CN104101867B - Multi band millimeter wave anticollision radar signal source - Google Patents
Multi band millimeter wave anticollision radar signal source Download PDFInfo
- Publication number
- CN104101867B CN104101867B CN201410280425.2A CN201410280425A CN104101867B CN 104101867 B CN104101867 B CN 104101867B CN 201410280425 A CN201410280425 A CN 201410280425A CN 104101867 B CN104101867 B CN 104101867B
- Authority
- CN
- China
- Prior art keywords
- signal source
- power amplifier
- band
- frequency
- multiband
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002184 metal Substances 0.000 claims abstract description 11
- 230000008878 coupling Effects 0.000 claims description 13
- 238000010168 coupling process Methods 0.000 claims description 13
- 238000005859 coupling reaction Methods 0.000 claims description 13
- 230000035807 sensation Effects 0.000 claims 2
- 238000007373 indentation Methods 0.000 claims 1
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 claims 1
- 229910052683 pyrite Inorganic materials 0.000 claims 1
- 239000011028 pyrite Substances 0.000 claims 1
- 230000007704 transition Effects 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 description 7
- 238000011161 development Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000010355 oscillation Effects 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/03—Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
- G01S7/032—Constructional details for solid-state radar subsystems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了一种多频段毫米波防撞雷达信号源,包括多频段毫米波防撞雷达信号源电路和金属屏蔽盒,多频段毫米波防撞雷达信号源电路固定组装在金属屏蔽盒内。毫米波防撞雷达信号源电路包括第一倍频器、多频段带通滤波器、第一功率放大器、第二倍频器、第一带通滤波器、第二功率放大器、第一驱动放大器、第三倍频器、第二带通滤波器、第三功率放大器、第一天线、第二天线和第三天线。本发明的多频段毫米波防撞雷达信号源采用微波信号源共用的方式,有效的减少了微波信号源和滤波器的数量,从而使得该毫米波防撞雷达信号源的制作成本大幅降低。
The invention discloses a multi-band millimeter wave anti-collision radar signal source, which comprises a multi-band millimeter wave anti-collision radar signal source circuit and a metal shielding box, and the multi-frequency millimeter wave anti-collision radar signal source circuit is fixedly assembled in the metal shielding box. The millimeter wave anti-collision radar signal source circuit includes a first frequency multiplier, a multi-band band-pass filter, a first power amplifier, a second frequency multiplier, a first band-pass filter, a second power amplifier, a first drive amplifier, A third frequency multiplier, a second bandpass filter, a third power amplifier, a first antenna, a second antenna and a third antenna. The multi-band millimeter-wave anti-collision radar signal source of the present invention adopts the mode of sharing microwave signal sources, which effectively reduces the number of microwave signal sources and filters, thereby greatly reducing the production cost of the millimeter-wave anti-collision radar signal source.
Description
技术领域 technical field
本发明涉及近中远距离汽车防撞雷达领域,尤其涉及一种多频段毫米波防撞雷达信号源。 The invention relates to the field of near, medium and long-distance automobile anti-collision radars, in particular to a multi-band millimeter-wave anti-collision radar signal source.
背景技术 Background technique
随着毫米波固态器件技术、计算机技术、光电子技术、信号处理技术以及毫米波集成电路技术的迅猛发展,为汽车安全系统提供了坚实工业基础。而汽车防撞雷达将是今后几年内汽车电子领域中需求增长最强劲的领域之一。研究发现,汽车防撞雷达是汽车安全系统领域最具革命性的技术,具有重大的产业发展前景。 With the rapid development of millimeter-wave solid-state device technology, computer technology, optoelectronic technology, signal processing technology and millimeter-wave integrated circuit technology, it provides a solid industrial foundation for automotive safety systems. And automotive anti-collision radar will be one of the fields with the strongest demand growth in the field of automotive electronics in the next few years. The study found that automotive anti-collision radar is the most revolutionary technology in the field of automotive safety systems and has great prospects for industrial development.
汽车电子的快速发展推动了汽车防撞雷达的研发热潮,世界各国都先后研发了汽车防撞雷达装置,由于没有统一的标准,导致汽车防撞雷达的工作频段比较多,但主要集中在24GHz、60GHz、77GHz。其中,欧洲邮政与电信管理委员会、欧洲电信标准院规定将76-77GHz用作车载雷达系统频段,美国联邦通信委员会规定46.7-46.9GHz和76-77GHz为车载防撞雷达频段。日本邮政和电信部规定60-61GHz和76-77GHz用作车载防撞雷达频段,亚太平洋电信标准化计划通过了将60-61GHz和76-77GHz用作车载防撞雷达频段的议案,国际电信联盟推荐60-61GHz和76-77GHz用作车载防撞雷达频段。中国则主要将24GHz和77GHz作为汽车防撞雷达研发的频段。 The rapid development of automotive electronics has promoted the research and development of automotive anti-collision radars. Countries around the world have successively developed automotive anti-collision radar devices. Due to the lack of uniform standards, there are many working frequency bands for automotive anti-collision radars, but they are mainly concentrated in 24GHz, 60GHz, 77GHz. Among them, the European Postal and Telecommunications Regulatory Commission and the European Telecommunications Standards Institute stipulate that 76-77GHz is used as the frequency band for vehicle radar systems, and the US Federal Communications Commission stipulates that 46.7-46.9GHz and 76-77GHz are frequency bands for vehicle collision avoidance radars. The Ministry of Post and Telecommunications of Japan stipulates that 60-61GHz and 76-77GHz are used as frequency bands for vehicle-mounted anti-collision radars. The Asia-Pacific Telecommunications Standardization Plan has passed a proposal to use 60-61GHz and 76-77GHz as frequency bands for vehicle-mounted anti-collision radars, recommended by the International Telecommunication Union 60-61GHz and 76-77GHz are used as frequency bands for vehicle-mounted anti-collision radars. China mainly uses 24GHz and 77GHz as the frequency bands for automotive anti-collision radar research and development.
目前,从事汽车防撞雷达系统开发的领先厂家有德国的ADC、西门子和Bosch公司,美国的Amerigon、Delphi和Eaton VORAD公司,日本的Denso、Epsilon Lambda、Fujitsu Ten、Hitachi、NEC和Omron公司。此外,还有瑞典的Autoliv Saab公司。 At present, leading manufacturers engaged in the development of automotive anti-collision radar systems include ADC, Siemens and Bosch in Germany, Amerigon, Delphi and Eaton VORAD in the United States, Denso, Epsilon Lambda, Fujitsu Ten, Hitachi, NEC and Omron in Japan. In addition, there is Autoliv Saab in Sweden.
尽管国际上较多的采用77GHz频段作为防撞雷达系统的工作频段,但是24GHz频段和60GHz频段也具有77GHz频段所不具备的优点,如24GHz防撞雷达系统具有体积小、集成化程度高、感应灵敏等特点;60GHz防撞雷达系统具有传输速率高、抗干扰能力强、方向性好等优点。所以,可以通过将24GHz、60GHz、77GHz等多个频段组合在一起构成一种多频段毫米波防撞雷达信号源。这种信号源综合了三个频段的优势,由此构成的多频段防撞雷达信号源,能够极大地改善汽车防撞雷达的性能,使之具有近中远防撞报警和市内规避碰撞等安全等功能。 Although the 77GHz frequency band is mostly used as the working frequency band of the anti-collision radar system in the world, the 24GHz frequency band and the 60GHz frequency band also have advantages that the 77GHz frequency band does not have. For example, the 24GHz anti-collision radar system has small size, high degree of integration, induction Sensitive and other characteristics; 60GHz anti-collision radar system has the advantages of high transmission rate, strong anti-interference ability, and good directionality. Therefore, a multi-band millimeter-wave anti-collision radar signal source can be formed by combining multiple frequency bands such as 24GHz, 60GHz, and 77GHz. This signal source combines the advantages of the three frequency bands. The multi-band anti-collision radar signal source thus constituted can greatly improve the performance of the car anti-collision radar, making it have safety features such as near, medium and far anti-collision alarms and urban collision avoidance. and other functions.
发明内容 Contents of the invention
本发明的目的是为了解决现有技术中毫米波防撞雷达信号源多频段共用的问题,而提出一种多频段毫米波防撞雷达信号源。 The purpose of the present invention is to solve the problem of multi-band sharing of the millimeter-wave anti-collision radar signal source in the prior art, and propose a multi-band millimeter-wave anti-collision radar signal source.
本发明为解决上述技术问题所采用的方案: The present invention adopts for solving the above technical problems:
一种多频段毫米波防撞雷达信号源,包括多频段毫米波防撞雷达信号源电路和金属屏蔽盒;多频段毫米波防撞雷达信号源电路固定组装在金属屏蔽盒内; A multi-band millimeter-wave anti-collision radar signal source comprises a multi-band millimeter-wave anti-collision radar signal source circuit and a metal shielding box; the multi-band millimeter-wave anti-collision radar signal source circuit is fixedly assembled in the metal shielding box;
所述的毫米波防撞雷达信号源电路包括第一倍频器、多频段带通滤波器、第一功率放大器、第二倍频器、第一带通滤波器、第二功率放大器、第一驱动放大器、第三倍频器、第二带通滤波器、第三功率放大器、第一天线、第二天线和第三天线; The millimeter wave anti-collision radar signal source circuit includes a first frequency multiplier, a multi-band bandpass filter, a first power amplifier, a second frequency multiplier, a first bandpass filter, a second power amplifier, a first a driving amplifier, a third frequency multiplier, a second bandpass filter, a third power amplifier, a first antenna, a second antenna and a third antenna;
第一倍频器通过微波连接器连接一个微波信号源,输出端与多频段带通滤波器的输入端相连,多频段带通滤波器的第一频段输出端与第一功率放大器的输入端相连,第一功率放大器的输出端通过第一毫米波信号接口连接第一天线;多频段带通滤波器的第二频段输出端与第二倍频器的输入端相连,第二倍频器的输出端与第一带通滤波器的一端相连,第一带通滤波器的另一端与第二功率放大器的输入端相连,第二功率放大器的输出端通过第二毫米波信号接口连接第二天线;多频段带通滤波器的第三频段输出端与第一驱动放大器的输入端相连,第一驱动放大器的输出端与第三倍频器的输入端相连,第三倍频器的输出端与第二带通滤波器的一端相连,第二带通滤波器另一端与第三功率放大器相连,第三功率放大器的输出端通过第三毫米波信号接口连接第三天线。 The first frequency multiplier is connected to a microwave signal source through a microwave connector, the output end is connected to the input end of the multi-band band-pass filter, and the first frequency band output end of the multi-band band-pass filter is connected to the input end of the first power amplifier , the output end of the first power amplifier is connected to the first antenna through the first millimeter-wave signal interface; the second frequency band output end of the multi-band bandpass filter is connected to the input end of the second frequency multiplier, and the output of the second frequency multiplier The end is connected to one end of the first bandpass filter, the other end of the first bandpass filter is connected to the input end of the second power amplifier, and the output end of the second power amplifier is connected to the second antenna through the second millimeter wave signal interface; The output end of the third frequency band of the multi-band bandpass filter is connected with the input end of the first driving amplifier, the output end of the first driving amplifier is connected with the input end of the third frequency multiplier, and the output end of the third frequency multiplier is connected with the input end of the third frequency multiplier. One end of the two band-pass filters is connected, the other end of the second band-pass filter is connected to the third power amplifier, and the output end of the third power amplifier is connected to the third antenna through the third millimeter wave signal interface.
所述的第一带通滤波器和第二带通滤波器结构相同,其为锯齿状微带耦合结构,包括两个50欧姆微带线、六根平行耦合线和五根耦合线连接线; The first band-pass filter and the second band-pass filter have the same structure, which is a zigzag microstrip coupling structure, including two 50-ohm microstrip lines, six parallel coupling lines and five coupling line connecting lines;
六根平行耦合线呈锯齿状排列,并通过耦合连接线串接,其中第一根和最后一根平行耦合线通过渐变线分别与一根50欧姆微带线连接; Six parallel coupling lines are arranged in a zigzag shape and connected in series through coupling connecting lines, wherein the first and last parallel coupling lines are respectively connected to a 50-ohm microstrip line through gradient lines;
所述的第一倍频器采用四倍频单片电路,实现信号源的四倍频,以降低所需本地振荡信号的频率来解决现有本地振荡信号泄漏到天线,即射频发射端的问题,提高频率的稳定度;第二倍频器和第三倍频器采用二倍频单片电路,实现信号的二倍频,以得到所需要的信号频率,提高信号稳定度。 The first frequency multiplier adopts a quadruple frequency single-chip circuit to realize quadruple frequency multiplication of the signal source, so as to reduce the frequency of the required local oscillation signal to solve the problem that the existing local oscillation signal leaks to the antenna, that is, the radio frequency transmitter, Improve the stability of the frequency; the second frequency multiplier and the third frequency multiplier adopt double frequency monolithic circuits to realize the double frequency of the signal, so as to obtain the required signal frequency and improve the signal stability.
所述的微波连接器采用SMA同轴连接器;第一毫米波信号接口采用2.92mm同轴连接器或者WR28微带-波导连接器,第二毫米波信号接口采用1.85mm同轴连接器或者WR15微带-波导连接器,第三毫米波信号接口采用1mm同轴连接器或者WR10微带-波导连接器; The microwave connector adopts SMA coaxial connector; the first millimeter wave signal interface adopts 2.92mm coaxial connector or WR28 microstrip-waveguide connector, and the second millimeter wave signal interface adopts 1.85mm coaxial connector or WR15 Microstrip-waveguide connector, the third millimeter wave signal interface adopts 1mm coaxial connector or WR10 microstrip-waveguide connector;
所述的金属屏蔽盒由黄铜加工而成。 The metal shielding box is processed from brass.
本发明对比已有技术具有以下创新点: Compared with the prior art, the present invention has the following innovations:
1、本发明的多频段毫米波防撞雷达信号源采用微波信号源共用的方式,有效的减少了信号源和滤波器的数量,从而使得该毫米波防撞雷达信号源的制作成本大幅降低。 1. The multi-band millimeter-wave anti-collision radar signal source of the present invention adopts the mode of sharing the microwave signal source, which effectively reduces the number of signal sources and filters, thereby greatly reducing the production cost of the millimeter-wave anti-collision radar signal source.
2、本发明的多频段毫米波防撞雷达信号源可以将四倍频后产生的谐波充分利用。传统的防撞信号源只利用倍频后的主要频率,即一个频率,滤除了其余不需要的谐波。而本发明则将倍频后的三路信号同时进行功率放大并发射,不仅提高了信号的利用率,而且可以同时提供三个频段信号以供防撞监测。 2. The multi-band millimeter-wave anti-collision radar signal source of the present invention can make full use of the harmonics generated after quadrupling. Traditional anti-collision signal sources only use the main frequency after frequency multiplication, that is, one frequency, and filter out the remaining unwanted harmonics. However, the present invention amplifies and transmits the power of the multiplied three-way signals at the same time, which not only improves the utilization rate of the signals, but also provides signals of three frequency bands for anti-collision monitoring.
3、本发明的多频段毫米波防撞雷达信号源采用一体化研制理念,将多频段毫米波防撞雷达信号源电路放置于金属屏蔽盒中,提高了电路的抗干扰能力与防尘性。 3. The multi-band millimeter-wave anti-collision radar signal source of the present invention adopts an integrated development concept, and the multi-band millimeter-wave anti-collision radar signal source circuit is placed in a metal shielding box, which improves the anti-interference ability and dust-proof performance of the circuit.
附图说明 Description of drawings
图1为本发明多频段毫米波防撞雷达信号源电路框图; Fig. 1 is the circuit block diagram of multi-band millimeter wave anti-collision radar signal source of the present invention;
图2为本发明锯齿形带通滤波器结构图。 FIG. 2 is a structural diagram of a sawtooth bandpass filter according to the present invention.
具体实施方式 detailed description
为使本发明的目的,技术方案和优点更加清晰明白,下面结合附图和具体实施例对本发明进行详细说明。 In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
如图1所示,一种多频段毫米波防撞雷达信号源,包括多频段毫米波防撞雷达信号源电路和金属屏蔽盒;多频段毫米波防撞雷达信号源电路固定在金属屏蔽盒内。 As shown in Figure 1, a multi-band millimeter-wave anti-collision radar signal source includes a multi-band millimeter-wave anti-collision radar signal source circuit and a metal shielding box; the multi-band millimeter-wave anti-collision radar signal source circuit is fixed in the metal shielding box .
所述的多频段毫米波防撞雷达信号源电路包括第一倍频器2、多频段带通滤波器3、第一功率放大器4、第二倍频器6、第一带通滤波器7、第二功率放大器8、第一驱动放大器10、第三倍频器11、第二带通滤波器12、第三功率放大器13、第一天线5、第二天线9和第三天线14; The multi-band millimeter wave anti-collision radar signal source circuit includes a first frequency multiplier 2, a multi-band band-pass filter 3, a first power amplifier 4, a second frequency multiplier 6, a first band-pass filter 7, The second power amplifier 8, the first driving amplifier 10, the third frequency multiplier 11, the second bandpass filter 12, the third power amplifier 13, the first antenna 5, the second antenna 9 and the third antenna 14;
第一倍频器2通过微波连接器连接一个微波信号源1,输出端与多频段带通滤波器3的输入端相连,多频段带通滤波器的第一频段输出端与第一功率放大器4的输入端相连,第一功率放大器4的输出端通过第一毫米波信号接口连接第一天线5;多频段带通滤波器3的第二频段输出端与第二倍频器6的输入端相连,第二倍频器6的输出端与第一带通滤波器7的一端相连,第一带通滤波器的另一端与第二功率放大器8的输入端相连,第二功率放大器8的输出端通过第二毫米波信号接口连接第二天线9;多频段带通滤波器3的第三频段输出端与第一驱动放大器10的输入端相连,第一驱动放大器10的输出端与第三倍频器11的输入端相连,第三倍频器11的输出端与第二带通滤波器12的一端相连,第二带通滤波器12另一端与第三功率放大器13相连,第三功率放大器的输出端通过第三毫米波信号接口连接第三天线14; The first frequency multiplier 2 is connected to a microwave signal source 1 through a microwave connector, the output end is connected to the input end of the multi-band band-pass filter 3, and the first frequency band output end of the multi-band band-pass filter is connected to the first power amplifier 4 The input end of the first power amplifier 4 is connected to the first antenna 5 through the first millimeter wave signal interface; the second frequency band output end of the multi-band bandpass filter 3 is connected to the input end of the second frequency multiplier 6 , the output end of the second frequency multiplier 6 is connected with one end of the first bandpass filter 7, the other end of the first bandpass filter is connected with the input end of the second power amplifier 8, and the output end of the second power amplifier 8 Connect the second antenna 9 through the second millimeter wave signal interface; the third frequency band output end of the multi-band bandpass filter 3 is connected with the input end of the first drive amplifier 10, and the output end of the first drive amplifier 10 is connected with the third frequency multiplier The input end of the device 11 is connected, the output end of the third frequency multiplier 11 is connected with one end of the second band-pass filter 12, and the other end of the second band-pass filter 12 is connected with the third power amplifier 13, and the third power amplifier's The output end is connected to the third antenna 14 through the third millimeter wave signal interface;
如图2所示,所述的第一带通滤波器和第二带通滤波器结构相同,其为锯齿状微带耦合结构,包括两个50欧姆微带线、六根平行耦合线和五根耦合线连接线; As shown in Figure 2, the first band-pass filter and the second band-pass filter have the same structure, which is a sawtooth microstrip coupling structure, including two 50-ohm microstrip lines, six parallel coupling lines and five Coupling line connecting line;
六根平行耦合线呈锯齿状排列,并通过耦合连接线串接,其中第一根和最后一根平行耦合线通过渐变线分别与一根50欧姆微带线连接; Six parallel coupling lines are arranged in a zigzag shape and connected in series through coupling connecting lines, wherein the first and last parallel coupling lines are respectively connected to a 50-ohm microstrip line through gradient lines;
所述的第一倍频器采用四倍频单片电路,实现信号源的四倍频,以降低所需本地振荡信号的频率来解决现有本地振荡信号泄漏到天线,即射频发射端的问题,提高频率的稳定度;第二倍频器和第三倍频器采用二倍频单片电路,实现信号的二倍频,以得到所需要的信号频率,提高信号稳定度。 The first frequency multiplier adopts a quadruple frequency single-chip circuit to realize quadruple frequency multiplication of the signal source, so as to reduce the frequency of the required local oscillation signal to solve the problem that the existing local oscillation signal leaks to the antenna, that is, the radio frequency transmitter, Improve the stability of the frequency; the second frequency multiplier and the third frequency multiplier adopt double frequency monolithic circuits to realize the double frequency of the signal, so as to obtain the required signal frequency and improve the signal stability.
所述的微波连接器采用SMA同轴连接器;第一毫米波信号接口采用2.92mm同轴连接器或者WR28微带-波导连接器,第二毫米波信号接口采用1.85mm同轴连接器或者WR15微带-波导连接器,第三毫米波信号接口采用1mm同轴连接器或者WR10微带-波导连接器;电源接头采用穿心电容。 The microwave connector adopts SMA coaxial connector; the first millimeter wave signal interface adopts 2.92mm coaxial connector or WR28 microstrip-waveguide connector, and the second millimeter wave signal interface adopts 1.85mm coaxial connector or WR15 Microstrip-waveguide connector, the third millimeter wave signal interface adopts 1mm coaxial connector or WR10 microstrip-waveguide connector; the power connector adopts a feedthrough capacitor.
以22.8GHz、60.8GHz、76GHz三频段毫米波防撞雷达信号源为例对本发明进行描述。 The present invention will be described by taking 22.8GHz, 60.8GHz, 76GHz tri-band millimeter wave anti-collision radar signal source as an example.
微波信号源1采用7.6GHz的正弦信号或者三角信号,经过四倍频器2的四倍频后,得到7.6GHz的各次谐波。多频段带通滤波器3将四倍频后的信号分离成三路不同频段的信号,频率分别是22.8GHz、30.4GHz、38GHz,即7.6GHz的三倍频、四倍频、五倍频。由于四倍频器产生的信号中除四倍信号外各谐波输出功率都很小,所以第一频段信号,即22.8GHz信号经过第一功率放大器4提高发射功率后由天线5发射出去;第二频段信号,即30.4GHz信号经过二倍频器6倍频后通过第一带通滤波器滤波7,第一带通滤波器7中心频率60.8GHz,带宽2GHz,用以提取60.8GHz的射频信号,最后通过第二功率放大器8提高发射功率后由天线9发射出去;第三频段信号,即38GHz信号经过第一驱动放大器10放大信号功率,经过二倍频器11倍频后通过第二带通滤波器滤波12,第二带通滤波器12中心频率76GHz,带宽2GHz,用以提取76GHz的射频信号,最后通过第三功率放大器13提高发射功率后由天线14发射出去。三路信号是同时发射的,所以可以根据相应的应用频段和所需信号的发射距离来进行选择和搭配。 The microwave signal source 1 adopts a sinusoidal signal or a triangular signal of 7.6 GHz, and after quadrupling by the frequency quadrupler 2 , various harmonics of 7.6 GHz are obtained. The multi-band bandpass filter 3 separates the quadrupled signal into three signals of different frequency bands, the frequencies are 22.8GHz, 30.4GHz, and 38GHz respectively, that is, triple, quadruple, and quintuple frequencies of 7.6GHz. Since the output power of each harmonic except the quadruple signal in the signal produced by the quadrupler is very small, the first frequency band signal, that is, the 22.8GHz signal is emitted by the antenna 5 after the first power amplifier 4 increases the transmission power; the second The second-band signal, that is, the 30.4GHz signal is filtered by the first band-pass filter 7 after being multiplied by the frequency doubler by 6. The center frequency of the first band-pass filter 7 is 60.8GHz and the bandwidth is 2GHz to extract the radio frequency signal of 60.8GHz. , and finally through the second power amplifier 8 to increase the transmission power and then be emitted by the antenna 9; the third frequency band signal, that is, the 38GHz signal is amplified by the first drive amplifier 10 to amplify the signal power, and then passed through the second band pass Filter 12, the second bandpass filter 12 has a center frequency of 76GHz and a bandwidth of 2GHz to extract the 76GHz radio frequency signal, and finally transmits it through the antenna 14 after the third power amplifier 13 increases the transmission power. The three signals are transmitted at the same time, so they can be selected and matched according to the corresponding application frequency band and the transmission distance of the required signal.
实施例中的第一倍频器2采用UMS公司的单片四倍频芯片,输入频率范围为6.25-8.25GHz,四倍频后输出频率范围为25-33GHz。当输入信号采用7.6GHz,功率12dBm信号时,输出端可以得到一个30.4GHz,功率11dBm的信号。第二倍频器6采用UMS公司的单片二倍频芯片,输入频率范围27-33GHz,二倍频后输出频率范围54-66GHz。当输入信号采用30.8GHz,功率12dBm信号时,输出端可以得到一个60.8GHz,功率11dBm的信号。第三倍频器11采用UMS公司的W波段单片二倍频芯片,输入频率范围38-38.5GHz,二倍频后输出频率范围76-77GHz。当输入信号采用38GHz,功率5dBm信号时,输出端可以得到一个76GHz,功率13dBm的信号。以上倍频器均用以产生相对应倍频后的信号,减小信号源的频率,提高频率稳定度; The first frequency multiplier 2 in the embodiment adopts a single-chip quadrupling chip of UMS Company, the input frequency range is 6.25-8.25 GHz, and the output frequency range after quadrupling is 25-33 GHz. When the input signal is a 7.6GHz signal with a power of 12dBm, a 30.4GHz signal with a power of 11dBm can be obtained at the output. The second frequency multiplier 6 adopts a single-chip frequency doubling chip of UMS Company, the input frequency range is 27-33GHz, and the output frequency range after doubling is 54-66GHz. When the input signal is a 30.8GHz signal with a power of 12dBm, a 60.8GHz signal with a power of 11dBm can be obtained at the output. The third frequency multiplier 11 adopts a W-band single-chip frequency doubling chip of UMS Company, with an input frequency range of 38-38.5 GHz and an output frequency range of 76-77 GHz after doubling. When the input signal is a 38GHz signal with a power of 5dBm, a 76GHz signal with a power of 13dBm can be obtained at the output. The above frequency multipliers are used to generate corresponding multiplied signals, reduce the frequency of the signal source, and improve frequency stability;
实施例中的第一带通滤波器7和第二带通滤波器12使得带通滤波器与芯片之间的互连更加的稳定和方便。第一带通滤波器工作在60.8GHz,带宽2GHz,用于提取60.8GHz的信号,滤除各次谐波和杂波;第二带通滤波器工作在76GHz,带宽2GHz,用于提取76GHz信号,滤除不需要的各次谐波和杂波。多频段带通滤波器3用于提取三倍频、四倍频、五倍频信号,提供给后级电路使用。以上带通滤波器均利用Advanced Design System和HFSS进行电磁场仿真以接近实际性能。 The first band-pass filter 7 and the second band-pass filter 12 in the embodiment make the interconnection between the band-pass filter and the chip more stable and convenient. The first band-pass filter works at 60.8GHz, with a bandwidth of 2GHz, and is used to extract 60.8GHz signals to filter out harmonics and clutter; the second band-pass filter works at 76GHz, with a bandwidth of 2GHz, and is used to extract 76GHz signals , to filter out unwanted harmonics and clutter. The multi-band band-pass filter 3 is used for extracting three-times, four-times, and five-times signals and providing them to subsequent circuits. All the above bandpass filters use Advanced Design System and HFSS for electromagnetic field simulation to get close to the actual performance.
实施例中第一功率放大器4和第一驱动放大器10采用UMS公司的四级GaAs功率放大器芯片,该四级功率放大器工作频率在20-40GHz,增益22dB,饱和输出功率20dBm,具有良好的输入宽带匹配,用于提高倍频后的三倍信号和五倍信号功率。第二功率放大器8采用Hittite公司的四级GaAs功率放大器,该四级功率放大器工作在50-66GHz,增益24dB,输出1dB压缩功率17dBm,用于提高第二路射频信号的发射功率。第三功率放大器13采用Hittite公司的四级GaAs功率放大器,该四级功率放大器工作在71-86GHz,增益15dB,输出1dB压缩功率15dBm,用于提高第三路射频信号的发射功率。 In the embodiment, the first power amplifier 4 and the first driving amplifier 10 adopt the four-stage GaAs power amplifier chip of UMS Company. The four-stage power amplifier has an operating frequency of 20-40GHz, a gain of 22dB, and a saturated output power of 20dBm, with good input broadband Matching, used to increase the power of tripled and quintupled signals after frequency doubling. The second power amplifier 8 adopts four-stage GaAs power amplifier of Hittite Company. The four-stage power amplifier operates at 50-66GHz, has a gain of 24dB, and outputs 1dB compressed power of 17dBm, which is used to increase the transmission power of the second radio frequency signal. The third power amplifier 13 adopts four-stage GaAs power amplifier of Hittite Company. The four-stage power amplifier operates at 71-86GHz, has a gain of 15dB, and outputs 1dB compressed power of 15dBm, which is used to increase the transmission power of the third radio frequency signal.
以上内容是结合具体的实施案例对本发明作的详细说明,不能认定本发明具体实施仅限于这些说明。对于本发明所述技术领域的技术人员来说,在不脱离本发明构思的前提下,对本发明的各组成部件、位置关系及连接方式在不改变其功能的情况下,进行的等效变换或替代,也落入本发明的保护范围。 The above content is a detailed description of the present invention in conjunction with specific implementation cases, and it cannot be assumed that the specific implementation of the present invention is limited to these descriptions. For those skilled in the technical field of the present invention, on the premise of not departing from the concept of the present invention, the equivalent transformation or transformation of each component, positional relationship and connection mode of the present invention without changing its function Alternatives also fall within the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410280425.2A CN104101867B (en) | 2014-06-20 | 2014-06-20 | Multi band millimeter wave anticollision radar signal source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410280425.2A CN104101867B (en) | 2014-06-20 | 2014-06-20 | Multi band millimeter wave anticollision radar signal source |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104101867A CN104101867A (en) | 2014-10-15 |
CN104101867B true CN104101867B (en) | 2017-01-11 |
Family
ID=51670164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410280425.2A Active CN104101867B (en) | 2014-06-20 | 2014-06-20 | Multi band millimeter wave anticollision radar signal source |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104101867B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10050694B2 (en) | 2014-10-31 | 2018-08-14 | Skyworks Solution, Inc. | Diversity receiver front end system with post-amplifier filters |
US9385765B2 (en) | 2014-10-31 | 2016-07-05 | Skyworks Solutions, Inc. | Diversity receiver front end system with phase-shifting components |
KR20160052361A (en) * | 2014-10-31 | 2016-05-12 | 스카이워크스 솔루션즈, 인코포레이티드 | Diversity receiver front end system with post-amplifier filters |
US9893752B2 (en) | 2014-10-31 | 2018-02-13 | Skyworks Solutions, Inc. | Diversity receiver front end system with variable-gain amplifiers |
US10009054B2 (en) | 2015-05-28 | 2018-06-26 | Skyworks Solutions, Inc. | Impedance matching integrous signal combiner |
CN108551349A (en) * | 2018-01-26 | 2018-09-18 | 合肥驼峰电子科技发展有限公司 | A kind of multiband millimeter-wave transmitter |
CN108551348A (en) * | 2018-01-26 | 2018-09-18 | 合肥驼峰电子科技发展有限公司 | A kind of multiband mm-wave signal source |
US11901601B2 (en) | 2020-12-18 | 2024-02-13 | Aptiv Technologies Limited | Waveguide with a zigzag for suppressing grating lobes |
US12058804B2 (en) | 2021-02-09 | 2024-08-06 | Aptiv Technologies AG | Formed waveguide antennas of a radar assembly |
US11962085B2 (en) | 2021-05-13 | 2024-04-16 | Aptiv Technologies AG | Two-part folded waveguide having a sinusoidal shape channel including horn shape radiating slots formed therein which are spaced apart by one-half wavelength |
CN113325417B (en) * | 2021-05-24 | 2024-03-15 | 西安空间无线电技术研究所 | Millimeter wave and terahertz multi-band radar detection imaging system and method |
US11616282B2 (en) | 2021-08-03 | 2023-03-28 | Aptiv Technologies Limited | Transition between a single-ended port and differential ports having stubs that match with input impedances of the single-ended and differential ports |
US12148992B2 (en) | 2023-01-25 | 2024-11-19 | Aptiv Technologies AG | Hybrid horn waveguide antenna |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1919147A1 (en) * | 1999-11-29 | 2008-05-07 | Multispectral Solutions, Inc. | Ultra-wideband data transmission system |
US7460055B2 (en) * | 2006-06-02 | 2008-12-02 | Panasonic Corporation | Radar apparatus |
CN101373218B (en) * | 2008-08-28 | 2011-12-14 | 阮树成 | Millimeter wave time-division passive frequency modulation multichannel colliding-proof radar for car |
CN201867492U (en) * | 2010-11-17 | 2011-06-15 | 中国电子科技集团公司第十四研究所 | High-power millimeter wave radar transmitter |
CN203930048U (en) * | 2014-06-20 | 2014-11-05 | 杭州电子科技大学 | Multiband borne Millimeter Wave Collision Avoidance Radars signal source |
-
2014
- 2014-06-20 CN CN201410280425.2A patent/CN104101867B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN104101867A (en) | 2014-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104101867B (en) | Multi band millimeter wave anticollision radar signal source | |
CN104166124B (en) | A kind of multiband borne Millimeter Wave Collision Avoidance Radars receiver | |
CN104362421B (en) | Single-substrate integrated terahertz front end | |
CN104377418B (en) | Terahertz multifunction device based on integrated technology | |
CN104467681B (en) | Terahertz subharmonic frequency multiplier mixer device based on monolithic integrated optical circuit | |
CN103647575B (en) | 2-12GHz broadband microwave front-end circuit and 2-12GHz microwave signal receiving method | |
US20120075154A1 (en) | Microstrip-fed slot antenna | |
WO2019109630A1 (en) | Antenna assembly and mobile terminal | |
CN106230395B (en) | A kind of height inhibition UHF waveband low noise amplifier module | |
CN106654479A (en) | Terahertz duplexer built by using waveguide filter | |
CN204103901U (en) | Multiband millimetre-wave attenuator transmitter | |
CN104660171A (en) | Improved subharmonic mixer based on coplanar waveguide transmission line | |
CN104104397B (en) | Multi-frequency-band millimeter wave communication transmitter | |
CN203930048U (en) | Multiband borne Millimeter Wave Collision Avoidance Radars signal source | |
CN203930049U (en) | Multiband borne Millimeter Wave Collision Avoidance Radars receiver | |
CN109617621A (en) | Adjustable Terahertz minimizes multifunctional unit radio-frequency front-end | |
CN108551349A (en) | A kind of multiband millimeter-wave transmitter | |
CN106230388A (en) | A kind of strong noise suppression SHF Band LNA module | |
CN204118267U (en) | A kind of antenna board structure of Doppler's microwave module of X-band | |
CN206060693U (en) | A kind of strong noise suppresses SHF Band LNA modules | |
CN203747755U (en) | Millimeter-wave down-conversion assembly | |
CN106129546B (en) | A kind of C-band digital phase shift filter | |
CN206922743U (en) | Integrated Ka wave band antennas front end | |
CN105071009B (en) | A kind of LTCC duplexers based on public resonator | |
CN203481347U (en) | Symmetrical two-hole coupling waveguide directional filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |