CN104127193B - 一种抑郁症程度量化的评估系统及其评估方法 - Google Patents

一种抑郁症程度量化的评估系统及其评估方法 Download PDF

Info

Publication number
CN104127193B
CN104127193B CN201410334898.6A CN201410334898A CN104127193B CN 104127193 B CN104127193 B CN 104127193B CN 201410334898 A CN201410334898 A CN 201410334898A CN 104127193 B CN104127193 B CN 104127193B
Authority
CN
China
Prior art keywords
pulse wave
depression
processing module
heart rate
data
Prior art date
Application number
CN201410334898.6A
Other languages
English (en)
Other versions
CN104127193A (zh
Inventor
杨荣骞
吕瑞雪
司璇
陈秀文
关沛峰
Original Assignee
华南理工大学
深圳市是源医学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学, 深圳市是源医学科技有限公司 filed Critical 华南理工大学
Priority to CN201410334898.6A priority Critical patent/CN104127193B/zh
Publication of CN104127193A publication Critical patent/CN104127193A/zh
Application granted granted Critical
Publication of CN104127193B publication Critical patent/CN104127193B/zh

Links

Abstract

本发明公开了一种抑郁程度量化评估系统,包括:心电脉搏波一体化检测装置、数据传输装置、数据处理平台。本发明还公开了一种抑郁程度量化评估诊断方法,包括以下步骤:步骤1、通过多状态综合测试平台获取不同状态下的人体生理信息;步骤2、依据心率变异性分析原理得到不同状态下的HRV特征参数;步骤3、评估自主神经系统中的交感神经、迷走神经功能的平衡状态;步骤4、建立抑郁程度量化评估模型,实现快速、客观评估受测者的抑郁程度等级。本发明属于计算机辅助诊断技术领域,实现了抑郁程度量化评估,填补了抑郁症检查技术领域的空白,简便易行,节省医疗资源,能有较好的临床实用性。

Description

一种抑郁症程度量化的评估系统及其评估方法

技术领域

[0001] 本发明涉及一种计算机辅助诊断技术,特别涉及一种抑郁症程度量化的评估系统 及其评估方法。

背景技术

[0002] 抑郁症(抑郁性障碍)是由各种原因引起的以抑郁为主要症状的一组心境障碍或 情感性障碍,以情感低落、思维迟缓、以及言语动作减少,迟缓为典型症状。抑郁症患者中有 10-15%面临自杀的危险,给家庭和社会造成沉重复旦。世界卫生组织、世界银行和哈佛大 学的一项联合研究表明,抑郁症已经成为中国疾病负担的第二大病病。我国抑郁症是一个 值得十分重视的问题。抑郁症的诊断确定主要依据病史、精神症状检查,及结合病程进展的 规律综合考虑。临床评估需要记录病人的当前状况、病史和症状,还要记录家庭病史以了解 病人家庭成员是否有过心境障碍,并且讨论病人是否有酒精或药物滥用。临床评估也包括 了精神状态评估。在开始诊断重性抑郁障碍之前,医生通常会对患者进行一次体检和一些 特定的检查来排除其他造成相似症状的疾病。对重性抑郁障碍最广泛使用的诊断标准是美 国的精神疾病诊断与统计手册第四版修订版(DSM-IV-TR)和世界卫生组织的国际疾病与相 关健康问题统计分类。重性抑郁障碍在DSM-IV-TR中被归为心境障碍类。对重性抑郁障碍的 诊断依赖于单次或复发的重性抑郁发作。其他诊断指标则用来定性发作本身和病程。现有 的抑郁症诊断是根据抑郁症自评量表和心理医生的经验来诊断的,现有技术存在以下缺点 与不足:

[0003] 1、量表评分结果不能准确反映测试者的心理状况,可能存在主观隐瞒病情的情 况;

[0004] 2、单一评定量表的评分不能用来确诊抑郁症;

[0005] 3、心理医生的诊断结果会受到自身主观因素和实际临床经验的影响;

[0006] 4、量表测试与心理问诊效率低,资源耗费量大。

发明内容

[0007] 本发明的首要目的在于克服现有技术的缺点与不足,提供一种抑郁症程度量化的 评估系统,该评估系统通过测试、记录、分析受测者在多状态综合测试过程中的心电、脉搏 波数据,获取能够反应受测者在不同状态下交感神经系统与迷走神经系统功能状态的特征 参数,对受测者的自主神经系统的平衡状态进行评估,进而评估受测者的精神状态和抑郁 程度。。

[0008] 本发明的另一目的在于克服现有技术的缺点与不足,提供一种所述抑郁症程度量 化的评估系统的评估方法,该评估方法能实现快速、客观评估受测者的精神状态和抑郁程 度等级。

[0009] 本发明的首要目的通过下述技术方案实现:一种抑郁症程度量化的评估系统,包 括:心电脉搏波一体化检测装置、数据传输装置、数据处理平台;所述心电脉搏波一体化检 测装置通过桥接器与数据传输装置相连,数据传输装置经串口与上位机相连接;通过心电 脉搏波一体化检测装置,获取人体生理信号,经过USB接口传输到上位机数据分析平台,数 据分析平台依据心率变异性原理分析自主神经系统中交感神经、副交感神经的平衡状态, 量化评估抑郁程度。

[0010] 所述心电脉搏波一体化检测装置,可以包括:心电处理模块、脉搏波处理模块和数 据传输与处理模块,所述的心电处理模块包括:三导联电极线、心电检测装置和心电信号处 理电路,所述的脉搏波处理模块包括:红外脉搏波传感器、脉搏波检测装置和脉搏波处理电 路,所述的数据传输与处理模块包括:处理器单片机、数据格式转换芯片和上位机;心电处 理模块由三导联电极线连接人体与心电检测装置获取心电信号,经耳机接口连接到心电信 号处理电路部分,所述的心电信号处理电路包括集成仪表放大器和集成滤波放大器,心电 信号处理电路经线性光耦隔离装置与处理器单片机的数据采样端口相连;脉搏波处理模块 由红外脉搏波传感器连接人体与脉搏波检测装置获取脉搏波信号,经耳机接口连接到脉搏 波处理电路部分,所述的脉搏波处理电路部分包括一阶滤波和二阶滤波电路,脉搏波处理 电路经线性装置与数据传输与处理模块的处理器单片机的数据采样端口相连;处理器单片 机经串口与数据格式转换芯片连接,数据格式转换芯片经USB传输线与上位机连接。

[0011] 所述心电脉搏波一体化检测装置,也可以包括:心电处理模块、脉搏波处理模块和 数据传输与处理模块,所述的心电处理模块包括:三导联电极线、心电检测装置和心电信号 处理电路,所述的脉搏波处理模块包括:红外脉搏波传感器、脉搏波检测装置和脉搏波处理 电路,所述的数据传输与处理模块包括:处理器单片机、数据格式转换芯片(所述数据格式 转换芯片的型号为:CP2102)和上位机(所述上位机型号为:苹果电脑iMac-vesa版);心电处 理模块由三导联电极线连接人体与心电检测装置获取心电信号,经耳机接口连接到心电信 号处理电路部分,所述的心电信号处理电路包括集成仪表放大器和集成滤波放大器,心电 信号处理电路经线性光耦隔离装置与处理器单片机的数据采样端口相连;脉搏波处理模块 由红外脉搏波传感器连接人体与脉搏波检测装置获取脉搏波信号,经耳机接口连接到脉搏 波处理电路部分,所述的脉搏波处理电路部分包括一阶滤波和二阶滤波电路,脉搏波处理 电路经线性装置与数据传输与处理模块的处理器单片机的数据采样端口相连;处理器单片 机经串口与数据格式转换芯片连接,数据格式转换芯片经USB传输线与上位机连接。

[0012] 本发明的另一目的通过以下技术方案实现:一种所述抑郁症程度量化的评估系统 的评估方法,可以包括以下步骤:

[0013] 步骤1、通过多状态综合测试平台获取不同状态下的人体生理信息,依据心率变异 性分析原理得到不同状态下的HRV特征参数;通过测试受测者在多状态综合测试中的心电 脉搏波数据,并对此数据进行HRV时域、频域、非线性分析,根据CfsSubsetEval属性评估方 法和最好优先迭代准则得到不同状态下心率变异性特征参数;

[0014] 步骤2、根据步骤1获取的心率变异性特征参数量化评估自主神经系统中的交感神 经、迷走神经功能的平衡状态;根据多状态综合测试过程得到的特征参数来描述该状态下 交感神经系统与迷走神经系统的相对平衡性,实现特征参数对自主神经系统平衡状态的量 化评估;

[0015] 步骤3、在定量评估自主神经系统平衡状态的基础上,建立抑郁程度量化评估模 型;通过预先建立的数学模型根据心率变异性分析模块得到的特征参数对受测者的精神状 态进行评估和抑郁程度分级,以实现快速、客观评估受测者的精神状态。

[0016] 在步骤1中,所述多状态综合测试的方法可以包括以下步骤:

[0017] 步骤11、五分钟静息测试,数据采集平台记录受测者静息态的心电脉搏波数据;

[0018] 步骤12、正常呼吸30秒,然后一分钟深呼吸测试,数据采集平台记录受测者深呼吸 状态的心电脉搏波数据;

[0019] 步骤13、正常呼吸30秒,然后九十秒瓦尔萨尔瓦动作测试,数据采集平台记录受测 者瓦尔萨尔瓦动作状态的心电脉搏波数据;

[0020] 步骤14、正常呼吸30秒,然后二分钟站立测试,数据采集平台记录受测者坐立体态 变化以及站立态的心电脉搏波数据。

[0021] 在步骤1中,所述多状态综合测试的方法也可以包括以下步骤:1、五分钟静息测 试,数据采集平台记录受测者静息态的心电脉搏波数据;2、正常呼吸30秒,然后一分钟深呼 吸测试,数据采集平台记录受测者深呼吸状态的心电脉搏波数据;3、正常呼吸30秒,然后九 十秒瓦尔萨尔瓦动作测试,数据采集平台记录受测者瓦尔萨尔瓦动作状态的心电脉搏波数 据;4、正常呼吸30秒,然后二分钟站立测试,数据采集平台记录受测者坐立体态变化以及站 立态的心电脉搏波数据;所述HRV参数包括:时域参数、频域参数和非线性参数,时域参数包 括:SDNN、SDANN、RMSSD和pNN50,频域参数包括:VLF、LF、HF、TP、pVLF、pLF、pHF、nLF、nHF和 LF/HF,非线性参数包括SDl、SD2、SDSD、α#Ρα2;所述的HRV表示心率变异性,所述的SDNN为所 有窦性RR间期的标准差,所述的SDANN为每5分钟的RR间期均值的标准差,所述的RMSSD为相 邻RR间期差值的均方根,所述的PNN50为50毫秒间隔以上相邻RR间期差值的比例,SDSD为相 邻RR间期之间的标准差,所述的VLF为心率变异性曲线经FFT变换后极低频成分0.0 0 3 3〜 0.04Hz的功率,所述的LF为心率变异性曲线经FFT变换后低频成分0.04〜0.15Hz的功率;所 述的HF为心率变异性曲线经FFT变换后高频成分0.15〜0.4Hz的功率;所述的TP为心率变异 性曲线经FFT变换后的总功率,所述的pVLF为心率变异性曲线极低频成分的百分比,所述的 pLF为心率变异性曲线低频成分的百分比,所述的pHF为心率变异性曲线高频成分的百分 比,所述的nLF为归一化的低频功率,所述的nHF为归一化的高频成分,所述的LF/HF为低频 成分与高频成分的比值,所述的SD2为散点图在X = Y方向上的散点图区域最长的两点间距 离,SDl为垂直于X = Y方向上散点图区域最长的两点间的距离,所述的Ct1SHRV曲线第一部 分去趋势波动分析斜率,所述的Ct2SHRV曲线第二部分去趋势波动分析斜率;所述的特征参 数是根据可回溯的贪婪搜索扩张和CfsSubsetEval属性评估方法获得的HRV参数的特征参 数集;CfsSubsetEval属性评估方法是根据属性子集中每一个特征的预测能力及其与其他 特征的关联性进行评估。可回溯的贪婪搜索扩张为:首先初始化一个属性为当前的结果集; 扩展属性集,计算当前属性集对于分类结果的贡献,作为当前属性集评分;属性集评分高于 结果集,则保留当前属性集为结果集,重复步骤2至3;连续N次扩充属性集,其评分没有高于 结果集,保存结果集,迭代结束。

[0022] 在步骤3中,所述抑郁程度量化评估模型,为根据AdaBoost算法在大量实验数据的 基础上建立的分类模型。所述的训练抑郁程度量化评估模型H,是根据AdaBoost原理得到 的。AdaBoost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器,即弱分 类器,然后把这些弱分类器集合起来,构造一个更强的最终分类器。数据输入抑郁程度量化 评估模型H,得到诊断结果。

[0023] 抑郁程度分级模块完成对受测者的精神状态进行评估和抑郁程度分级。抑郁程度 量化评估系统在大量实验数据基础上基于AdaBoost的方法建立了数学模型,将受测者的特 征参数抑郁等级量化评估模型进行分类划分,即可得到当前测试者的抑郁等级。

[0024] 在步骤3中,所述抑郁程度量化评估模型的建立过程包括以下步骤:

[0025] 步骤31、计算HRV参数;所述HRV参数包括:时域参数、频域参数和非线性参数,时域 参数包括:MEAN、SDNN、RMSSD 和 pNN50,频域参数包括:VLF、LF、HF、TP、pVLF、pLF、pHF、nLF、 nHF和LF/HF,非线性参数包括SDl、SD2、SDSD、adPa2;所述的HRV表示心率变异性,所述的 MEAN为所有窦性RR间期的均值;SDNN为所有窦性RR间期的标准差,所述的RMSSD为相邻RR间 期差值的均方根,所述的PNN50为50毫秒间隔以上相邻RR间期差值的比例,SDSD为相邻RR间 期之间的标准差,所述的VLF为心率变异性曲线经FFT变换后极低频成分0.0033〜0.04Hz的 功率,所述的LF为心率变异性曲线经FFT变换后低频成分0.04〜0.15Hz的功率;所述的HF为 心率变异性曲线经FFT变换后高频成分0.15〜0.4Hz的功率;所述的TP为心率变异性曲线经 FFT变换后的总功率,所述的pVLF为心率变异性曲线极低频成分的百分比,所述的pLF为心 率变异性曲线低频成分的百分比,所述的PHF为心率变异性曲线高频成分的百分比,所述的 nLF为归一化的低频功率,所述的nHF为归一化的高频成分,所述的LF/HF为低频成分与高频 成分的比值,所述的SD2为散点图在X = Y方向上的散点图区域最长的两点间距离,SDl为垂 直于X = Y方向上散点图区域最长的两点间的距离,所述的Q1SHRV曲线第一部分去趋势波 动分析斜率,所述的Ct2SHRV曲线第二部分去趋势波动分析斜率;

[0026] 步骤32、获取特征参数集;根据可回溯的贪婪搜索扩张和CfsSubsetEval属性评估 方法获得HRV参数的特征参数集;

[0027] 步骤33、训练抑郁程度量化评估模型Η;样本集合Xo包括N个训练样本,经第一次训 练得到弱分类器hi,将分错的样本和其他样本构建成由N个训练样本组成的第二个样本集 合X1,经第二次训练得到弱分类器h2,经t次重复训练,得到t个弱分类器hi,所述hi= {hi I i =I,2,3,…,t},t为正整数,所述抑郁程度量化评估模型的表达式为:

Figure CN104127193BD00061

[0029] 其中,ht表示第t个弱分类器,at表示第t个弱分类器的权重;

[0030] 步骤34、把心电脉搏波一体化检测装置检测到的数据输入抑郁程度量化评估模型 H,得到抑郁程度量化评估结果。

[0031] 本发明的工作原理:本发明是根据多状态综合测试过程得到的心电脉搏波信号, 经过心率变异性分析,得到不同状态下HRV特征参数来描述该状态下交感神经系统与迷走 神经系统的功能状态,进而评估自主神经系统相的对平衡性。根据不同状态下的特征参数 建立抑郁程度量化评估模型,对受测者的精神状态进行评估和抑郁程度分级,以实现快速、 客观评估受测者的精神状态。

[0032] 本发明相对于现有技术具有如下的优点及效果:

[0033] 1、实现了抑郁程度量化评估,避免了量表评估的主观性和多变性;

[0034] 2、填补了抑郁症的基于生理信息检查技术领域的空白。

[0035] 3、系统仅需获取受测者的心电脉搏波数据即可科学评估受测者精神状态的抑郁 程度,简便易行,节省医疗资源,能有较好的临床实用性。

附图说明

[0036] 图1为抑郁程度量化评估系统结构图。

[0037] 图2为抑郁程度量化评估系统原理图。

[0038] 图3为系统软件架构图。

[0039] 图4为多状态测试流程图。

具体实施方式

[0040] 下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限 于此。

[0041] 实施例

[0042] 如图1所示,一种抑郁症程度量化的评估系统,包括:心电脉搏波数据采集模块、心 率变异性处理分析模块以及抑郁程度分级模块;心电脉搏波数据采集模块是以心电脉搏波 一体化采集电路为基础,经USB接口将数据传输到上位机,系统结构图如图2所示。心率变异 性数据处理分析模块由多状态心率变异性测试分析平台、自主神经系统评估平台组成。多 状态心率变异性测试分析平台、自主神经系统评估平台组成软件架构模块如图3所示。

[0043] 所述的抑郁程度量化评估系统,所述心电脉搏波一体化检测装置,包括:心电处理 模块、脉搏波处理模块和数据传输与处理模块,所述的心电处理模块包括:三导联电极线、 心电检测装置和心电信号处理电路,所述的脉搏波处理模块包括:红外脉搏波传感器、脉搏 波检测装置和脉搏波处理电路,所述的数据传输与处理模块包括:处理器单片机、数据格式 转换芯片(所述数据格式转换芯片的型号为:CP2102)和上位机(所述上位机型号为:苹果电 脑iMac-vesa版);心电处理模块由三导联电极线连接人体与心电检测装置获取心电信号, 经耳机接口连接到心电信号处理电路部分,所述的心电信号处理电路包括集成仪表放大器 和集成滤波放大器,心电信号处理电路经线性光耦隔离装置与处理器单片机的数据采样端 口相连;脉搏波处理模块由红外脉搏波传感器连接人体与脉搏波检测装置获取脉搏波信 号,经耳机接口连接到脉搏波处理电路部分,所述的脉搏波处理电路部分包括一阶滤波和 二阶滤波电路,脉搏波处理电路经线性装置与数据传输与处理模块的处理器单片机的数据 采样端口相连;处理器单片机经串口与数据格式转换芯片连接,数据格式转换芯片经USB传 输线与上位机连接。

[0044] 受测者根据抑郁程度量化评估系统的语音提示完成多状态综合测试过程。该过程 分四部分,如图4所示,第一部分为静息测试,受测者处于坐位,保持正常呼吸称为静息状 态,该状态下受测者的自主神经系统处于常态,能够反映出正常状态下自主神经系统的平 衡状态。第二部分为深呼吸测试,时长60秒,受测者主动控制呼气吸气时间,整个呼吸周期 为10秒,吸气呼气时间各占50 %。深呼吸时呼吸频率的降低,HRV低频段(0.05〜0. IHz)出现 高功率,尤能反应交感神经的兴奋或交感神经和迷走神经的共同作用。第三部分为 Valsalva动作测试,每组动作30秒共3组。每组动作分为两部分:吸气屏气保持15s,然后用 力吐气放松15秒。Valsalva动作具有兴奋迷走神经的作用。因此通过对比常人与抑郁症患 者Valsalva动作时的HRV参数差异,可以较为突出的反应二者迷走神经的兴奋性能。第四部 分为站立测试,受测者由坐位变为站立,由于站立时心率比坐卧位时快,交感神经对心率起 正性变时作用,加速心率,迷走神经对心率起负性变时作用,减缓心率。当测试者由坐位变 为站位时,心率由慢变快,迷走神经兴奋性减弱,交感神经兴奋性增强。数据采集平台记录 受测者在多状态综合测试过程的心电脉搏波数据。

[0045] 使用心电脉搏波一体化检测装置记录受测者在多状态综合测试过程过程中10分 钟的心电、脉搏波数据。本实施方案中记录了 92个受测者的心电脉搏波数据作为样本数据。 对所有样本数据的心电脉搏波数据进行校正、处理得到心率变异性曲线,获取的心率变异 性特征参数量化评估自主神经系统中的交感神经、迷走神经功能的平衡状态。根据多状态 综合测试过程得到的特征参数来描述该状态下交感神经系统与迷走神经系统的相对平衡 性,实现特征参数对自主神经系统平衡状态的量化评估。HRV参数包括:时域参数、频域参数 和非线性参数,时域参数包括:MEAN、SDNN、RMSSD和pNN50,频域参数包括:VLF、LF、HF、TP、 口¥1^41^4冊、111^、11冊和1^/册,非线性参数包括501、502、5050、€[1和€[2;所述的册¥表示心 率变异性,所述的MEAN为所有窦性RR间期的均值;SDNN为所有窦性RR间期的标准差,所述的 RMSSD为相邻RR间期差值的均方根,所述的pNN50为50毫秒间隔以上相邻RR间期差值的比 例,SDSD为相邻RR间期之间的标准差,所述的VLF为心率变异性曲线经FFT变换后极低频成 分0.0033〜0.04Hz的功率,所述的LF为心率变异性曲线经FFT变换后低频成分0.04〜 0.15Hz的功率;所述的HF为心率变异性曲线经FFT变换后高频成分0.15〜0.4Hz的功率;所 述的TP为心率变异性曲线经FFT变换后的总功率,所述的pVLF为心率变异性曲线极低频成 分的百分比,所述的PLF为心率变异性曲线低频成分的百分比,所述的pHF为心率变异性曲 线高频成分的百分比,所述的nLF为归一化的低频功率,所述的nHF为归一化的高频成分,所 述的LF/HF为低频成分与高频成分的比值,所述的SD2为散点图在X = Y方向上的散点图区域 最长的两点间距离,SDl为垂直于X = Y方向上散点图区域最长的两点间的距离,所述的01为 HRV曲线第一部分去趋势波动分析斜率,所述的Ct2SHRV曲线第二部分去趋势波动分析斜 率。

[0046] 由于不同状态下的自主神经系统处于不同平衡状态:静息状态下,自主神经系统 处于一种常规状态,交感神经系统与副交感神经系统相对平衡;深呼吸状态下自主神经系 统的平衡性有所改变,交感神经系统的作用或交感神经与迷走神经的共同作用增强; Valsalva动作状态下迷走神经兴奋性增强;站立状态下迷走神经兴奋性减弱,交感神经兴 奋性增强。因此,根据可回溯的贪婪搜索扩张和CfsSubsetEval属性评估方法获得的HRV参 数的特征参数集。CfsSubsetEval属性评估方法是根据属性子集中每一个特征的预测能力 及其与其他特征的关联性进行评估。可回溯的贪婪搜索扩张的迭代过程如下:1、首先初始 化一个属性为当前的结果集;2、扩展属性集,计算当前属性集对于分类结果的贡献,作为当 前属性集评分;3、属性集评分高于结果集,则保留当前属性集为结果集,重复步骤2至3;连 续5次扩充属性集,其评分没有高于结果集,保存结果集,迭代结束。

[0047] 上述过程中获取到的特征参数集为,静息态参数:pNN50、LF、HF、TP、Ct1;深呼吸态 数据:RMSSD、pNN50、VLF、LF、Q1;瓦尔萨尔瓦态参数:pNN50、TP、pVLF、nLF、nHF;站立态参数: Mean〇

[0048] 抑郁程度分级模块完成对受测者的精神状态进行评估和抑郁程度分级。抑郁程度 量化评估系统在大量实验数据基础上基于AdaBoost的方法建立了数学模型,将受测者的特 征参数输入抑郁等级量化评估模型进行分类划分,即可得到当前测试者的抑郁等级。训练 抑郁程度量化评估模型H,是根据AdaBoost原理得到的。AdaBoost是一种迭代算法,其核心 思想是针对同一个训练集训练不同的分类器,即弱分类器,然后把这些弱分类器集合起来, 构造一个更强的最终分类器。样本集合XO包括92个训练样本,经第一次训练得到弱分类器 hi,将分错的样本和其他样本构建成由92个训练样本组成的第二个样本集合XI,经第二次 训练得到弱分类器h2,经10次重复训练,得到10个弱分类器hi,所述hi= {hi I i = l,2,3,…, 10},所述抑郁程度量化评估模型的表达式为

Figure CN104127193BD00091

,其中,ht表示第t个弱分类器,at 表示第t个弱分类器的权重;数据输入抑郁程度量化评估模型H,得到诊断结果,准确率达到 82.5%〇

[0049] 实施过程中,发现样本数据量的增加有利于模型准确率的提高。初次实验过程中, 使用了83个样本数据作为抑郁程度量化评估模型的训练集合,抑郁程度分类准确率是 75.9%,二次实验过程中增加了样本量,使用92例样本数据作为模型的训练集,得到的诊断 结果,准确率达到82.5%。由此可见,后续试验中如果继续增大模型训练集,模型的准确率 会继续提尚。

[0050] 本发明公开的抑郁程度量化评估系统是基于心率变异性分析方法实现对自主神 经系统功能状态的评估进而诊断抑郁状态,在抑郁症诊断领域提出一种新的研究方法,该 系统能科学、客观的评估患者抑郁状态,能够有效辅助临床诊断,具有推广性和临床实用 性。

[0051] 上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的 限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化, 均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (2)

1. 一种抑郁症程度量化的评估系统,其特征在于,包括:心电脉搏波一体化检测装置、 数据传输装置、数据处理平台;所述心电脉搏波一体化检测装置,包括:心电处理模块、脉搏 波处理模块和数据传输与处理模块,所述心电处理模块由三导联电极线连接人体与心电检 测装置获取心电信号;所述脉搏波处理模块由红外脉搏波传感器连接人体与脉搏波检测装 置获取脉搏波信号;所述心电脉搏波一体化检测装置通过桥接器与数据传输装置相连,数 据传输装置经串口与上位机相连接;通过心电脉搏波一体化检测装置,获取人体生理信号, 经过USB接口传输到上位机数据分析平台,数据分析平台计算HRV特征参数,依据心率变异 性原理分析自主神经系统中交感神经、副交感神经的平衡状态,量化评估抑郁程度; 所述HRV特征参数包括:时域参数、频域参数和非线性参数,时域参数包括:MEAN、SDNN、 RMSSD 和 pNN50,频域参数包括:VLF、LF、HF、TP、pVLF、pLF、pHF、nLF、nHF 和 LF/HF,非线性参数 包括SDl、SD2、SDSD、ajPa2;所述的HRV表示心率变异性,所述的MEAN为所有窦性RR间期的均 值;SDNN为所有窦性RR间期的标准差,所述的RMSSD为相邻RR间期差值的均方根,所述的 PNN50为50毫秒间隔以上相邻RR间期差值的比例,SDSD为相邻RR间期之间的标准差,所述的 VLF为心率变异性曲线经FFT变换后极低频成分0.0033〜0.04Hz的功率,所述的LF为心率变 异性曲线经FFT变换后低频成分0.04〜0.15Hz的功率;所述的HF为心率变异性曲线经FFT变 换后高频成分〇. 15〜0.4Hz的功率;所述的TP为心率变异性曲线经FFT变换后的总功率,所 述的PVLF为心率变异性曲线极低频成分的百分比,所述的pLF为心率变异性曲线低频成分 的百分比,所述的PHF为心率变异性曲线高频成分的百分比,所述的nLF为归一化的低频功 率,所述的nHF为归一化的高频成分,所述的LF/HF为低频成分与高频成分的比值,所述的 SD2为散点图在X = Y方向上的散点图区域最长的两点间距离,SDl为垂直于X = Y方向上散点 图区域最长的两点间的距离,所述的Ct1SHRV曲线第一部分去趋势波动分析斜率,所述的〇2 为HRV曲线第二部分去趋势波动分析斜率。
2. 根据权利要求1所述抑郁症程度量化的评估系统,其特征在于,所述的心电处理模块 包括:三导联电极线、心电检测装置和心电信号处理电路,所述的脉搏波处理模块包括:红 外脉搏波传感器、脉搏波检测装置和脉搏波处理电路,所述的数据传输与处理模块包括:处 理器单片机、数据格式转换芯片和上位机;心电处理模块由三导联电极线连接人体与心电 检测装置获取心电信号,经耳机接口连接到心电信号处理电路部分,所述的心电信号处理 电路包括集成仪表放大器和集成滤波放大器,心电信号处理电路经线性光耦隔离装置与处 理器单片机的数据采样端口相连;脉搏波处理模块由红外脉搏波传感器连接人体与脉搏波 检测装置获取脉搏波信号,经耳机接口连接到脉搏波处理电路部分,所述的脉搏波处理电 路部分包括一阶滤波和二阶滤波电路,脉搏波处理电路经线性装置与数据传输与处理模块 的处理器单片机的数据采样端口相连;处理器单片机经串口与数据格式转换芯片连接,数 据格式转换芯片经USB传输线与上位机连接。
CN201410334898.6A 2014-07-14 2014-07-14 一种抑郁症程度量化的评估系统及其评估方法 CN104127193B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410334898.6A CN104127193B (zh) 2014-07-14 2014-07-14 一种抑郁症程度量化的评估系统及其评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410334898.6A CN104127193B (zh) 2014-07-14 2014-07-14 一种抑郁症程度量化的评估系统及其评估方法

Publications (2)

Publication Number Publication Date
CN104127193A CN104127193A (zh) 2014-11-05
CN104127193B true CN104127193B (zh) 2017-08-18

Family

ID=51800235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410334898.6A CN104127193B (zh) 2014-07-14 2014-07-14 一种抑郁症程度量化的评估系统及其评估方法

Country Status (1)

Country Link
CN (1) CN104127193B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104545865B (zh) * 2015-01-21 2015-08-19 西南大学 一种基于心率指标的生理唤起度综合量化方法
WO2016201499A1 (en) * 2015-06-15 2016-12-22 Medibio Limited Method and system for assessing mental state
CN104983434B (zh) * 2015-06-17 2018-05-01 重庆邮电大学 基于层次分析法的多参数心理压力评估方法及装置
CN105193431B (zh) * 2015-09-02 2017-12-01 杨静 一种人体精神压力状态分析装置
CN105362017A (zh) * 2015-11-23 2016-03-02 许仕林 老人无线呼吸监测床垫
CN105997019B (zh) * 2016-05-09 2019-02-19 鲍崇智 基于体感网的多维心跳信息同步采集方法与系统
CN106096303B (zh) * 2016-06-22 2018-12-18 深圳市是源医学科技有限公司 一种自主神经系统的分析方法、服务器及系统
CN106264510B (zh) * 2016-08-23 2019-12-13 清华大学 一种筛选手术患者的建模方法
CN107157997A (zh) * 2017-04-10 2017-09-15 江汉大学 一种基于心率变异性的动物模型的构建方法及其应用
CN107233092A (zh) * 2017-05-22 2017-10-10 陕西师范大学 一种用于心脏生理电信号的处理方法
CN107802273A (zh) * 2017-11-21 2018-03-16 重庆邮电大学 一种抑郁状态监测装置、系统及预测方法
CN107871537B (zh) * 2017-11-22 2018-12-07 山东师范大学 一种基于多模态特征的抑郁倾向测评装置、系统
CN110251100B (zh) * 2019-06-17 2020-08-11 清华大学 一种脉诊仪

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1422591A (zh) * 2001-12-05 2003-06-11 丽台科技股份有限公司 能由颈部同时测量心电、脉搏和声波信号的传感器
WO2009152521A2 (en) * 2008-06-13 2009-12-17 Parkinson's Institute Diagnosis of neurodegenerative disorders
KR101006534B1 (ko) * 2008-07-17 2011-01-07 가톨릭대학교 산학협력단 심전도 측정을 이용한 스트레스 모니터링 장치 및 방법
CN101518439B (zh) * 2009-03-24 2011-01-05 重庆大学 一种基于心音和心电的心脏功能检测系统
CN102525412A (zh) * 2010-12-16 2012-07-04 北京柏瑞医信科技有限公司 用于促进情绪平衡、评估情绪状态和调节效果的方法和设备
CN103230276A (zh) * 2013-02-01 2013-08-07 上海中医药大学附属岳阳中西医结合医院 用于量化评估暨记录人体主观感受的装置以及方法

Also Published As

Publication number Publication date
CN104127193A (zh) 2014-11-05

Similar Documents

Publication Publication Date Title
Aboalayon et al. Sleep stage classification using EEG signal analysis: a comprehensive survey and new investigation
Charlton et al. An assessment of algorithms to estimate respiratory rate from the electrocardiogram and photoplethysmogram
Alberdi et al. Towards an automatic early stress recognition system for office environments based on multimodal measurements: A review
Boostani et al. A comparative review on sleep stage classification methods in patients and healthy individuals
Fraiwan et al. Automated sleep stage identification system based on time–frequency analysis of a single EEG channel and random forest classifier
Valenza et al. Mood recognition in bipolar patients through the PSYCHE platform: preliminary evaluations and perspectives
Parker et al. Latent structure of the alexithymia construct: a taxometric investigation.
Chan et al. Wavelet distance measure for person identification using electrocardiograms
CN105808970B (zh) 一种在线认知评估方法
Salehizadeh et al. A novel time-varying spectral filtering algorithm for reconstruction of motion artifact corrupted heart rate signals during intense physical activities using a wearable photoplethysmogram sensor
Can et al. Stress detection in daily life scenarios using smart phones and wearable sensors: A survey
Xu et al. Cluster-based analysis for personalized stress evaluation using physiological signals
Sowder et al. Restoration of vagal tone: a possible mechanism for functional abdominal pain
AU2010208365B2 (en) Method and device for probabilistic objective assessment of brain function
Valenza et al. Characterization of depressive states in bipolar patients using wearable textile technology and instantaneous heart rate variability assessment
JP5203215B2 (ja) 脳波(eeg)測定値を使って抑うつおよびその他の気分障害を分析し、評価するシステムおよび方法
Rundo et al. An advanced bio-inspired photoplethysmography (PPG) and ECG pattern recognition system for medical assessment
Oresko et al. A wearable smartphone-based platform for real-time cardiovascular disease detection via electrocardiogram processing
WO2017016086A1 (zh) 基于生理信息的抑郁症评估系统及其评估方法
EP2983586B1 (en) Methods to monitor consciousness
EP2498676B1 (en) Brain activity as a marker of disease
Monk et al. Effects of women’s stress-elicited physiological activity and chronic anxiety on fetal heart rate
Webber Jr et al. Dynamical assessment of physiological systems and states using recurrence plot strategies
CN107408144A (zh) 医疗先兆事件估计
Richman et al. Physiological time-series analysis using approximate entropy and sample entropy

Legal Events

Date Code Title Description
PB01 Publication
C06 Publication
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
GR01 Patent grant
GR01 Patent grant