CN104141127B - 高熵合金粉末及熔覆层制备方法和应用 - Google Patents

高熵合金粉末及熔覆层制备方法和应用 Download PDF

Info

Publication number
CN104141127B
CN104141127B CN201310471107.XA CN201310471107A CN104141127B CN 104141127 B CN104141127 B CN 104141127B CN 201310471107 A CN201310471107 A CN 201310471107A CN 104141127 B CN104141127 B CN 104141127B
Authority
CN
China
Prior art keywords
alloy powder
entropy alloy
cladding layer
prepare
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310471107.XA
Other languages
English (en)
Other versions
CN104141127A (zh
Inventor
罗震
颜福裕
谈辉
段瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201310471107.XA priority Critical patent/CN104141127B/zh
Publication of CN104141127A publication Critical patent/CN104141127A/zh
Application granted granted Critical
Publication of CN104141127B publication Critical patent/CN104141127B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only

Abstract

本发明公开了高熵合金粉末及熔覆层制备方法和应用,所述高熵合金粉末由Fe、Ni、Cr、Al、Cu和Mn元素粉末组成,组成表示为FeNiCrAlCuMnx,x为Mn的摩尔比且其取值范围为0~1。按照各自元素的摩尔比进行配比计算,准确称量各个组分的质量后将其进行充分混合以均匀即可,将高熵合金粉末和乙醇混合后,均匀涂覆在基体材料表面,干燥后通过激光熔覆即可获得熔覆层。本发明提供了一种完全由金属元素组成的高熵合金粉末,进行材料表面改性,通过激光熔覆获得了成形良好的熔覆层提高材料硬度和耐磨性。

Description

高熵合金粉末及熔覆层制备方法和应用
技术领域
[0001 ]本发明属于涂层技术领域,更加具体地说,涉及一种高熵合金粉末材料及熔覆层 制备方法和应用。
背景技术
[0002] 高熵合金是上世纪九十年代中期由我国台湾学者叶均蔚教授首先提出的一种新 型合金,基于等摩尔比、高混合熵的理念设计的高熵合金具有显微结构简单化、纳米析出 物、非晶结构、纳米晶粒等组织特征。多主元高熵合金,突破传统的单元素为主,多主元高熵 合金凝固后不仅不会形成数目众多的金属化合物,反而形成简单的体心立方或面心立方相 甚至非晶质,所得相数远远低于平衡相率所预测的相数。因此,通过适当的合金配方设计, 可获得高硬度、高加工硬化、耐高温软化、耐高温氧化、耐腐蚀、高电阻率等特性组合,因此 具有很大的应用潜力。
[0003] 迄今为止,高熵合金主要采用真空电弧炉熔炼和熔铸等方法制备,也有采用电化 学沉积和磁控溅射制备高熵合金薄膜的方法,但这些方法所制备的薄膜厚度仅能达到微米 尺度,难以发挥高熵合金力学性能方面的优势,且对基底材料有一定要求。激光熔覆由于具 有高的加热和冷却速率,涂层与基体为冶金结合,结合强度高,涂层厚度最高可达几毫米。 此外,激光熔覆的快速凝固特点能够使合金组织细化,从而获得较高的硬度和耐磨性能。因 此,通过适当的合金配方设计,采用激光熔覆获得高熵合金涂层,在成本低廉的钢基体上制 备高熵合金涂层,对于拓展高熵合金的实际应用具有很大的意义。
发明内容
[0004] 本发明的目的在于克服现有技术的不足,提供了一种完全由金属元素组成的激光 熔覆用高熵合金粉末及熔覆层制备方法,进行材料表面改性,提高材料硬度和耐磨性。
[0005] 本发明的技术目的通过下述技术方案予以实现:
[0006] 高熵合金粉末,由Fe、Ni、Cr、Al、Cu和Μη元素粉末组成,即合金粉末组成表示为 FeNiCrAlCuMnx,x为Μη的摩尔比且其取值范围为0~1,具体来说,所述Fe、Ni、0、41、〇11之间 为等摩尔比,调整金属Μη的用量,以使其使用摩尔量与Si(或者其余四种元素)的摩尔比为0 ~1,优选0.3-1,更加优选0.5-0.7。
[0007] 在进行制备时,首先按照各自元素的摩尔比进行配比计算,准确称量各个组分的 质量后将其进行充分混合以均匀即可,例如采用电子称称取各种元素的粉末,在研钵中研 磨半小时使其混合均匀。其中选用各个组分均为纯度大于等于99%的粉末,粒径为100- 500目,优选200-300目。
[0008] 利用本发明的合金粉末应用到激光熔覆焊接中,将高熵合金粉末和乙醇混合后, 均匀涂覆在基体材料表面,干燥后通过激光熔覆即可获得熔覆层。其中所述乙醇选用分析 纯的无水乙醇,在高熵合金粉末和乙醇混合物中,按照质量百分数由92~95%的合金粉末与 5~8%的乙醇组成。在混合后,形成糊状或膏状,以便于在基体材料表面继续涂覆,经涂覆后 在基体材料表面形成预制层,所述预制层厚度为1 一 2mm。
[0009] 在进行激光熔覆时,选用基体材料为42CrM〇钢,工艺参数为:激光功率为1550~ 1650KW,光斑直径为0.8~1.0mm,扫描速度为150~200mm/min,离焦量为0mm,保护气体采用 氩气或氦气,气体流量为20~25L/min;优选激光功率为1580~1620KW,光斑直径为0.8~ 1. 〇mm,扫描速度为180~200mm/min,离焦量为0mm,保护气体采用氩气,气体流量为22~ 25L/min〇
[0010] 与现有技术相比,本发明具有如下优点:
[0011] (1)本发明合金粉末中,除去基本元素铁之外充分发挥各个元素的最大性能,Ni主 要用于提高材料润湿性并改善熔覆层性能,Cr主要通过固溶强化提高熔覆层硬度以及用于 提高熔覆层耐蚀性,A1主要提高熔覆层的抗高温氧化性能,并通过固溶强化作用和增大晶 界滑移阻力来提高熔覆层硬度。此外,由于铝表面极易氧化形成致密的氧化膜,在合金中添 加 A1还可以提高熔覆层的耐蚀性,Cu主要用于提高熔覆层耐磨性,Μη主要用于脱氧。
[0012] (2)本发明提供了一种完全由金属元素组成的高熵合金粉末,并通过激光熔覆获 得了成形良好的熔覆层。
[0013] (3)本发明提出的激光熔覆用高熵合金粉末可根据材料使用性能要求,在较大范 围内进行主元合金的配制,从而改变恪覆层性能。
附图说明
[0014] 图1为FeNiCrAlCu熔覆层宏观形貌。
[0015] 图2为FeNiCrAlCuMn熔覆层宏观形貌。
[0016] 图3为FeNiCrAlCu熔覆层全貌。
[0017] 图4为FeNiCrAlCuMn熔覆层全貌。
[0018] 图5为FeNiCrAlCu熔覆层金相组织。
[0019] 图6为FeNiCrAlCuMn熔覆层金相组织。
具体实施方式
[0020] 下面结合具体实施例进一步说明本发明的技术方案。各个金属元素来源如下表所 示:
Figure CN104141127BD00041
[0022]基体材料选用42CrMo钢,采用机械打磨去除氧化物,采用丙酮去除油污,其化学成 分如下表(质量分数%)所示
Figure CN104141127BD00051
[0024]按照下述方法进行实施:
[0025] 1.按照摩尔比进行FeNiCrAlCuMnx(其中X为摩尔比,且其取值范围为0~1)高熵合 金粉末配比计算,采用电子称称取各种元素的粉末,在研钵中研磨半小时使其混合均匀。 [0026] 2.将92~95%的激光熔覆粉末与5~8%的乙醇混合成糊状或膏状后,涂覆在基体材 料表面,预制层厚度为1 一 2_,风干后通过激光熔覆即可获得熔覆层。
[0027] 3.选择激光器采用JK2003SM型Nd: YAG进行激光熔覆。
[0028] 4.金相组织观察设备采用OLYMPUS-GX51金相显微镜,生产商:日本OLYMPUS(奥林 巴斯)公司。
[0029] 实施案例1
[0030] 1 ·按照摩尔比进行FeNiCrAlCuMnx(取x=0)高熵合金粉末配比计算:Fe为20mol%, Ni为20mol%,Cr为20mol%,Al为20mol%,Cu为20mol%,采用电子称称取各种元素的粉末。
[0031 ] 2.倒入研钵,在研钵中研磨半小时使其混合均匀。
[0032] 3.将配制好的激光熔覆粉末,92%与8%乙醇混合成糊状或膏状后,涂覆在42CrMo钢 表面,预置层厚度为1mm,风干后进行激光熔覆。
[0033] 4.激光器采用JK2003SM型Nd: YAG,激光熔覆工艺参数为:激光功率为1550KW,光斑 直径为0.8mm,扫描速度为180mm/min,离焦量为0mm,保护气体采用氩气,气体流量为25L/ min〇
[0034] 5.激光熔覆后采用王水进行腐蚀,获得了熔覆层的金相照片。
[0035]采用自动转塔数显硬度计测量了熔覆层的显微硬度,实验结果下表所示,激光熔 覆后硬度达到了490.8HV,比母材显著提高。
Figure CN104141127BD00052
[0037] 采用MM-200型磨损试验机测定了其耐磨性,试样尺寸为7 X 7 X 25mm,摩擦工况为 干磨滑动摩擦,加载为5kg,转速为200r/min,实验时间为lh;用电子称测量前后质量(测量 前用超声波清洗仪清洗),实验结果如下表所示。可以看出,母材的失重是熔覆层的2.0倍, 与母材相比,熔覆层的耐磨性显著提高。
[0038]
Figure CN104141127BD00061
[0039] 实施案例2
[0040] 1 .按照摩尔比进行FeNiCrAlCuMnx(取x = l )高熵合金粉末配比计算:Fe为 16.67mol%,Ni*16.67mol%,Cr*16.67mol%,Al*16.67mol%,Cu*16.66mol%,Mn* 16.66mo 1%,总摩尔比为100%,并采用电子称称取各种元素的粉末。
[0041 ] 2.倒入研钵,在研钵中研磨半小时使其混合均匀。
[0042] 3.将配制好的激光熔覆粉末,95%与5%乙醇混合成糊状或膏状后,涂覆在42CrMo钢 表面,预置层厚度为1mm,风干后进行激光熔覆。
[0043] 4.激光器采用JK2003SM型Nd: YAG,激光熔覆工艺参数为:激光功率为1550KW,光斑 直径为0.8mm,扫描速度为180mm/min,离焦量为0mm,保护气体采用氩气,气体流量为25L/ min〇
[0044] 5.激光熔覆后采用王水进行腐蚀,获得了熔覆层的金相照片。
[0045] 采用自动转塔数显硬度计测量了熔覆层的显微硬度,实验结果如下表所示,激光 熔覆后平均硬度达到了437.5HV,比母材显著提高。
[0046]
Figure CN104141127BD00062
[0047] 采用MM-200型磨损试验机测定了其耐磨性,试样尺寸为7 X 7 X 25mm,摩擦工况为 干磨滑动摩擦,加载为5kg,转速为200r/min,实验时间为lh;用电子称测量前后质量(测量 前用超声波清洗仪清洗),实验结果如下表所示。可以看出,母材的失重是熔覆层的2.4倍, 与母材相比,熔覆层的耐磨性显著提高。
[0048]
Figure CN104141127BD00063
[0049] 实施案例3
[0050] 1.按照摩尔比进行FeNiCrAlCuMnx(取x=0.3)高熵合金粉末配比各个金属元素: Fe,Ni,Cr,A1和Cu为等摩尔,Μη为Cu摩尔数的0.3,进行混合均匀和使用,参考上述实施案例 [0051 ] 2.激光熔覆工艺:激光功率为1650KW,光斑直径为1.0mm,扫描速度为200mm/min, 离焦量为〇mm,保护气体采用氦气,气体流量为20L/min
[0052] 3.采用相同进行性能测试,结果如下表所示:
[0053] 硬度
Figure CN104141127BD00071
[0055] 耐磨性
Figure CN104141127BD00072
[0057] 实施案例4
[0058] 1.按照摩尔比进行FeNiCrAlCuMnx(取x=0.5)高熵合金粉末配比各个金属元素: Fe,Ni,Cr,A1和Cu为等摩尔,Μη为Cu摩尔数的0.5,进行混合均匀和使用,参考上述实施案例 [0059] 2.激光熔覆工艺:激光功率为1620KW,光斑直径为0.9mm,扫描速度为180mm/min, 离焦量为〇mm,保护气体采用氦气,气体流量为22L/min
[0060] 3.采用相同进行性能测试,结果如下表所示:
Figure CN104141127BD00073
[0065] 实施案例5
[0066] 1.按照摩尔比进行FeNiCrAlCuMnx(取x=0.7)高熵合金粉末配比各个金属元素: Fe,Ni,Cr,A1和Cu为等摩尔,Μη为Cu摩尔数的0.7,进行混合均匀和使用,参考上述实施案例 [0067] 2.激光熔覆工艺:激光功率为1580KW,光斑直径为0.8111111,扫描速度为15〇111111/1^11, 离焦量为〇mm,保护气体采用氦气,气体流量为20L/min
[0068] 3.采用相同进行性能测试,结果如下表所示:
Figure CN104141127BD00081
[0074]以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况 下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均 落入本发明的保护范围。

Claims (6)

1. 一种利用高熵合金粉末制备熔覆层的方法,其特征在于,将高熵合金粉末和乙醇混 合后,均匀涂覆在基体材料表面,干燥后通过激光熔覆即可获得熔覆层,在高熵合金粉末和 乙醇混合物中,按照质量百分数由92~95%的合金粉末与5~8%的乙醇组成,在进行激光 熔覆时,选用基体材料为42CrMo钢,工艺参数为:激光功率为1550~1650KW,光斑直径为0.8 ~1.0mm,扫描速度为150~200mm/min,离焦量为0mm,保护气体采用氩气或氦气,气体流量 为20~25L/min;所述高熵合金粉末,由Fe、Ni、Cr、A1、Cu和Μη元素粉末组成,即合金粉末组 成表示为FeNiCrAlCuMnx,X为Μη的摩尔比且其取值范围为0.5-0.7,所述Fe、Ni、Cr、A1、Cu 之间为等摩尔比。
2. 根据权利要求1所述的一种利用高熵合金粉末制备熔覆层的方法,其特征在于,选用 各个组分均为纯度大于等于99%的粉末,粒径为100-500目。
3. 根据权利要求1所述的一种利用高熵合金粉末制备熔覆层的方法,其特征在于,选用 各个组分均为纯度大于等于99 %的粉末,粒径为200-300目。
4. 根据权利要求1所述的一种利用高熵合金粉末制备熔覆层的方法,其特征在于,所述 乙醇选用分析纯的无水乙醇。
5. 根据权利要求1所述的一种利用高熵合金粉末制备熔覆层的方法,其特征在于,在高 熵合金粉末和乙醇混合后,形成糊状或膏状,以便于在基体材料表面继续涂覆,经涂覆后在 基体材料表面形成预制层,所述预制层厚度为1 一 2mm。
6. 根据权利要求1所述的一种利用高熵合金粉末制备熔覆层的方法,其特征在于,在进 行激光熔覆时,激光功率为1580~1620KW,光斑直径为0.8~1.0mm,扫描速度为180~ 200mm/min,离焦量为0mm,保护气体采用氩气,气体流量为22~25L/min。
CN201310471107.XA 2013-10-10 2013-10-10 高熵合金粉末及熔覆层制备方法和应用 Active CN104141127B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310471107.XA CN104141127B (zh) 2013-10-10 2013-10-10 高熵合金粉末及熔覆层制备方法和应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511016637.0A CN105401042B (zh) 2013-10-10 2013-10-10 高熵合金粉末在激光熔覆中的应用
CN201310471107.XA CN104141127B (zh) 2013-10-10 2013-10-10 高熵合金粉末及熔覆层制备方法和应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201511016637.0A Division CN105401042B (zh) 2013-10-10 2013-10-10 高熵合金粉末在激光熔覆中的应用

Publications (2)

Publication Number Publication Date
CN104141127A CN104141127A (zh) 2014-11-12
CN104141127B true CN104141127B (zh) 2017-02-08

Family

ID=51850456

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201310471107.XA Active CN104141127B (zh) 2013-10-10 2013-10-10 高熵合金粉末及熔覆层制备方法和应用
CN201511016637.0A Active CN105401042B (zh) 2013-10-10 2013-10-10 高熵合金粉末在激光熔覆中的应用

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201511016637.0A Active CN105401042B (zh) 2013-10-10 2013-10-10 高熵合金粉末在激光熔覆中的应用

Country Status (1)

Country Link
CN (2) CN104141127B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105568335B (zh) * 2015-09-24 2019-06-28 江门职业技术学院 一种钢基材表面制备FeNiCoCuCr高熵合金涂层的工艺
CN105463443B (zh) * 2015-12-04 2018-06-12 山东开泰抛丸机械股份有限公司 一种海洋钻井平台耐腐涂层制备方法
CN105525232B (zh) * 2016-02-17 2017-08-08 西南交通大学 一种用于3d打印的高熵合金非晶粉末及其制备方法
CN105862035A (zh) * 2016-06-25 2016-08-17 芜湖三刀材料科技有限公司 一种高熵合金涂层及制备方法
CN105950946B (zh) * 2016-07-01 2017-11-21 广西大学 一种基于组元间偏聚情况进行高熵合金成分设计的方法
CN107299342A (zh) * 2017-07-05 2017-10-27 暨南大学 一种高熵合金涂层及其制备方法和用途
CN107699770B (zh) * 2017-08-21 2019-05-14 昆明理工大学 一种高熵合金材料及其制备方法
CN109797390A (zh) * 2017-11-17 2019-05-24 天津大学 一种风电轴承用铁基高熵合金粉末及其熔覆层制备方法
CN108130502B (zh) * 2017-12-26 2020-08-25 湖南大学 一种含高熵合金涂层的复合材料的制备方法及装置
CN108359977B (zh) * 2018-04-11 2020-07-14 昆明理工大学 一种激光熔覆用FeCoVWNbSc高熵合金粉末及使用方法
CN110306099A (zh) * 2019-08-06 2019-10-08 鞍钢股份有限公司 一种低成本高熵合金及其制备方法
CN111318805A (zh) * 2020-02-14 2020-06-23 江苏大学 一种预置粉末高熵合金激光焊接的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103290404A (zh) * 2013-05-06 2013-09-11 浙江工业大学 激光熔覆用高熵合金粉末和高熵合金涂层的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000153392A (ja) * 1998-11-18 2000-06-06 Daido Steel Co Ltd 肉盛用焼結体材料およびその製造方法
CN100491570C (zh) * 2006-08-21 2009-05-27 清华大学 低钴镍含量的高温合金
CN101386928B (zh) * 2008-10-24 2011-04-06 昆明理工大学 一种含难混溶元素的高熵合金制备方法
CN102796933A (zh) * 2012-09-04 2012-11-28 四川大学 一种基于高熵合金粘结相的含氮硬质合金及其制备方法
CN103060725A (zh) * 2013-01-22 2013-04-24 上海交通大学 一种镍基非晶合金粉末和镍基非晶复合涂层及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103290404A (zh) * 2013-05-06 2013-09-11 浙江工业大学 激光熔覆用高熵合金粉末和高熵合金涂层的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AlCuCrFeNiMn高熵合金组织及硬度的研究;皮锦红;《热加工工艺》;20100225;第39卷(第4期);第1部分实验材料与方法 *

Also Published As

Publication number Publication date
CN105401042A (zh) 2016-03-16
CN105401042B (zh) 2017-09-29
CN104141127A (zh) 2014-11-12

Similar Documents

Publication Publication Date Title
CN104141127B (zh) 高熵合金粉末及熔覆层制备方法和应用
CN104141085B (zh) 六元高熵合金粉末及激光熔覆层制备方法和应用
CN104141084B (zh) 激光熔覆用高熵合金粉末及熔覆层制备方法和用途
CN107299342A (zh) 一种高熵合金涂层及其制备方法和用途
CN104131281A (zh) 简易铁基激光熔覆粉末及熔覆层制备方法
CN103540790B (zh) 一种耐蚀的CuAlCr激光熔覆层材料的制备方法
CN102899664A (zh) 激光熔覆合金粉末及其制备方法
CN106191856A (zh) 一种高耐蚀、高矫顽力烧结钕铁硼磁体及制备方法
CN102912189A (zh) 激光熔覆钴基合金粉末及其制备方法
CN102230116A (zh) 高硬度铸造镁合金
CN108531773A (zh) 一种Ti3Al金属间化合物高温结构材料
CN111004956A (zh) 一种TiB2-Fe-Co-Ni-Cr耐铝液腐蚀材料的制备方法
JP5882351B2 (ja) Ni基耐食耐摩耗合金の製造方法
CN105834353A (zh) 一种高耐磨水泥砂浆球阀阀体的铸造方法
CN105861923A (zh) 一种耐海水腐蚀复合球阀阀体的铸造方法
EP3524703A1 (en) Iron-copper alloy having high thermal conductivity and method for manufacturing same
CN103290260A (zh) 一种含钽的钛铝基合金铸锭及其制备方法
CN105483543B (zh) 一种Fe‑B‑W耐锌液腐蚀的整体材料及其制备方法
CN110804711A (zh) 一种高熵合金粉末及激光熔覆层制备方法和应用
CN110777289B (zh) 一种耐熔融铝腐蚀的金属陶瓷复合材料的制备方法
Wang et al. INFLUENCE OF MgO+ CeO2 ON THE MICROSTRUCTURE AND HARDNESS OF WC–Ni-BASED ALLOY COATING BY VACUUM MELTING
CN110846549B (zh) 一种耐熔融铝腐蚀的金属陶瓷复合材料
CN105088102A (zh) 一种微合金钢铸钢车轮轴承箱体及其制造方法
CN106947905B (zh) 一种电机风扇修复用激光熔覆材料及其制备方法
Xiao et al. In situ synthesis of WC ceramic particle reinforced composite coating by GTAW

Legal Events

Date Code Title Description
PB01 Publication
C06 Publication
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
GR01 Patent grant
C14 Grant of patent or utility model