CN104157592B - A process for silicon-based heterojunction solar cell to increase production capacity - Google Patents

A process for silicon-based heterojunction solar cell to increase production capacity Download PDF

Info

Publication number
CN104157592B
CN104157592B CN 201310172714 CN201310172714A CN104157592B CN 104157592 B CN104157592 B CN 104157592B CN 201310172714 CN201310172714 CN 201310172714 CN 201310172714 A CN201310172714 A CN 201310172714A CN 104157592 B CN104157592 B CN 104157592B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
process
temperature
silicon
amorphous silicon
wafer
Prior art date
Application number
CN 201310172714
Other languages
Chinese (zh)
Other versions
CN104157592A (en )
Inventor
陈金元
汪训忠
其他发明人请求不公开姓名
Original Assignee
上海理想万里晖薄膜设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

一种增加硅基异质结太阳能电池产能的工艺,该工艺包括如下步骤:提供硅基异质结太阳能电池的生产设备,其包括进片腔和沉积腔,所述沉积腔中设置有对硅片进行热处理的加热器;采用湿法化学清洗方式对所述硅片表面进行清洗和干燥;将所述硅片传输至所述进片腔中,并进行抽真空处理;再将所述硅片从所述进片腔传输至所述沉积腔中,该沉积腔内为真空环境,所述加热器的温度预先设置为高于制备所述硅基薄膜的工艺温度;当所述硅片的表面温度被加热至所述硅基薄膜的工艺温度时,在所述沉积腔中利用化学气相沉积方法制备所述硅基薄膜。 A method of increasing process silicon heterojunction solar cell production, the process comprising the steps of: providing a silicon heterojunction solar cell manufacturing apparatus comprising a sheet feeding chamber and a deposition chamber, the deposition chamber is provided with a silicon heat treating the sheet heater; wet chemical cleaning methods for cleaning and drying the surface of the wafer; the wafer transfer sheet to the intake chamber, and vacuuming; then the silicon wafer transmitting from said inlet chamber to said sheet deposition chamber, the deposition chamber is a vacuum environment, the temperature of the heater is set in advance to a temperature higher than the process of preparing the silicon film; when the surface of the silicon wafer when the temperature of the process is heated to a temperature of the silicon film, the silicon films prepared by chemical vapor deposition in the deposition chamber. 本发明能够在保证覆膜质量的同时提高设备产能、节约生产成本。 The present invention can improve device productivity while ensuring the quality of the coating film, reduce production costs.

Description

一种増加硅基异质结太阳能电池产能的工艺 One kind of increase in the silicon heterojunction solar cell production process of

技术领域 FIELD

[0001]本发明涉及桂基异质结太阳能电池领域和半导体制造领域,尤其涉及一种能增加硅基异质结太阳能电池产能的工艺。 [0001] The present invention relates to a heterojunction solar cell lauryl the field of semiconductor manufacturing and, more particularly to a process to increase the silicon heterojunction solar cell production capacity. 技术背景 technical background

[0002]目前常见的制备单面或者双面硅基异质结太阳能电池均需要在硅片上沉积硅系或者碳系薄膜,例如非晶硅薄膜、微晶硅薄膜、纳米硅薄膜、氧化硅薄膜、碳化硅薄膜、氮化硅薄膜等。 [0002] Preparation of the current common side or both sides of the silicon heterojunction solar cells require silicon deposited film or a carbon based on silicon, such as amorphous silicon film, a microcrystalline silicon thin film, nano-silicon film, a silicon oxide film, silicon carbide film, a silicon nitride film or the like. 这些薄膜制备过程均包含以下两个步骤:首先在真空中将硅片加热至工艺温度(130-35(TC ),然后在工艺温度条件下在硅片表面沉积非常薄的膜层(2-20nm)。目前人们通常采用两种方式完成这种真空条件下的加热过程:一种方式是在沉积腔腔内的直接加热,即将加热器的温度预先设置为工艺温度来进行加热,其优点是无明显的交叉污染且无需再额外配置真空加热腔,这样可以节省设备成本,但是该方法成膜的工艺时间长,产能不高;另一种方式是除沉积腔外再增加一预热腔,先在预热腔中将硅片加热至接近工艺温度, 然后再将硅片传输至沉积腔中进行加热,其优点是成膜的工艺时间较短,但却由于增加预热腔而提高了设备成本,并且硅片经常进出腔体腔外会增加交叉污染的风险。 The film preparation process contains the following two steps: first heated to process temperature (130-35 (TC) in vacuo in a silicon wafer, and then a very thin layer (2-20 nm is deposited on the surface of a silicon wafer under the process temperature conditions .) There is now commonly used in two ways to complete the heating process in such a vacuum condition: One way is the direct heating chamber deposition chamber, i.e. the temperature of the heater is set in advance to be heated to the process temperature, the advantage that no without significant cross-contamination and re-configured additional vacuum heating chamber, so that the equipment cost can be saved, but the method of forming a long process time, productivity is not high; another way is to add a deposition chamber in addition to a preheating chamber, first in the preheating chamber is heated to close to the process temperature of the wafer, the wafer and then transferred to the deposition chamber is heated, the advantage of a shorter process time of deposition, but since the preheating chamber is increased to increase the cost of the equipment , and out of the outer chamber and the wafer often increases the risk of cross-contamination of the chamber.

[0003] 另一方面,不论是单面或是双面硅基异质结太阳能电池均需要在硅片表面上沉积出不同类型的非晶硅薄膜,即本征非晶硅、P型非晶硅、N型非晶硅。 [0003] On the other hand, whether single-sided or double-sided silicon heterojunction solar cells were deposited on the wafer surface need different types of amorphous silicon thin film, i.e., intrinsic amorphous silicon, P-type amorphous Si, N-type amorphous silicon. 由于各类型的非晶硅薄膜的物理结构不同,因此需要在真空环境下将硅片加热至不同的工艺温度进行成膜,对此, 人们通常采用的方法是在不同的沉积腔中提供不同的工艺条件来制备所需的非晶硅薄膜。 Due to the different physical structures of various types of amorphous silicon thin film, it is necessary to process the silicon wafer is heated to different temperatures in a vacuum film formation, for which people commonly used method is to provide different deposition chambers in a different process conditions to produce the desired amorphous silicon film. 这就使得非晶硅薄膜的生产设备必须配置多个沉积腔,同时更因需要在不同沉积腔之间频繁传输硅片,而导致成本的升高和传输过程硅片碎裂风险的增加。 This amorphous silicon thin film so that the production equipment must be configured with a plurality of deposition chambers, but also because of the need for frequent wafer transport between different deposition chamber, resulting in an increase in cost and increase the risk of breakage of the wafer transfer process.

[0004] 在目前的工业实际生产中,人们为了提高产能,大多会采用增加预热腔的方法进行加热,同时为了能进一步降低设备成本和节省传输时间,通常会将预热腔与进片腔合二为一。 [0004] In the current industrial actual production, in order to increase capacity people, most of them will use the method of increasing the preheating chamber is heated, and in order to further reduce equipment costs and save transmission time, and will usually preheating chamber into the cavity sheet combined. 然而,由于进片腔常暴露于大气中,故在此处加热会使得腔内存在一些残留氧气、水汽等物质并且这些物质容易在高温时在硅片表面发生反应,影响异质结界面的钝化效果, 从而影响到太阳能电池的效率。 However, since the sheet into the cavity often exposed to the atmosphere, where it will be heated cavity such that some residual oxygen, water vapor and other substances, and these substances readily react at the surface of the silicon wafer at a high temperature, impact blunt heterojunction interface effect, thus affecting the efficiency of the solar cell. 另一方面,进片腔与大气连接时,热量也会由外部不断传递到进片腔中,影响其温度环境,导致加热环境不稳定,影响产品的生产良率并且使得加热部件容易损坏。 On the other hand, when the sheet feeding chamber connected to the atmosphere, heat will continue to pass from the outside to the sheet feed chamber, its temperature affect the environment, resulting in the heating environment is unstable, the production yield and affect the product such that the heating member is easily damaged.

发明内容 SUMMARY

[0005] 为了解决上述问题,本发明提供了一种能增加硅基异质结太阳能电池产能的工艺,使硅片在沉积腔中直接加热,通过将沉积腔中的加热器温度预先设置为高于所需沉积薄膜工艺温度的方法,实现了在保证成膜工艺稳定及薄膜质量良好的前提下来节约硅片在沉积腔中的处理时间,达到提高设备产能、降低生产成本的目的。 [0005] In order to solve the above problems, the present invention provides a process to increase the silicon heterojunction solar cell production capacity of the silicon wafer in the deposition chamber is directly heated by the heater temperature of the deposition chamber is set high in advance the method of depositing a thin film to a desired process temperature, process time to achieve a savings in wafer deposition chamber in stable film forming process and to ensure good film quality premise down, to improve device productivity, reduce costs of production purposes.

[0006] 为此,本发明提供了一种增加硅基异质结太阳能电池产能的工艺,该工艺用于制备所述硅基异质结太阳能电池中的硅基薄膜,其特征在于:该工艺包括如下步骤: [0006] To this end, the present invention provides a process for silicon-based heterojunction solar cell to increase production capacity, the process for preparing the silicon-based thin-film silicon-based heterojunction solar cells, wherein: the process comprising the steps of:

[0007] 第一步,提供硅基异质结太阳能电池的生产设备,其包括进片腔和沉积腔,所述沉积腔中设置有对硅片进行热处理的加热器; [0007] In a first step, providing a silicon heterojunction solar cell manufacturing apparatus comprising a sheet feeding chamber and a deposition chamber, the deposition of the silicon wafer is heat-treated in the heater chamber is provided;

[0008] 第二步,采用湿法化学清洗方式对所述娃片表面进行清洗和干燥; [0008] The second step, a wet chemical cleaning methods for cleaning and drying the substrate surface baby;

[0009] 第三步,将所述硅片传输至所述进片腔中,并进行抽真空处理; [0009] In a third step, the wafer sheet is transmitted to the intake chamber, and vacuuming;

[0010] 第四步,再将所述硅片从所述进片腔传输至所述沉积腔中,该沉积腔内为真空环境,所述加热器的温度预先设置为高于制备所述硅基薄膜的工艺温度; [0010] The fourth step, and then feed the sheet from the wafer transfer chamber to the deposition chamber, the deposition chamber is a vacuum environment, the temperature of the heater is set higher than previously prepared silicon process temperature of the base film;

[0011] 第五步,当所述硅片的表面温度被加热至所述硅基薄膜的工艺温度时,在所述沉积腔中利用化学气相沉积方法制备所述硅基薄膜。 [0011] The fifth step, when the surface temperature of the silicon wafer is heated to the process temperature of the silicon film, the silicon films prepared by chemical vapor deposition in the deposition chamber.

[0012] 可选地,所述硅基薄膜为非晶硅、微晶硅、碳化硅、氮化硅、氮氧化硅、氧化硅、多晶桂薄膜、娃锗薄膜中的一种。 [0012] Alternatively, the silicon thin film amorphous silicon, microcrystalline silicon, silicon carbide, silicon nitride, silicon oxide, silicon oxide, polycrystalline Gui film, germanium thin film of one baby.

[0013] 可选地,所述非晶硅薄膜为本征非晶硅薄膜、P型非晶硅薄膜或者N型非晶硅薄膜中的一种或多种。 [0013] Alternatively, the one or more amorphous silicon thin film amorphous silicon thin film, P-type or N-type amorphous silicon thin film amorphous silicon thin film is intrinsic.

[0014] 可选地,当所述加热器温度预先设置为等于所述硅基薄膜工艺温度时,将所述硅片表面温度加热至所述硅基薄膜工艺温度的时间与利用化学气相沉积方法制备所述硅基薄膜的时间之比的范围为:4/1 一12/1。 [0014] Alternatively, when the heater temperature is set equal to the pre-film silicon-based process temperature, the wafer was heated to a surface temperature of the silicon-based thin-film process using a time and temperature of the chemical vapor deposition method range than the silicon film preparation time of: 4/1 a 12/1.

[0015] 可选地,第五步中在所述硅片被传输至所述沉积腔中后并且在进行化学气相沉积前的时间段内,向所述沉积腔中通入氢气、氮气、氩气中的一种气体或几种气体。 [0015] Alternatively, the fifth step is transferred to the deposition chamber and the period of time before performing the chemical vapor deposition, the deposition chamber to pass into the hydrogen, nitrogen, argon, in the silicon wafer one gas or several gases in the air.

[0016]此外,本发明还提供了一种增加硅基异质结太阳能电池产能的工艺,该工艺用于制备所述硅基异质结太阳能电池中的本征非晶硅薄膜及掺杂非晶硅薄膜,其特征在于:该工艺包括如下步骤: [0016] Further, the present invention also provides a process for silicon-based heterojunction solar cell to increase production capacity, the process for preparing the intrinsic amorphous silicon thin film heterojunction solar cell and the non-doped crystalline silicon thin film, wherein: the process comprising the steps of:

[0017] 第一步,提供硅基异质结太阳能电池的生产设备,其包括进片腔和沉积腔,所述沉积腔中设置有对硅片进行热处理的加热器; [0017] The first step, providing a silicon heterojunction solar cell manufacturing apparatus comprising a sheet feeding chamber and a deposition chamber, the deposition of the silicon wafer is heat-treated in the heater chamber is provided;

[0018] 第二步,采用湿法化学清洗方式对所述桂片表面进行清洗和干燥; [0018] The second step, a wet chemical cleaning methods for cleaning and drying the substrate surface Gui;

[0019] 第三步,将所述硅片传输至所述进片腔中,并进行抽真空处理; [0019] In a third step, the wafer sheet is transmitted to the intake chamber, and vacuuming;

[0020] 第四步,再将所述硅片从所述进片腔传输至所述沉积腔中,该沉积腔内为真空环境,所述加热器的温度预先设置为高于制备所述掺杂非晶硅薄膜的工艺温度; [0020] The fourth step, and then feed the sheet from the wafer transfer chamber to the deposition chamber, the deposition chamber is a vacuum environment, the temperature of the heater is set higher than previously prepared mixed process temperature of the amorphous silicon film heteroaryl;

[0021] 第五步,当所述硅片的表面温度被加热至所述本征非晶硅薄膜的工艺温度时,在所述沉积腔中利用化学气相沉积方法制备所述本征非晶硅薄膜; [0021] The fifth step, when the surface temperature of the silicon wafer is heated to the process temperature of the intrinsic amorphous silicon thin film prepared by a chemical vapor deposition process of the intrinsic amorphous silicon in the deposition chamber film;

[0022] 第六步,完成所述本征非晶硅薄膜沉积后,停止该化学气相沉积反应,等待所述硅片温度继续升高至所述掺杂非晶硅薄膜的工艺温度; [0022] The sixth step, after the completion of the present intrinsic amorphous silicon thin film deposition, chemical vapor deposition reactor stopped, waiting for the temperature continues to rise to the silicon-doped amorphous silicon thin film process temperature;

[0023] 第七步,当表面沉积有本征非晶硅薄膜的硅片温度达到所述掺杂非晶硅薄膜的工艺温度时,在所述沉积腔中再利用化学气相沉积方法在所述本征非晶硅薄膜的表面继续制备所述掺杂非晶硅薄膜。 [0023] In a seventh step, when the surface of the intrinsic amorphous silicon thin film deposited wafer temperature reaches process temperature of the doped amorphous silicon thin film in the deposition chamber is reused in the chemical vapor deposition method the intrinsic amorphous silicon thin film surface of the doped amorphous silicon thin film was prepared to continue.

[0024]可选地,所述掺杂非晶硅薄膜为P型非晶硅薄膜或者N型非晶硅薄膜中的一种。 [0024] Alternatively, the doped amorphous silicon film is a P-type or N-type amorphous silicon thin film in an amorphous silicon thin film. [0025] 可选地,第五步中所述硅片表面温度被加热至所述本征非晶硅薄膜工艺温度的时间与利用化学气相沉积方法制备所述本征非晶硅薄膜的时间之比的范围为4/1 一12/1,第七步中表面沉积有所述本征非晶硅薄膜的硅片温度被加热至所述掺杂非晶硅薄膜中工艺温度的时间与利用化学气相沉积方法制备所述掺杂非晶硅薄膜的时间之比的范围为:4/ 1一12/1〇 [0025] Alternatively, the fifth step of the silicon wafer is heated to a surface temperature of said intrinsic amorphous silicon thin film process temperature of the present time and the time of the intrinsic amorphous silicon films prepared by chemical vapor deposition of a 4/1 ratio ranges from 12/1, in a seventh step the surface of the deposited intrinsic amorphous silicon thin film according to the present temperature of the wafer is heated to a time-doped amorphous silicon thin film in the process temperature and by chemical the method of preparing a vapor deposition of the doped amorphous silicon thin film than the time ranges: 4/12 1 a / 1〇

[0026] 可选地,在利用化学气相沉积方法制备所述硅基薄膜、所述本征非晶娃薄膜、所述掺杂非晶硅薄膜的沉积时间内,所述硅片表面温度的升高范围均小于1 〇°c。 [0026] Alternatively, using a chemical vapor deposition method of preparing the silicon thin film, the thin intrinsic amorphous baby, the doped amorphous silicon thin film within the deposition time, temperature rise of the wafer surface high range is less than 1 square ° c.

[0027] 可选地,所述掺杂非晶硅薄膜的工艺温度比所述本征非晶硅薄膜的工艺温度高200-100。 [0027] Alternatively, the doped amorphous silicon thin film process temperature is higher than the process temperatures of 200-100 intrinsic amorphous silicon thin film. . .

[0028] 可选地,在所述硅片被传输至所述沉积腔中后并且在所述硅片表面温度达到所述本征非晶硅薄膜的工艺温度前的时间段内,通入导热性能好的氢气、氮气、氩气中的一种气体或几种气体。 [0028] Alternatively, the deposition chamber after the wafer is transferred to the time before and reaches the process temperature the intrinsic amorphous silicon film on the wafer surface temperature, thermally into good performance hydrogen, nitrogen, argon gas or one of several gases.

[0029] 可选地,第五步中在所述硅片被传输至所述沉积腔中后并且在进行化学气相沉积前的时间段内,向所述沉积腔中通入导热性能好的氢气、氮气、氩气中的一种气体或几种气体。 [0029] Alternatively, the fifth step is transferred to the deposition chamber and the period of time before performing the chemical vapor deposition, thermal conductivity into the deposition chamber to a good hydrogen in the silicon wafer , nitrogen, argon gas of one or more gases.

[0030] 可选地,第六步中在等待所述硅片温度继续升高至所述掺杂非晶硅薄膜工艺温度的时间段内,向所述沉积腔中通入氢气、氮气、氩气中的一种或几种的气体。 [0030] Alternatively, in a sixth step the waiting wafer temperature continues to rise to the temperature of the doped amorphous silicon thin film process period, into hydrogen, nitrogen, argon, to the deposition chamber one or several gases in the air.

[0031] 可选地,所述硅片为N型单晶硅、P型单晶硅、N型多晶硅、P型多晶硅中的一种。 [0031] Alternatively, the N-type monocrystalline silicon wafer, P type single crystal silicon, N-type polycrystalline silicon, P-type polysilicon of one.

[0032] 可选地,所述硅基薄膜、所述本征非晶硅薄膜及所述掺杂非晶硅薄膜厚度范围为2-20nm〇 [0032] Alternatively, the silicon film, the intrinsic amorphous silicon film and the doped amorphous silicon film ranging in thickness 2-20nm〇

[0033] 可选地,所述工艺既可以用于制备单面硅基异质结太阳能电池,也可以制备双面硅基异质结太阳能电池。 [0033] Alternatively, the process may be used to prepare single-sided silicon heterojunction solar cells, can also be prepared sided silicon heterojunction solar cells.

[0034] 可选地,所述硅基异质结太阳能电池的生产设备为PECVD设备,所述化学气相沉积方法为PECVD方法。 [0034] Alternatively, the silicon heterojunction solar cell production equipment for the PECVD apparatus, a chemical vapor deposition method PECVD method.

[0035] 可选地,所述PECVD设备电源为射频电源,其射频频率范围为13.56-100MHz。 [0035] Alternatively, the RF power supply PECVD apparatus, the RF frequency range 13.56-100MHz.

[0036] 与现有技术比较,本发明具有以下技术效果: [0036] comparison with the prior art, the present invention provides the following effects:

[0037] 1)本发明采用将硅片在沉积腔中直接加热的方法,通过将沉积腔中的加热器温度预先设置为高于沉积所需薄膜的工艺温度来进行加热,一方面可以避免再额外配置真空加热腔,从而节省设备成本;另一方面,由于加热器与工艺温度之间存在温差,可以使硅片能够在更短的时间内达到工艺温度,并且由于待沉积薄膜厚度很薄,所以沉积该薄膜只需很短的时间即可完成,在此时间段内硅片表面温度升高差值将小于10°C,基本不影响成膜工艺及成膜质量,因此,本发明提供的工艺能够在保证薄膜质量优良的前提下节约硅片在沉积腔中的处理时间,提高设备的产能。 [0037] 1) The method of the present invention a silicon wafer in the deposition chamber is heated directly by the heater temperature of the deposition chamber is set in advance to a temperature above the deposition process required to heat the film, one can avoid further additional equipment vacuum heating chamber, thereby saving equipment costs; the other hand, since the temperature difference between the heater and the process temperature, the process can be made to reach the wafer temperature in a shorter time, and since the thin film thickness to be deposited, the deposited film thus only a very short time to complete, the wafer surface temperature difference is increased during this time period will be less than 10 ° C, does not substantially affect the film quality and film formation process, therefore, the present invention provides in the process to ensure good film quality can be premise savings in wafer processing time in the deposition chamber, increase equipment capacity.

[0038] 2)对于需要在同一硅片上沉积不同类型薄膜的情况,本发明采用了在同一个沉积腔内制备多种薄膜的方法,通过将加热器的温度预先设置为高于待制备不同类型薄膜中的最高工艺温度,使得加热器与各种不同工艺温度间均存在温度差,从而使桂片不论加热至何种工艺温度,均能以较快的速度达到,起到节约沉积腔内硅片处理时间、提高设备产能的目的,另一方面,由于该方法不需要硅片在不同沉积腔之间频繁传输,因此也可以降低传输过程硅片的碎裂风险和真空环境与大气间的交叉污染。 [0038] 2) the need for different types of film deposition on the same silicon wafer, the present invention uses the same method of preparing a plurality of thin film deposition chamber, the temperature of the heater is higher than the previously set to be different from the preparation of maximum process temperature of the film type, so that between the heater and the various process temperatures are temperature difference, so that no matter Gui sheet which is heated to the process temperature, can reach a relatively high speed, saving functions deposition chamber wafer processing time, improve productivity of the device object, on the other hand, since the method does not require frequent wafer transport between different deposition chamber, thereby also reducing the risk of breakage between the wafer and the transmission process vacuum environment and atmospheric Cross-contamination.

[0039] 3)在可选方案中,当沉积腔中硅片温度尚未达到工艺温度前,向该沉积腔中通入热传导性能好的气体,例如氢气、氮气、氩气中的一种或几种气体,可以加快沉积腔内的热量传递,更进一步地缩短硅片的升温时间,提高设备产能。 [0039] 3) In an alternative embodiment, prior to the deposition chamber when the wafer temperature has not yet reached the process temperature, the deposition chamber to pass into the good thermal conductivity gas, such as hydrogen, nitrogen, argon, one or several gases, can accelerate heat transfer deposition chamber, the silicon wafer further shorten the heating time and improve the equipment capacity.

附图说明 BRIEF DESCRIPTION

[0040] 图1是硅基异质结太阳能电池的结构示意图; [0040] FIG. 1 is a schematic structural diagram of a silicon heterojunction solar cell;

[0041] 图2是真空内硅片表面加热温度随时间变化曲线; [0041] FIG. 2 is a surface of the heating temperature in the vacuum wafer versus time;

[0042]图3是本发明第一实施例中增加硅基异质结太阳能电池产能工艺的流程示意图。 [0042] FIG. 3 is a schematic flow diagram of embodiments increase silicon heterojunction solar cell production process of the first embodiment of the present invention. [0043]图4是积腔内新旧工艺中硅片表面的温度变化曲线; …° [0043] FIG. 4 is a product of the temperature change in the wafer process chamber surfaces the old and new curves; [deg.] ...

[0044]图5是本发明第二实施例中增加硅基异质结太阳能电池产能工艺的流程示意图。 [0044] FIG. 5 is a second embodiment of the present invention to increase the silicon solar cell production capacity schematic flow diagram of the process of the heterojunction. [0045]图6是同一沉积腔内沉积本征非晶硅薄膜与掺杂非晶硅薄膜的时间变化图 [0045] FIG. 6 is the same deposition chamber and depositing intrinsic amorphous silicon film doped amorphous silicon thin film of the time variation of FIG.

具体实施方式 Detailed ways

[0046]为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。 [0046] For the above-described objects, features and advantages of the present invention can be more fully understood by reading the following description of the drawings in detail specific embodiments of the present invention binds.

[0047]在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其他方法来实施,因此本发明不受下面公开的具体实施例的限制。 [0047] forth in the following description, numerous specific details in order to provide a thorough understanding of the present invention, but the present invention may also be implemented other ways other than described using, thus the present invention is not limited to the specific embodiments disclosed below limit.

[0048]图1所示为双面硅基异质结太阳能电池的结构,制备该电池需在N型晶体硅表面沉积非常薄(2-20nm)的本征非晶硅薄膜(a-SiH ( i ))、P型非晶硅或微晶硅的发射层(a-SiH (p )或Uc-SiH ( p ))以及N型非晶硅或微晶硅的背场层(a-SiH ( n )或yc-SiH ( n )), 相应地,这些薄膜的沉积时间也必然很短。 [0048] FIG. 1 shows a double-sided silicon heterostructure solar cell, the battery needs to be prepared in the N-type crystalline silicon deposited on the surface a very thin (2-20 nm) of intrinsic amorphous silicon film (a-SiH ( i)), P-type amorphous or microcrystalline silicon emitter layer (a-SiH (p) or Uc-SiH (p)) and the N-type amorphous or microcrystalline silicon back surface field layer (a-SiH ( n) or yc-SiH (n)), respectively, the deposition time of these films are also necessarily short.

[0049] 图2所示为硅片表面温度随加热时间的变化规律,该曲线是向真空沉积腔内通入500sccm流量的氢气,维持0 • 5mbar气压以及加热器温度设定在200°C条件下试验所得。 [0049] FIG wafer surface temperature is a variation with time of heating shown in FIG. 2, this curve is introduced into the vacuum deposition chamber 500sccm hydrogen flow rate, gas pressure maintaining 0 • 5mbar and a heater temperature set at 200 ° C Conditions The resulting test case. 可以看出,硅片表面温度的变化有先快后慢的特点,尤其当硅片表面温度越接近预先设定温度200 °C时,硅片的升温过程就越缓慢,传统工艺中由于加热器的设定温度为工艺温度,则在硅片温度越接近工艺温度时,硅片升温就越缓慢,使其不得不在沉积腔中等待较长的时间才能达到相应的温度标准。 As can be seen, the temperature change of the wafer surface has the characteristics of slow down after, especially when the surface temperature of the wafer closer to a preset temperature of 200 ° C, more slowly warmed silicon process, the conventional process since the heater the preset temperature of the process temperature, the closer the temperature of the wafer at the process temperature, wafer temperature rise more slowly, so that it had to wait in the deposition chamber longer time to reach the appropriate temperature standard.

[0050] 综合以上可以看出,对于传统工艺中将加热器温度预先设置为所述硅基薄膜工艺温度的做法,必然会使硅片加热时间远多于硅片表面沉积薄膜的时间。 [0050] Based on the above it can be seen, in the conventional process heaters preset temperature of the silicon thin film to practice the process temperature, the heating time is bound to silicon wafer much more than the time the deposited film surface of the wafer. 通常硅片表面温度加热至工艺温度的时间与利用化学气相沉积方法制备硅基薄膜的时间之比的范围为:4/ 1一12/1。 Typically the surface temperature of the wafer is heated to the process temperature and time range than silicon films prepared by chemical vapor deposition of time was: 4/1 a 12/1. 于是,硅片加热时间过长就成为限制设备产能提高的主要瓶颈。 Then, the wafer is heated too long to become a major bottleneck to increase equipment capacity. 为了解决这个问题,本发明提供了一种增加硅基异质结太阳能电池产能的工艺,以下将结合附图对此进行详细阐述。 To solve this problem, the present invention provides a method of increasing the silicon heterojunction solar cell production process, this will be elaborated in conjunction with the accompanying drawings.

[0051] 第一实施例: [0051] First Embodiment:

[0052] 本发明提供了一种增加硅基异质结太阳能电池产能的工艺,该工艺用于制备所述硅基异质结太阳能电池中的硅基薄膜,图3示出了第一实施例的流程示意图,该工艺包括如下步骤: [0052] The present invention provides a process for silicon-based heterojunction solar cell to increase production capacity, the process for preparing the silicon-silicon thin-film heterojunction solar cell, FIG. 3 shows a first embodiment the schematic flow diagram, the process comprising the steps of:

[0053] 步骤S1,提供硅基异质结太阳能电池的生产设备,其包括进片腔和沉积腔,所述沉积腔中设置有对硅片进行热处理的加热器; [0053] step S1, a silicon-based heterojunction solar cell manufacturing apparatus comprising a sheet feeding chamber and a deposition chamber, the deposition of the silicon wafer is heat-treated in the heater chamber is provided;

[0054] 步骤S2,采用湿法化学清洗方式对所述硅片表面进行清洗和干燥; [0054] Step S2, the wet chemical cleaning methods for cleaning and drying the surface of the wafer;

[0055] 步骤S3,将所述硅片传输至所述进片腔中,并进行抽真空处理; [0055] step S3, the wafer is transmitted to the sheet feed chamber, and vacuuming;

[0056] 步骤S4,再将所述硅片从所述进片腔传输至所述沉积腔中,该沉积腔内为真空环境,所述加热器的温度预先设置为高于制备所述硅基薄膜的工艺温度; [0056] step S4, and then feed the sheet from the wafer transfer chamber to the deposition chamber, the deposition chamber is a vacuum environment, the temperature of the heater is set higher than previously prepared silicon the process temperature of the film;

[0057] 步骤S5,当所述硅片的表面温度被加热至所述硅基薄膜的工艺温度时,在所述沉积腔中利用化学气相沉积方法制备所述硅基薄膜。 [0057] step S5, when the surface temperature of the silicon wafer is heated to the process temperature of the silicon film, the silicon films prepared by chemical vapor deposition in the deposition chamber.

[0058] 下面对各个步骤进行详细说明: [0058] Next, the respective steps described in detail:

[0059] 对于步骤S1,所述的硅基异质结太阳能电池的生产设备可以为等离子增强的化学气相沉积(PECVD)设备、表面波等离子体增强化学气相沉积设备,热丝化学气相沉积设备⑽CVD)等。 [0059] For step S1, the said silicon-based heterojunction solar cell manufacturing apparatus may be a plasma enhanced chemical vapor deposition (PECVD) devices, surface wave plasma enhanced chemical vapor deposition apparatus, hot filament chemical vapor deposition apparatus ⑽CVD )Wait.

[0060] 可选地,所述硅基异质结太阳能电池的生产设备为射频PECVD设备,其射频频率为13.56-lOOMHzo [0060] Alternatively, the silicon heterojunction solar cell production equipment RF PECVD apparatus, the RF frequency is 13.56-lOOMHzo

[0061] 可选地,所述硅片可以为N型单晶硅、P型单晶硅、N型多晶硅、P型多晶硅中的一种。 [0061] Alternatively, the N-type silicon single crystal wafer may be, P type single crystal silicon, N-type polycrystalline silicon, P-type polysilicon of one.

[0062] 所述硅基异质结太阳能电池的生产设备包括进片腔和沉积腔,所述沉积腔为真空环境,其个数为至少一个,所述沉积腔内设置有对硅片进行热处理的加热器,所述加热器的加热方式可以为电阻加热、红外加热、感应加热等。 [0062] The silicon heterojunction solar cell manufacturing apparatus includes a sheet feeding chamber and a deposition chamber, the deposition chamber is a vacuum environment, the number of which is at least one of the deposition chamber is provided with a heat-treated silicon wafers heating of the heater, the heater may be a resistance heating, infrared heating, induction heating or the like.

[0063] 优选地,采用电阻加热方式进行加热。 [0063] Preferably, a resistance heating system for heating.

[0064] 对于步骤S2,所述湿法化学清洗方式包括采用酸溶液或者碱溶液对所述硅片进行清洗,所述酸溶液可以为HN03、HF、HCL中的一种或其组合,所述碱溶液可以为Na0H、K0H中的一种或其组合,所述干燥方法可以采用加热或者未加热的压缩空气,氮气,氩气中的一种或者几种气体进行干燥。 [0064] For step S2, the wet chemical cleaning method comprises an acid solution or alkali solution using the silicon wafer cleaning, the acid solution may be one HN03, HF, HCL or a combination thereof, said alkali solution may Na0H, K0H of one or a combination of the drying method of heating or non-heated compressed air, nitrogen gas, argon gas may be used one or several drying.

[0065] 对于步骤S3,所述硅片被传输至所述进片腔中后,对所述进片腔抽真空,使气压至少降至lmbar以下。 [0065] For step S3, the wafer is transferred to the back panel of the feed chamber, the inlet chamber evacuation sheet, the air pressure at least down to lmbar or less.

[0066] 对于步骤S4,所述硅基薄膜可以为非晶硅薄膜、微晶硅薄膜、纳米硅薄膜、氧化硅薄膜、氮氧化硅薄膜、碳化硅薄膜、氮化硅薄膜等薄膜。 [0066] For step S4, the silicon film may be a thin film of amorphous silicon, microcrystalline silicon thin film, nano-silicon film, a silicon oxide film, a silicon oxynitride film, a carbide film, a silicon nitride film or the like.

[0067] 优选地,所述为非晶硅薄膜可以为本征非晶硅薄膜、P型非晶硅薄膜或者N型非晶硅薄膜中的一种。 [0067] Preferably, the amorphous silicon thin film may be one of amorphous silicon, P-type or N-type amorphous silicon thin film amorphous silicon thin film is intrinsic.

[0068] 所述沉积腔为真空环境,并将所述加热器的温度预先设置为高于所述硅基薄膜的工艺温度,具体地,所述硅基薄膜的工艺温度为15〇_32〇°C。 [0068] The deposition chamber is a vacuum atmosphere, the temperature of the heater is set in advance to the process temperature is higher than the silicon film, in particular, the process temperature of the silicon film is 15〇_32〇 ° C. 具体地,所述加热器的温度预先设置为180°C-350°C。 In particular, the preset temperature of the heater is 180 ° C-350 ° C.

[0069] 优选地,所述硅基薄膜的工艺温度为150°C,所述加热器温度预先设置为200°C。 [0069] Preferably, the process temperature of the silicon film is 150 ° C, the previously set heater temperature is 200 ° C. [0070] 可选地,所述硅基薄膜的厚度范围为2-20nm。 [0070] Alternatively, the thickness of the silicon thin film is 2-20nm.

[0071] 可选地,假若将加热器温度预先设置为等于所述硅基薄膜工艺温度,则硅片表面温度加热至该工艺温度的时间与利用化学气相沉积方法制备该薄膜的时间之比的范围为: 4/1一12/1〇 [0071] Alternatively, if the pre-heater temperature is set equal to the process temperature of the silicon film, the surface temperature of the wafer is heated to the process temperature and time is longer than the film prepared by a chemical vapor deposition method of the range: 12 4/1 a / 1〇

[0072] 对于步骤S5,当加热所述硅片表面温度达到所述硅基薄膜的工艺温度时,在所述沉积腔中利用化学气相沉积方法制备所述硅基薄膜。 [0072] For step S5, when heating the wafer surface temperature reaches process temperature of the silicon film, the silicon films prepared by chemical vapor deposition in the deposition chamber.

[0073] 可选地,在所述硅片被传输至所述沉积腔中后并且在进行化学气相沉积前的时间段内,向所述沉积腔中通入导热性能好的氢气、氮气、氩气中的一种气体或几种气体 [0073] Alternatively, after the deposition chamber and the wafer is transferred to the time before performing the chemical vapor deposition, into good thermal conductivity of hydrogen, nitrogen, argon, to the deposition chamber gas is one gas or several gases

[0074] 具体地,在本实施例中,所述硅片在沉积腔中的初始温度为室温25 °C,所述硅基薄膜的工艺温度为15(TC,所述硅基薄膜为本征非晶硅薄膜,下面将分别对本发明揭示的新工艺与传统工艺的产能进行比较说明。 [0074] Specifically, in the present embodiment, the initial temperature of the silicon wafer in the deposition chamber was room temperature 25 ° C, the process temperature of the silicon film 15 (TC, the intrinsic silicon film amorphous silicon thin film, respectively, will yield new process disclosed in the present invention with the traditional process can be described in comparison.

[0075] 图4所示为沉积腔内新旧工艺中硅片表面的温度变化曲线,实线代表的是本发明的新型工艺,其加热器的温度预先设置为200°C,高于待沉积薄膜150°C的工艺温度,虚线代表传统工艺,其加热器温度预先设置为等于待沉积薄膜的工艺温度150°C。 [0075] Figure 4 shows the old and the new deposition process, the temperature of the cavity surface of the silicon wafer variation curve, the solid line represents the novel process of the present invention, the temperature of the heater which is set in advance to 200 ° C, higher than the film to be deposited process temperature of 150 ° C, the dotted line represents the conventional process, the pre-heater temperature is set equal to the film deposition process temperature to be 150 ° C. 可以看出,在传统工艺中,由于加热器的预先设定温度即为工艺温度,并且前面图2显示硅片表面温度升高规律为:越接近加热器设定温度升温越缓慢,所以硅片表面只能在较长的时间t3(约500秒) 达到工艺温度,而在之后的PECVD覆膜过程中,由于待沉积硅基薄膜的厚度只有纳米量级, 所以该TOCVD的沉膜时间t4-t3大约为60秒,这样所述硅片在沉积腔内不得不消耗560-600 秒的时间,所述硅片表面温度加热至工艺温度的时间过长成为了限制设备具有较高产能的瓶颈。 As it can be seen, in the conventional process, since the heater temperature is the predetermined process temperature, and Figure 2 shows a wafer front surface temperature of the law: the closer to the slower heating heater temperature setting, the wafer surface only at longer time t3 (about 500 seconds) to reach the process temperature, and then in a PECVD coating process, since the thickness of the deposited silicon film to be of the order of nanometers only, so that the film TOCVD sink time t4- t3 is about 60 seconds, in a deposition chamber such that the silicon wafer has to consume 560-600 seconds, the surface temperature of the silicon wafer is heated to the process temperature too long and become a bottleneck device having a high capacity.

[0076] 在本发明所揭露的新型工艺中,将加热器的温度预先设置为200°C,比其待处理的150°C的工艺温度高出50°C,由于该加热器与硅片之间存在的温度差,使硅片表面能在较短的时间tl (约60秒)达到工艺温度,然后在PECVD覆膜过程中,由于沉积纳米量级的硅基薄膜所需要的时间t2-tl也约为60秒,两者消耗的时间长度基本相当,因此硅片加热至工艺温度的时间不再成为限制设备产能的瓶颈,所述硅片在沉积腔内的总处理时间可以缩短至120-150秒,从而本发明中硅片在沉积腔内的处理时间长度可以仅为传统工艺所用时间1/4-1/ 5,相应地,设备的产能就提高了4-5倍。 [0076] In the present invention, the disclosed novel process, the preset temperature of the heater to 200 ° C, higher than the process temperature of 150 ° C which is to be treated 50 ° C, since the heater and the wafer temperature difference exists between the wafer surface to reach the process temperature TL in a shorter time (about 60 seconds), and then in a PECVD coating process, since the silicon film deposition time required for a nanoscale t2-tl is also about 60 seconds, both the length of time consumed roughly equal, and therefore the wafer is heated to the process temperature, the time is not a constraint of equipment capacity bottleneck, said wafer deposition chamber in a total processing time can be shortened to 120- 150 seconds, whereby the present invention, the length of the wafer processing time may be only the deposition chamber traditional process used time 1 / 4-1 / 5, respectively, on the production equipment can be increased 4-5 times.

[0077] 需要指出的是,由于所述加热器与所述硅片之间存在一定温度差,所以硅片表面进行覆膜的过程中,所述硅片表面温度并非保持恒定,而会继续增加。 [0077] It should be noted that, due to a temperature difference between the heater and the wafer, the wafer surface coating process, the wafer surface temperature is not kept constant, but will continue to increase . 但是另一方面,由于待沉积薄膜的厚度很薄、覆膜时间很短,所以在PECVD覆膜的约60秒时间内,所述硅片表面温度升高差值小于l〇°C,这个增加的幅度基本不会影响PECVD的成膜工艺及成膜质量,因此本发明所提供的新型工艺能够在保证覆膜质量和覆膜工艺的前提下,使得硅片在更短的时间内达到工艺温度,从而节约了硅片在沉积腔内的处理时间,提高了设备的产能。 On the other hand, since the thickness of the thin film to be deposited, the coating time is very short, in about 60 seconds PECVD film, the wafer surface temperature difference is less than l〇 ° C, the increase the amplitude and substantially does not affect the film quality PECVD deposition process, and thus the present invention provides a novel process is capable while ensuring the quality of the coating and the coating process, such that the wafer reaches the process temperature in a shorter time , thereby saving processing time of the wafers in the deposition chamber, increased equipment capacity. 另外,在本实施例中,由于加热过程在沉积腔中进行,就无需再额外配置真空加热腔,从而也可以节省设备成本。 Further, in the present embodiment, since the heating process in the deposition chamber, no longer need to configure additional vacuum heating chamber, so that equipment costs may be saved.

[0078] 第二实施例: [0078] Second Example:

[0079] 针对工业上需要在硅基异质结太阳能电池表面沉积不同类型的多层非晶硅薄膜的情况,例如在硅片上沉积出本征非晶硅薄膜、P型非晶硅薄膜、N型非晶硅薄膜,本发明还提供了一种增加硅基异质结太阳能电池产能的工艺,该工艺用于制备所述硅基异质结太阳能电池中的本征非晶硅薄膜及掺杂非晶硅薄膜,图5是本发明第二实施例中增加硅基异质结太阳能电池产能工艺的流程示意图。 [0079] In the case of need in the industry for silicon heterojunction solar cells deposited on the surface of different types of multi-layer amorphous silicon thin film, for example, an intrinsic amorphous silicon film is deposited, P-type amorphous silicon thin film on a silicon wafer, N-type amorphous silicon thin film, the present invention also provides a process for silicon-based heterojunction solar cell to increase production capacity, the process for preparing the intrinsic amorphous silicon thin-film heterojunction solar cells, and blending heteroaryl amorphous silicon thin film, FIG. 5 is a schematic flow diagram of a silicon heterojunction solar cell production process of a second embodiment of the present invention is increased. 该工艺包括如下步骤: The process comprises the steps of:

[0080] 步骤S1,提供硅基异质结太阳能电池的生产设备,其包括进片腔和沉积腔,所述沉积腔中设置有对硅片进行热处理的加热器; [0080] step S1, a silicon-based heterojunction solar cell manufacturing apparatus comprising a sheet feeding chamber and a deposition chamber, the deposition of the silicon wafer is heat-treated in the heater chamber is provided;

[0081] 步骤S2,采用湿法化学清洗方式对所述硅片表面进行清洗和干燥; [0081] Step S2, the wet chemical cleaning methods for cleaning and drying the surface of the wafer;

[0082] 步骤S3,将所述硅片传输至所述进片腔中,并进行抽真空处理; [0082] step S3, the wafer is transmitted to the sheet feed chamber, and vacuuming;

[0083] 步骤S4,再将所述硅片从所述进片腔传输至所述沉积腔中,该沉积腔内为真空环境,所述加热器的温度预先设置为高于制备所述掺杂非晶硅薄膜的工艺温度; [0083] step S4, and then feed the sheet from the wafer transfer chamber to the deposition chamber, the deposition chamber is a vacuum environment, the preset temperature of the heater higher than the doping prepared process temperature of the amorphous silicon film;

[0084] 步骤S5,当所述硅片的表面温度被加热至所述本征非晶硅薄膜的工艺温度时,在所述沉积腔中利用化学气相沉积方法制备所述本征非晶硅薄膜; [0084] step S5, when the surface temperature of the silicon wafer is heated to the process temperature of the intrinsic amorphous silicon thin film, prepared by chemical vapor deposition process of the intrinsic amorphous silicon thin film in the deposition chamber ;

[0085] 步骤S6,完成所述本征非晶硅薄膜沉积后,停止该化学气相沉积反应,等待所述硅片温度继续升高至所述掺杂非晶硅薄膜的工艺温度; [0085] Step S6, the completion of the present intrinsic amorphous silicon thin film after deposition, chemical vapor deposition reactor stopped, waiting for the temperature continues to rise to the silicon-doped amorphous silicon thin film process temperature;

[0086]步骤S7,当表面沉积有本征非晶硅薄膜的硅片温度达到所述掺杂非晶硅薄膜的工艺温度时,在所述沉积腔中再利用化学气相沉积方法在所述本征非晶硅薄膜的表面继续制备所述掺杂非晶硅薄膜。 [0086] step S7, when the surface of the intrinsic amorphous silicon thin film deposited wafer temperature reaches process temperature of the doped amorphous silicon thin film, the deposition chamber in a chemical vapor deposition method reused in the present surface of the intrinsic amorphous silicon film is prepared to continue the doped amorphous silicon thin film.

[0087] 本实施例中的步骤S1、S2、S3与第一实施例中的步骤S1、S2、S3类似,其主要区别在于步骤S4-S7,以下将对此进行详细说明: [0087] The embodiment of the present embodiment in step Sl, steps S2, S3 in the first embodiment Sl, S2, S3 similarly, the main difference is that steps S4-S7, as will be described in detail:

[0088] 在本实施例中,所述掺杂非晶硅薄膜可以是P型非晶硅薄膜或者N型非晶硅薄膜。 [0088] In the present embodiment, the doped amorphous silicon thin film may be a P-type or N-type amorphous silicon thin film amorphous silicon thin film. 优选地,所述掺杂非晶硅薄膜为P型非晶硅薄膜。 Preferably, the P-type doped amorphous silicon film amorphous silicon thin film.

[0089] 可选地,所述本征非晶硅薄膜与所述掺杂非晶硅薄膜的厚度范围均为2-20nm。 [0089] Alternatively, the intrinsic amorphous silicon film and the doped amorphous silicon thin film thickness ranges are 2-20nm.

[0090] 可选地,步骤S5中所述硅片表面温度被加热至所述本征非晶硅薄膜工艺温度的时间与利用化学气相沉积方法制备所述本征非晶硅薄膜的时间之比的范围为:4/1 一12/1。 [0090] Alternatively, the step S5, the surface temperature of the silicon wafer is heated to the process temperature of the time the intrinsic amorphous silicon thin film and a chemical vapor deposition method than the present time of the intrinsic amorphous silicon thin film prepared the range is: 4/1 a 12/1. [0091]可选地,步骤S7中表面沉积有所述本征非晶硅薄膜的硅片温度被加热至所述掺杂非晶硅薄中膜工艺温度的时间与利用化学气相沉积方法制备所述掺杂非晶硅薄膜的时间之比的范围为:4/1一12/1。 [0091] Alternatively, in step S7, the surface of the deposited intrinsic amorphous silicon thin film according to the present temperature of the wafer is heated to the doped amorphous silicon thin film is in process time and temperature using chemical vapor deposition process for preparing the said ratio ranges of time-doped amorphous silicon thin film is: a 12/1 4/1.

[0092]可选地,所述掺杂型非晶硅薄膜的工艺温度通常比本征非晶硅薄膜的工艺温度高20-100。 [0092] Alternatively, the doped amorphous silicon thin film process temperature, the process temperature is generally higher than the intrinsic amorphous silicon film is 20-100. . .

[0093] 可选地,所述本征非晶硅薄膜的工艺温度范围为130-280°C,所述P型非晶硅薄膜或者所述N型非晶硅薄膜的工艺温度范围为150-320°C。 [0093] Alternatively, the present process temperature range of intrinsic amorphous silicon thin film is 130-280 ° C, the process temperature range of the P-type N-type amorphous silicon thin film or the amorphous silicon thin film was 150 320 ° C.

[0094]所述沉积腔为真空环境,所述加热器的温度预先设置为高于所述掺杂非晶硅基薄膜的工艺温度,具体地,所述加热器预先设置的温度范围为180-350°C [0095] 优选地,本征非晶硅薄膜的工艺温度为140°C,P型非晶硅薄膜的工艺温度为180 °C,加热器的温度预先设置为220°C。 [0094] The deposition chamber is a vacuum environment, the temperature of the heater higher than the preset temperature of the doped amorphous silicon-based thin-film technology, in particular, the heater preset temperature range 180- 350 ° C [0095] preferably, the process temperature intrinsic amorphous silicon film is 140 ° C, the process temperature P-type amorphous silicon film is 180 ° C, the temperature of the heater is set in advance to 220 ° C. 图6所示为同一沉积腔内沉积本征非晶硅薄膜与掺杂非晶硅薄膜的时间变化图,据此看出,在娃片被传输至所述沉积腔中从室温25°C开始加热时,所述硅片的温度会先经过时间tl (约60秒)升至本征非晶硅薄膜的工艺温度14(TC,并开始本征非晶硅薄膜的沉积工艺,经过t2-tl (约60秒)的时间完成所述本征非晶硅层薄膜的制备。在完成所述本征非晶硅薄膜的制备后,停止该PECVD过程,等待所述硅片温度继续升高直至达到所述P型非晶硅薄膜的工艺温度180°C,所述等待的时间长度为t5-12 (约200 秒),然后再开始在所述本征非晶硅表面制备P型非晶硅薄膜,该制备时间为t6-t5(约200 秒)。最终,所述硅片在沉积腔中的总处理时间一共为520秒。而在传统工艺中,需要分别在两个沉积腔中沉积本征非晶硅薄膜和P型非晶硅薄膜,此时所述硅片在沉积腔中的总处理时间大约需要1 Figure 6 shows the same deposition chamber and depositing intrinsic amorphous silicon film doped amorphous silicon thin film of FIG time, whereby seen from room temperature 25 ° C in the baby plate is transmitted to the deposition chamber when heated, the temperature of the wafer will first elapsed time TL (about 60 seconds) the process temperature is raised to the intrinsic amorphous silicon film 14 (TC, and a deposition process of the intrinsic amorphous silicon film, through t2-tl preparation of the intrinsic amorphous silicon layer of a thin film (about 60 seconds) to complete. after the preparation of the intrinsic amorphous silicon thin film is completed, the PECVD process is stopped, waiting for the temperature continues to rise until it reaches the wafer the process temperature of the P-type amorphous silicon thin film 180 ° C, the length of the waiting time is t5-12 (about 200 seconds), then start preparing a P-type amorphous silicon thin film surface of the intrinsic amorphous silicon the preparation time of t6-t5 (about 200 seconds). the final, total treatment time of the silicon wafer in the deposition chamber in a total of 520 seconds while in the conventional process, the need to separately deposit the intrinsic deposition chamber in two P-type amorphous silicon thin film and amorphous silicon thin film, when the silicon wafer in the deposition chamber total treatment time of approximately 1 000秒。新旧工艺相比可以看出,本发明提供的新工艺通过利用加热器与各种不同工艺温度间均存在温度差,使硅片不论加热至何种工艺温度,均能以较快的速度达到,起到节约沉积腔内硅片处理时间、提高设备产能的目的,另一方面,由于该方法不需要硅片在不同沉积腔之间频繁传输,因此也可以降低传输过程硅片的碎裂风险和真空环境与大气间的交叉污染。 000 seconds old and the new process compared it can be seen, the present invention provides a new process by using a variety of processes between the heater and the temperatures are temperature difference, whether silicon wafer which is heated to the process temperature, the faster can speeds up, play a deposition chamber wafer processing time savings, the purpose of improving the device capacity, on the other hand, since the method does not require frequent wafer transport between different deposition chamber, thereby also reducing the transmission of broken wafers cracking risks and cross-contamination between the environment and the vacuum atmosphere.

[0096] 另外,与实施例中同样的道理,由于所述加热器与所述硅片之间存在一定温度差, 所以硅片表面进行覆膜的过程中,所述硅片表面温度会继续增加。 [0096] Further, with the embodiment of the same principle embodiment, due to a temperature difference between the heater and the wafer, the wafer surface coating process, the wafer surface temperature will continue to increase . 又由于待沉积薄膜的厚度很薄、覆膜时间很短,所以在本征非晶硅与掺杂非晶硅薄膜的PECVD方法制备过程中,所述硅片表面温度升高差值均小于10°C,这个增加的幅度基本不会影响PECVD的成膜工艺及成膜质量,因此本发明所提供的新型工艺能够在提高设备产能的同时也保证了覆膜质量和覆膜工艺。 Also, because the thickness of the deposited film to be thin, the film is very short, so that the intrinsic amorphous silicon and doped amorphous silicon thin film manufacturing process in the PECVD method, the wafer surface temperature difference of less than 10 ° C, the rate of increase does not substantially affect the film quality and deposition PECVD process, and thus the present invention provides novel processes possible to improve the capacity of the device also ensures the quality of the coating and coating process. _ _

[0097] 可选地,在步骤S5中第五步中在所述硅片被传输至所述沉积腔中后并且在进行化学气相沉积前的时间段内,向所述沉积腔中通入导热性能好的氢气、氮气、氩气中的一种气体或几种气体。 [0097] Alternatively, in step S5, the fifth step is transferred to the deposition chamber after the time before and during chemical vapor deposition to the deposition chamber into the thermal conductive silicon good performance hydrogen, nitrogen, argon gas or one of several gases.

[0098] 可选地,在步骤S6中在等待所述硅片温度继续升高至所述掺杂非晶硅薄膜工艺温度的时间段内,向所述沉积腔中通入导热性能好的氢气、氮气、氩气中的一种或几种的气体。 [0098] Alternatively, in S6, the waiting wafer temperature continues to rise to the temperature of the doped amorphous silicon thin film process period, the step into the deposition chamber to good thermal conductivity of hydrogen , nitrogen gas, argon gas, or one of several.

[0099] 在可选方案中,当沉积腔中硅片温度尚未达到工艺温度前,向该沉积腔中通入热传导性能好的气体,例如氢气、氮气、氩气中的一种或几种气体,可以加快沉积腔内的热量传递,更进一步地缩短硅片的升温时间,提高设备产能。 [0099] In an alternative embodiment, prior to the deposition chamber when the wafer temperature has not yet reached the process temperature, the deposition chamber to pass into the good thermal conductivity gas, such as hydrogen, nitrogen, argon gas or gases can accelerate heat transfer deposition chamber, the silicon wafer further shorten the heating time and improve the equipment capacity.

[0100]虽然本发明已以较佳的实施例披露如上,但本发明并非限定于此。 [0100] While the invention has been disclosed as the preferred embodiment, but the present invention is not limited thereto. 任何本领域技术人员,在不脱离本发明的精神和范围内,均可做各种更改与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。 Anyone skilled in the art, without departing from the spirit and scope of the present invention, various changes and modifications can be made, and therefore the scope of the present invention reference should be made to the scope defined by the claims.

Claims (15)

  1. 1. 一种增加硅基异质结太阳能电池产能的工艺,该工艺用于制备所述硅基异质结太阳能电池中的非晶硅薄膜,其特征在于:该工艺包括如下步骤: 第一步,提供硅基异质结太阳能电池的生产设备,其包括进片腔和沉积腔,所述沉积腔中设置有对硅片进行热处理的加热器; 第二步,采用湿法化学清洗方式对所述硅片表面进行清洗和干燥; 第三步,将所述硅片传输至所述进片腔中,并进行抽真空处理; 第四步,再将所述硅片从所述进片腔传输至所述沉积腔中,该沉积腔内为真空环境,所述非晶硅薄膜的工艺温度150-320°C,所述加热器的温度预先设置180-350°C,所述加热器的温度预先设置为高于制备所述非晶硅薄膜的工艺温度; 第五步,当所述硅片的表面温度被加热至所述非晶硅薄膜的工艺温度时,在所述沉积腔中利用化学气相沉积方法制备所述非晶硅薄 1. A method of increasing process silicon heterojunction solar cell production, the process for preparing the silicon heterojunction solar cell in amorphous silicon thin film, wherein: the process comprising the steps of: a first step , silicon-based heterojunction solar cell manufacturing apparatus comprising a sheet feeding chamber and a deposition chamber, the deposition chamber is provided with a heater for heat-treating a silicon wafer; the second step, wet chemical cleaning methods on the said wafer surface cleaning and drying; a third step, the wafer sheet is transmitted to the intake chamber, and vacuuming; a fourth step, and then feed the sheet from the wafer transfer chamber to the deposition chamber, the deposition chamber is a vacuum atmosphere, the temperature of the process of the amorphous silicon film is 150-320 ° C, the temperature of the heater is set in advance 180-350 ° C, the temperature of the heater previously set higher than the process temperature of the amorphous silicon thin film prepared; fifth step, when the surface temperature of the silicon wafer is heated to the process temperature of the amorphous silicon thin film, by chemical deposition in the chamber preparation of the amorphous silicon thin vapor deposition method .
  2. 2. 根据权利要求1所述的一种增加硅基异质结太阳能电池产能的工艺,其特征在于:所述非晶硅薄膜为本征非晶硅薄膜、P型非晶硅薄膜或者N型非晶硅薄膜中的一种。 2. A method according to claim 1, said process of increasing the silicon heterojunction solar cell production capacity, wherein: said intrinsic amorphous silicon thin film amorphous silicon, P-type or N-type amorphous silicon thin film one of amorphous silicon thin film.
  3. 3. 根据权利要求1所述的一种增加硅基异质结太阳能电池产能的工艺,其特征在于:当所述加热器温度预先设置为高于所述非晶硅薄膜工艺温度时,将所述硅片表面温度加热至所述非晶硅薄膜工艺温度的时间与利用化学气相沉积方法制备所述非晶硅薄膜的时间之比的范围为:4/1 一12/1。 According to claim 1, wherein one of said additional process silicon heterojunction solar cell production capacity, wherein: when the heater temperature is higher than the preset temperature of the amorphous silicon thin film technology, The said wafer is heated to a surface temperature of the amorphous silicon thin film and the process temperature range than the time of preparation of the amorphous silicon thin film using a chemical vapor deposition method is a time of: 4/1 a 12/1.
  4. 4. 一种增加硅基异质结太阳能电池产能的工艺,该工艺用于制备所述硅基异质结太阳能电池中的本征非晶硅薄膜及掺杂非晶硅薄膜,其特征在于:该工艺包括如下步骤: 第一步,提供硅基异质结太阳能电池的生产设备,其包括进片腔和沉积腔,所述沉积腔中设置有对硅片进行热处理的加热器; 第二步,采用湿法化学清洗方式对所述硅片表面进行清洗和干燥; 第三步,将所述硅片传输至所述进片腔中,并进行抽真空处理; 第四步,再将所述硅片从所述进片腔传输至所述沉积腔中,该沉积腔内为真空环境,所述本征非晶硅薄膜的工艺温度范围为130-280°C,所述掺杂非晶硅薄膜的工艺温度150-320 °C,所述加热器的温度预先设置为180-350°C,所述加热器的温度预先设置为高于制备所述掺杂非晶硅薄膜的工艺温度; 第五步,当所述硅片的表面温度被加热至所述 4. A process of increasing the silicon heterojunction solar cell production, the process for preparing the intrinsic amorphous silicon thin film heterojunction solar cell and a doped amorphous silicon film, comprising: the process comprises the steps of: a first step providing a silicon heterojunction solar cell manufacturing apparatus comprising a sheet feeding chamber and a deposition chamber, the deposition chamber is provided with a heater for heat-treating a silicon wafer; step , wet chemical cleaning methods for cleaning and drying the wafer surface; a third step, the wafer is transmitted to the sheet feed chamber, and vacuuming; a fourth step, and then the wafers from the chamber into the transfer sheet to the deposition chamber, the deposition chamber is a vacuum environment, the present process temperature range of intrinsic amorphous silicon thin film is 130-280 ° C, the doped amorphous silicon process film temperature 150-320 ° C, the temperature of the heater is set in advance to 180-350 ° C, the temperature of the heater is set in advance to prepare the doped amorphous silicon thin film is higher than a process temperature; the first five steps, when the surface temperature of the silicon wafer is heated to the 本征非晶硅薄膜的工艺温度时,在所述沉积腔中利用化学气相沉积方法制备所述本征非晶硅薄膜; 第六步,完成所述本征非晶硅薄膜沉积后,停止该化学气相沉积反应,等待所述硅片温度继续升高至所述掺杂非晶硅薄膜的工艺温度; 第七步,当表面沉积有本征非晶硅薄膜的硅片温度达到所述掺杂非晶硅薄膜的工艺温度时,在所述沉积腔中再利用化学气相沉积方法在所述本征非晶硅薄膜的表面继续制备所述掺杂非晶硅薄膜。 When the process temperature intrinsic amorphous silicon thin film, prepared by chemical vapor deposition process of the intrinsic amorphous silicon thin film in the deposition chamber; a sixth step after completion of said intrinsic amorphous silicon thin film deposition, stopping the chemical vapor deposition reactor, waiting for the temperature continues to rise to the silicon-doped amorphous silicon thin film process temperature; and a seventh step, when the surface of the deposited intrinsic amorphous silicon film doped wafer temperature reaches the when the process temperature of the amorphous silicon film, the deposition chamber was continued for preparation of the surface of the intrinsic amorphous silicon film doped amorphous silicon thin film using a chemical vapor deposition method.
  5. 5. 根据权利要求4所述的一种增加硅基异质结太阳能电池产能的工艺,其特征在于:所述掺杂非晶硅薄膜为P型非晶硅薄膜或者N型非晶硅薄膜中的一种。 5. A method according to claim 4, wherein the process increases the silicon heterojunction solar cell production capacity, wherein: said P-type doped amorphous silicon film is a N-type amorphous silicon film or amorphous silicon film a.
  6. 6. 根据权利要求4所述的一种增加硅基异质结太阳能电池产能的工艺,其特征在于:第五步中所述硅片表面温度被加热至所述本征非晶硅薄膜工艺温度的时间与利用化学气相沉积方法制备所述本征非晶硅薄膜的时间之比的范围为4/1 一12/1,第七步中表面沉积有所述本征非晶硅薄膜的硅片温度被加热至所述掺杂非晶硅薄中膜工艺温度的时间与利用化学气相沉积方法制备所述掺杂非晶硅薄膜的时间之比的范围为:4/1 一12/1。 6. A method according to claim 4, wherein the process increases the silicon heterojunction solar cell production capacity, wherein: the fifth step of the silicon wafer is heated to a surface temperature of the intrinsic amorphous silicon thin film process temperature time range than the preparation time and the intrinsic amorphous silicon thin film by a chemical vapor deposition method a 12/1 to 4/1, in a seventh step the surface of the deposited intrinsic amorphous silicon film It is heated to a temperature of the doped amorphous silicon thin membrane process time and temperature be prepared by chemical vapor deposition of the doped amorphous silicon ratio in the range of time for the film: a 12/1 4/1.
  7. 7. 根据权利要求1所述的一种增加硅基异质结太阳能电池产能的工艺,其特征在于:在利用化学气相沉积方法制备所述非晶娃薄膜的沉积时间内,所述桂片表面温度的升尚范围均小于l〇°C。 7. A method according to claim 1, said process of increasing the silicon heterojunction solar cell production capacity, which is characterized in that: in the chemical vapor deposition method using a deposition time of preparing the amorphous film baby, the sheet surface Gui yet temperature rise range is less than l〇 ° C.
  8. 8. 根据权利要求4所述的一种增加硅基异质结太阳能电池产^的工艺,其特征在于:所述掺杂非晶硅薄膜的工艺温度比所述本征非晶硅薄膜的工艺温度高2〇_l〇〇°C。 8. A member according to claim 4, wherein the process increases the silicon heterojunction solar cell production ^, characterized in that: an amorphous silicon thin film technology process temperature than the intrinsic amorphous silicon film doped with the high temperature 2〇_l〇〇 ° C.
  9. 9. 根据权利要求1或4所述的一种增加娃基异质结太阳能电池广能的工乙,其特征在于:第五步中在所述硅片被传输至所述沉积腔中后并且在进行化学气相沉积前的时间段内,向所述沉积腔中通入氢气、氮气、氩气中的一种气体或几种气体。 9. A method of increasing baby yl heterojunction solar cell of claim 1 or 4 Guangneng work acetate claim, wherein: the fifth step is transmitted to the rear in the deposition chamber and the wafer the time before performing chemical vapor deposition, into hydrogen gas, nitrogen gas, argon gas is a gas or several gases to the deposition chamber.
  10. 10. 根据权利要求4所述的一种增加硅基异质结太阳能电池产能的工艺,其特征在于: 第六步中在等待所述硅片温度继续升高至所述掺杂非晶硅薄膜工艺温度的时间段内,向所述沉积腔中通入氢气、氮气、氩气中的一种或几种的气体。 10. A method according to claim 4, wherein the process increases the silicon heterojunction solar cell production capacity, wherein: the sixth step in the waiting wafer temperature continues to rise to the doped amorphous silicon film period process temperature, into hydrogen gas, nitrogen gas, an argon gas or several gases into the deposition chamber.
  11. 11. 根据权利要求1或4所述的一种增加硅基异质结太阳能电池产能的工艺,其特征在于:所述硅片为N型单晶硅、P型单晶硅、N型多晶硅、P型多晶娃中的一种。 4 or 11. According to one of the claims 1 to increase the silicon heterojunction solar cell production process, characterized in that: said N-type monocrystalline silicon wafer, P type single crystal silicon, N-type polycrystalline silicon, one kind of P-type polycrystalline baby.
  12. 12. 根据权利要求1所述的一种增加硅基异质结太阳能电池产能的工艺,其特征在于: 所述非晶硅薄膜厚度范围为2_20nm。 12. A method according to claim 1, said process of increasing the silicon heterojunction solar cell production capacity, wherein: said amorphous silicon thin film thickness in the range of 2_20nm.
  13. 13. 根据权利要求1或4所述的一种增加硅基异质结太阳能电池产能的工艺,其特征在于:所述工艺既可以用于制备单面硅基异质结太阳能电池,也可以制备双面硅基异质结太阳能电池。 4 or 13. According to one of the claims 1 to increase the silicon heterojunction solar cell production process, characterized in that: the process may be used to prepare single-sided silicon heterojunction solar cells, can also be prepared sided silicon heterojunction solar cells.
  14. 14. 根据权利要求1或4所述的一种增加硅基异质结太阳能电池产能的工艺,其特征在于:所述硅基异质结太阳能电池的生产设备为PECVD设备,所述化学气相沉积方法为PECVD 方法 14. A method of claim 1 or 4 additional process of claim silicon heterojunction solar cell production capacity, wherein: the silicon heterojunction solar cell production equipment for the PECVD apparatus, a chemical vapor deposition The method is PECVD method
  15. 15. 根据权利要求14所述的一种增加硅基异质结太阳能电池产能的工艺,其特征在于: 所述PECVD设备电源为射频电源,其射频频率范围为13 • 56-100MHz。 15. A method according to claim 14 wherein the process increases the silicon heterojunction solar cell production capacity, wherein: said RF power supply PECVD apparatus, the RF frequency range of 13 • 56-100MHz.
CN 201310172714 2013-05-13 2013-05-13 A process for silicon-based heterojunction solar cell to increase production capacity CN104157592B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201310172714 CN104157592B (en) 2013-05-13 2013-05-13 A process for silicon-based heterojunction solar cell to increase production capacity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201310172714 CN104157592B (en) 2013-05-13 2013-05-13 A process for silicon-based heterojunction solar cell to increase production capacity

Publications (2)

Publication Number Publication Date
CN104157592A true CN104157592A (en) 2014-11-19
CN104157592B true CN104157592B (en) 2017-08-25

Family

ID=51883066

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201310172714 CN104157592B (en) 2013-05-13 2013-05-13 A process for silicon-based heterojunction solar cell to increase production capacity

Country Status (1)

Country Link
CN (1) CN104157592B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1249531A (en) * 1998-09-04 2000-04-05 佳能株式会社 Process for mfg. semiconductor substrate
CN101656194A (en) * 2008-08-21 2010-02-24 北京北方微电子基地设备工艺研究中心有限责任公司 Plasma cavity and temperature control method thereof
CN101776927A (en) * 2009-12-24 2010-07-14 深圳和而泰智能控制股份有限公司 Temperature rush compensation method and device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248221A (en) * 1989-03-23 1990-10-04 Mitsubishi Gas Chem Co Inc Depressurizing semi-continuous press device
JP4470274B2 (en) * 2000-04-26 2010-06-02 東京エレクトロン株式会社 Heat treatment apparatus
JP2004137571A (en) * 2002-10-18 2004-05-13 Konica Minolta Holdings Inc Thin film deposition method, thin film, and transparent conductive film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1249531A (en) * 1998-09-04 2000-04-05 佳能株式会社 Process for mfg. semiconductor substrate
CN101656194A (en) * 2008-08-21 2010-02-24 北京北方微电子基地设备工艺研究中心有限责任公司 Plasma cavity and temperature control method thereof
CN101776927A (en) * 2009-12-24 2010-07-14 深圳和而泰智能控制股份有限公司 Temperature rush compensation method and device

Also Published As

Publication number Publication date Type
CN104157592A (en) 2014-11-19 application

Similar Documents

Publication Publication Date Title
US20080099065A1 (en) Method for producing single crystal silicon solar cell and single crystal silicon solar cell
CN101217170A (en) A diffusion technique applied on silicon solar battery
CN102820383A (en) Spread method of polycrystalline silicon solar cell
CN101237010A (en) Method for improving solar battery diffusion
CN101794845A (en) Method for preparing selective emitter by one-time diffusion
CN102828161A (en) Graphene production method and continuous production device of graphene
CN101866991A (en) Preparation method of amorphous silicon/crystalline silicon heterojunction solar battery
CN101937945A (en) Preparation method of solar cell
JP2001135149A (en) Zinc oxide-based transparent electrode
Cousins et al. Minimizing lifetime degradation associated with thermal oxidation of upright randomly textured silicon surfaces
KR20080100057A (en) Manufacturing method of crystalline silicon solar cell and manufacturing apparatus and system for the same
CN101783374A (en) Method for manufacturing silicon solar cell
JP2001189114A (en) Manufacturing method of transparent electrode
JP2000138384A (en) Amorphous semiconductor device and its manufacture
CN102437238A (en) Method for boron doping of crystalline silicon solar battery
US20100075485A1 (en) Integrated emitter formation and passivation
JP2005167264A (en) Deposition film forming method, manufacturing method of semiconductor device, and manufacturing method of photoelectric conversion device
Karunagaran et al. Effect of rapid thermal annealing on the properties of PECVD SiNx thin films
CN103413840A (en) Crystalline silicon solar cell resisting to PID effect and manufacturing method thereof
CN102115915A (en) Single crystal silicon texture-making additive and single crystal silicon texture-making technology
Rau et al. Development of a rapid thermal annealing process for polycrystalline silicon thin-film solar cells on glass
CN102867879A (en) Method for optimizing crystalline silicon solar cell diffusion square resistance uniformity
CN102130211A (en) Method for improving surface diffusion of solar cell
CN102185006A (en) Method for preparing antireflective film of polycrystalline silicon solar cell as well as polycrystalline silicon solar cell
CN101626048A (en) Low-temperature growth method of silicon quantum dots for solar battery

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
TA01
GR01