CN104105814A - 利用氧化铝层钝化太阳能电池的方法和装置 - Google Patents

利用氧化铝层钝化太阳能电池的方法和装置 Download PDF

Info

Publication number
CN104105814A
CN104105814A CN201380008784.6A CN201380008784A CN104105814A CN 104105814 A CN104105814 A CN 104105814A CN 201380008784 A CN201380008784 A CN 201380008784A CN 104105814 A CN104105814 A CN 104105814A
Authority
CN
China
Prior art keywords
substrate
reaction chamber
icp source
icp
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380008784.6A
Other languages
English (en)
Other versions
CN104105814B (zh
Inventor
T.迪佩尔
B.鲁斯
O.霍恩
T.杜尔韦伯
N-P.哈德尔
M.西贝尔特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Singulus Technologies AG
Original Assignee
Singulus Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Singulus Technologies AG filed Critical Singulus Technologies AG
Publication of CN104105814A publication Critical patent/CN104105814A/zh
Application granted granted Critical
Publication of CN104105814B publication Critical patent/CN104105814B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45514Mixing in close vicinity to the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明涉及一种利用AlOx层(12),特别是Al2O3层涂覆基板(10)的方法,包括以下方法步骤:(a)提供具有反应室(22)和至少一个RF电感(24)的电感耦合等离子体源(ICP源)(20),(b)将铝化合物,优选为三甲基铝(TMA)引入ICP源,(c)将作为反应气体的氧和/或氧化合物引入ICP源,并且将能量与ICP源电感耦合以形成等离子体(30),以及(d)在基板上沉积AlOx层。本发明还涉及一种用于在基板上沉积薄层,特别是用于实施上述方法的涂覆部件。涂覆部件包括:具有反应室(22)和至少一个RF电感(24)的电感耦合等离子体源(ICP)(20),在反应室中用于布置基板的基板支架,以及用于将铝化合物和反应气体引入ICP源的通道(26,28)。基板在反应室中布置成使得待涂覆的基板表面面向ICP源。

Description

利用氧化铝层钝化太阳能电池的方法和装置
技术领域
本发明涉及一种对基板涂覆氧化铝层的方法和系统,尤其是用于太阳能电池表明钝化的方法和系统。
背景技术
由于例如半导体表面处的非结合状态,电子和空穴可能重组或者污染物(例如湿气)可能积聚。因此,诸如半导体元件和/或太阳能电池等处于非结合状态的电子器件的重组过程会是不利的并将减少这些器件的寿命。而且,这些器件的操作模式由于在表明处可能发生的重组过程而将是不可准确预测和计算的。
鉴于上述原因,试图为这类器件的表面提供一种起到表面钝化作用的涂层。这种钝化层对于例如高效太阳能电池(例如,PERC(钝化发射区和背表面电池)太阳能电池的背面钝化或n型太阳能电池的正面钝化)特别有利。
DE-A1-102007054384例如提出,对于表面钝化,双介电层被用于使太阳能电池钝化。为此,第一层是由含铝气体通过相继的气相沉积(原子层沉积,ALD)而形成的薄氧化铝层,而第二个较厚的层含有氮化硅或氧化硅或碳化硅并且通过等离子增强化学气相沉积(PECVD)而形成。
尽管这类方法提供了在晶体太阳能电池生产中对于背面钝化的质量非常好的结果,然而使用少量含铝气体的同时每小时的电池高产出几乎是不可能的。
发明内容
本发明的目的是提供一种适于生产表面钝化器件的方法和系统或涂覆部件,其产出量高、并且诸如含铝气体等工艺气体的使用量低并且同时又不会放弃高层质量。
此目的通过权利要求的特征来实现。
本发明基于使用电感耦合等离子体(ICP)来沉积例如氧化铝的钝化层的概念。
这样,例如,可以实现反应产物的高转化率和高涂覆率。按照这种方式,也可以增加高质量层的更新率(低缺陷率及同样在大表面上的良好均匀性)。
本发明特别涉及利用AlOx层,尤其是Al2O3层涂覆基板的方法。提供了一种具有反应室和至少一个RF电感的电感耦合等离子体源(ICP源)。优选为三甲基铝(TMA)和/或二甲基铝异丙醇盐(DMAI)的铝化合物和作为反应气体的氧和/或氧化合物被引入ICP源。为了形成等离子体,将能量与ICP源电感耦合并且在基板上沉积AlOx层。
等离子体包括自由电子、离子、分子、中子和自由基。等离子体可以被用于例如将非反应分子i.a.转换为带电的和/或激活的、反应分子和/或自由基,其中可以通过例如所施加的电场和/或磁场来控制的等离子体的反应性和分布。
根据本发明,产生等离子体所需的能量经由射频(RF)电感与填充有工艺气体的反应室耦合。
对于生产电子器件而言,例如对于半导体和/或太阳能电池产业而言,使用低离子能等离子体是有利的。因此,例如经由通道可将特定的反应气体引入反应室。
激活的气体可以与形成层的物质(例如,TMA、DMAI、(CH3)3Al或SiH4)反应,其中新物质的层形成在可能存在来自所有反应部分的元素的基板表面。
对于氧化铝涂层而言,例如可使用氧气(O2),并且为了生产氮化硅层,可使用诸如NH3等的含氮反应气体。
有利地,ICP等离子体源的电感耦合能量可导致较高的等离子体密度。这样,可以低压力实施该方法,从而沉积层在具有特定层组成的相对较大面积(例如,在100mmx100mm、150mmx150mm、156mmx156mm或更大的范围内)上表现出良好的均匀性,同时可以高的涂覆率实施该方法。
在一个实施例中,等离子体密度和离子能量相互独立地受到控制。例如,等离子体密度可以至少为1x1011离子/cm3,优选为1x1012离子/cm3至9x1013离子/cm3。与其独立的是,离子能量在一个实施例中可以处在1至30eV,优选小于20eV。由于离子能量和等离子体密度可以相互独立地受到控制,因此可以获得高的等离子体密度而不会破坏基板表面或基板本身,特别是发射极。
在一个实施例中,在反应室中存在10-4至10-1mbar,优选为10-3至5*10-2mbar的真空。反应室中的此压力使得在大表面上也能够生产出非常均匀的层,从而按照这种方式可以增加涂层器件的产出量。
在一个实施例中,以1-60MHz,优选13.56MHz的频率实施能量的电感耦合。由于借助于RF电感的直接能量耦合,可以实现高的等离子体密度进而实现高的涂覆率。
在一个实施例中,基板由硅组成。硅优选用于半导体和/或太阳能电池的生产和/或涂覆。特别地,由于晶体硅太阳能电池经过若干年的较长时期(直至20年或更长)尤其在操作期间倾向于较少由于劣化而损失,因此使用晶体硅会是有利的。
在一个实施例中,另外一层,特别是介电的层可以沉积在氧化铝层上。为此,根据该方法,设置有AlOx层的基板既可以留在同一室中又可以被转移到具有另外的ICP源的另外的反应室中。优选地将硅化合物引入第二ICP源并且将氮或氧或碳氢化合物(举例来讲诸如为CH2)和/或氮化合物或氧化合物或碳氢化合物的化合物作为反应气体引入第二ICP源。为了形成等离子体,将能量耦合到第二ICP源并且然后在AlOx层上沉积各自的SiNy或SiOx或SiCz
这样,例如,在基板上可以容易形成两层或更多层的钝化堆叠物。特别地,另外的(第二)反应室可以在同一涂覆部件中紧挨着第一反应室布置。这样,在同一涂覆部件中的另外的加工步骤中,可以将特别是不同材料的另外一层涂布到之前已经涂覆有第一层的基板上而不需要复杂地向内和/或向外转移(带涂层的)基板。
本发明还涉及一种用于在基板上沉积薄层的涂覆部件,特别是用于实施以上其中一种方法的涂覆部件。所述涂覆部件可以特别适用于满足上述工艺参数。
根据本发明,涂覆部件包括:具有反应室和至少一个RF电感的电感耦合等离子体源(ICP);在反应室中的用于布置基板,特别是多个基板,的基板支架;以及用于将铝化合物和反应气体引入ICP源的通道。基板在反应室中布置成使得待涂覆的基板表面面向ICP源。
电感耦合等离子体源包括反应室和耦合至射频功率源的至少一个电感。这样,产生等离子体所需的能量可以直接耦合至反应室。而且,优选设置有用于将反应气体和/或用于将例如流体前体(举例来讲诸如为TMA)引入等离子体源的通道。将基板布置成使得待涂覆的基板表面面向等离子体源使得能够实现涂覆率的最优化进而实现涂覆器件的产出量的增加。
根据一个实施例,涂覆部件包括:至少第二个电感耦合等离子体源(ICP),其具有反应室和至少一个RF电感;以及用于将硅化合物和反应气体引入第二/另外的ICP源(数个源)的通道。
优选地,涂覆部件可以被设计成包括多个加工站,其设置有ICP源和对应的反应室和通道。在一个实施例中,涂覆部件还包括传送机构,使得特别是涂覆基板可以从第一加工站被引导至第二加工站,特别是被引导至具有反应室的第二等离子体源。在第二加工站/源/反应室中,可能发生另外的涂覆,特别用于形成(相比于第一层的)不同层。而且,可以提供在另外的加工站/源/反应室中的另外的涂覆。
在一个实施例中,ICP源或数个ICP源的电感布置在对应的反应室之外并且借助于介电分隔壁与反应室隔开。优选地,介电壁将反应室与电感具有射频功率源的区域隔开使得其特别为电感提供保护并且等离子体可以受控和直接的方式形成。
所述方法和涂覆部件可以例如用于钝化,特别是优选为晶体太阳能电池的太阳能电池的背面钝化。
本发明的方法和对应的涂覆部件使得能够生产出高质量的低缺陷均匀层(低压力)。而且,由于氧的高分解和源中的特别是TMA和/或DMAI的含铝气体的高转化率,也可以实现例如具有高电池效率的太阳能电池的涂覆基板的高产出量,而同时TMA和/或DMAI的使用量低。这样,每圆片或每瓦特的材料成本显著降低。
相对于已知方法或涂覆部件的另外的优点在于这些方法可以在一个单独的部件(例如,与具有相同压力或不同压力的多个反应室和/或在各个室之间具有适当的传送机构一起)中实施:这样,例如,可以在一个平台(例如从DE 10 2009 018 700中已知这种平台)中发生从氧化铝和氮化硅层的整个背面层堆叠,这点对于ALD方法和对应的ALD部件来讲是不可能的。在一个实施例中,本发明的方法的循环操作和本发明的涂覆部件的循环操作是可能的。例如,按照这种方式至少一个基板可以处于第一反应室(或另一加工站)中而同时至少另外的基板处在第二反应室(或另外的加工站)中,以此类推。这样,在涂覆部件被填充用以涂覆下一基板或下一组基板之前单个基板或单组基板在部件中经历完整的涂覆过程不再是必须的:只要例如在第一室中的第一工艺步骤结束,基板(或一组基板)就可以在另一室中被传送用于进一步的加工,而优选地与此同时第一室填充下一个基板或下一组基板,以此类推。例如,基板或一组基板可以在循环操作中的一个循环中经历涂覆部件的各个站。这样,循环时间减少,其进而导致例如在循环操作中较高的产出量而无需卸载或卸荷。
上述工艺参数的一些,特别是相互独立的参数,尤其是用于氧化铝涂覆的参数可以总结如下:
压力:10-4to10-1mbar,优选范围从10-3到5*10-2mbar
基板温度:直至450℃的室温
射频:1-60MHz,优选13.56MHz
等离子体功率:0.5至10kW,优选3.5至6kW
离子能量:1eV至30eV,优选小于20eV
等离子体密度:至少1x1011离子/cm3,优选1x1012离子/cm3至9x1013离子/cm3
电离程度:直至50%
分解程度:2个原子的分子(O2)80%
等离子体质量:借助于低压的无颗粒等离子体束
附图说明
基于以下附图进一步详细描述本发明:
图1是ICP-PECVD涂覆部件的加工站的示意图,
图2是ICP-PECVD涂覆部件的多个加工站的示意图,并且
图3是具有介电分隔壁的ICP-PECVD涂覆部件的加工站的示意图。
具体实施方式
图1显示了带有基板支架11和基板10的涂覆部件穿过特别是加工站的一部分的示意性截面图。加工站包括位于基板支架11与基板10下方的ICP源20,其带有反应室22和至少一个环周RF电感24。在本实施例中,RF电感24位于ICP源的横向内壁处,从而限定反应室22的横向轮廓。ICP源进一步包括通道28,例如为TMA和/或DMAI的流体前体可以通过通道28被引入反应室。例如为氧的反应气体也可以经由这些通道或另外的通道26中之一被引入室22。
在能量的直接电感耦合之后,产生等离子体30,其形成为朝向基板10待涂覆的下表面。最后,例如氧化铝的薄层12进而可沉积在基板10上。
图2显示了多个加工站的示意图。相邻于用于加热基板的IR站,设置有多个ICP源,基板例如可借助于传送机构一个接一个地顺时针和/或按任意顺序到达多个ICP源。为了监视基板温度,可以设置至少一个温度传感器(未示出)。
作为备选方案,也可以使基板停留在支架中,各个站/源/室(例如,通过旋转室的平行于基板平面的平面)可附接到基板的一侧用以对基板涂覆。
可以在部件中用不同的材料涂覆基板。例如,首先可利用TMA和/或DMAI作为前体并且利用氧作为反应气体将氧化铝层沉积在基板上,之后,可利用SiH4作为前体并且利用NH3作为反应气体将氮化硅层沉积在氧化铝层上。
图3显示了涂覆部件穿过特别是加工站的一部分的示意性截面图。在一个实施例中,加工站也可以基本上包括图1的加工站的特征并且显示了下侧的室壁122a。与图1不同的是,图3中的ICP源具有将RF电感124与反应室122分隔的介电分隔壁123。换句话说,介电分隔壁123的外形尺寸可以限定反应室的至少侧壁和/或可以水槽状和/或环状地布置在源中。特别地,介电分隔壁可以为电感提供保护,并且用于形成受到控制并且指向待涂覆的基板表面的等离子体。
这样,本发明的方法和对应的涂覆部件使得能够以低加工压力和低材料成本来生产高质量层。相对于已知方法或涂覆部件的进一步优点在于,这些方法可以在一个单独的部件中来实施从而减少循环时间并且增加产出量。

Claims (15)

1.一种利用AlOx层(12),特别是Al2O3层涂覆基板(10)的方法,包括以下方法步骤:
(a)提供具有反应室(22)和至少一个RF电感(24)的电感耦合等离子体源(ICP源)(20),
(b)将铝化合物引入所述ICP源(20),
(c)将作为反应气体的氧和/或氧化合物引入所述ICP源,并且将能量与所述ICP源(20)电感耦合以形成等离子体(30),以及
(d)在所述基板(10)上沉积所述AlOx层(12)。
2.根据权利要求1所述的方法,其中,所述基板(10)由硅组成。
3.根据权利要求1或2所述的方法,其中,等离子体密度至少为1x1011离子/cm3,优选为1x1012离子/cm3至9x1013离子/cm3
4.根据权利要求1至3中任一项所述的方法,其中,离子能量的范围是1至30eV之间。
5.根据权利要求1至4中任一项所述的方法,其中,在所述反应室(22)中存在10-4至10-1mbar,优选为10-3至5*10-2mbar的真空。
6.根据权利要求1至5中任一项所述的方法,其中,以1-60MHz,优选为13.56MHz的频率实施能量的电感耦合。
7.根据权利要求1至6中任一项所述的方法,包括下述步骤
(a)在所述反应室(22)中利用所述ICP源(20)或另外的ICP源或者在另外的反应室中利用另外的ICP源在所述AlOx层(12)上沉积SiNy层。
8.根据权利要求7所述的方法,其中,步骤(e)包括以下步骤:
(e1)将硅化合物引入所述ICP源(20)或所述另外的ICP源,以及
(e2)将作为反应气体的氮和/或氮化合物引入所述ICP源,并且将能量与所述ICP源电感耦合以形成等离子体。
9.根据权利要求1至8中任一项所述的方法,其中,所述基板温度处于直至450℃的室温的范围内。
10.根据权利要求1至9中任一项所述的方法,其中,等离子体功率为0.5至10kW,优选3.5至6kW。
11.根据权利要求1至10中任一项所述的方法,其中,所述等离子体密度和所述离子能量相互独立地受到控制。
12.一种用于在基板(10)上沉积薄层,特别是用于实施根据权利要求1至11中任一项所述的方法的涂覆部件,包括:
(a)具有反应室(22)和至少一个RF电感(24)的电感耦合等离子体源(ICP)(20),
(b)在所述反应室(22)中用于布置至少一个基板(10)的基板支架(11),以及
(c)用于将铝化合物和反应气体引入所述ICP源(20)的通道(26,28),
(d)其中,所述基板(10)在所述反应室(22)中布置成使得所述基板(10)的待涂覆的表面面向所述ICP源(20)。
13.根据权利要求12所述的涂覆部件,包括:
(e)各自具有反应室和至少一个RF电感的至少一个另外的电感耦合等离子体源(ICP),以及
(f)用于将硅化合物和反应气体引入所述另外的ICP源(数个源)的通道。
14.根据权利要求12或13所述的涂覆部件,其中,所述ICP源或数个ICP源的电感(124)布置在对应的反应室(122)之外并且借助于介电分隔壁(123)与反应室隔开。
15.根据权利要求1至11中任一项所述的方法的用途或根据权利要求12、13或14所述的装置用于钝化的用途,特别用于优选为晶体太阳能电池的太阳能电池的背面钝化。
CN201380008784.6A 2012-02-09 2013-02-06 利用氧化铝层钝化太阳能电池的方法和装置 Active CN104105814B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012201953.7 2012-02-09
DE102012201953A DE102012201953A1 (de) 2012-02-09 2012-02-09 Verfahren und Vorrichtung zur Passivierung von Solarzellen mit einer Aluminiumoxid-Schicht
PCT/EP2013/052298 WO2013117576A1 (de) 2012-02-09 2013-02-06 Verfahren und vorrichtung zur passivierung von solarzellen mit einer aluminiumoxid-schicht

Publications (2)

Publication Number Publication Date
CN104105814A true CN104105814A (zh) 2014-10-15
CN104105814B CN104105814B (zh) 2017-10-24

Family

ID=47780024

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380008784.6A Active CN104105814B (zh) 2012-02-09 2013-02-06 利用氧化铝层钝化太阳能电池的方法和装置

Country Status (7)

Country Link
US (1) US20150004331A1 (zh)
EP (1) EP2812461B1 (zh)
KR (1) KR20140128322A (zh)
CN (1) CN104105814B (zh)
DE (1) DE102012201953A1 (zh)
MY (1) MY169705A (zh)
WO (1) WO2013117576A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097341A (zh) * 2021-03-31 2021-07-09 通威太阳能(安徽)有限公司 一种PERC电池、其AlOx镀膜工艺、多层AlOx背钝化结构及方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101881534B1 (ko) * 2016-02-04 2018-07-24 주식회사 테스 플라즈마를 이용한 금속산화물이 포함된 탄소막의 형성 방법
CN107623052B (zh) * 2017-09-01 2023-12-05 常州比太科技有限公司 一种太阳能电池片钝化用Al2O3镀膜系统和方法
DE102018004086A1 (de) 2018-05-18 2019-11-21 Singulus Technologies Ag Durchlaufanlage und Verfahren zum Beschichten von Substraten
CN110699674B (zh) * 2019-10-10 2021-12-24 湖南红太阳光电科技有限公司 一种低频pecvd沉积氧化铝的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101050523A (zh) * 2006-04-06 2007-10-10 周星工程股份有限公司 形成氧化物膜的方法和氧化物沉积设备
US20080199632A1 (en) * 2007-02-21 2008-08-21 Colorado School Of Mines Self-Limiting Thin Film Synthesis Achieved by Pulsed Plasma-Enhanced Chemical Vapor Deposition
CN102064237A (zh) * 2010-11-29 2011-05-18 奥特斯维能源(太仓)有限公司 一种用于晶体硅太阳电池的双层钝化方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2538300B2 (de) * 1975-08-28 1977-06-30 Dornier System Gmbh, 7990 Friedrichshafen Verfahren zur herstellung einer solarabsorberschicht
DE3206421A1 (de) * 1982-02-23 1983-09-01 Siemens AG, 1000 Berlin und 8000 München Verfahren zum herstellen von schichten aus hochschmelzenden metallen bzw. metallverbindungen durch abscheidung aus der dampfphase
US20020004309A1 (en) * 1990-07-31 2002-01-10 Kenneth S. Collins Processes used in an inductively coupled plasma reactor
US6070551A (en) * 1996-05-13 2000-06-06 Applied Materials, Inc. Deposition chamber and method for depositing low dielectric constant films
US5846883A (en) * 1996-07-10 1998-12-08 Cvc, Inc. Method for multi-zone high-density inductively-coupled plasma generation
US6013584A (en) * 1997-02-19 2000-01-11 Applied Materials, Inc. Methods and apparatus for forming HDP-CVD PSG film used for advanced pre-metal dielectric layer applications
US5869149A (en) * 1997-06-30 1999-02-09 Lam Research Corporation Method for preparing nitrogen surface treated fluorine doped silicon dioxide films
JP4556329B2 (ja) * 1999-04-20 2010-10-06 ソニー株式会社 薄膜形成装置
US7087537B2 (en) * 2004-03-15 2006-08-08 Sharp Laboratories Of America, Inc. Method for fabricating oxide thin films
US7544625B2 (en) * 2003-01-31 2009-06-09 Sharp Laboratories Of America, Inc. Silicon oxide thin-films with embedded nanocrystalline silicon
US6982448B2 (en) * 2004-03-18 2006-01-03 Texas Instruments Incorporated Ferroelectric capacitor hydrogen barriers and methods for fabricating the same
EP1872383A2 (en) * 2005-02-28 2008-01-02 Epispeed S.A. System and process for high-density,low-energy plasma enhanced vapor phase epitaxy
US7727828B2 (en) * 2005-10-20 2010-06-01 Applied Materials, Inc. Method for fabricating a gate dielectric of a field effect transistor
DE102007054384A1 (de) 2007-11-14 2009-05-20 Institut Für Solarenergieforschung Gmbh Verfahren zum Herstellen einer Solarzelle mit einer oberflächenpassivierenden Dielektrikumdoppelschicht und entsprechende Solarzelle
DE102009018700B4 (de) 2008-09-01 2020-02-13 Singulus Technologies Ag Beschichtungsanlage und Verfahren zum Beschichten
WO2010092758A1 (ja) * 2009-02-13 2010-08-19 三井造船株式会社 薄膜形成装置および薄膜形成方法
DE102010000002B4 (de) * 2010-01-04 2013-02-21 Roth & Rau Ag Verfahren zur Abscheidung von Mehrlagenschichten und/oder Gradientenschichten

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101050523A (zh) * 2006-04-06 2007-10-10 周星工程股份有限公司 形成氧化物膜的方法和氧化物沉积设备
US20080199632A1 (en) * 2007-02-21 2008-08-21 Colorado School Of Mines Self-Limiting Thin Film Synthesis Achieved by Pulsed Plasma-Enhanced Chemical Vapor Deposition
CN102064237A (zh) * 2010-11-29 2011-05-18 奥特斯维能源(太仓)有限公司 一种用于晶体硅太阳电池的双层钝化方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097341A (zh) * 2021-03-31 2021-07-09 通威太阳能(安徽)有限公司 一种PERC电池、其AlOx镀膜工艺、多层AlOx背钝化结构及方法
CN113097341B (zh) * 2021-03-31 2023-10-31 通威太阳能(安徽)有限公司 一种PERC电池、其AlOx镀膜工艺、多层AlOx背钝化结构及方法

Also Published As

Publication number Publication date
KR20140128322A (ko) 2014-11-05
US20150004331A1 (en) 2015-01-01
CN104105814B (zh) 2017-10-24
DE102012201953A1 (de) 2013-08-14
EP2812461B1 (de) 2016-11-09
EP2812461A1 (de) 2014-12-17
MY169705A (en) 2019-05-13
WO2013117576A1 (de) 2013-08-15

Similar Documents

Publication Publication Date Title
US11476109B2 (en) Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US20210265158A1 (en) Method of forming low-k material layer, structure including the layer, and system for forming same
US11626316B2 (en) Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
CN108070846B (zh) 气体供应单元及包括气体供应单元的基板处理装置
US20210066075A1 (en) Structures including dielectric layers and methods of forming same
CN104105814A (zh) 利用氧化铝层钝化太阳能电池的方法和装置
US20200051815A1 (en) Two-step process for gapfilling high aspect ratio trenches with amorphous silicon film
CN113529044A (zh) 形成含氮碳膜的方法和用于执行该方法的系统
US8607733B2 (en) Atomic layer deposition apparatus and atomic layer deposition method
US9748077B2 (en) Substrate processing device and substrate processing method
JP7008629B2 (ja) 基板処理装置
KR20220003470A (ko) 불소 억제제를 사용하여 실리콘 질화물과 실리콘 산화물을 증착하는 방법
US20220223411A1 (en) Methods for depositing gap-filling fluids and related systems and devices
KR20190003972A (ko) 분할 전극을 가지는 플라즈마 반응기
KR100600051B1 (ko) 원자층 증착 장비 및 그를 이용한 3원계 박막 형성 방법
US20220319831A1 (en) Method and system for forming silicon nitride layer using low radio frequency plasma process
US20240150898A1 (en) Chamber liner for substrate processing apparatus
US20220108881A1 (en) Method and system for forming silicon nitride on a sidewall of a feature
US20240274313A1 (en) Structures for patterning substrates and methods and systems for their manufacture
JP2013016705A (ja) プラズマ処理装置および薄膜の製造方法
TWI691614B (zh) 線性電漿輔助化學氣相沈積設備
KR20150028574A (ko) 적층형 원자층 증착 장치 및 방법
US20220267903A1 (en) Methods of forming phosphosilicate glass layers, structures formed using the methods and systems for performing the methods
US20240271280A1 (en) Method of forming dielectric material layer using plasma
KR102076512B1 (ko) 기판 처리 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant