CN104159106B - Video encoding method and video decoding method and apparatus - Google Patents

Video encoding method and video decoding method and apparatus Download PDF

Info

Publication number
CN104159106B
CN104159106B CN 201410200230 CN201410200230A CN104159106B CN 104159106 B CN104159106 B CN 104159106B CN 201410200230 CN201410200230 CN 201410200230 CN 201410200230 A CN201410200230 A CN 201410200230A CN 104159106 B CN104159106 B CN 104159106B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
size
motion estimation
parallel
region
video
Prior art date
Application number
CN 201410200230
Other languages
Chinese (zh)
Other versions
CN104159106A (en )
Inventor
吴东兴
李坤傧
Original Assignee
联发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

本发明提供一种视频编码方法和视频解码方法及其装置。 The present invention provides a video encoding method and video decoding method and apparatus. 该视频编码方法包含步骤:依据编码相关信息来决定并行运动估计区域的尺寸;以及通过基于并行运动估计区域的尺寸来至少执行运动估计以对多个像素进行编码。 The video coding method comprising the steps of: encoding the information based on a parallel motion estimation determined size of the region; and by performing motion estimation to at least a plurality of pixels based on a parallel motion estimation coding region size. 本发明所提供的视频编码方法和视频解码方法及其装置,能够分别在编码及解码过程中得到完善的运动估计尺寸处理。 The video encoding method of the present invention provides a method and apparatus and a video decoding, can be respectively improved motion estimation process in the size of encoding and decoding process.

Description

视频编码方法和视频解码方法及其装置 Video encoding method and video decoding method and apparatus

技术领域 FIELD

[0001] 本发明是有关于视频数据处理,特别是有关于一种依据编码相关信息来决定并行运动估计区域的尺寸的视频编码方法和视频解码方法及其装置。 [0001] The present invention relates to video data processing, in particular, there is a basis for encoding the information to determine the parallel motion estimation video encoding method and the size of the area on the video decoding method and apparatus.

背景技术 Background technique

[0002] 视频压缩,即视频编码,是数字视频储存和传输的基本机制。 [0002] video compression, i.e., video coding, the basic mechanism of the digital video transmission and storage. 一般来说,视频压缩/ 编码对视频序列中的像素的区块至少依序进行预测、转换、量化以及熵编码,以压缩/编码视频序列。 In general, video compression / encoding blocks of pixels in a video sequence of at least sequentially prediction, conversion, quantization, and entropy encoding, a compressed / encoded video sequence. 视频解压缩,即视频解码,一般执行视频压缩/编码操作的反向操作来对压缩/编码后的视频序列进行解压缩/解码。 Video decompression, i.e. video decoding, video compression generally perform the reverse operation / encoding operation to decompress a compressed video sequence / coding / decoding.

[0003] 高效能视频编码(High Eff iciency Video Coding,HEVC)是一种编码标准,较其它编码标准如H. 264来说,具有更佳的编码效能,更高的分辨率和更高的帧率。 [0003] High Performance Video Coding (High Eff iciency Video Coding, HEVC) is a coding standard, than other coding standards, such as H. 264, it has a better coding performance, higher resolution and a higher frame rate. 高效能视频编码标准中提出若干编码效能改进工具。 High performance video coding standards proposed several improved coding performance tools. 例如合并模式通过让一个帧间预测单元(inter-predicted prediction unit) 来继承运动数据(S 卩运动向量、预测方向以及参考图片索引),以降低编码负荷。 E.g. merge mode to the motion data inheritance (S Jie motion vectors, reference picture index and prediction direction) by having a inter prediction unit (inter-predicted prediction unit), in order to reduce the coding-load. 其中该运动数据来自同一图片中的空间运动数据位置中选出的位置和基于参考图片中位于共同位置的预测单元得到的暂时运动数据位置。 Wherein the moving space of the same picture data from the motion data and a position selected based on the predicted position of the reference picture element located at a common location movement data obtained temporary position. 合并模式名称的由来则是因为所形成的共享所有运动信息的合并区域。 The origin of the name of the merge mode is shared because all motion information merge region is formed. 然而这些空间运动数据位置位于其它的预测单元中。 However, other motion prediction data units located in these spaces. 因此,依赖于来自其他预测单元中的位置的运动数据造成了视频编码器中并行运动估计的实现上的困难。 Therefore, depending on the position data from the other motion prediction unit caused difficulties in the realization of a parallel video encoder motion estimation.

[0004] 为了完成并行运动估计,将最大编码单元分割为相同大小的一个或多个非重迭并行运动估计区域。 [0004] To complete the parallel motion estimation, the maximum coding unit is divided into a plurality of the same size or area of ​​non-overlapping parallel motion estimation. 这些非重迭并行运动估计区域在高效能视频编码标准中也被称为并行合并级(parallel merge level)。 These non-overlapping regions in a parallel high-performance motion estimation video coding standards are also called parallel fractions were combined (parallel merge level). 依序执行从一个并行运动估计区域到另一个并行运动估计区域的运动估计,也就是说,在当前并行运动估计区域的运动估计结束后,才会开始对下一个并行运动估计区域进行运动估计。 Performed sequentially from one area to another parallel motion estimation motion estimation area parallel motion estimation, that is, parallel motion estimation motion estimation region after the end, it will start a parallel motion estimation motion estimation area to the next in the current. 然而,在一个并行运动估计区域内,对此并行运动估计区域中的所有预测单元来说,合并模式的运动估计是并行执行的。 However, in the region of a parallel motion estimation, prediction unit all parallel to this motion estimation area, the motion estimation merge mode are executed in parallel. 更具体地说,当在合并模式下计算运动向量时,在并行运动估计区域之内,同一并行运动估计区域中相邻的区块的运动向量彼此间没有相依性。 More specifically, when calculating a motion vector in a merge mode, in the parallel motion estimation area, the same parallel motion estimation is no dependency between motion vector region adjacent blocks to each other. 如此一来,并行运动估计区域中合并模式下运动向量的计算仅使用并行运动估计区域之外的运动向量。 Thus, a parallel motion estimation area calculating a motion vector using only a parallel merge mode motion estimation motion vector outside the region.

[0005] 在现有的设计中,并行运动估计区域的尺寸在开始编码处理之前由编码器配置设定。 [0005] In the conventional design, the size of the parallel motion estimation area is set before the start of the encoding process by the encoder configuration. 因此,视频序列中编码帧使用的固定大小的并行运动估计区域,在视频编码中缺乏弹性,且无法针对不同编码应用得到最佳的并行度(parallel degre)。 Thus, a parallel motion estimation areas of the video sequence encoded frames of fixed size is used, the lack of flexibility in video coding, and can not obtain the optimum degree of parallelism (parallel degre) coding for different applications.

发明内容 SUMMARY

[0006] 根据本发明的示例,提出依据编码相关信息来决定并行运动估计区域的尺寸的视频编码方法和装置以及相关的视频解码方法和装置用于解决以上问题。 [0006] The example of the present invention it is proposed according to the coding information to determine the size of the region of a parallel motion estimation video encoding method and apparatus and video decoding method and associated apparatus for solving the above problems.

[0007] 根据本发明第一实施方式,提供一种视频编码方法。 [0007] According to a first embodiment of the present invention, there is provided a video encoding method. 该视频编码方法包含有:依据编码相关信息来决定并行运动估计区域的尺寸;以及通过至少基于并行运动估计区域的尺寸来执行运动估计以对多个像素进行编码。 The video encoding method comprising: encoding the information based on a parallel motion estimation determines the size of the region; and at least performs motion estimation to a plurality of pixels based on a parallel motion estimation coding region by size.

[0008] 根据本发明第二实施方式,提供一种视频解码方法。 [0008] According to a second embodiment of the present invention, there is provided a video decoding method. 该视频解码方法包含有:对视频参数流进行解码以得到并行运动估计区域的解码尺寸。 The video decoding method comprising: decoding the video stream to obtain parameters decoded dimension parallel motion estimation region. 检查并行运动估计区域的解码尺寸的有效性,并据以产生检查结果。 Checking the validity of a parallel decoding motion estimation area size, and accordingly to produce test results. 当检查结果指示并行运动估计区域的解码尺寸为无效时,进入错误处理过程来决定并行运动估计区域的尺寸。 When the check result indicates the size of decoding a parallel motion estimation region to be invalid, an error into the process determines the size of the parallel motion estimation areas. 通过基于并行运动估计区域的已决定尺寸来至少执行运动补偿以解码多个像素。 Parallel motion estimation region has decided to perform at least the size of motion compensation to a plurality of decoded pixel-based.

[0009] 根据本发明第三实施方式,提供一种视频编码装置。 [0009] According to a third embodiment of the present invention, there is provided a video encoding apparatus. 该视频编码装置包含有:编码器参数设定电路和视频编码器。 The video encoding apparatus comprising: parameter setting encoder and a video encoder circuit. 编码器参数设定电路用来依据编码相关信息来决定并行运动估计区域的尺寸。 The encoder according to the parameter setting circuit is used to encode information in parallel motion estimation determined size of the region. 视频编码器用来通过基于并行运动估计区域的尺寸来至少执行运动估计,以对多个像素进行编码。 Is used by the video encoder performs motion estimation based on a parallel motion estimation of at least the size of the region, to encode a plurality of pixels.

[0010] 根据本发明第四实施方式,提供一种视频解码装置。 [0010] According to the fourth embodiment of the present invention, there is provided a video decoding apparatus. 该视频解码装置包含有:输入接口和视频解码器。 The video decoding apparatus comprising: an input interface and a video decoder. 输入接口用来接收包含有视频参数流的编码视频比特流。 An input interface for receiving the encoded video bitstream comprises a video stream parameters. 视频解码器用来对视频参数流进行解码以得到并行运动估计区域的解码尺寸;检查并行运动估计区域的解码尺寸的有效性,并据以产生检查结果。 A video decoder for decoding the video stream to obtain parameters decoded dimension parallel motion estimation region; checking the validity of a parallel decoding motion estimation area size, and accordingly to produce test results. 当检查结果指示并行运动估计区域的解码尺寸为无效时,进入错误处理过程来决定并行运动估计区域的尺寸。 When the check result indicates the size of decoding a parallel motion estimation region to be invalid, an error into the process determines the size of the parallel motion estimation areas. 通过基于并行运动估计区域的已决定的尺寸来至少执行运动补偿,以解码多个像素。 Parallel motion estimation by size of the area to perform at least the determined motion compensation to decode the plurality of pixels.

[0011] 本发明所提出的视频编码方法和视频解码方法及其装置,能够分别在编码及解码过程中得到完善的运动估计尺寸处理。 Video encoding method and video decoding method and apparatus proposed in [0011] the present invention, can be respectively improved motion estimation process in the size of encoding and decoding process.

附图说明 BRIEF DESCRIPTION

[0012] 图1为根据本发明实施方式的采用视频编码和解码机制的系统的示意图。 [0012] FIG. 1 is a schematic diagram in accordance with video encoding and decoding system using the mechanism of the embodiment of the present invention.

[0013] 图2为根据本发明实施方式的第一视频编码方法的流程图。 [0013] FIG 2 is a flowchart of a first embodiment of the video encoding method embodiment of the present invention.

[00M]图3为根据本发明实施方式的第二视频编码方法的流程图。 [00M] FIG. 3 is a flowchart of a second embodiment of the video encoding method embodiment of the present invention.

[0015] 图4为根据本发明实施方式的具有错误处理的视频解码方法的流程图。 [0015] FIG 4 is a flowchart illustrating a video decoding method with error processing in the embodiment of the present invention.

[0016] 图5为根据本发明实施方式的第一错误处理的流程图。 [0016] FIG. 5 is a flowchart of error processing according to the first embodiment of the present invention.

[0017] 图6为根据本发明实施方式的第二错误处理的流程图。 [0017] FIG 6 is a flowchart of error processing according to the second embodiment of the present invention.

[0018] 图7为根据本发明实施方式的第三错误处理的流程图。 [0018] FIG. 7 is a flowchart of error processing according to a third embodiment of the present invention.

[0019] 图8为根据本发明实施方式的第四错误处理的流程图。 [0019] FIG 8 is a flowchart of error processing according to the fourth embodiment of the present invention.

具体实施方式 detailed description

[0020] 在说明书及权利要求书当中使用了某些词汇来称呼特定的元件。 [0020] Certain terms are used in the specification and claims to refer to particular components among. 本领域的技术人员应可理解,硬件制造商可能会用不同的名词来称呼同一个元件。 Those skilled in the art will appreciate, manufacturers may use different names to refer to the same elements. 本说明书及权利要求书并不以名称的差异来作为区分元件的方式,而是以元件在功能上的差异来作为区分的准贝1J。 This document does not intend to differ in name as a way to distinguish one element, but rather the difference in function to elements as distinguished quasi shell 1J. 在通篇说明书及权利要求书当中所提及的“包含”是开放式的用语,故应解释成“包含但不限定于”。 Mentioned in the following description and claims the terms "include" are open-ended fashion, and thus should be interpreted to mean "including, but not limited to." 此外,“親接”一词在此是包含任何直接及间接的电气连接手段。 In addition, the "pro-connected" are intended to mean either an indirect or direct electrical connection. 因此,若文中描述第一装置耦接于第二装置,则代表第一装置可直接电气连接于第二装置,或通过其它装置或连接手段间接地电气连接到第二装置。 Accordingly, if one device is coupled to the second means, it represents the first device may be directly electrically connected to the second means, coupled to the second means, or by other means or indirect electrical connection.

[0021] 本发明的主要精神在于依据编码相关信息来决定并行运动估计区域的尺寸。 [0021] spirit of the present invention is mainly based on the coding information to determine the size of a parallel motion estimation region. 也就是说,在视频编码/压缩的过程中,并行运动估计区域的尺寸不是固定的。 That is, in the video encoding / compression process, the size of the parallel motion estimation area is not fixed. 这样一来,对于不同的编码应用来说,可以较弹性地对视频进行编码,且具有较佳的并行度,以及达到软/硬件设计上的高度并行化。 Thus, coding for the different applications, can be more flexibly encode the video, and has a preferred degree of parallelism, and achieve a high degree on the hardware / software design parallelized.

[0022] 图1为根据本发明实施方式的采用视频编码和解码机制的系统100的示意图。 [0022] FIG. 1 is a schematic of a system 100 using a video encoding and decoding mechanism according to an embodiment of the present invention. 采用视频编码和解码机制的系统100包含有来源装置102和目的装置104。 Using video encoding and decoding system 100 comprises a mechanism 102 has a source device 104 and destination device. 来源装置102负责提供编码视频数据和相关视频参数,之后编码视频数据和相关视频参数将由目的装置104进行解码。 Source device 102 is responsible for providing encoded video data and video-related parameters, after the encoded video data and video-related parameters for decoding by the destination device 104. 特别是来源装置102会通过任何传输装置101提供编码视频数据和相关视频参数至目的装置104。 In particular, source device 102 provides encoded video data and video-related parameters to the destination device 104 via any transmission means 101. 举例来说,传输装置101可以为储存媒体、连接线或是有线/无线网络。 For example, the transmission device 101 may be a storage medium, wired or cable / wireless network. 来源装置102和目的装置104可以为各种不同电子装置,包含计算机、智能型手机、机顶盒、电视、多媒体服务器、多媒体客户端等。 Source device 102 and destination device 104 may be a variety of electronic devices, including computers, smart phones, set-top box, television, multimedia server, the multimedia client and the like.

[0023] 如图1所示,来源装置102包含有视频源112以及视频编码装置114,视频源112提供来源视频输入D_IN。 [0023] As illustrated, the source device 102 includes a video source 112 and a video coding means 114, the video source 112 provides a source of video input D_IN. 其中,视频编码装置114编码来源视频输入D_IN为编码视频比特流BS。 Wherein, the video encoding apparatus 114 as encoded D_IN input video source encoded video bitstream BS. 例如,视频源112可以为用来产生来源视频输AD_IN的视频相机,或是用来从视频内容提供端接收来源视频输入D_IN的视频接口。 For example, the video source 112 may generate video input source of a video camera is used AD_IN, or to provide the receiving end of the source video content from the video input of the video interface D_IN. 视频编码装置114对来源视频输AD_IN中的像素进行编码以产生编码视频比特流BS。 The video encoding apparatus 114 pairs of video input sources AD_IN of pixels to generate an encoded video bitstream BS. 编码视频比特流BS包含有视频参数流(video parameter stream) BSp和视频负载数据流BSd。 BS encoded video bitstream comprises a video stream parameters (video parameter stream) BSp and video payload data stream BSd. 目的装置104包含有视频解码装置122和显示装置124。 Destination device 104 includes a video decoding device 122 and display device 124. 在接收端的视频解码装置122对视频参数流BSp进行解码来得到传送端用来对来源视频输入D_IN编码的编码器参数,然后基于解码出来的编码器参数对视频负载数据流BSd中的像素进行解码以产生重建视频输出D_0UT至显示装置124以供播放。 At the receiving end of the video decoding device 122 on the video parameter stream BSp decoding to obtain the encoder parameter transmitter for encoding parameters of the source video input D_IN coding, and based on the decoded out of the video stream for the payload BSd the pixels in decoding D_0UT to produce a reconstructed video output to display device 124 for playback. 举例来说,但本发明不以此为限,视频编码装置114和视频解码装置122可依据视频编码标准来操作,例如目前的高效能视频编码标准(HEVC)。 By way of example, but the present invention is not limited thereto, the video encoding apparatus 114 and the video decoding apparatus 122 may operate according to a video coding standard, such as the current high-performance video coding standard (HEVC). 此外,所提出的视频编码和解码机制可应用在视频编码装置114和视频解码装置122以增强高效能视频编码标准所支持的并行运动补偿。 In addition, the video encoding and decoding the proposed mechanism can be applied in the video encoding apparatus 114 and the video decoding apparatus 122 in parallel in order to enhance high performance motion compensated video coding standards are supported. 关于视频编码和解码机制的更进一步的细节将说明如下。 Further details regarding video encoding and decoding mechanisms will be explained as follows.

[0024] 请连同图1 一起参考图2,图2为根据本发明实施方式的第一视频编码方法的流程图。 [0024] Please conjunction with FIG. 1 with reference to FIG. 2, FIG. 2 is a flowchart of a first embodiment of the video encoding method embodiment of the present invention. 图2中的视频编码方法可以应用在图1所示的视频编码装置114。 The video encoding method in FIG. 2 may be applied in the video encoding apparatus 114 shown in Fig. 倘若大体上可达到相同的结果,并不一定需要按照图2所示的流程中的步骤顺序来进行,且图2所示的步骤不一定要连续进行,即其他步骤也可以插入其中。 Provided that substantially the same result is achieved, it does not necessarily need to follow the steps in the sequence flow shown in FIG. 2, the step shown in FIG. 2 and need not be contiguous, i.e., other steps may be inserted therein. 此外,图2中的某些步骤可根据不同实施例或设计需求而省略。 Additionally, certain steps may be omitted in FIG. 2 according to different embodiments or design requirements. 在步骤202中,在视频编码器116开始编码处理之前,编码器参数设定电路115参考编码器配置(encoder configuration)以设定视频编码器116所使用的编码器参数。 In step 202, before the video encoder 116 starts encoding process, the encoder parameter setting circuit 115 with reference to the encoder configuration (encoder configuration) to set the parameter of the video encoder used by encoder 116. 应注意的是编码器参数设定函数可以通过硬件或是软件的方式来实现。 It is noted that the encoder parameter setting function may be implemented by hardware or software manner. 在硬件实现方法中,可以使用纯硬件的方式来实现编码器参数设定电路115。 In the hardware implementation can be used in a manner to pure hardware implementation of the encoder parameter setting circuit 115. 在软件实现方法中,可以使用处理器执行程序代码的方式来实现编码器参数设定电路115。 In the software implementation, the encoder may be implemented using the parameter setting mode processor circuit 115 executes the program code. 举例来说,如同现有的视频编码器设计,并行运动估计区域的尺寸可以在开始编码来源视频输AD_IN之前依据编码器配置来初始设定。 For example, as in the conventional video encoder design, the size of the parallel motion estimation area may be configured to initially set according to the encoder before starting to code source video input AD_IN. 在步骤204中,视频编码器116开始进行对来源视频输入D_IN进行编码处理。 In step 204, the video encoder 116 starts to encode the source video input D_IN process. 在步骤206中,编码器参数设定电路115依据编码相关信息来确定并设定对于帧的并行运动估计区域的尺寸Size_PMER。 In step 206, the encoder determines the parameter setting circuit 115 and a parallel motion estimation Size_PMER sized regions for frames coded in accordance with the relevant information. 举例来说,但本发明不以此为限,编码相关信息可以包含编码类型、编码应用信息及/或外部系统信息。 By way of example, but the present invention is not limited to, the coding information may comprise coding type, coding applications and / or external information system.

[0025] 在编码器参数设定电路115考虑编码类型的情况下,被用来设定并行运动估计区域的尺寸Size_PMER的编码类型包含参考类型(例如参考类型指示欲编码当前帧为参考帧或非参考帧)、切片类型(例如切片类型指示在当前帧中欲编码的切片为帧内切片(intra (I) slice))、帧间预测切片(predictecKP) slice)或是双向帧间预测切片(bi-directional predicted⑶slice))、最大编码单元(largest coding unit,LCU)尺寸和视频编码器的处理核心的数目(若视频编码器116以纯硬件来实现以作为视频编码器,即硬件编码器)中的至少一个。 [0025] In the case of the encoder 115 to code the parameter setting circuit type, a parallel motion estimation is used to set the size of the region containing the reference coding type Size_PMER type (e.g., refer to indicate the type of the current frame to be encoded as a reference frame or reference frame), slice type (e.g. slice type indicates a slice in the current frame to be encoded as an intra slice (intra (I) slice)), inter-prediction slice (predictecKP) slice) or bi-directional inter predictive slice (bi -directional predicted⑶slice)), the maximum coding unit (largest coding unit, LCU processing core size and a video encoder of the number (if the video encoder 116 to pure hardware implemented as a video encoder, i.e., hardware encoder)) is at least One. 以下的表1中列出了不同编码类型的并行运动估计区域的尺寸Size_PMER的示范性设定。 Table 1 below lists the sizes Size_PMER different types of parallel coding region of an exemplary motion estimation settings.

[0026] 表1 [0026] TABLE 1

[0027] [0027]

Figure CN104159106BD00081

[0028] 在编码器参数设定电路115考虑编码应用信息的情况下,编码应用信息包含性能模式(例如性能模式(performance mode)指示编码应用是操作于低性能模式还是高性能模式)、延迟模式(例如延迟模式指示编码应用是否操作于低延迟模式)以及编码方案(例如编码方案指示编码应用是否操作于正常录像模式(normal recording mode))中的至少一个。 [0028] In the case of the encoder 115 to code the parameter setting circuit application information, the application information contains encoding performance mode (e.g., performance mode (performance mode) indicates that the encoder is operating in a low performance application mode or a high performance mode), the delay mode (e.g. delay mode indicating whether the encoded application operating in low latency mode), and a coding scheme (e.g., coding scheme indicates whether the coding applications operating in normal recording mode (normal recording mode)) of at least one. 以下的表2中列出了不同编码应用的并行运动估计区域的尺寸Size_PMER的示范性设定。 Table 2 below lists the parallel movement of the various applications of the estimated size of the coding region of an exemplary Size_PMER set.

[0029] 表2 [0029] TABLE 2

[0030] [0030]

Figure CN104159106BD00082

[0031] 在编码器参数设定电路115考虑外部系统信息的情况下,外部系统信息包含有带宽状态(例如带宽状态指示系统带宽(例如主要内存带宽或网络带宽))、系统电源状态(例如系统电源状态指示电池剩余电力)、系统时序(例如系统时序指示系统为高延迟(long latency)还是低延迟(small latency))和通用处理器的处理核心的数目(若视频编码器116以通用处理器执行编码软件来实现,即软件编码器)中的至少一个。 [0031] In the case of the encoder circuit 115 are external parameter setting system information, system information includes the bandwidth of the external state (e.g. the bandwidth status indication system bandwidth (e.g., main memory bandwidth or network bandwidth)), the state of the power system (e.g., system indicates the remaining battery power status), the system timing (e.g., timing system indicated a high system delay (long latency) or low latency (small latency)) and the number of processing cores general purpose processor (if the video encoder 116 to a general purpose processor performing encoding implemented in software, i.e. software encoder) is at least one. 以下的表3中列出了不同外部系统信息的并行运动估计区域的尺寸Size_PMER的示范性设定。 Table 3 below lists the various external parallel motion estimation system information area size Size_PMER exemplary settings.

[0032] 表3 [0032] TABLE 3

[0033] [0033]

Figure CN104159106BD00091

[0034] —般来说,并行运动估计区域的尺寸越小,对于每个最大编码单元的运动估计的处理时间越长,功耗也就越大。 [0034] - In general, the smaller the size of the parallel motion estimation area, the longer the maximum coding unit for each of the motion estimation processing time, the greater the power consumption. 不过,当并行运动估计区域的尺寸被设定为较大值时,视频编码器需要有更高的计算功率来完成所想要达到的并行运动估计,这无疑将导致较高的硬件成本。 However, when the size of the parallel motion estimation area is set to a larger value, the video encoder requires higher computational power to complete the desired parallel motion estimation reached, which will undoubtedly lead to higher hardware costs. 在本发明实施例中,能够基于编码相关信息来适应性地(动态地)设定并行运动估计区域的尺寸,编码相关信息包含编码类型、编码应用信息及/或外部系统信息,进而在有限的系统资源下达到最佳并行运动估计性能。 In an embodiment of the present invention, based on the encoding information can be adaptively (dynamically) set parallel motion estimation of the size of the region encoding related information includes encoding type, encoding application information and / or external information system, and further limited to achieve the best estimate of performance under the parallel motion system resources.

[0035] 在步骤208中,检查并行运动估计区域的尺寸是否改变? [0035] In step 208, check the size of the parallel motion estimation area is changed? 即视频编码器116检查当前帧的所决定的并行运动估计区域的尺寸Size_PMER是否和前一帧的所决定的并行运动估计区域的尺寸不一致。 I.e., the video encoder 116 checks the current frame is determined whether the parallel motion estimation area size and size Size_PMER parallel motion estimation region determined by the previous frame is inconsistent. 若确定并行运动估计区域的尺寸有变化,视频编码器116对图片参数重新编码以包括当前帧所决定的并行运动估计区域的尺寸Size_PMER (步骤210)。 Determining if the estimated size of the area of ​​the parallel motion changes, a video encoder 116 pairs of re-encoding a picture parameter to include the size Size_PMER (step 210) the determined current frame parallel motion estimation areas. 若在步骤208中发现并行运动估计区域的尺寸没有变化,或是步骤210结束对图片参数的重新编码, 视频编码器116便开始基于当前帧所决定的并行运动估计区域的尺寸Size_PMER来对当前帧中的多个像素进行编码(步骤212。)因此,视频编码器116便能够在具有由编码器参数设定的并行运动估计区域的尺寸Size_PMER的相同的并行运动估计区域中对预测单元执行并行运动估计,因而改善编码效能。 If it is found in step 208 the size of a parallel motion estimation region has not changed, or re-encoding step 210 for the end of the picture parameter, the video encoder 116 starts based on the size Size_PMER parallel motion estimation determined current frame to the current frame region a plurality of pixels for encoding (step 212.) Accordingly, the video encoder 116 will be capable of parallel motion prediction unit performs motion estimation in the same parallel Size_PMER area size having a parallel motion estimation area set by the parameters of the encoder estimates, thus improving coding efficiency. 在步骤214中,视频编码器116检查来源视频输入D_IN的所有帧是否都完成编码。 In step 214, video encoder 116 checks the source of all frames of the video input D_IN whether the coding is done. 若是来源视频输入D_IN仍有帧等待编码,则流程进入步骤206。 If the source video frame are still waiting D_IN input coding, the flow proceeds to step 206. 若来源视频输入D_IN已没有帧等待编码,则视频编码器116停止编码,即编码结束(步骤216)。 If the video source has no frame waiting D_IN input encoding, the video encoder 116 stops the encoding, i.e., encoding is ended (step 216).

[0036] 请注意,步骤208为非必要步骤,可以视实际情况而定。 [0036] Note that, in step 208 non-essential steps, as the case may be. 举例来说,在另一个视频编码器设计中,步骤208以及相关操作可以被省略,使得步骤206之后紧接执行步骤210。 For example, in another video coder design, step 208, and related operations may be omitted, so that step 210 is executed immediately after step 206. 这样一来,在步骤206中,编码器参数设定电路115设定并行运动估计区域的尺寸之后,视频编码器116在步骤210中对图片参数进行重新编码。 After Thus, in step 206, the encoder parameter setting circuit 115 to set the size of the parallel motion estimation area, the video encoder 116 in step 210 re-encodes the picture parameters. 换句话说,每次设定并行运动估计区域的尺寸时,图片参数会被重新编码。 In other words, each dimension is set parallel motion estimation area, the picture parameter will be re-encoded. 此设计也属于本发明的权利范围之中。 This design also fall within the scope of the claimed invention.

[0037] 在图2的范例中,编码器参数设定电路115在帧级(frame level)下动态地调整并行运动估计区域的尺寸Size_PMER。 [0037] In the example of Figure 2, the encoder parameter setting circuit 115 dynamically adjusts the size Size_PMER parallel motion estimation area at the frame level (frame level). 此仅为说明用途,并非本发明的限制所在。 This purpose of illustration only, not limitation of the invention is located. 在其它设计中,编码器参数设定电路115也可在序列级(sequence level)下动态地调整并行运动估计区域的尺寸Size_PMER。 In other designs, the encoder parameter setting circuit 115 may also be adjusted dynamically in sequence level (sequence level) size Size_PMER parallel motion estimation areas.

[0038] 请连同图1 一起参考图3,图3为根据本发明实施方式的第二视频编码方法的流程图。 [0038] Please conjunction with FIG. 1 with reference to FIG. 3, FIG. 3 is a flowchart of a second embodiment of the video encoding method embodiment of the present invention. 图3中的视频编码方法可以应用在图1所示的视频编码装置114。 The video encoding method of FIG. 3 can be applied in the video encoding apparatus 114 shown in Fig. 倘若大体上可达到相同的结果,并不一定需要按照图3所示的流程中的步骤顺序来进行,且图3所示的步骤不一定要连续进行,即其他步骤也可插入其中。 Provided that substantially the same result is achieved, it does not necessarily need to follow the sequence of steps in the flow shown in FIG. 3, the step shown in FIG. 3 and need not be contiguous, i.e., other steps can be intermediate. 此外,图3中的某些步骤可根据不同实施例或设计需求而省略。 Additionally, certain steps may be omitted in FIG. 3 according to different embodiments or design requirements.

[0039] 在步骤302中,在视频编码器116开始编码之前,编码器参数设定电路115参考编码器配置以设定视频编码器116所使用的编码器参数。 [0039] In step 302, the video encoder 116 before encoding begins, the encoder 115 refers to the parameter setting circuit configured to set a video encoder coder parameters 116 used. 举例来说,如同现有的视频编码器设计,并行运动估计区域的尺寸可以在开始编码来源视频输AD_IN之前依据编码器配置来初始决定。 For example, as in the conventional video encoder design, the size of the parallel motion estimation initial area may be determined according to the configuration encoder before starting to code source video input AD_IN. 在步骤304中,编码器参数设定电路115依据编码相关信息来确定并设定对于视频序列(即来源视频输入D_IN)的并行运动估计区域的尺寸Size_PMER。 In step 304, the encoder 115 determines the parameter setting circuit and for Size_PMER sized video sequence (i.e., the source video input D_IN,) parallel region based motion estimation coded information. 如上所述,编码相关信息可以包含编码类型、编码应用信息及/或外部系统信息。 As described above, the encoding related information may comprise coding type, coding applications and / or external information system. 在步骤306中,视频编码器116开始对来源视频输入D_IN进行编码处理。 In step 306, the video encoder 116 starts to encode the source video input D_IN process. 在步骤306中,视频编码器116准备开始基于视频序列所决定的并行运动估计区域的尺寸来对帧中多个像素进行编码。 In step 306, the video encoder 116 is ready to begin the estimated size of the area based on the determined parallel motion video sequence to encode a frame of a plurality of pixels. 在步骤308中,视频编码器116便能够在具有由并行运动估计区域的尺寸Size_PMER设定的尺寸的相同的并行运动估计区域中对预测单元执行并行运动估计,因而改善编码效能。 In step 308, the video encoder prediction unit 116 will be able to perform parallel motion estimation in the same parallel motion estimation region has a size set by the size of the parallel motion estimation areas in Size_PMER, thereby improving coding performance. 在步骤310中,视频编码器116检查来源视频输入D_IN的所有帧是否都经过编码。 In step 310, video encoder 116 checks the source of all frames of the video input whether D_IN are encoded. 若来源视频输入D_IN仍有帧等待编码,则流程进入步骤308来使用并行运动估计区域的尺寸Size_PMER来对下一帧进行编码。 If the source video frame are still waiting D_IN input coding, the flow proceeds to step 308 to use a parallel motion estimation Size_PMER area size to encode the next frame. 若来源视频输AD_IN已没有帧等待编码,则视频编码器116停止编码,即编码结束(步骤312)。 If the input video source has no frame waiting AD_IN coding, the video encoder 116 stops the encoding, i.e., encoding is ended (step 312). 根据本发明另一实施方式,当前视频序列编码(S卩,来源视频输AD_IN)完成之后,若还存在下一个视频序列,则流程转至步骤304或步骤302。 According to another embodiment of the present invention, after encoding the current video sequence (S Jie, the source video input AD_IN) is completed, if there is a next video sequence, the flow goes to step 304 or step 302.

[0040] 如上所述,并行运动估计区域的尺寸Size_PMER可能和最大编码单元尺寸有关。 [0040] As described above, a parallel motion estimation area and the size of the maximum coding unit may Size_PMER size related. 依据高效能视频编码标准(HEVC),最大编码单元包含有至少一个编码单元,每一个编码单元包含至少一个预测单元,以及每一个编码单元都可以为帧内编码(intra coding)单元或帧间编码(inter coding)单元。 Based on high-performance video coding standard (the HEVC), maximum coding unit comprises at least one coding unit, each unit comprising at least one prediction coding units, and each coded unit can be thought intraframe coding (intra coding) or inter-coding unit (inter coding) unit. 根据本发明的一个实施方式,可以通过最大编码单元尺寸来设定并行运动估计区域的尺寸Size_PMER。 According to one embodiment of the present invention, a parallel motion estimation may be set by the maximum size of the coding region Size_PMER unit size. 在本发明一个较佳实施例中,编码器参数设定电路115参考最大编码单元尺寸来使并行运动估计区域的尺寸等于最大编码单元尺寸。 In a preferred embodiment of the present invention, the encoder reference parameter setting circuit 115 to make the size of the maximum coding unit parallel motion estimation area is equal to the maximum size of the coding unit size. 对产生合并运动向量的处理而言,需要相邻区块的运动向量,每一个区块的运动向量会在运动估计处理后被决定。 For the combined treatment to produce motion vectors, motion vectors of adjacent blocks required, the motion vector of each block will be estimated after the decision on the motion. 举例来说,在并行运动估计区域的尺寸并非设定为最大编码单元尺寸的情况下,当视频编码器对最大编码单元进行编码时,对在最大编码单元中属于不同并行运动估计区域的编码单元产生合并运动向量的处理应按顺序进行。 For example, a case where, in a parallel motion estimation area is set to the maximum size is not the size of the coding unit, when the video encoder encodes the maximum coding unit, motion estimation of the different regions belonging to the parallel in the maximum coding unit encoding unit the combined motion vector generating process should be sequentially performed. 也就是说,产生下一个编码单元的合并运动向量的处理过程应在当前编码单元的运动估计完成后才执行。 That is, a process of merging a next motion vector coding unit to be executed after the current motion estimation coding unit is completed. 然而, 在另一种情况下,并行运动估计区域的尺寸如本发明的方法被设定为最大编码单元尺寸, 当视频编码器对最大编码单元进行编码时,对最大编码单元中的编码单元产生合并运动向量的处理过程便能够同时并行地被处理。 However, in another case, the size of the area as a parallel motion estimation method of the present invention is set to the maximum size of a coding unit, when the video encoder encodes the maximum coding unit, to generate the maximum coding unit is a coding unit the combined processing of motion vector will be able to be processed simultaneously in parallel. 换句话说,在相同最大编码单元中,对编码单元产生合并运动向量的处理过程与另一个编码单元的运动估计是独立的。 In other words, the same maximum coding unit, the coding unit generates the motion encoding process unit combined with another motion vector estimation are independent. 这样一来,可大大地增加视频编码的并行度(parallel degree) ο As a result, can greatly increase the degree of parallelism video coding (parallel degree) ο

[0041] 视频编码器116的输出通过输出接口117被传送到目的装置104。 [0041] The output of the video encoder 116 is transferred to the destination via an output interface means 104,117. 举例来说,基于传输装置1 〇1的规格,视频编码器116的输出被适当地调变/封包化并通过输出接口117输出为编码视频比特流。 For example, based on the specifications 〇1 transmission device 1, the output of the video encoder 116 are modulated suitably / packetized and output as the encoded video bitstream 117 through an output interface. 应注意的是,视频编码器116所使用的帧级/序列级并行运动估计区域尺寸信息通过视频编码器116被编码为视频参数流BSP,然后传送到目的装置104。 It should be noted that the video encoder 116 uses frame-level / parallel motion estimation sequence level region size information are encoded by a video encoder 116 to video parameter stream BSP, and then transmitted to the destination device 104. 关于视频解码装置122,视频解码装置122具有输入接口125以及视频解码器126。 About video decoding apparatus 122, the video decoding apparatus 122 includes an input interface 125 and a video decoder 126. 输入接口125从传输装置101接收编码视频比特流BS。 Input interface 125 receives the encoded video bit stream transmitted from the BS 101 device. 相似地,基于传输装置101的规格,输入接口125对编码视频比特流BS进行解调变/封包解析。 Similarly, based on the specifications of the transmission device 101, an input interface 125 the encoded video bit stream BS for demodulation / packet parsing. 接下来,视频解码器126对视频参数流BSp和视频负载数据流BSd进行处理,以产生重建视频输出D_0UT的帧。 Next, the video decoder 126 and the video parameter stream BSp BSd video stream for the payload is processed to generate reconstructed frames of video output D_0UT. 视频解码器126可以通过软件(即通过通用处理器执行编码软件来实现)或是硬件(即使用纯硬件的视频解码器)的方式来实现。 The video decoder 126 may be software (i.e., be implemented by a general purpose processor executing encoding software) or hardware (i.e., using pure hardware video decoder) manner.

[0042] 由于使用编码器参数设定电路115,并行运动估计区域的尺寸Size_PMER可被允许基于编码相关信息来调整。 [0042] Since the use of an encoder parameter setting circuit 115, a parallel motion estimation Size_PMER region size based on the encoding may be allowed to adjust the related information. 此外,并行运动估计区域的尺寸Size_PMER被编码为视频参数流BSp并且被传送到视频解码器126。 Further, the size of the parallel motion estimation Size_PMER region is encoded as a video stream BSp parameter and transmitted to the video decoder 126. 传输装置101有可能会受到噪声的干扰导致并在传输时将错误比特引入编码视频比特流BS。 Transmission means 101 is likely to cause noise and interference in the transmission bit error introduced into the encoded video bitstream BS. 在此实施例中,当处理并行运动估计区域的尺寸时,视频解码器126具备错误处理能力。 In this embodiment, when the size of the parallel processing of the motion estimation area, the video decoder 126 includes an error handling capability.

[0043] 请参考图4,图4为根据本发明实施方式的具有错误处理的视频解码方法的流程图。 [0043] Please 4, 4 is a flowchart illustrating a video decoding method with error processing in the embodiment of the present invention with reference to FIG. 图4中的视频解码方法可以被应用在图1的视频解码器126中。 The video decoding method of Figure 4 may be applied in the video decoder 126 of FIG. 1. 倘若大体上可达到相同的结果,并不一定需要按照图4所示的流程中的步骤顺序来进行,且图4所示的步骤不一定要连续进行,即其他步骤也可插入其中。 Provided that substantially the same result is achieved, it does not necessarily need to follow the sequence of steps in the flow shown in FIG. 4, the steps shown in FIG. 4 and need not be contiguous, i.e., other steps can be intermediate. 此外,图4中的某些步骤可根据不同实施例或设计需求而省略。 In addition, some of the steps in FIG. 4 may be omitted depending on the embodiment or design requirements.

[0044] 在步骤402中,视频解码器126对视频参数流BSp进行解码以得到并行运动估计区域的解码尺寸Size_PMER'。 [0044] In step 402, the video decoder 126 of the video decoding parameter stream to obtain a decoded BSp size Size_PMER 'parallel motion estimation region. 在步骤404中,视频解码器126对视频参数流BSp进行解码以得到最大编码单元尺寸的解码尺寸Size_LCU'。 In step 404, video decoder 126 BSp video stream decoding parameter decoded to obtain the maximum size of a coding unit size Size_LCU '. 举例来说,视频解码器126从视频参数流BSp得到若干参数,这些参数包含最小编码单元尺寸以及最大编码单元尺寸和最小编码单元尺寸的差。 For example, video decoder 126 to obtain a plurality of parameters from the video stream BSp parameters, these parameters include the difference between the minimum size and maximum coding unit and a coding unit size of a minimum coding unit size. 然后依据这些参数来决定最大编码单元尺寸的解码尺寸Size_LCU'。 These parameters are then determined based on the maximum size of the coding unit size decoding Size_LCU '. 在步骤406中,视频解码器126检查并行运动估计区域的解码尺寸Size_PMER'的有效性,并据以产生检查结果。 In step 406, the video decoder 126 checks the size of the parallel decoding the motion estimation region Size_PMER 'validity, and accordingly generating a checking result.

[0045] 在示范性设计中,视频解码器126对并行运动估计区域的解码尺寸Size_PMER'和最大编码单元尺寸的解码尺寸Size_LCU'进行比较,以检验并行运动估计区域的解码尺寸Size_PMER'的有效性。 [0045] In an exemplary design, the video decoder 126 decodes the parallel dimension Size_PMER motion estimation region 'encoding unit size and the maximum size of the decoded Size_LCU' compared to the size of the decoding Size_PMER 'parallel test the validity of the motion estimation region . 举例来说,最大编码单元尺寸的解码尺寸Size_LCU'用来当作有效范围的上限,以及最小预测单元尺寸(例如4x4)用来作为有效范围的下限。 For example, the maximum size of the coding unit size decoding Size_LCU 'used as the upper limit of the effective range, and a minimum size of a prediction unit (e.g. 4x4) used as the lower limit of the effective range. 当并行运动估计区域的解码尺寸Si ze_PMER'落在有效范围之内时,并行运动估计区域的解码尺寸Size_PMER' 会通过有效性的测试并且会被视为有效。 When the parallel decoding the motion estimation region size Si ze_PMER 'time falls within the valid range, a parallel decoding the motion estimation region size Size_PMER' will be considered valid and the validity tested. 然而,当并行运动估计区域的解码尺寸Size_ PMER'超出有效范围时,并行运动估计区域的解码尺寸Size_PMER'便不会通过有效性的测试并且会被视为无效。 However, when the parallel decoding the motion estimation region size Size_ PMER 'beyond the effective range, a parallel decoding the motion estimation region size Size_PMER' would not pass the validity test and is considered invalid. 应注意的是,上述有效范围仅供说明用途,并非本发明的限制所在。 It should be noted that the effective range for illustrative purposes only and are not restrictive of the invention resides. 在其它实施例中,有效范围的上限可以被设定为固定值(例如64x64)或最小编码单元尺寸。 In other embodiments, the upper limit of the effective range may be set to a fixed value (e.g., 64x64) or a minimum coding unit size.

[0046] 在另一个示范性设计中,视频解码器126得到与并行运动估计区域的解码尺寸Size_PMER'相关的奇偶校验(parity check)结果;并会参考奇偶校验结果来检查并行运动估计区域的解码尺寸Size_PMER'的有效性。 [0046] In another exemplary design, the video decoder 126 to obtain the relevant parity (parity check) parallel motion estimation results with the size of a decoding region Size_PMER '; and Council a parity check result of a parallel motion estimation region the size of the decoding Size_PMER 'effectiveness. 举例来说,当奇偶校验结果指示并行运动估计区域的解码尺寸Size_PMER'没有错误时,并行运动估计区域的解码尺寸Size_PMER'便会通过有效性测试并且被视为有效。 For example, when the decoding result indicates the size of the parity check Size_PMER parallel motion estimation region 'no error, the decoding dimension parallel motion estimation region Size_PMER' by validity test and will be considered valid. 然而,当奇偶校验结果指示并行运动估计区域的解码尺寸Size_PMER'有不可校正的错误时,并行运动估计区域的解码尺寸Size_PMER'便不会通过有效性测试并且被视为无效。 However, when the decoding result indicates the size of a parity check Size_PMER parallel motion estimation region "when an uncorrectable error, the decoded parallel motion estimation region size Size_PMER 'would not pass the validity test and is considered invalid.

[0047] 在另一个示范性设计中,比较结果和奇偶校验结果会被同一考虑以决定并行运动估计区域的解码尺寸Size_PMER'是否有效。 [0047] In another exemplary design, the comparison result and the parity result is considered of the same size to determine the decoded Size_PMER 'parallel motion estimation area is valid. 举例来说,仅当并行运动估计区域的解码尺寸Size_PMER'落在有效范围之内且奇偶校验结果指示并行运动估计区域的解码尺寸Size_ PMER'没有错误,并行运动估计区域的解码尺寸Size_PMER'才会被视为有效。 For example, if only a parallel decoding the motion estimation region size Size_PMER 'fall within the valid range, and the size of the decoding result indicates a parity check Size_ parallel motion estimation region a PMER' no error, the size of the decoding region Size_PMER parallel motion estimation 'it It will be considered valid.

[0048] 在步骤408中,检查结果指示并行运动估计区域的解码尺寸Size_PMER'是否有效。 [0048] In step 408, the check result indicates a parallel decoding the motion estimation region size Size_PMER 'is valid. 在检查结果指示并行运动估计区域的解码尺寸Size_PMER'为有效的情况下(步骤408),视频解码器126根据并行运动估计区域的解码尺寸Size_PMER'来至少执行运动估计来继续对视频负载数据流BSd中的多个像素进行解码处理(步骤412)。 Decoding dimension Size_PMER check result indicates that a parallel motion estimation region 'is valid (step 408), the video decoder 126 decodes the size Size_PMER parallel motion estimation region' performing at least the motion estimation is continued for a video stream for the payload BSd a plurality of pixels in the decoding process (step 412).

[0049] 在检查结果指示并行运动估计区域的解码尺寸Size_PMER'为无效的情况下(步骤408),视频解码器126进入错误处理来决定实际被用在后续解码处理过程中的并行运动估计区域的尺寸(步骤410)。 [0049] indicates the inspection results of the parallel motion estimation decoder size Size_PMER region 'is invalid (step 408), the video decoder 126 into the wrong treatment decisions are actually used in the subsequent decoding process in parallel the motion estimation region size (step 410). 接下来,视频解码器126根据并行运动估计区域的已决定的尺寸来至少执行运动补偿来继续对视频负载数据流BSd中的多个像素进行解码处理(步骤412)。 Next, the video decoder 126 performs motion compensation in accordance with the determined size of the parallel motion estimation region continues at least for a plurality of pixels of a video stream for the payload BSd to decode process (step 412).

[0050] 视频解码器126至少采用以下所提出的错误处理机制来执行错误处理过程。 [0050] Video decoder 126 using at least the error handling mechanism set forth below to perform error processing. 请参考图5,图5为根据本发明实施方式的第一错误处理的流程图。 Please 5, FIG. 5 is a flowchart of error processing according to the first embodiment of the present invention with reference to FIG. 图4中的步骤410可以使用图5 中的步骤502来实现。 FIG step 4410 may be used in step 502 of FIG. 5 is achieved. 依据第一错误处理过程,视频解码器126通过用确定为有效的并行运动估计区域的先前解码尺寸来代替并行运动估计区域的解码尺寸Size_PMER',从而来设定并行运动估计区域的已决定的尺寸(步骤502)。 According to a first error handling procedure, the video decoder 126 by using the previously determined to efficient parallel decoding size of the motion estimation region instead of a parallel decoding the motion estimation region size Size_PMER ', so as to size the parallel motion estimation of the determined region (step 502). 换句话说,后续解码处理所使用的并行运动估计区域的尺寸继承自之前解码得到的有效的并行运动估计区域尺寸。 In other words, the parallel decoding subsequent motion estimation used inherited effective size of the region in parallel from the motion estimation region size obtained before decoding. 这样一来,便不需要要求重新传输视频参数。 As a result, you do not need a re-transmit video parameters.

[0051] 请参考图6,图6为根据本发明实施方式的第二错误处理的流程图。 [0051] Please refer to FIG. 6, FIG. 6 is a flowchart of error processing according to the second embodiment of the present invention. 图4中的步骤410可以使用图6中的步骤602和步骤604来实现。 Step 410 may FIG. 4 FIG. 6 in step 602 and step 604 is achieved. 举例来说,依据第二错误处理过程,当并行运动估计区域的解码尺寸Size_PMER'落在有效范围内但没有通过奇偶校验(parity check)(即奇偶校验结果指示并行运动估计区域的解码尺寸Size_PMER'包含有无法校正的错误)时,视频解码器126忽略检查结果,即忽略无效并行运动估计区域尺寸的通知(步骤602),并且仍然使用并行运动估计区域的解码尺寸Size_PMER'当来作在后续解码处理中使用的并行运动估计区域的已决定的尺寸(步骤604)。 For example, according to the second error handling procedure, when the parallel decoding the motion estimation region size Size_PMER 'falls within the effective range but not the parity (parity check) (i.e., the parity check result indicates a parallel decoding motion estimation area size Size_PMER 'time with uncorrectable errors), the video decoder 126 ignores the check result, i.e. ignore the invalid parallel notification motion estimation area size (step 602), and still using the decoded size Size_PMER parallel motion estimation region' as to make the the determined size of the parallel motion subsequent decoding process used in the estimation region (step 604). 由于无效并行运动估计区域尺寸落在有效范围内,视频解码器126仍有机会得到在具有由并行运动估计区域的解码尺寸Size_ PME R'设定的尺寸的并行运动估计区域中的预测单元的正确的运动向量。 Parallel motion estimation due to invalid region size falls within the valid range, the video decoder 126 still has the opportunity to correct the prediction motion estimation unit in the parallel region having a dimension parallel motion estimation area by the size of the decoded Size_ PME R 'set in the motion vector. 这样一来,便不需要重新传输视频参数。 As a result, you do not need to re-transmit video parameters.

[0052] 请参考图7,图7为根据本发明实施方式的第三错误处理的流程图。 [0052] Please refer to FIG. 7, FIG. 7 is a flowchart of error processing according to a third embodiment of the present invention. 图4中的步骤410可以使用图7中的步骤702、步骤704和步骤706来实现。 FIG step 4410 to step 7702 may FIG, step 704 and step 706 is achieved. 依据第三错误处理过程,当并行运动估计区域的解码尺寸Size_PMER'超出有效范围时,视频解码器126检查并行运动估计区域的解码尺寸Size_PMER'是否大于有效范围的上限(例如,最大编码单元尺寸)(步骤702)。 According to a third error handling procedure, when the parallel decoding the motion estimation region size Size_PMER 'beyond the effective range, the video decoder 126 checks a parallel decoding the motion estimation region size Size_PMER' is greater than the upper limit of the effective range (e.g., a maximum coding unit size) (step 702). 当并行运动估计区域的解码尺寸Size_PMER'大于有效范围的上限时,视频解码器126 将并行运动估计区域的解码尺寸Size_PMER'限制在有效范围的上限,即通过有效范围的上限设定用于后续解码处理中的并行运动估计区域的已决定的尺寸设定(步骤704)。 When the parallel decoding the motion estimation region Size_PMER size 'is larger than the upper limit of the effective range, the video decoder 126 decodes the parallel motion estimation region Size_PMER size' limits the effective range of the upper limit, i.e., by setting the upper limit of the effective range for subsequent decoding parallel motion estimation process in the determined area size setting (step 704). 当并行运动估计区域的解码尺寸Size_PMER'并非大于有效范围的上限时,由于并行运动估计区域的解码尺寸Size_PMER'超出了有效范围的前提,意味着并行运动估计区域的解码尺寸Size_PMER'小于有效范围的下限(例如,最小编码单元的尺寸),视频解码器126将并行运动估计区域的解码尺寸Size_PMER'限制在有效范围的下限,即通过有效范围的下限来设定后续解码处理中的并行运动估计区域的已决定的尺寸(步骤706)。 When parallel decoding Size_PMER size motion estimation region 'is not greater than the upper limit of the effective range, the motion estimation due to the parallel decoding Size_PMER size of the region' beyond the effective range of the premise, the motion estimation region means a parallel decoding Size_PMER size 'of less than the effective range the lower limit (e.g., the size of a minimum coding unit), the video decoder 126 decodes the parallel dimension Size_PMER motion estimation region 'at the lower limit of the effective range, i.e. to set the subsequent decoding process parallel motion estimation area by the lower limit of the effective range size (step 706) has been determined. 这样一来,便不需要重新传输视频参数。 As a result, you do not need to re-transmit video parameters.

[0053] 请参考图8,图8为根据本发明实施方式的第四错误处理的流程图。 [0053] Please refer to FIG 8, FIG 8 is a flowchart of error processing according to the fourth embodiment of the present invention. 图4中的步骤410可以使用图8中的步骤802、步骤804、步骤806、步骤808和步骤810来实现。 FIG step 4410 may be used in step 802 in FIG. 8, step 804, step 806, step 808 and step 810 is achieved. 依据第四错误处理过程,视频解码器126通过对传送端(即来源装置102)发出信号来要求视频参数流BSp 的重新传输(步骤802)。 According to a fourth error handling procedure, the video decoder 126 pairs of the transmitter (i.e., source device 102) sends a signal to request retransmission BSp video stream parameters (step 802) by. 接着,视频解码器126等待重新传送的视频参数流BSp (步骤804)。 Next, the video decoder 126 waits for video parameter stream BSp retransmitted (step 804). 在接收到重传的视频参数流BSp之后,视频解码器126对重传的视频参数流BSp进行解码,以得到并行运动估计区域的新解码尺寸(步骤806)。 After receiving the retransmission parameter stream BSp video, the video decoder 126 of the retransmission parameter stream BSp video decoding, to obtain a new dimension decoded (step 806) parallel motion estimation region. 接下来,在步骤808中检查并行运动估计区域的新解码尺寸是否有效。 Next, in step 808 check the size of the newly decoded parallel motion estimation area is valid. 即视频解码器126依据上述有效性检查规则的其中之一来检查并行运动估计区域的新解码尺寸的有效性,并据以产生新检查结果(步骤808)。 I.e., the video decoder 126 according to one of the above-described validity check rules to check the validity of the new size of the decoded parallel motion estimation region, and accordingly to generate a new result of the check (step 808). 当新检查结果指示并行运动估计区域的新解码尺寸不具有效性时,视频解码器126进入错误处理过程410。 When the check result indicates that the new parallel decoding motion estimation new size of the region does not have the validity, the video decoder 126 into the error handling procedure 410. 当新检查结果指示并行运动估计区域的新解码尺寸有效时,视频解码器126使用并行运动估计区域的新解码尺寸来当作并行运动估计区域的已决定的尺寸以供后续解码处理过程使用(步骤810)。 When a new check result indicates a parallel motion estimation size of the effective area newly decoded, the video decoder 126 decodes using the new dimension parallel to the motion estimation region size has been determined as a parallel motion estimation region for subsequent use of the decoding process (step 810).

[0054] 本发明在视频编码和视频解码之间提供鲁棒性(robust)较强的错误处理方法,能够避免解码视频数据传流时产生的错误。 [0054] The present invention provides an error processing method is robust (Robust) between a video encoder and a video decoder, errors can be avoided when generating decoded video data stream is transmitted.

[0055] 虽然本发明已以较佳实施方式揭露如上,然而必须了解其并非用以限定本发明。 [0055] Although the present invention has been described in the preferred embodiments, it must be understood that the present invention is not limited thereto. 相反,任何本领域技术人员,在不脱离本发明的精神和范围内,当可做些许更动与润饰,因此本发明的保护范围应当以权利要求书所界定的保护范围为准。 In contrast, anyone skilled in the art, without departing from the spirit and scope of the present invention, it is to be substitutions and alterations, and therefore the scope of the present invention should be in the scope of the appended claims and their equivalents.

Claims (14)

  1. 1. 一种视频编码方法,其特征在于,包含有: 依据编码相关信息来决定并行运动估计区域的尺寸;以及通过基于该并行运动估计区域的尺寸来至少执行运动估计以对多个像素进行编码,其中在合并模式下计算运动向量时,同一并行运动估计区域中相临预测单元的合并模式运动向量彼此间没有相依性; 其中当该编码相关信息包含编码类型时,该编码类型包含参考类型、切片类型、和视频编码器的处理核心数目中的至少一个,当该参考类型用来决定该并行运动估计区域的尺寸时,该参考类型为参考帧的帧的并行运动估计区域的尺寸小于该参考类型为非参考帧的帧的并行运动估计区域的尺寸,当该切片类型用来决定该并行运动估计区域的尺寸时,该切片类型为预测切片的切片的并行运动估计区域的尺寸小于该切片类型为双向预测切片的切片的并行运动 1. A video encoding method, characterized in that, comprising: encoding the information based on a parallel motion estimation determines the size of the region; and performing motion estimation on the plurality of pixels to be encoded by a parallel motion estimation based on the size of the region is at least , wherein calculating the motion vectors in the combined mode, the same parallel motion estimation areas were combined mode motion vectors Pro prediction unit no dependency with each other; wherein when the coded information contains coding type, the coding type includes a reference type, the number of processing cores slice type, the video encoder and at least one when the reference type is used to determine the size of the parallel motion estimation area, the reference type is less than the dimension parallel to the reference frame reference frame motion estimation region parallel motion type size of a non-reference frame, frame estimation region, when the slice type is used to determine the size of the parallel motion estimation area, the slice type of parallel motion estimation prediction area is smaller than the size of a slice is the slice type slice slice bi-predictive slices parallel movement 计区域的尺寸,当该视频编码器的处理核心数目用来决定该并行运动估计区域的尺寸时,该并行运动估计区域的尺寸与该视频编码器的处理核心数目正相关。 Sizing region, when the number of processing cores of the video encoder used to determine the size of the area of ​​the parallel motion estimation, the size of the parallel motion estimation region directly related to the number of the video processing core coder.
  2. 2. 根据权利要求1所述的视频编码方法,其特征在于,当该编码相关信息包含有编码应用信息时,该编码应用信息包含性能模式、延迟模式和编码方案中的至少一个,并且当该性能模式用来决定并行运动估计区域的尺寸时,该并行运动估计区域的尺寸与由该性能模式所指示的性能度负相关。 The video encoding method according to claim 1, wherein, when the coded information contains encoding application information, the application information includes coding performance mode, delay mode and coding scheme of at least one, and when the when the performance mode is used to determine the size of the motion estimation areas in parallel, the parallel motion estimation region and the size of the negative correlation of the performance of the performance mode as indicated.
  3. 3. 根据权利要求1所述的视频编码方法,其特征在于,当该编码相关信息包含有外部系统信息时,该外部系统信息包含有带宽状态、系统电源状态、系统时序中的至少一个,当该带宽状态用来决定该并行运动估计区域的尺寸时,该并行运动估计区域的尺寸与由该带宽状态所指示的系统带宽负相关;当该系统电源状态用来决定该并行运动估计区域的尺寸时,该并行运动估计区域的尺寸与由该系统电源状态所指示的剩余电量负相关;当该系统时序用来决定该并行运动估计区域的尺寸时,该并行运动估计区域的尺寸与由该系统时序所指示的延迟量负相关。 3. The video encoding method according to claim 1, wherein, when the related information includes coded information with an external system, the external system status information includes the bandwidth, the system power status, at least one system timing, when when the bandwidth of a parallel state is used to determine the size of the area of ​​motion estimation, the size of the system bandwidth parallel motion estimation area by the negative correlation to the bandwidth indicated state; state when the power supply system is used to determine the size of the parallel motion estimation region when the negative correlation dimension parallel motion estimation area by the system with the remaining amount indicated power state; when the system is used to determine the timing of the size of the parallel motion estimation area, the size of the region with a parallel motion estimation by the system negative correlation timing indicated by the delay amount.
  4. 4. 根据权利要求1所述的视频编码方法,其特征在于,该决定并行运动估计区域的尺寸的步骤包含有: 在帧级或序列级调整该并行运动估计区域的尺寸。 4. The video encoding method according to claim 1, wherein the parallel motion estimation determines the size of the area comprising the step of: adjusting the size of the region of a parallel motion estimation in a frame level or the sequence level.
  5. 5. 根据权利要求1所述的视频编码方法,其特征在于, 该编码相关信息包含有最大编码单元尺寸,以及该决定并行运动估计区域的尺寸的步骤包含有:通过该最大编码单元尺寸来设定该并行运动估计区域的尺寸。 The video encoding method according to claim 1, wherein the encoded information comprises the step size of the motion estimation region has a parallel maximum coding unit size, and the decision comprising: be provided by which the maximum size of the coding unit the predetermined size of the motion estimation region parallel.
  6. 6. 根据权利要求1所述的视频编码方法,其特征在于,进一步包含有: 将该并行运动估计区域的尺寸编码为视频参数流。 The video encoding method according to claim 1, characterized in that, further comprising: size of the parallel motion estimation coding region into a video stream parameters.
  7. 7. —种视频解码方法,其特征在于,包含有: 对视频参数流进行解码以得到并行运动估计区域的解码尺寸; 检查该并行运动估计区域的解码尺寸的有效性,并据以产生检查结果; 当该检查结果指示该并行运动估计区域的解码尺寸落在有效范围内但没有通过奇偶校验时,忽略该奇偶校验结果,并且使用该并行运动估计区域的解码尺寸当作该并行运动估计区域的已决定的尺寸;以及通过基于该并行运动估计区域的已决定的尺寸来至少执行运动补偿以解码多个像素。 7. - kinds of video decoding method, characterized in that, comprising: decoding the video stream to obtain parameters decoded dimension parallel motion estimation region; check the validity of a parallel decoding the motion estimation of the size of the region, and accordingly generating a checking result ; when the check result indicates that the size of the inner decoding parallel motion estimation region does not fall within the effective range but the parity, the parity check result is ignored, and the size of the decoding using a parallel motion estimation region as the parallel motion estimation the determined size of the region; and performing motion compensation based on at least the size of the parallel motion estimation region has decided to decode a plurality of pixels.
  8. 8. 根据权利要求7所述的视频解码方法,其特征在于, 该对视频参数流进行解码的步骤进一步包含有:对该视频参数流进行解码以得到最大编码单元的解码尺寸;以及该检查该并行运动估计区域的解码尺寸的有效性的步骤包含有:将该并行运动估计区域的解码尺寸和该最大编码单元的解码尺寸进行比较。 The video decoding method according to claim 7, wherein the step of decoding the video stream parameter further comprises: decoding the video stream to obtain a decoded parameter size of the maximum coding unit; and checks the parallel decoding step size validity region of the motion estimation comprises: decoding the parallel decoding size and the size of the motion estimation areas compares the maximum coding unit.
  9. 9. 根据权利要求7所述的视频解码方法,其特征在于, 该对视频参数流进行解码的步骤进一步包含有:得到与该并行运动估计区域的解码尺寸相关的奇偶校验结果;以及该检查该并行运动估计区域的解码尺寸的有效性的步骤包含有:检查该奇偶校验结果。 The video decoding method according to claim 7, wherein the step of decoding the video stream parameters further comprises: parity obtained results related to the size of the parallel decoding motion estimation areas; and the inspection the step of estimating the validity of the parallel motion of the size of the area of ​​the decoding comprises: checking of the parity check result.
  10. 10. —种视频解码方法,其特征在于,包含有: 对视频参数流进行解码以得到并行运动估计区域的解码尺寸; 检查该并行运动估计区域的解码尺寸的有效性,并据以产生检查结果; 当该检查结果指示该并行运动估计区域的解码尺寸无效时, 通过用并行运动估计区域的先前解码尺寸来代替该并行运动估计区域的解码尺寸,来设定该并行运动估计区域的已决定的尺寸。 10. - kinds of video decoding method, characterized in that, comprising: decoding the video stream to obtain parameters decoded dimension parallel motion estimation region; check the validity of a parallel decoding the motion estimation of the size of the region, and accordingly generating a checking result ; when the check result indicates that the motion estimation is invalid parallel decoding size of the region, the estimated size of the region with a parallel decoding motion estimation previously decoded by the size of the region in place of the parallel movement, which is set parallel motion estimation region has decided size.
  11. 11. 一种视频解码方法,其特征在于,包含有: 对视频参数流进行解码以得到并行运动估计区域的解码尺寸; 检查该并行运动估计区域的解码尺寸的有效性,并据以产生检查结果; 当该检查结果指示该并行运动估计区域的解码尺寸无效时,并且当该并行运动估计区域的解码尺寸落在有效范围内时,忽略该检查结果,并且利用该并行运动估计区域的解码尺寸来当作该并行运动估计区域的已决定的尺寸。 11. A video decoding method, characterized in that, comprising: decoding the video stream to obtain parameters decoded dimension parallel motion estimation region; check the validity of a parallel decoding the motion estimation of the size of the region, and accordingly generating a checking result ; when the check result indicates the size of the invalid decoding parallel motion estimation area, and when the size of the parallel decoding motion estimation area falls within the valid range, ignoring the check result, and with which a parallel decoding motion estimation area dimensions as the parallel motion estimation size of the area has been determined.
  12. 12. —种视频解码方法,其特征在于,包含有: 对视频参数流进行解码以得到并行运动估计区域的解码尺寸; 检查该并行运动估计区域的解码尺寸的有效性,并据以产生检查结果; 当该检查结果指示该并行运动估计区域的解码尺寸无效时,并且当该并行运动估计区域的解码尺寸大于有效范围的上限时,通过该有效范围的上限来设定该并行运动估计区域的已决定的尺寸;以及当该并行运动估计区域的解码尺寸小于该有效范围的下限时,通过该有效范围的下限来设定该并行运动估计区域的已决定的尺寸。 12. - kinds of video decoding method, characterized in that, comprising: decoding the video stream to obtain parameters decoded dimension parallel motion estimation region; check the validity of a parallel decoding the motion estimation of the size of the region, and accordingly generating a checking result ; when the check result indicates the size of the invalid decoding parallel motion estimation area, and when the size of the parallel decoding motion estimation area is larger than the upper limit of the effective range, which is set by the parallel movement upper limit of the region estimation range is valid size determination; and when the size of the parallel decoding motion estimation area below the lower limit of the effective range, to set the size of the parallel motion estimation region decided by the lower limit of the effective range.
  13. 13. —种视频编码装置,其特征在于,包含有: 编码器参数设定电路,用来依据编码相关信息来决定并行运动估计区域的尺寸,其中在合并模式下计算运动向量时,同一并行运动估计区域中相临预测单元的合并模式运动向量彼此间没有相依性;以及视频编码器,用来通过基于该并行运动估计区域的尺寸来至少执行运动估计,以对多个像素进行编码; 其中当该编码相关信息包含编码类型时,该编码类型包含参考类型、切片类型、和视频编码器的处理核心数目中的至少一个,当该参考类型用来决定该并行运动估计区域的尺寸时,该参考类型为参考帧的帧的并行运动估计区域的尺寸小于该参考类型为非参考帧的帧的并行运动估计区域的尺寸,当该切片类型用来决定该并行运动估计区域的尺寸时,该切片类型为预测切片的切片的并行运动估计区域的尺寸小 13. - kinds of video encoding apparatus, characterized in that, comprising: an encoder circuit setting parameter for encoding information according to a parallel motion estimation determines the size of the area, wherein calculating the motion vectors in a merge mode, the same parallel motion estimation region adjacent merge mode motion vector prediction unit without dependency each other; and a video encoder for performing motion estimation by at least the size of the region based motion estimation in parallel to a plurality of coded pixels; wherein when when the encoded information contains coding type, the coding type comprises a reference type, the number of processing cores slice type, the video encoder and at least one when the reference type is used to determine the size of the parallel motion estimation area, the reference parallel motion type is frame size estimate of the reference frame area is smaller than the reference type is non-parallel motion frame size estimation reference frame region, when the slice type is used to determine the size of the parallel motion estimation area, the slice type parallel motion prediction for the size of the slice of the estimated area smaller slice 该切片类型为双向预测切片的切片的并行运动估计区域的尺寸,当该视频编码器的处理核心数目用来决定该并行运动估计区域的尺寸时,该并行运动估计区域的尺寸与该视频编码器的处理核心数目正相关。 Parallel motion estimation region size of the slice type slice bi-predictive slices, when the number of processing cores of the video encoder used to determine the size of the parallel motion estimation area, the size of the motion estimation region parallel with the video encoder the positive correlation between the number of processing cores.
  14. 14. 一种视频解码装置,其特征在于,包含有: 输入接口,用来接收包含有视频参数流的编码视频比特流;以及视频解码器,用来对该视频参数流进行解码以得到并行运动估计区域的解码尺寸;检查该并行运动估计区域的解码尺寸的有效性,并据以产生检查结果;当该检查结果指示该并行运动估计区域的解码尺寸为无效时,通过用并行运动估计区域的先前解码尺寸来代替该并行运动估计区域的解码尺寸,来设定该并行运动估计区域的已决定的尺寸;以及通过基于该并行运动估计区域的已决定的尺寸来至少执行运动补偿,以解码多个像素。 14. A video decoding apparatus, characterized in that, comprising: an input interface for receiving the encoded video bitstream comprises a video stream parameters; and a video decoder, to decode the video stream to give a parallel motion parameters decoding the estimated size of the region; checking the validity of the decoding parallel motion estimation of the size of the region, and accordingly generating a checking result; when the check result indicates that the decoded parallel motion estimation size of the region to be invalid, by using a parallel motion estimation region decoding instead of the previously decoded dimension size of the parallel motion estimation areas, to size the parallel motion estimation of the determined region; and by parallel motion estimation based on the size of the area to perform at least the determined motion compensation to decode multiple pixels.
CN 201410200230 2013-05-14 2014-05-13 Video encoding method and video decoding method and apparatus CN104159106B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US201361823010 true 2013-05-14 2013-05-14
US61/823,010 2013-05-14
US14270369 US9832478B2 (en) 2013-05-14 2014-05-06 Video encoding method and apparatus for determining size of parallel motion estimation region based on encoding related information and related video decoding method and apparatus

Publications (2)

Publication Number Publication Date
CN104159106A true CN104159106A (en) 2014-11-19
CN104159106B true CN104159106B (en) 2017-12-01

Family

ID=51884498

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201410200230 CN104159106B (en) 2013-05-14 2014-05-13 Video encoding method and video decoding method and apparatus

Country Status (1)

Country Link
CN (1) CN104159106B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9955185B2 (en) 2015-02-12 2018-04-24 Mediatek Inc. Method and apparatus of constrained intra block copy for coding video

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101287126A (en) * 2008-06-12 2008-10-15 四川虹微技术有限公司 Rapid reading method of motion compensating data based on H.264 standard
CN102172025A (en) * 2008-10-03 2011-08-31 高通股份有限公司 Video coding with large macroblocks
CN102726048A (en) * 2009-10-16 2012-10-10 思科系统国际公司 Methods for video coding and decoding
CN102880842A (en) * 2012-08-16 2013-01-16 飞天诚信科技股份有限公司 Method for enhancing communication stability between non-contact card and card reader
CN103096073A (en) * 2011-11-07 2013-05-08 吴秀美 Method Of Constructing Merge List

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9143795B2 (en) * 2011-04-11 2015-09-22 Texas Instruments Incorporated Parallel motion estimation in video coding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101287126A (en) * 2008-06-12 2008-10-15 四川虹微技术有限公司 Rapid reading method of motion compensating data based on H.264 standard
CN102172025A (en) * 2008-10-03 2011-08-31 高通股份有限公司 Video coding with large macroblocks
CN102726048A (en) * 2009-10-16 2012-10-10 思科系统国际公司 Methods for video coding and decoding
CN103096073A (en) * 2011-11-07 2013-05-08 吴秀美 Method Of Constructing Merge List
CN102880842A (en) * 2012-08-16 2013-01-16 飞天诚信科技股份有限公司 Method for enhancing communication stability between non-contact card and card reader

Also Published As

Publication number Publication date Type
CN104159106A (en) 2014-11-19 application

Similar Documents

Publication Publication Date Title
US7061410B1 (en) Method and/or apparatus for transcoding between H.264 CABAC and CAVLC entropy coding modes
US20110001643A1 (en) System and method for providing high throughput entropy coding using syntax element partitioning
US20120082235A1 (en) Coding and decoding utilizing context model selection with adaptive scan pattern
US20130114693A1 (en) Binarization of Prediction Residuals for Lossless Video Coding
US20130114687A1 (en) Fixed intra run-level mode for cavlc in hevc
US20130113880A1 (en) High Efficiency Video Coding (HEVC) Adaptive Loop Filter
US20120230403A1 (en) Using Multiple Prediction Sets to Encode Extended Unified Directional Intra Mode Numbers for Robustness
US8885706B2 (en) Apparatus and methodology for a video codec system with noise reduction capability
US20120307904A1 (en) Partial frame utilization in video codecs
US20130273945A1 (en) Electronic devices for sending a message and buffering a bitstream
US20140119439A1 (en) Method and apparatus of intra mode coding
US20150189299A1 (en) Method for signaling a gradual temporal layer access picture
US20130268621A1 (en) Transmission of video utilizing static content information from video source
CN101115201A (en) Video decoding method and device
US20130003835A1 (en) Coding of last significant transform coefficient
CN102273205A (en) In gpu accelerated video transcoder software
US20130272618A1 (en) Devices for identifying a leading picture
US20130266073A1 (en) Power saving techniques for wireless delivery of video
US20140010312A1 (en) Method and apparatus for encoding and decoding transform coefficients
US20120082234A1 (en) Coding and decoding utilizing adaptive context model selection with zigzag scan
US20100111198A1 (en) Rate-distortion control in dvc with no feedback channel
US20130251028A1 (en) Video encoding and decoding with channel prediction and error correction capability
US20140092988A1 (en) Systems and methods for reference picture set extension
US20130117270A1 (en) Category-prefixed data batching of coded media data in multiple categories
US20130003839A1 (en) Fast Encoding Method for Lossless Coding

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
GR01