CN104123461B - A method for calculating the relationship between the spatial light visual object for photometric analysis - Google Patents

A method for calculating the relationship between the spatial light visual object for photometric analysis Download PDF

Info

Publication number
CN104123461B
CN104123461B CN 201410350259 CN201410350259A CN104123461B CN 104123461 B CN104123461 B CN 104123461B CN 201410350259 CN201410350259 CN 201410350259 CN 201410350259 A CN201410350259 A CN 201410350259A CN 104123461 B CN104123461 B CN 104123461B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
object
vector
angle
space
coordinate system
Prior art date
Application number
CN 201410350259
Other languages
Chinese (zh)
Other versions
CN104123461A (en )
Inventor
王建峰
邹卫平
毛永娜
李明
卢晓猛
王汇娟
葛亮
姜晓军
陈丽娜
兀颖
Original Assignee
中国科学院国家天文台
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

本发明属于地基光电观测领域,公开了一种用于空间物体光度分析的光照可视关系计算方法,方法包括以下步骤:轨道计算获取空间物体的位置和速度矢量;基于位置和速度矢量建立轨道坐标系;引入姿态参量建立空间物体本体坐标系;进行照明矢量和观测矢量的计算。 The present invention belongs to the field of electronic observation ground, discloses a method for calculating the illumination visual spatial relationship of objects for photometric analysis, the method comprising the steps of: obtaining spatial orbital calculation object position and velocity vectors; establishing orbital coordinates based on the position and velocity vector line; introduction attitude parameter space objects body coordinate; vector calculated illumination and observation vectors. 本方法克服了传统用相位角(空间物体‑测站‑太阳之间的夹角)来表征空间物体光照可视关系的不足,将简化的质点运动推广到有外形结构的轨道运动和姿态运动上,更具体的描述空间物体在空间被太阳照明后被测站设备观测的情况,直接服务于空间物体的光度特性研究。 This method overcomes the phase angle of the conventional (spatial object - Station - the angle between the sun) light enough to characterize the spatial relationship between the visual object, to simplify the particle motion is extended to have an orbital motion and attitude motion profile structure , more particular description of the object in the space where the space is illuminated solar observation station equipment under test, direct spectrophotometric characteristics serving space object.

Description

一种用于空间物体光度分析的光照可视关系计算方法 A method for calculating the relationship between the spatial light visual object for photometric analysis

技术领域 FIELD

[0001] 本发明属于地基光电观测领域,涉及一种用于空间物体光度分析的光照可视关系计算方法。 [0001] The present invention belongs to the field of electronic observation ground, to a calculation method of the illumination visual spatial relationship of objects for photometric analysis.

背景技术 Background technique

[0002] 空间物体在太空中运行时自身并不发光,地面观测得到的光度信息主要来自其反射的太阳光。 [0002] space object moves through space itself does not emit light when the luminous intensity information is obtained mainly from the ground observation that the reflection of sunlight. 相对地面观测者而言,空间物体及主要的照明光源(太阳)都不是静止不动的, 空间物体既有相对于稳定轴的姿态旋转(自转),也有空间位置运动(绕地球公转);由于地球自转和绕太阳公转,太阳相对地面观测者也有短周期的日变化和长周期的年变化。 Relative to the ground observer, the object space and the main illumination source (sun) not stationary, both with respect to the object space stable posture of the rotation shaft (rotation), but also the spatial position (revolution around the earth); as Earth's rotation and revolution around the sun, the sun relative to the ground observers have diurnal variation in short-cycle and long-cycle changes. 复杂的相对位置变化,带来了复杂的光照条件和反射条件变化。 Complex relative positional change, poses a complex reflection light conditions and conditions change.

[0003] 在当前的空间物体光度特性描述中,经常使用相位角(太阳-目标-测站的空间夹角)来表述空间物体的被照明和可视关系,这样的描述体系将空间物体的运动视为质点运动,未考虑其自身形状和姿态运动,以及与太阳相对位置的年变化。 [0003] In current spatial photometric characteristics described objects, often using a phase angle (Sun - Target - angle space stations) to express the relationship between the space to be illuminated and visible object, such description system moving object space regarded as particle motion, it does not consider changes in its, and the relative position of the sun and its shape and attitude motion. 为了更确切地描述空间物体的被照明和可视关系,由其反演、仿真、确定空间物体的姿态变化,为空间物体的光度标定和特性提取服务,需要建立一种更精确的光照可视关系计算方法。 In order to more specifically describe the relationship between the visual and illuminated object space, by inversion, simulation, determine the change in the attitude of space objects, extracts the service photometric calibration and spatial characteristics of objects, it is necessary to establish a more precise visual light relationship calculation method.

发明内容 SUMMARY

[0004] 本方法克服了传统用相位角(空间物体-测站-太阳之间的夹角)来表征空间物体光照可视关系的不足,将简化的质点运动推广到有外形结构的轨道运动和姿态运动上,更具体的描述空间物体在空间被太阳照明后被测站设备观测的情况,直接服务于空间物体的光度特性研究。 [0004] The present method overcomes the phase angle of the traditional (spatial object - Station - the angle between the sun) to characterize the spatial relationship of objects visible light is insufficient, the particle motion will be extended to the simplified structure has the shape of the orbital motion and the attitude motion, a more particular description of the object in space where the space is illuminated solar observation station equipment under test, direct spectrophotometric characteristics serving space object.

[0005] 所述方法包括以下步骤: [0005] The method comprises the steps of:

[0006] 步骤一:计算获取当前历元真赤道真春分点坐标系下空间物体的位置、速度矢量F 和矽 [0006] Step a: obtaining spatial position of the object is calculated at the current epoch really true equinox equatorial coordinates, velocity vector and silicon F

[0007] (1)利用SGP4或SDP4模型进行空间物体Tie轨道根数的外推预报计算,获取当前历元轨道坐标系下的位置和速度矢量; [0007] (1) using SGP4 model space object or SDP4 Tie track number of the extrapolation prediction calculation, obtaining position and velocity vectors in the coordinate system of the current epoch track;

[0008] (2)空间物体在当前历元轨道坐标系下位置和速度矢量转换至当前历元真赤道真春分点坐标系下的位置、速度矢量? [0008] (2) the spatial object position and velocity vectors in the current epoch conversion coordinates to the position of the lower track epoch true true equinox equatorial coordinates of the current, velocity vector? 和1' ; and 1' ;

[0009] (3)同时获取光源和测站在当前历元真赤道真春分点坐标系的位置矢量及_和;所述光源为太阳。 [0009] (3) simultaneously acquiring the light source and the position vector and the measured standing current epoch _ equatorial true true coordinates and equinox; the light source is the sun.

[0010] 步骤二:基于空间物体的在当前历元真赤道真春分点坐标系下的位置和速度矢量建立轨道坐标系; [0010] Step II: Based on the spatial position and velocity of the object at the current epoch really true equinox equatorial coordinate system established track coordinate vector;

[0011] 空间物体轨道平面为坐标平面,ZQ轴由质心指向地心,XQ轴在轨道平面内与ZQ轴垂直并指向空间物体速度方向,y〇轴与XQ、z Q轴右手正交且与轨道平面的的法线平行,通常称X0、y〇、Z0轴分别为滚动、俯仰和偏航轴。 [0011] space in orbit plane coordinate plane, the centroid point ZQ shaft center of the earth, within the track shaft XQ ZQ plane perpendicular to the axis direction and speed of the object space points, y〇 axis XQ, z Q-axis orthogonal to the right-hand normal to the orbital plane parallel to said generally X0, y〇, Z0 of the shaft respectively roll, pitch and yaw axes.

[0012] 步骤三:引入姿态参量建立空间物体本体坐标系; [0012] Step Three: introducing posture parameter space objects body coordinate system;

[0013] 引入空间物体姿态的三个欧拉角一偏航角Φ、俯仰角Θ和滚动角φ,构造空间物体本体坐标系与轨道坐标系的映射关系。 [0013] introduced into the space of the three Euler angles object pose a yaw angle Φ, Θ pitch angle and roll angle φ, the spatial configuration of the object body coordinate mapping relationship between the track coordinate system.

[0014] 三个欧拉角的定义如下: [0014] define three Euler angles as follows:

[0015] 扁航角Φ:空间物体滚动轴右(指向空间物体速度方向)在当地水平面上的投影与轨道%轴的夹角; [0015] Air flat angle Φ: a right roll axis space object (object pointed to the space velocity direction) and the angle between the axis of the track% in the local horizontal plane of projection;

[0016] >俯仰角Θ :空间物体滚动轴毛与其在当地水平面上的投影的夹角; [0016]> pitch angle Θ: angle between the projection of the rolling space object hair shaft in the local horizontal plane therewith;

[0017] >滚动角々:空间物体俯仰轴爲与其在当地水平面上的投影的夹角。 [0017]> a roll angle 々: space object as its pitch axis at a projection angle of the local horizontal plane.

[0018] 步骤四:进行照明矢量和观测矢量的计算。 [0018] Step Four: calculated vector and the illumination of the observation vector.

[0019] 根据步骤三建立的坐标映射关系,将太阳和测站的位置矢量和尾转换至本体坐标系下照明矢量,和观测矢量,并转换成方位角和尚度角。 [0019] The coordinate mapping relationship established in step three, the sun and the position vector and the tail station to the illumination vector at the converted coordinates of the body, and the observation vector, and transformed into the azimuth angle monk.

[0020] 本发明的技术方案与现有技术相比具有如下技术效果: [0020] aspect of the present invention and the prior art has the following technical effects as compared:

[0021] (1)本方法将空间物体的外形参数和姿态参数纳入光照可视关系的计算方法中, 可直观描述各个立面随时间的照射可视关系。 [0021] (1) the process parameters and attitude parameters of the shape space objects included in the calculation method of the illumination visual relationship may be described directly irradiating the respective facade visible with time.

[0022] (2)现有体系用一个参量-相位角来描述光照可视关系,则同一个相位角可能对应多个实际照射可视情况,本方法用四个参量描述光源照射和测站可视关系,更加精确也更加唯一。 [0022] (2) with a current system parameters - the phase angle relationship between the visual illumination will be described, the phase angle may correspond with a plurality of actual optionally irradiated, and the light source of the present method may be described by four station parameters depending on the relationship, more accurate and more unique.

附图说明 BRIEF DESCRIPTION

[0023] 图1为本发明的空间物体光照可视关系计算流程图; Light flowchart space object [0023] Figure 1 is a visual relationship calculating invention;

[0024] 图2为本发明的空间物体轨道坐标系示意图; Coordinate space orbit objects [0024] FIG. 2 is schematic view showing the present invention;

[0025] 图3为本发明的空间物体本体坐标系示意图。 Body of the object space coordinate system [0025] FIG. 3 is a schematic view of the present disclosure.

具体实施方式 detailed description

[0026] 本发明所述的空间物体光度分析的光照可视关系计算方法,具体实施过程如下: [0026] The method of calculating the relationship between the illumination visual space object of the present invention, photometric analysis, the specific implementation process is as follows:

[0027] 步骤一:计算获取当前历元真赤道真春分点坐标系下的位置、速度矢量F和V [0027] Step a: acquiring position is calculated at the current epoch really true equinox equatorial coordinates, velocity vector V and F

[0028] (1)利用SGP4或SDP4模型进行空间物体Tie轨道根数的外推预报计算,获取当前历元轨道坐标系下的坐标矢量; [0028] (1) using SGP4 model space object or SDP4 Tie track number of the extrapolation prediction calculation, obtain coordinates of the vector in the coordinate system of the current epoch track;

[0029]利用SGP4 (Simplified General Perturbations Satellite Orbit Model 4)或SDP4 (Simplified Deep Space Perturbations Satellite Orbit Model 4)进行Tie (Two-Line Element)数据的预报计算。 [0029] predict Tie (Two-Line Element) data calculated using SGP4 (Simplified General Perturbations Satellite Orbit Model 4) or SDP4 (Simplified Deep Space Perturbations Satellite Orbit Model 4).

[0030] 根据空间物体的Tie根数,根据空间物体的周期不同,分别调用SGP4或是SDP4模型进行计算,得到在Tie坐标系(当前历元轨道坐标系)下的空间物体的位置和速度信息。 [0030] The number of Tie root space object, according to a period different space objects, each call or SDP4 SGP4 model has been calculated, the position and velocity information in the object space coordinate system Tie (current epoch track coordinate system) .

[0031] (2)空间物体在当前历元轨道坐标系下位置和速度矢量转换至当前历元真赤道真春分点坐标系下的位置、速度矢量F和P ; [0031] (2) the spatial position and velocity vectors conversion object to a position under the epoch true true equinox equatorial coordinates of the current track at the current epoch coordinates, velocity vector F and P;

[0032] Tie数据的坐标系是其数据时刻历元的轨道坐标系,计算出来的位置和速度信息也是当前历元轨道坐标下的,可得到当前历元轨道坐标系下位置和速度矢量F和F至当前历元真赤道真春分点坐标系下矢量F .、P的转换关系,即 Coordinates [0032] Tie data is the data track time epoch coordinate system, the calculated position and velocity information are the coordinates of the current epoch track, position and velocity vectors to obtain the current epoch track coordinates and F F to the current vector at epoch really true equinox equatorial coordinates F., P conversion relationship, i.e.

Figure CN104123461BD00051

[0035] 这里的μ和Δ μ是赤经岁差和章动;Rz参见公式(11)。 [0035] where [mu] and Δ μ ascension precession and nutation; see Rz of Equation (11).

[0036] (3)获取光源(太阳)和测站在当前历元真赤道真春分点坐标系中的位置矢量及_ [0036] (3) acquires a light source (sun) and the measured position vector of the current epoch stand true true equinox equatorial coordinate system and _

[0037] >利用太阳平根数计算太阳在当前历元真赤道真春分点坐标系下坐标矢量; [0037]> the number calculated by using a flat solar sun vector coordinates at the current epoch really true equinox equatorial coordinate system;

[0038] 太阳位置利用平根数计算获取,太阳在J2000历元天球坐标系中的平均轨道根数为: [0038] The position of the sun is calculated using the number acquisition level, average number of orbital sun J2000 epoch celestial coordinate system is:

Figure CN104123461BD00052

[0040] 其中d和T分别为由标准历元J2000.0起算的儒略日和世纪数,具体计算公式如下: [0040] where d and T are the standard epoch J2000.0 by starting the Julian date and centuries, the specific formula is as follows:

Figure CN104123461BD00053

[0042]由太阳的平根数计算公式获取t时刻的轨道根数后,通过轨道根数与位置矢量的转换公式可以获得太阳的坐标矢量,公式如下: [0042] After calculating the number of levels from the root of the track number of the sun acquisition time t in the formula can be obtained by converting the coordinates of the vector sun Formulas orbital position vector using the following formula:

Figure CN104123461BD00054

[0044] 其中:a、e分别为太阳轨道的半长径、偏心率,E为太阳轨道的偏近点角。 [0044] wherein: a, e, respectively solar orbit semi-major axis, the eccentricity, E is the eccentric anomaly solar orbit.

Figure CN104123461BD00055

[0047] 其中:(GR)为J2000历元天球坐标系到瞬时真赤道地心系的转换矩阵。 [0047] wherein: (GR) is a J2000 epoch celestial coordinate system transformation matrix to the instantaneous real geocentric equatorial line.

[0048] >计算测站在当前历元真赤道真春分点坐标系下坐标矢量; [0048]> calculating the measured standing current epoch really true equinox equatorial coordinate system coordinate vector;

Figure CN104123461BD00061

[0052] 其中:其中λ、Ρ分别是测站的地理经度、地理炜度。 [0052] wherein: where λ, Ρ are geographic longitude, geographic Wei of stations. ae是参考椭球体的赤道半径,f 即参考椭球体的扁率ae = 6378.136km,f = 0.00335281,(ER)TS准地固坐标系到瞬时真赤道地心系的转换矩阵,(EP) τ为地固坐标系到准地固坐标系之间的转换矩阵。 ae is the equatorial radius of the reference ellipsoid, f flat rate i.e. the reference ellipsoid ae = 6378.136km, f = 0.00335281, (ER) TS quasi-fixed coordinate system transformation matrix to the true instantaneous geocentric equatorial line, (EP) τ of the quasi-fixed coordinate system fixed to the transformation matrix between the coordinate system.

[0053] 各旋转矩阵Rx(0),…的计算公式为 [0053] each of the rotation matrix Rx (0), ... calculated as

Figure CN104123461BD00062

[0055] 旋转矩阵Rx(0),…是正交矩阵,有 [0055] The rotation matrix Rx (0), ... is an orthogonal matrix, there

Figure CN104123461BD00063

···步骤二:基于空间物体的在当前历元真赤道真春分点坐标系下的位置和速度矢量建立轨道坐标系; ??? Step two: a space based on the position and velocity of the object at the current epoch really true equinox equatorial coordinate system established track coordinate vector;

[0056] 轨道坐标系是常用的空间物体本体坐标系,对地定向的三轴稳定空间物体(如遥感空间物体、通信空间物体)的姿态就定义在此坐标系中。 [0056] The coordinate system is a common rail body of the object space coordinate system of three-axis stabilized space oriented object (e.g., object space remote sensing, communication space object) in this posture is defined coordinate system. 其以空间物体轨道平面为坐标平面,ZQ轴由质心指向地心,XQ轴在轨道平面内与ZQ轴垂直并指向空间物体速度方向,yo轴与xo、zo轴右手正交且与轨道平面的的法线平行,如图3,此坐标系在空间中是旋转的。 A space which is in orbit plane coordinate plane, the centroid point ZQ geocentric axis, XQ shaft within the track ZQ plane perpendicular to the axis direction and speed of the object space points, yo orthogonal axes xo, zo axis and the right orbital plane is parallel to the normal, as shown in FIG 3, this coordinate system is rotated in space. 通常称xo、yo、Z0为滚动、俯仰和偏航轴。 Usually called xo, yo, Z0 for the roll, pitch and yaw axes.

[0057] 利用空间物体轨道运动的位置和速度矢量,可将轨道坐标系的各坐标轴的单位矢量表示为: [0057] The position and velocity vector of the moving object using the orbital space, the unit vector can track each axis of the coordinate system is expressed as:

Figure CN104123461BD00064

[0059] %、为和%构成了右手螺旋系,其中f和¥为目标的位置和速度矢量。 [0059]% of% and a right-handed spiral configuration system, and wherein f ¥ target position and velocity vector.

[0060] 步骤三:引入姿态参量建立空间物体本体坐标系; [0060] Step Three: introducing posture parameter space objects body coordinate system;

[0061] 轨道坐标系只是一种参考坐标系,对姿态的描述即体现星体在这个坐标系坐标轴方向的物理量,称为姿态参数,引入空间物体姿态的三个欧拉角一偏航角Φ、俯仰角Θ和滚动角Φ,构造本体坐标系与轨道坐标系的映射关系。 [0061] The track system is only a coordinate frame of reference, the description of the attitude, i.e. star embodied in this physical coordinate direction of the coordinate axis, referred to attitude parameters, introduced into the space of the three Euler angles object pose a yaw angle Φ , roll angle and pitch angle Θ [Phi], a mapping relationship configured coordinate system and the body coordinate system of the track.

[0062] 三个欧拉角的定义如下: [0062] define three Euler angles as follows:

[0063] >偏航角Φ:空间物体滚动轴毛在当地水平面上的投影与轨道%轴的夹角;所述% 指向空间物体速度方向; [0063]> yaw angle Φ: the angle between the rolling space object hair shaft projection local horizontal plane with the rail shaft%;% point to the direction of the velocity space object;

[0064] >俯仰角Θ :空间物体滚动轴%与其在当地水平面上的投影的夹角; [0064]> pitch angle Θ: angle between the axis of the rolling space object in its local% horizontal plane of projection;

[0065] >滚动角@ :空间物体俯仰轴Λ与其在当地水平面上的投影的夹角。 [0065]> @ roll angle: angle Λ space object pitch axis locally its projection on a horizontal plane.

[0066] 轨道坐标系与本体坐标系之间转换关系一姿态矩阵的表达如下: [0066] Expression coordinate conversion relationship between the track and the body coordinate system, an attitude matrix as follows:

Figure CN104123461BD00071

[0069] 步骤四:进行照明矢量和观测矢量的计算。 [0069] Step Four: calculated vector and the illumination of the observation vector.

[0070] 根据步骤三建立的坐标映射关系,将太阳和测站的位置矢量及_和尾转换至本体坐标系下的方位角和高度角。 [0070] The coordinate mapping relationship established in step three, and _ the position vector and the tail of the sun and the station switched to the azimuth and elevation angles in the body coordinate system. (参见公式16) (See equation 16)

[0071] 根据矢量运算定律,可得任意一个当前历元真赤道真春分点坐标系矢量转换到本体坐标系中矢量g的映射关系,具体如下: [0071] According to the laws of vector operations, may have any one of the current epoch really true equatorial equinox converted to vector coordinates in the body coordinate system mapping relationship vector g, as follows:

Figure CN104123461BD00072

[0075] 在上述坐标转换关系的基础上,建立空间物体的本体坐标系,将研究涉及到的测站矢量瓦_"、太阳矢量及_.作为瓦分别代入公式(15)中进行坐标转换,转换到本体坐标系中观测矢量和照明矢量?,胃,再进行方位角和高度角的计算,这样就可以获得太阳照射关系A_、h_和测站的可视关系4__、11__,利用这四个参量表征空间物体被太阳照射和测站可视关系,分析其可视条件随时间的变化。 [0075] Based on the above conversion relationship coordinates established on the body coordinate space objects, the study involved stations vector W _ ", the sun vector and _ as W are substituted into equation (15) in the coordinate transformation, conversion to the body coordinate system and the observation vector lighting vector?, the stomach, and then calculates the azimuth angle and elevation angle, so that the sun can be obtained A_ relationship, the relationship between the visual and h_ stations 4 __, 11__ by four a space object parameters characterizing the relationship between the sun and is visualized station, its visual analysis conditions change with time.

[0076] 本发明的技术效果是将空间物体的外形参数和姿态参数纳入光照可视关系的计算方法中,可直观描述各个立面随时间的照射可视关系;现有体系用一个参量-相位角来描述光照可视关系,则同一个相位角可能对应多个实际照射可视情况,本方法用四个参量描述光源照射和测站可视关系,更加精确也更加唯一。 [0076] The technical effect of the invention is the shape and pose parameters of the object into spatial parameters calculated in relation visible light, irradiation can be visually describe various visual facade with time; conventional system with a parameter - Phase describe illumination visual angle relationship, with a plurality of phase angle may correspond to the actual illumination optionally, the method described in relation visible light source and a station with four parameters, more accurate and more unique.

Claims (5)

  1. 1. 一种用于空间物体光度分析的光照可视关系计算方法,其特征在于,所述方法包括如下步骤: 步骤一:计算获取当前历元真赤道真春分点坐标系下空间物体的位置、速度矢量F和夂; 步骤二:基于空间物体的在当前历元真赤道真春分点坐标系下的位置和速度矢量建立轨道坐标系; 步骤三:引入姿态参量建立空间物体本体坐标系,构造本体坐标系与轨道坐标系的映射关系;所述姿态参量为空间物体姿态的三个欧拉角一偏航角Φ、俯仰角Θ和滚动角Φ ; 步骤四:进行照明矢量和观测矢量的计算;所述照明矢量为太阳-卫星矢量,所述观测矢量为测站-卫星矢量。 A calculation method of the illumination visual spatial relationship of objects for photometric analysis, characterized in that the method comprises the following steps: Step 1: calculate the spatial position of the object acquired under the current epoch really true equinox equatorial coordinates, speed vector F and Wen; step two: based on the position and velocity space object in the current epoch true equatorial true equinox coordinates vector building track coordinates; step three: introducing posture parameter space objects body coordinate system, configured body coordinate system mapping relationship between the coordinate system of the rail; the gesture spatial parameter object pose three Euler angles of a yaw angle Φ, Θ pitch angle and roll angle [Phi]; step four: calculation of the observation vector and the illumination vector; the solar illumination vector - satellite vector, the observation vector is a station - satellite vector.
  2. 2. 根据权利要求1所述的光照可视关系计算方法,其特征在于,所述步骤一具体包括: 1) 利用SGP4或SDP4模型进行空间物体Tle轨道根数的外推预报计算,获取当前历元轨道坐标系下的位置和速度矢量; 2) 将空间物体在当前历元轨道坐标系下位置和速度矢量转换至当前历元真赤道真春分点坐标系下的位置、速度矢量P和 The calculation method according to claim 1 relationship visible light, wherein said step a comprises: 1) using SDP4 SGP4 or extrapolated models predict the number of space objects Tle orbital calculation, obtaining the current epoch position and velocity vectors in the coordinate system of the meta-track; 2) the spatial position of the object at the current position and velocity vector epoch track coordinate transformation to the current epoch really true equinox equatorial coordinate system, and the velocity vector P
    Figure CN104123461BC00021
    3) 同时获取光源和测站在此坐标系中的位置矢I 所述光源为太阳。 3) simultaneously acquiring the light source and the measured standing position vector in this coordinate system I the light source is the sun.
  3. 3. 根据权利要求1所述的光照可视关系计算方法,兵符世仕丁,所述步骤二中轨道坐标系的x〇、y〇、ZQ轴分别为滚动、俯仰和偏航轴。 The calculation method according to claim 1 relationship visible light, easily intimidated x〇 Shiding world, said step two tracks coordinate system y〇, ZQ axis respectively roll, pitch and yaw axes.
  4. 4. 根据权利要求1所述的光照可视关系计算方法,其特征在于,所述步骤三中姿态参量为:空间物体姿态的三个欧拉角一偏航角Φ、俯仰角Θ和滚动角Φ,用于构造本体坐标系与轨道坐标系的映射关系;其中偏航角Φ表示空间物体滚动轴%在当地水平面上的投影与轨道^轴的夹角;俯仰角Θ表示物体滚动轴馬与其在当地水平面上的投影的夹角;滚动角炉表示物体俯仰轴为与其在当地水平面上的投影的夹角;所述馬指向空间物体速度方向。 The calculation method according to claim 1 relationship visible light, wherein said step posture three parameter as: three Euler angles Φ a yaw angle of the object pose space, roll angle and pitch angle Θ Φ, a mapping relationship configured coordinate system and the body coordinate system track; wherein [Phi] represents a yaw angle of the object space with the roll axis angle track% ^ axis in the projection of the local horizontal plane; pitch angle Θ represents the object and its roll axis MA the local angle between the horizontal plane of projection; object represents the roll angle of the furnace and its pitch axis as a projection angle in the horizontal plane of the local; the horse pointing object space velocity direction.
  5. 5. 根据权利要求1所述的光照可视关系计算方法,其特征在于,步骤四的具体方法是: 据步骤三建立的坐标映射关系,将太阳和测站的位置矢量及和尾_.。 The method of calculating the relationship between the visual light according to claim, characterized in that, the specific method is four steps: data coordinate mapping relationship established in step three, the sun and the position vector and the tail station and _ .. "转换至本体坐标系下照明矢量G wi和观测矢量匕,并转换成方位角和高度角,由此获得太阳照射A_、h_和测iilijAstatioriN hstation表征的可视关系D "H_ and to convert the measured relationship between the visual representation iilijAstatioriN hstation D G illumination vector wi and the body coordinate system dagger observation vector, and transformed into the azimuth angle and elevation angle, thereby obtaining a sun A_,
CN 201410350259 2014-07-22 2014-07-22 A method for calculating the relationship between the spatial light visual object for photometric analysis CN104123461B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201410350259 CN104123461B (en) 2014-07-22 2014-07-22 A method for calculating the relationship between the spatial light visual object for photometric analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201410350259 CN104123461B (en) 2014-07-22 2014-07-22 A method for calculating the relationship between the spatial light visual object for photometric analysis

Publications (2)

Publication Number Publication Date
CN104123461A true CN104123461A (en) 2014-10-29
CN104123461B true CN104123461B (en) 2017-03-29

Family

ID=51768870

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201410350259 CN104123461B (en) 2014-07-22 2014-07-22 A method for calculating the relationship between the spatial light visual object for photometric analysis

Country Status (1)

Country Link
CN (1) CN104123461B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104750999B (en) * 2015-04-10 2017-10-31 中国科学院国家天文台 Calculating a target transit period and screening methods based on the detection surface of the track foundation apparatus
CN105069274A (en) * 2015-06-29 2015-11-18 华北水利水电大学 Method for screening and determining effective shielding ground objects based on sunshine space-time characteristics

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6496260B1 (en) * 1998-12-23 2002-12-17 Molecular Devices Corp. Vertical-beam photometer for determination of light absorption pathlength
CN101034472A (en) * 2007-03-29 2007-09-12 上海大学 Landform transformation of satellite remote sensing digital image supported by GIS
CN101450716B (en) * 2008-12-26 2010-12-29 中国科学院国家天文台 Fault photo-detection method for earth synchronous transfer orbit satellite in orbit
CN103646127B (en) * 2013-11-20 2016-06-29 中国空间技术研究院 Satellite attitude and orbit visualization method for displaying three-dimensional

Also Published As

Publication number Publication date Type
CN104123461A (en) 2014-10-29 application

Similar Documents

Publication Publication Date Title
Donati et al. The large-scale axisymmetric magnetic topology of a very-low-mass fully convective star
Pillai et al. Ammonia in infrared dark clouds
Rupke et al. The multiphase structure and power sources of galactic winds in major mergers
Koposov et al. Constraining the Milky Way potential with a six-dimensional phase-space map of the GD-1 stellar stream
Napolitano et al. The Planetary Nebula Spectrograph elliptical galaxy survey: the dark matter in NGC 4494
US20110234631A1 (en) Augmented reality systems
Reid et al. Trigonometric parallaxes of high mass star forming regions: The structure and kinematics of the Milky Way
Newberg et al. The orbit of the orphan stream
Verhoeff et al. The complex circumstellar environment of HD 142527
Tamburro et al. Geometrically derived timescales for star formation in spiral galaxies
Gnedin et al. Probing the shape of the galactic halo with hypervelocity stars
Fukui et al. A Detailed Study of the Molecular and Atomic Gas toward the γ-Ray Supernova Remnant RX J1713. 7–3946: Spatial TeV γ-Ray and Interstellar Medium Gas Correspondence
CN101465071A (en) Multi-platform target tracking and distribution interactive simulation system
Stiles et al. Determining Titan's spin state from Cassini RADAR images
Majeau et al. A two-dimensional infrared map of the extrasolar planet HD 189733b
Geha et al. Local group dwarf elliptical galaxies. II. Stellar kinematics to large radii in NGC 147 and NGC 185
Kramer et al. PACS and SPIRE photometer maps of M 33: First results of the HERschel M 33 Extended Survey (HERM33ES)
Wu et al. Trigonometric parallaxes of star-forming regions in the Sagittarius spiral arm
CN101629850A (en) Method for inversing land surface temperature from MODIS data
Genzel et al. Phibss: Molecular gas, extinction, star formation, and kinematics in the z= 1.5 star-forming galaxy EGS13011166
Weltevrede et al. Gamma-ray and radio properties of six pulsars detected by the Fermi Large Area Telescope
Van Dyk et al. Supernova 2008bk and its red supergiant progenitor
Witte et al. Kinetic parameters of interstellar neutral helium: updated results from the ULYSSES/GAS-instrument
CN102168972A (en) RPC-based method for improving and calibrating block adjustment of three-linear array three-dimensional satellite
Bunce et al. Divergence of the equatorial current in the dawn sector of Jupiter's magnetosphere: analysis of Pioneer and Voyager magnetic field data

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C53 Correction of patent for invention or patent application
COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: WANG JIANFENG TO: WANG JIANFENG ZOU WEIPING MAO YONGNA LI MING LU XIAOMENG WANG HUIJUAN GE LIANG JIANG XIAOJUN CHEN LINA WU YING

GR01