收敛。 The present invention uses the gravity and magnetic vectors vector quaternion attitude sensors converge. 在收敛过程中,根据加速度计输出与重力加速度的差异及磁强计输出与地磁强度的差异来分配权重因子。 In the convergence process, assigned according to the differences and the difference gravitational accelerometer output and magnetometer output intensity of geomagnetism weighting factor.

[0031] 设,? [0031] set,? 为加速度计在载体坐标系的输出,品为磁强计在载体坐标系的输出;gn为加速度计在参考坐标系的输出,Hf为磁强计在参考坐标系的输出。 An accelerometer output vector coordinate system, in free basis vector coordinate system is output magnetometer; GN accelerometer output in the reference coordinate system, Hf for the magnetometer output in the reference coordinate system.

[0032] 对于加速度计测量而言,相对于重力加速度,线性加速度与向也加速度为小量。 [0032] For the accelerometer measurements, with respect to the acceleration of gravity, linear acceleration and the acceleration is also small. 线性加速度与向也加速度的引入并不会明显的影响比力的方向,比力的方向可基本认定为重力加速度的方向。 Also introduced into linear acceleration and acceleration does not significantly affect the ratio of the direction of the force, than the direction of the force direction may be substantially identified as acceleration of gravity. 故,仅使用标量值构建相对误差。 Therefore, the relative error is constructed using only a scalar value. 即: which is:

Figure CN104224089AD00061

[0034] 对于磁强度测量。 [0034] For measuring the magnetic intensity. 磁崎变在大小上完全可能与地磁强度处于同一数量级。 Kawasaki variable magnetic entirely possible in size in the same order of magnitude as the intensity of geomagnetism. 磁崎变的引入会明显的影响总的磁强度的方向。 Introducing magnetic Kawasaki becomes significantly affect the direction of the overall magnetic strength. 故,用大小与方向两个因素共同构建相对误差。 Therefore, with the size and direction of the relative error build two factors. [00巧]与加速度大小误差相似,磁强度大小误差可表示为: [Qiao 00] similar to the size of the acceleration error, the magnetic intensity magnitude of the error can be expressed as:

Figure CN104224089AD00062

[0037] 磁强度方向误差;考虑到线性加速度与向也加速度基本不影响比力的方向,选取磁强度与比力的夹角来描述磁强度在参考坐标系及载体坐标系中的方向。 [0037] direction, the magnetic intensity error; take into account the angle between the direction of linear acceleration also does not substantially affect the acceleration force ratio, and the intensity ratio of the magnetic force selecting the direction of the magnetic strength described in the reference coordinate system and the coordinate system of the carrier. 参考坐标系中, 此角度记为目n;载体坐标系中,考虑到崎变的存在,此角度记为萨。 Reference coordinate system, this angle is referred to as n-eye; vector coordinate system, taking into account the presence of distortion, this angle is referred to as SA. 则, then,

Figure CN104224089AD00063

[0040] 得,磁强度方向误差: [0040] too, the strength of the magnetic direction error:

Figure CN104224089AD00064

Figure CN104224089AD00065

Figure CN104224089AD00066

Figure CN104224089AD00067

Figure CN104224089AD00068

[0042] 总的磁强度误差为: [0042] The total magnetic intensity error:

[004引fadm = ki • fadml+k2 • fa血2 化) [004 cited fadm = ki • fadml + k2 • fa of blood 2)

[0044] 式中,ki与k2为两个恒定的权重因子。 [0044] wherein, ki and k2 are two constant weighting factor. 两数均为经验值,且满足: Two numbers are empirical values, and satisfies:

[0045] ki+ks 二1 (7) [0045] ki + ks two 1 (7)

[0046] 综上,自适应的误差观测函数为(8)所示。 [0046] In summary, the adaptive error observation function (8). 当重力测量误差较大时,相应增加, 使得地磁测量项(^品* - 主导收敛过程;同理,当地磁测量误差较大时,fwm相应增大,使得重力测量项(护主导收敛过程。 When the gravity measurement error is large, a corresponding increase in the geomagnetism such that the measurement item (product * ^ - Leading convergence process; Similarly, when local magnetic measurement error is large, corresponding FWM increases, so that the gravity measurement items (guard leading convergence.

Figure CN104224089AD00071

[0048] 式中,g为旋转矩阵的估计。 [0048] In the formula, g is the estimated rotation matrix. 可W看出,对于重力测量与地磁测量,噪声较大的一方将在收敛过程中占次要地位,且误差越大,其相对权重越低。 W can be seen, geomagnetic measurement and the measurement of gravity, the larger one of the noise will occupy a secondary position in the convergence process, and the larger the error, which is relatively lower the weight. 故,本方法可W根据传感器受干扰程度的大小,自适应地进行调整,使得结果更接近最优解。 Therefore, the method according to the W sensor may be disturbed degree of magnitude, adjusted adaptively, so that the result is closer to the optimal solution.

[004引与做对应的收敛目标矩阵为: [004 done with primers corresponding to the target matrix converges:

Figure CN104224089AD00072

[0051] 根据(10) (11)两式,对(9)式进行高斯-牛顿下降,收敛估计四元数I,即可获取自适应的姿态结果。 [0051] According to (10) (11) two formulas of (9) Gaussian - Newton down quaternion estimates converge I, to obtain the results of the adaptive posture. …飞淀' ... fly lake '

Figure CN104224089AD00073

[0054] 其中,(10)为第m次迭代向第m+1次迭代更新的关系式,a为迭代步长。 [0054] wherein, (10) for the first iteration m to m + 1-th iteration updated relationships, a is the step size.

[005引四、位置定位方法 [005 cited four, position location method

[0056] 加速度计的比力输出含有线性加速度、向也加速度加速度W及重力加速度H个分量组成。 [0056] than the accelerometer output contains the linear acceleration force, but also the composition of the gravitational acceleration of the acceleration of H and W components. 故,在载体坐标系下,有如下关系: Therefore, in the vector coordinates, the following relationship:

Figure CN104224089AD00074

[005引其中,ab为载体坐标系下内镜前端的线性加速度。 [005 cited where, ab is the vector coordinates of the distal end of endoscopic linear acceleration. 即巧螺仪在载体坐标系下的输出,H轴分量为COy及《,;«bxvb即为载体坐标系下内镜的向也加速度。 I.e., carrier Qiao spiro instrument coordinate system at the output, H is the COy-axis component and ",;« bxvb the endoscope shall be under acceleration vector coordinates. gb为载体坐标系下的重力加速度。 gb gravity acceleration vector in the coordinate system.

[0059] 在姿态跟踪阶段,已得到实时的旋转矩阵为£|,故gb可由如下关系获得: [0059] In the attitude tracking stage, it has been real-time rotation matrix £ |, so the relationship gb be obtained as follows:

Figure CN104224089AD00075

[0061] 线性加速度是速度关于时间的微分,即; [0061] linear acceleration with respect to time the differential speed, i.e.,;

Figure CN104224089AD00076

Figure CN104224089AD00077

Figure CN104224089AD00078

Figure CN104224089AD00079

Figure CN104224089AD000710

Figure CN104224089AD00081

[006引将(蝴(14)两式代入(。)式,即可得到在载体坐标系下,速度关于时间的一阶微分方程,如下。 [006 The primer (butterfly (14) is substituted into the formula two (.) Wherein, in the carrier to obtain the coordinate system, a first order differential velocity on time, as follows.

Figure CN104224089AD00082

[0065] 通过(16)式将速度矢量在参考坐标系下表出, [0065] by formula (16) at the reference velocity vector Expressed coordinate system,

Figure CN104224089AD00083

[0067] 将(16)式代入(15)式,得到参考坐标系下的速度矢量与传感器输出之间的数学关系。 [0067] A (16) into (15), to obtain a mathematical relationship between the sensor output and the velocity vector of the reference frame.

Figure CN104224089AD00084

[0069] 又,在参考坐标系下,位置矢量是速度关于时间的一阶积分,即 [0069] Further, in the reference coordinate system, the position of the speed vector is a first-order integration with respect to time, i.e.,

[0070] 护=/ V。 [0070] Support = / V. • dt (18) • dt (18)

[0071] 对(17)式在一个定位周期上进行数值求解,并将结果通过(18)式对速度在一个定位周期上进行离散积分,即可实时更新位置矢量。 [0071] The equation (17) for positioning on a cycle of the numerical solution, and the result is integrated over a discrete period by locating (18) speed, the position vector can be updated in real time. 综上,根据上述两个分步骤即可得到6 自由度的定位信息。 In summary, according to the above two sub-steps to obtain six degrees of freedom positioning information.

[0072] 实践证明,在磁崎变的大小在地磁场大小±25%,且比力大小在重力加速度±25%时,角度跟踪误差可控制在3. 5° W内,位置定位误差可控制在3. 5mm W内。 [0072] Practice has proved that the magnitude of distortion in the magnetic earth field magnitude at ± 25%, and the gravitational acceleration in magnitude than the force of ± 25%, the angle of the tracking error can be controlled within 3. 5 ° W, position location error can be controlled in 3. 5mm W. 两者均达到临床应用要求,具备理想的抗干扰能力与稳定性。 Both achieve clinical applications, have desirable stability and anti-jamming capability.

Figure CN104224089AD00085

Figure CN104224089AD00086

Figure CN104224089AD00087

Figure CN104224089AD00088

Claims (3)

1. 一种具备抗干扰能力的带有手术导航功能的内窥镜系统,包括内窥镜和负责控制与定位解算的上位机,其特征在于在所述内窥镜手柄内部预留有导航模块安装平台,借助微机电极小化后安装于内窥镜手柄内部安装平台上的惯性导航模块,惯性导航模块包含三轴加速度计、三轴陀螺仪和三轴磁强计三种传感器,以及带有无线通信功能的片上系统和微型天线,片上系统采集三种传感器输出的传感数据,并依靠微型天线将传感数据发送给上位机;所述的上位机包括电脑、带有无线通信功能的片上系统、以及天线,带有无线通信功能的片上系统通过天线接收惯性导航模块输出的传感数据,并将传感数据打包传输给电脑,电脑通过已设计好的定位算法进行定位解算。 An endoscopic system includes a surgical navigation function with interference rejection capability, comprising a host computer responsible for controlling the positioning of the endoscope and a resolver, characterized in that the inside of the endoscope handle reservation navigation module mounting platform, by means of the microcomputer to minimize inertial navigation module electrode mounted on the inside of the endoscope handle mounting platform, inertial navigation module comprises a triaxial accelerometer, gyroscope triaxial magnetometer and triaxial three kinds of sensors, and a belt wireless communication function and a miniature antenna system on a chip, system on a chip collecting sensor data output from the three kinds of sensors, and rely on miniature antenna transmits the sensed data to the host computer; said host computer comprises a computer, with a wireless communication function system on a chip, and an antenna, a system on chip with a wireless communication function module receiving the inertial navigation sensor data outputted by the antenna, and transmitting sensing data package to the computer, the computer algorithm has been designed to locate a good positioning solver.
2. 根据权利要求1所述的具备抗干扰能力的带有手术导航功能的内窥镜系统,其特征在于所述电脑中的定位算法具备抗干扰能力,能够抑制磁场畸变以及内窥镜非惯性运动带来的传感器输出噪声;当通过地磁矢量与比力矢量对内窥镜的姿态进行收敛时,将地磁矢量输出的相对误差以及比力矢量输出的相对误差作为收敛观测函数的权重,以调整收敛方向,自适应地获取姿态收敛结果;通过陀螺仪及加速度计的输出将比力矢量分解为线性加速度、重力加速度及向心加速度三项,并通过对线性加速度进行二次积分,获取位置结果。 The endoscope system of claim 1 provided with an anti-jamming capability surgical navigation claim, wherein said computer includes anti-interference ability of the location algorithm, the magnetic field can be suppressed and the distortion of the endoscope Noninertial noise caused by the motion sensor output; by weight when the convergence ratio of the geomagnetic vector and the force vector of the attitude of the endoscope, the relative error of the output of the geomagnetic vector and the vector output power than the relative error as a function of the observed weight converges to adjust the direction of convergence, the adaptive convergence result acquired posture; than force vector output by the gyro and the accelerometer is decomposed into a linear acceleration, centripetal acceleration and three gravitational acceleration, linear acceleration and by double integration, the result acquisition position .
3. 根据权利要求1或2所述的具备抗干扰能力的带有手术导航功能的内窥镜系统,其特征在于在内窥镜手柄组装完成前,在其内部加工出一个尺寸与惯性导航模块尺寸一致, 两边分别与内窥镜镜管平行或垂直的矩形凹槽,作为矩形的惯性导航模块的安装平台。 The endoscope system of claim 1 or 2 includes anti-jamming capability with a surgical navigation claim, wherein the handle assembly is completed before the endoscope in its interior a machined size and inertial navigation module same size, both sides of the rectangular grooves are parallel or perpendicular to the endoscope, a rectangular inertial navigation module mounting platform.
CN201410465885.2A 2014-09-15 2014-09-15 One kind of an endoscope equipped with the surgical navigation system anti-interference ability of CN104224089B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410465885.2A CN104224089B (en) 2014-09-15 2014-09-15 One kind of an endoscope equipped with the surgical navigation system anti-interference ability of

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410465885.2A CN104224089B (en) 2014-09-15 2014-09-15 One kind of an endoscope equipped with the surgical navigation system anti-interference ability of

Publications (2)

Publication Number Publication Date
CN104224089A true CN104224089A (en) 2014-12-24
CN104224089B CN104224089B (en) 2017-05-31

Family

ID=52213654

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410465885.2A CN104224089B (en) 2014-09-15 2014-09-15 One kind of an endoscope equipped with the surgical navigation system anti-interference ability of

Country Status (1)

Country Link
CN (1) CN104224089B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104758066A (en) * 2015-05-06 2015-07-08 中国科学院深圳先进技术研究院 Equipment for surgical navigation and surgical robot
CN105030188A (en) * 2015-08-06 2015-11-11 桂林电子科技大学 Enteroscopy system having track display function and enteroscopy track display method
CN106343942A (en) * 2016-10-17 2017-01-25 武汉大学中南医院 Automatic laparoscopic lens deflection alarm device
CN107802346A (en) * 2017-10-11 2018-03-16 成都漫程科技有限公司 Ultrasonic fusion navigation system and method based on inertial guidance
CN108670408A (en) * 2018-05-28 2018-10-19 赵东生 A kind of control method and device of interposing catheter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592939A (en) * 1995-06-14 1997-01-14 Martinelli; Michael A. Method and system for navigating a catheter probe
CN102599876A (en) * 2012-03-08 2012-07-25 珠海迈德豪医用科技有限公司 Endoscope having automatic positioning and viewing unit
CN103006164A (en) * 2012-12-13 2013-04-03 天津大学 Endoscope tracking and positioning and digital human dynamic synchronous display device based on multi-sensor
CN103027657A (en) * 2012-12-13 2013-04-10 天津大学 Multi-sensor-based endoscope tracking positioning and digital human dynamic synchronous display method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592939A (en) * 1995-06-14 1997-01-14 Martinelli; Michael A. Method and system for navigating a catheter probe
CN102599876A (en) * 2012-03-08 2012-07-25 珠海迈德豪医用科技有限公司 Endoscope having automatic positioning and viewing unit
CN103006164A (en) * 2012-12-13 2013-04-03 天津大学 Endoscope tracking and positioning and digital human dynamic synchronous display device based on multi-sensor
CN103027657A (en) * 2012-12-13 2013-04-10 天津大学 Multi-sensor-based endoscope tracking positioning and digital human dynamic synchronous display method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王森,陈晓冬,杜承阳,汪毅,郁道银: "磁干扰环境下基于多传感器的内窥镜姿态定位技术", 《传感技术学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104758066A (en) * 2015-05-06 2015-07-08 中国科学院深圳先进技术研究院 Equipment for surgical navigation and surgical robot
CN104758066B (en) * 2015-05-06 2017-05-10 中国科学院深圳先进技术研究院 For surgical navigation devices and surgical robots
CN105030188A (en) * 2015-08-06 2015-11-11 桂林电子科技大学 Enteroscopy system having track display function and enteroscopy track display method
CN106343942A (en) * 2016-10-17 2017-01-25 武汉大学中南医院 Automatic laparoscopic lens deflection alarm device
CN107802346A (en) * 2017-10-11 2018-03-16 成都漫程科技有限公司 Ultrasonic fusion navigation system and method based on inertial guidance
CN108670408A (en) * 2018-05-28 2018-10-19 赵东生 A kind of control method and device of interposing catheter

Also Published As

Publication number Publication date
CN104224089B (en) 2017-05-31

Similar Documents

Publication Publication Date Title
US6361507B1 (en) Inertial orientation tracker having gradual automatic drift compensation for tracking human head and other similarly sized body
US7395181B2 (en) Motion tracking system
US6744420B2 (en) Operation input apparatus using sensor attachable to operator's hand
Roetenberg Inertial and magnetic sensing of human motion
KR101778807B1 (en) Motion capture pointer with data fusion
EP2671686B1 (en) Master-slave manipulator
EP2435784B1 (en) Tracking system calibration using object position and orientation
JP5807291B2 (en) Handheld pointing device with roll compensation
JP5444209B2 (en) Frame mapping and force feedback method, apparatus and system
CN103776451B (en) Based on a high precision 3D pose mems inertial measurement system and a measurement method
Bachmann et al. Design and implementation of MARG sensors for 3-DOF orientation measurement of rigid bodies
US7966146B2 (en) Force sensing apparatus and method to determine the radius of rotation of a moving object
AU2011223942B2 (en) Intuitive multiple degrees of freedom portable control device
US20100150404A1 (en) Tracking system calibration with minimal user input
US6820025B2 (en) Method and apparatus for motion tracking of an articulated rigid body
KR20070017321A (en) Processing Pose Data Derived from the Pose of an Elongate Object
CN102869310B (en) The operation input device and the manipulator system
JP2000132305A (en) Operation input device
JP2004280840A (en) Input system based on three-dimensional inertial navigation system, and its method for estimating trajectory
CN102216880B (en) Method and device for inputting force intensity and rotation intensity based on motion sensing
JP2017061032A (en) High performance remote manipulator system
Ang et al. Design of all-accelerometer inertial measurement unit for tremor sensing in hand-held microsurgical instrument
CN105555222B (en) Medical mechanical arm device, medical mechanical arm control system, medical mechanical arm control method and program
CN101915580B (en) Self-adaptation three-dimensional attitude positioning method based on microinertia and geomagnetic technology
JP2009147915A (en) Method for detecting movement of handheld controller to control controlled object, and handheld controller

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
GR01