CN104132880B - 三轴条件下水力压裂前后储层岩心渗透率测试实验方法 - Google Patents

三轴条件下水力压裂前后储层岩心渗透率测试实验方法 Download PDF

Info

Publication number
CN104132880B
CN104132880B CN201410355691.7A CN201410355691A CN104132880B CN 104132880 B CN104132880 B CN 104132880B CN 201410355691 A CN201410355691 A CN 201410355691A CN 104132880 B CN104132880 B CN 104132880B
Authority
CN
China
Prior art keywords
test specimen
fracturing
pressure
head
permeability
Prior art date
Application number
CN201410355691.7A
Other languages
English (en)
Other versions
CN104132880A (zh
Inventor
李铭辉
尹光志
李文璞
王维忠
许江
邓博知
李星
蒋长宝
彭守建
韩佩博
宋真龙
康向涛
Original Assignee
重庆大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆大学 filed Critical 重庆大学
Priority to CN201410355691.7A priority Critical patent/CN104132880B/zh
Publication of CN104132880A publication Critical patent/CN104132880A/zh
Application granted granted Critical
Publication of CN104132880B publication Critical patent/CN104132880B/zh

Links

Abstract

本发明公开了三轴条件下水力压裂前后储层岩心渗透率测试实验方法,依次包括以下步骤:(1)试件制备;(2)试件安装;(3)装机;(4)控制温度、抽真空;(5)充气吸附平衡;(6)测定原始渗透率;(7)试件水力压裂;(8)测定压裂后渗透率;(9)根据所制定的实验方案,调整实验条件。能对三轴应力条件下储层渗透介质水力压裂前后的渗透率进行原位精确测定,无需对试件卸压,从而提高实验的准确程度。

Description

三轴条件下水力压裂前后储层岩心渗透率测试实验方法
技术领域
[0001]本发明涉及一种实验系统,特别是涉及一种用于研究非常规气体压裂-抽采联合作用机理的实验系统。
背景技术
[0002]随着经济的快速发展和人类社会的不断进步,目前规模生产并大量利用的常规能源供应日益不能满足市场需求,在这种严峻的能源形势下,非常规天然气表现出了巨大的资源潜力,而且我国非常规天然气资源十分丰富,发展前景广阔,非常规天然气必然会成为未来能源供应的重要来源。非常规天然气储层渗透率是反映储层内流体渗流难易程度的物性参数,其与储层裂隙发育特征、地质构造、地应力状态、流体压力、地温、渗透介质基质的收缩作用、储层埋深、渗透介质结构及地电场等密切相关,而储层渗透率的大小对天然气的储存于排采、流体压力的分布起着重要的作用。因此,对非常规天然气储层及瓦斯储层进行开采条件下力学变形特性和渗流特性的实验研究是非常有必要的。
[0003] —般来说,非常规天然气包括致密砂岩气、煤层气、页岩气和天然气水合物等。我国非常规天然气储量非常丰富,开发潜力巨大,然而地质条件复杂,埋藏深,开采成本高。在开发非常规天然气的过程中,水力压裂是一项提高效率、降低成本的关键技术。目前,国内外学者已经开始对储层的水力压裂破坏机理、裂缝扩展几何形态和裂缝延伸规律进行了一些研究。然而,由于缺乏较为系统的科学研究,相关水力压裂机理匮乏,未能将影响压裂效果的相关主要参数进行量化,所以该项技术在非常规天然气储层增渗领域的应用与发展受到了一定程度的限制。
[0004]现有的实验装置主要存在以下不足:I)所考虑的渗透率影响因素相对比较单一,不能进行考虑应力场、渗流场、温度场等的多物理场耦合实验;2)如需测定渗透率,需取出岩心在另外的实验设备上进行,而此时岩心因压裂而产生的裂隙会重新闭合,不能定量精确测得原位岩心压裂前后渗透率的变化;3)所进行的渗流实验大多为单一的水相或气相渗流实验,不能精确测量水气各自流量;4)不能测得试件内部的真空度,对于存在气体吸附的实验来说不够精确;5)安装过程基本上靠手工搬运,不方便且过程不够稳定,对试件有一定的影响。
[0005]因此,建立一种科学的非常规气体压裂-渗流实验测试方法,探索水力压裂作用下储层渗透介质的断裂损伤及增渗机理,对水力压裂的应用与推广有重要意义。
发明内容
[0006]有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是提供一种能精确测量试件在多场耦合条件下压裂前后渗透率变化的压裂-渗流实验方法。
[0007]为实现上述目的,本发明提供了三轴条件下水力压裂前后储层岩心渗透率测试实验方法,依次包括以下步骤:
[0008] (I)试件制备:将从现场取得的致密砂岩、页岩、原煤或其他储层渗透介质的岩块或煤块用塑料薄膜密封好置于大小适当的木箱内,然后用取芯机进行钻取煤芯,最后利用磨床将取出的煤芯打磨成Φ 50 X 10mm或Φ 100 X 200mm的原岩样或原煤样,并将之置于烘箱内烘干;利用台钻在烘干后的试件端面进行钻孔,孔径为Φ 10mm,孔深不小于30mm;在水力压裂专用喷嘴中上段涂抹高强度黏结剂后将其放入试件孔中并适当压挤使其接触面平整,然后放置待干。
[0009] (2)试件安装:先用704硅橡胶将试件侧面抹一层Imm的胶层,待抹上的胶层完全干透后,将试件置于压力室的上压头和下压头之间;使试件各面与压头各面对齐,将试件的外密封件先套在试件中部,用电吹风将热缩管均匀吹紧使其与试件密实接触;用两个金属箍分别紧紧箍住热缩管与上压头和压杆、下压头的重合部分;最后将链式径向位移传感器安装于试件的中部位置,连接好数据传输接线,试件安装完成后将移动小车归位;
[0010] (3)装机:将压力室安装于实验系统中;连接压力室的气、水相应进、出口接头;
[0011] (4)控制温度、抽真空:将压力室落入加热油箱中,设定实验所需温度;压力室定位后设定实验所需真空度;
[0012] (5)充气吸附平衡:根据原岩应力情况,通过计算机控制高精度伺服液压栗站,对试件施加轴压和围压;向试件内充气,充气时间为24h;
[0013] (6)测定原始渗透率:按照制定的实验方案测定试件原始渗透率;
[0014] (7)试件水力压裂:通过伺服增压器施加相应的水压或流量,对试件进行压裂处理;
[0015] (8)测定压裂后渗透率:关闭进水,向试件通入相应压力的气体,读取气体流量和液体流量;
[0016] (9)根据所制定的实验方案,调整实验条件:根据实验方案重复(6) — (8)步骤。
[0017]本发明的有益效果是:能对三轴应力条件下储层渗透介质水力压裂前后的渗透率进行原位精确测定,无需对试件卸压,从而提高实验精度的准确程度。
附图说明
[0018]图1是完成本发明的实验系统的结构示意图。
[0019]图2是图1中压力室的结构示意图。
[0020]图3是图2中I处的局部放大结构示意图。
[0021]图4是图2中II处的局部放大结构示意图。
[0022]图5是完成本发明的实验系统的出口管路结构示意图。
具体实施方式
[0023]下面结合附图和实施例对本发明作进一步说明:
[0024]如图1至图5所示,完成本发明的方法必须依赖一种储层渗透介质热流固耦合多相流体压裂-渗流实验系统,该系统包括机架I,机架I的下部设置有平行导轨2,平行导轨2上设置有移动小车3。
[0025]机架I的中部固定有油缸6,油缸6的活塞6a上固定有位移传感器7,活塞6a的伸出端固定有压力传感器8。
[0026] 机架I的下部设置有压力室100,压力室100包括可置于移动小车3上的底盖10,底盖10上螺栓连接有上座11,上座11的上端固定有导向盖12。底盖10上固定有定位杆13,导向盖12上设置有与定位杆13对应的定位孔12a。
[0027] 导向盖12的中心配合有压杆14,压杆14内沿轴向平行设置有第一水孔14a和第一气孔14b,第一水孔14a位于压杆14的中心。
[0028] 第一水孔14a的下端螺纹配合有上压头15,上压头15的中心设置有与第一水孔14a连通的第二水孔15a,上压头15上设置有若干个与第一气孔14b连通的第二气孔15b。
[0029]第二水孔15a的下端螺纹配合有压裂头16。
[0030] 底盖10的中心固定有压座17,压座17上固定有立柱18,立柱18的上端固定有下压头19,下压头19面向试件一侧设置有若干第三气孔19a。
[0031] 压座17、立柱18和下压头19上设置有贯通的出孔20,第三气孔19与出孔20连通,底盖10上设置有出水孔9。出孔20的末端连接有出气出水接头29。
[0032]机架I固定在加热油箱21上,加热油箱21内设置有油温传感器22、加热管23和循环栗24。
[0033]机架I上设置有提升机构,提升机构包括升降减速电机25,升降减速电机25的动力通过传动带26传递至机架顶部I对称设置的带轮27。带轮27固定于传动丝杆28上,传动丝杆28的向机架I的下方延伸并与上座11的上部固定。可在传动丝杆上设置限位挡块4,以及在丝杆附近设置行程开关5,以便于自动控制。
[0034]出孔20与水气分离测量系统连接。水气分离测量系统包括与出气出水接头29连接的三通阀30,三通阀30同时连接有第一截止阀31和第二截止阀32。
[0035]出气出水接头29与三通阀30的连接管路上连接有压力传感器42,压力传感器42与数据采集仪37连接。
[0036] 第二截止阀32与气液分离器33连接,气液分离器33同时与四通阀34连接。
[0037] 四通阀34同时连接有第三截止阀35、第四截止阀38和第五截止阀39,第三截止阀35与流量计36连接,流量计36同时与数据采集仪37连接。第四截止阀38与真空栗40连接,第五截止阀39与真空计41连接,真空计41与数据采集仪37连接。
[0038]为保证试验精度,需在系统各处可能出现气体液体渗漏处采用密封技术。
[0039]将上述实验系统与高压气瓶、栗压伺服增压器及控制柜连接,即可进行三轴条件下水力压裂前后储层岩心渗透率测试实验,具体步骤如下:
[0040] (I)试件制备。将从现场取得的致密砂岩、页岩、原煤或其他储层渗透介质的岩块或煤块用塑料薄膜密封好置于大小适当的木箱内,然后用取芯机进行钻取煤芯,最后利用磨床将取出的煤芯打磨成Φ50Χ 10mm的原岩样或原煤样,并将之置于烘箱内烘干。利用台钻在烘干后的试件端面进行钻孔,孔径为Φ 10mm,孔深不小于30mm。在水力压裂专用喷嘴中上段涂抹高强度黏结剂(如AB胶)后将其放入试件孔中并适当压挤使其接触面平整,然后放置待干。
[0041] (2)试件安装。先用704硅橡胶将试件侧面抹一层Imm的胶层,待抹上的胶层完全干透后,将水力压裂专用喷嘴旋进压裂头16中,并将试件置于上压头15和下压头19之间;使试件各面与压头各面对齐,将试件的外密封件先套在试件中部,用电吹风将热缩管均匀吹紧使其与试件密实接触;用两个金属箍分别紧紧箍住热缩管与上压头和压杆、下压头的重合部分。最后将链式径向位移传感器安装于试件的中部位置,连接好数据传输接线,试件安装完成后将移动小车归位。
[0042] (3)装机。将三轴压力室的上座11与底盖10对位好,使用操作柜上的下降开关启动电机25,将压力室上座11落下,安装固定压力室上沉孔中的8个MlO螺钉,再固定拧紧下端部20个M30螺钉,应先拧紧对称位置上的两个螺钉,使下盖平稳接触压力室,再拧紧其它螺钉;连接气、水相应进、出口接头。
[0043] (4)控制温度、抽真空。使用操作柜上的上升开关将压力室100提起,移出移动小车,使用操作柜上的下降开关将压力室落入加热油箱21中,设定实验所需温度。压力室定位后在真空度计41表上设定实验所需真空度(如300Pa),打开压力室上端的进气阀43和进水阀44,启动控制柜的真空转换开关开始启动真空栗40,打开第四截止阀38和第五截止阀39进行抽真空,当实验系统抽到目标值后关闭打开第四截止阀38、第五截止阀39、进气阀43和进水阀44,然后停止真空栗。
[0044] (5)充气吸附平衡。根据原岩应力情况,通过计算机控制高精度伺服液压栗站,操作油缸6动作向试件施加轴压,同时向压力室内通入压力油向试件施加围压,关闭出第一截止阀31和第二截止阀32,打开进气阀44,调节高压甲烷钢瓶出气阀门,保持瓦斯压力一定,向试件内充气,充气时间一般为24h。
[0045] (6)测定原始渗透率。按照制定的实验方案(即根据不同的岩石所处的原始环境设定实验的温度、气体压力、水压或流量、轴压和围压等参数)施加相应的轴压及围压后,打开第二截止阀32、和第三截止阀35,并关闭第一截止阀31,读取流量计36的数据,测定试件原始渗透率。
[0046] (7)试件水力压裂。关闭进气阀44、第一截止阀31和第二截止阀32,打开进水阀43,通过伺服增压器施加相应的水压或流量对试件进行压裂处理。
[0047] (8)测定压裂后渗透率。关闭进水阀43,打开进气阀44通入相应压力的气体,打开第二截止阀32、和第三截止阀35,并关闭第一截止阀31,读取流量计36的数据和气液分离器33所收集的液体流量,从而可精确测定气体流量和液体流量,以便准确测定试件压裂后的渗透率。
[0048] (9)根据所制定的实验方案,调整实验条件。根据实验方案重复(6) — (8)步骤。
[0049] (10)进行下一轮实验。实验做完后,拆卸试件,并重复以上步骤进行下一轮实验。
[0050] 根据试验需要,可将试件制成Φ 100 X 200mm,此时,只需更换相应内径的导向盖12即可。
[0051]上述实验系统的主要技术参数如下:
[0052] 1.最大轴向力:100kN
[0053] 2.测力精度:示值的±1%
[0054] 3.测力分档:自动换档
[0055] 4.力值控制精度:示值的± 0.5 % (稳压精度)
[0056] 5.活塞最大位移:60mm
[0057] 6.轴向位移精度:示值的±1%
[0058] 7.轴向控制方式:力控制、位移
[0059] 8.围压控制范围:O〜60MPa(交流伺服增压缸方式)
[0060] 9.围压控制精度:示值的±1%
[0061] 10.气体流量(出口):0〜5L/min[0062 ] 11.试件温度范围:O〜100 °C,温度波动:± 1°C
[0063] 12.气体压力测量精度:示值的±1% (采用0.1级压力传感器)
[0064] 13.抽真空度:6xlO_2Pa
[0065] 14.气路最大密封压力:20MPa
[0066] 15.轴向力实验控制方式:负荷、位移闭环控制,可进行无冲击转换。
[0067] 16.实验波形:静态,台阶加载,程控加载
[0068] 17.噪声:彡72dB
[0069] 18.总功率:6kW
[0070] 19.主机外形尺寸(长X宽X高):1350x960x2874mm[0071 ] 20.液压站外形尺寸(长X宽X高):650x600x750mm
[0072] 21.设备总重量:1300kg
[0073] 上述实验中,水力压裂和渗透率测试在同一设备上连续完成,因此测试渗透率时,岩心因压裂而产生的裂隙不会重新闭合,且进行渗透率测试时可向第一气孔14b通入气体,从而第二气孔15b向试件“面充气”,从而能定量精确测得原位岩心压裂前后渗透率的变化;并且能够同时精确测量实验中水流量和气流量,从而提高了实验精度。
[0074]另一方面,抽真空系统巧妙的利益了出口管路,因此可更为方便的对试件进行抽真空处理,并且对试件内部的真空度进行了可视化处理,使实验条件更加精确。
[0075]同时,可在甲烷钢瓶出口处设置流通压力监测传感器,与出口管路中的压力传感器42配合使用,可使实验条件更精确。
[0076]以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (1)

1.三轴条件下水力压裂前后储层岩心渗透率测试实验方法,该实验基于储层渗透介质热流固耦合多相流体压裂-渗流实验系统进行,该实验系统设有移动小车和压力室;移动小车设在机架下部设有的平行导轨上;压力室包括可置于移动小车上的底盖,底盖上设置有出水孔,底盖上固定有定位杆和通过螺栓连接有上座,上座的上端固定有导向盖,导向盖上设置有与所述定位杆对应的定位孔,导向盖的中心配合有压杆,压杆内沿轴向平行设置有第一水孔和第一气孔;第一水孔位于所述压杆的中心,第一水孔的下端螺纹配合有上压头,上压头上设置有若干个与所述第一气孔连通的第二气孔;上压头的中心设置有与所述第一水孔连通的第二水孔,第二水孔的下端螺纹配合有压裂头,压裂头凸出所述上压头下端面且长度显著大于截面尺寸,压裂头上形成有与所述第二水孔连通的出水管孔;所述底盖的中心固定有压座,压座上固定有立柱,立柱的上端固定有下压头,下压头面向试件一侧设置有若干第三气孔;所述压座、立柱和下压头上设置有贯通的出孔,出孔与第三气孔连通,且出孔的末端连接有出气出水接头; 该试验包括以下步骤: (1)试件制备:将从现场取得的致密砂岩、页岩、原煤或其他储层渗透介质的岩块或煤块用塑料薄膜密封好置于大小适当的木箱内,然后用取芯机进行钻取煤芯,最后利用磨床将取出的煤芯打磨成Φ 50 X 10mm或Φ 100 X 200mm的原岩样或原煤样,并将之置于烘箱内烘干;利用台钻在烘干后的试件端面进行钻孔,孔径为Φ 10mm,孔深不小于30mm;在水力压裂专用喷嘴中上段涂抹高强度黏结剂后将其放入试件孔中并适当压挤使其接触面平整,然后放置待干; (2)试件安装:先用704硅橡胶将试件侧面抹一层Imm的胶层,待抹上的胶层完全干透后,将试件置于压力室的上压头和下压头之间;使试件各面与压头各面对齐,将试件的外密封件先套在试件中部,用电吹风将热缩管均匀吹紧使其与试件密实接触;用两个金属箍分别紧紧箍住热缩管与上压头和压杆、下压头的重合部分;最后将链式径向位移传感器安装于试件的中部位置,连接好数据传输接线,试件安装完成后将移动小车归位; (3)装机:将压力室安装于实验系统中;连接压力室的气、水相应进、出口接头; (4)控制温度、抽真空:将压力室落入加热油箱中,设定实验所需温度;压力室定位后设定实验所需真空度; (5)充气吸附平衡:根据原岩应力情况,通过计算机控制高精度伺服液压栗站,对试件施加轴压和围压;向试件内充气,充气时间为24h; (6)测定原始渗透率:按照制定的实验方案测定试件原始渗透率; (7 )试件水力压裂:通过伺服增压器施加相应的水压或流量,对试件进行压裂处理; (8)测定压裂后渗透率:关闭进水,向试件通入相应压力的气体,读取气体流量和液体流量; (9)根据所制定的实验方案,调整实验条件:根据实验方案重复(6)—(8)步骤。
CN201410355691.7A 2014-07-24 2014-07-24 三轴条件下水力压裂前后储层岩心渗透率测试实验方法 CN104132880B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410355691.7A CN104132880B (zh) 2014-07-24 2014-07-24 三轴条件下水力压裂前后储层岩心渗透率测试实验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410355691.7A CN104132880B (zh) 2014-07-24 2014-07-24 三轴条件下水力压裂前后储层岩心渗透率测试实验方法

Publications (2)

Publication Number Publication Date
CN104132880A CN104132880A (zh) 2014-11-05
CN104132880B true CN104132880B (zh) 2016-10-26

Family

ID=51805646

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410355691.7A CN104132880B (zh) 2014-07-24 2014-07-24 三轴条件下水力压裂前后储层岩心渗透率测试实验方法

Country Status (1)

Country Link
CN (1) CN104132880B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104596905B (zh) * 2014-12-31 2017-05-24 西南石油大学 一种测定岩石破裂过程中渗透率的装置及其方法
CN105064920B (zh) * 2015-08-05 2017-07-18 河南能源化工集团研究院有限公司 多场耦合低渗松软煤层冲孔卸压抽采模拟试验方法
CN105136646A (zh) * 2015-09-15 2015-12-09 东北大学 一种考虑页岩吸附及压裂过程的渗透演化实验装置及方法
CN105241750B (zh) * 2015-11-24 2018-01-19 四川大学 用于室内三轴水力压裂试验的压头系统
CN106896043B (zh) * 2015-12-21 2019-11-08 中国石油天然气股份有限公司 真三轴应力下模拟起裂及评价裂缝渗流的装置
CN105628506B (zh) * 2015-12-31 2019-03-26 中国科学院武汉岩土力学研究所 岩石压裂模拟试样和制备方法、该模拟试验装置和方法
CN105628507B (zh) * 2016-02-05 2018-07-03 四川大学 在常规岩石力学试验机上实现水力压裂实验的装置及岩石试样与方法
CN105866020A (zh) * 2016-03-17 2016-08-17 南华大学 一种低频机械振动三轴应力页岩解吸吸附测试系统
CN105890998B (zh) * 2016-04-22 2018-08-10 中国科学院武汉岩土力学研究所 具有裂缝的岩石压裂模拟试样和制备方法、该模拟试验装置和方法
CN106018236A (zh) * 2016-05-25 2016-10-12 河海大学 岩石耦合渗透试验中多功能整体压帽式压力室及试验方法
CN110927358B (zh) * 2019-10-28 2021-03-05 中国科学院广州能源研究所 一种天然气水合物矿藏压裂实验装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101634621A (zh) * 2009-08-12 2010-01-27 重庆大学 含瓦斯煤热流固耦合三轴伺服渗流装置
CN201780251U (zh) * 2010-07-26 2011-03-30 长江大学 高温高压煤层岩心动态污染评价实验仪
CN102507414A (zh) * 2011-11-22 2012-06-20 中国石油天然气股份有限公司 地层压力条件下岩心渗透率实验测试方法及其装置
CN102735547A (zh) * 2012-07-05 2012-10-17 重庆大学 真三轴状态下煤岩水压致裂试验方法
CN103234891A (zh) * 2013-04-22 2013-08-07 辽宁工程技术大学 低渗透煤体高压气体循环脉冲致裂增透实验方法
CN203191270U (zh) * 2013-04-25 2013-09-11 重庆地质矿产研究院 一种脉冲水力压裂改造页岩储层的实验装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004012136A (ja) * 2002-06-03 2004-01-15 Yamaguchi Technology Licensing Organization Ltd 岩盤等の浸透率測定方法及び浸透率測定装置
JP4757092B2 (ja) * 2006-05-17 2011-08-24 鹿島建設株式会社 地下水流動評価方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101634621A (zh) * 2009-08-12 2010-01-27 重庆大学 含瓦斯煤热流固耦合三轴伺服渗流装置
CN201780251U (zh) * 2010-07-26 2011-03-30 长江大学 高温高压煤层岩心动态污染评价实验仪
CN102507414A (zh) * 2011-11-22 2012-06-20 中国石油天然气股份有限公司 地层压力条件下岩心渗透率实验测试方法及其装置
CN102735547A (zh) * 2012-07-05 2012-10-17 重庆大学 真三轴状态下煤岩水压致裂试验方法
CN103234891A (zh) * 2013-04-22 2013-08-07 辽宁工程技术大学 低渗透煤体高压气体循环脉冲致裂增透实验方法
CN203191270U (zh) * 2013-04-25 2013-09-11 重庆地质矿产研究院 一种脉冲水力压裂改造页岩储层的实验装置

Also Published As

Publication number Publication date
CN104132880A (zh) 2014-11-05

Similar Documents

Publication Publication Date Title
CN103163057B (zh) 一种致密岩石材料气体渗透率测试装置及测算方法
CN104819926B (zh) 裂隙岩石的多场耦合渗透试验装置及试验方法
CN104655495B (zh) 一种煤岩高温高压真三轴压裂渗流试验装置与试验方法
CN103206210B (zh) 热流体压裂开采天然气水合物藏实验装置
CN102445371B (zh) 水合物沉积物原位生成与分解及其渗透率测量一体化装置
CN102980837B (zh) 高温高压下岩石中烃类扩散系数测定用设备及测定方法
CN107063963B (zh) 一种致密储层微裂缝扩展及渗流特征的测试装置和方法
CN103174412B (zh) 一种煤层气储层分层同采高温高压排采动态评价仪
CN103556993B (zh) 低渗透油田平面五点法井网二氧化碳驱仿真实验模拟方法
CN103940722B (zh) 一种含气页岩孔隙度和吸附参数的测试装置及方法
CN102288529B (zh) 三轴应力条件下气体注入煤岩膨胀及渗透率同时测定装置
CN104200734B (zh) 一种反演煤层底板突水的方法
CN100545417C (zh) 高温高压泥饼界面胶结模拟评价装置
CN103969165B (zh) 瞬态稳态同时测试致密岩石渗透率的装置及方法
CN201780251U (zh) 高温高压煤层岩心动态污染评价实验仪
CN103116014B (zh) 大尺度高压土体冻融过程水-热-力耦合作用试验系统
CN103114827B (zh) 多场耦合煤层气抽采模拟试验方法
CN102645396B (zh) 一种提高煤岩渗透率的试验方法及其装置
CN104453982B (zh) 一种简便式采空区束管取气方法
CN101865810B (zh) 一种测定非饱和土土水保持曲线的试验方法
CN102735547B (zh) 真三轴状态下煤岩水压致裂试验方法
CN100445741C (zh) 智能高温高压动态堵漏评价实验仪
CN101984217B (zh) 一种裂缝性储层损害评价的岩心预处理方法
CN103775070B (zh) 一种全尺寸井壁稳定模拟器
CN103233725B (zh) 高温高压全直径岩心泥浆污染评价的测定装置及方法

Legal Events

Date Code Title Description
PB01 Publication
C06 Publication
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
GR01 Patent grant
C14 Grant of patent or utility model