CN1040397C - Iron manganese catalyst for prepn. of low carbon olefines by synthetic gas and synthetic reaction - Google Patents

Iron manganese catalyst for prepn. of low carbon olefines by synthetic gas and synthetic reaction Download PDF

Info

Publication number
CN1040397C
CN1040397C CN 92109866 CN92109866A CN1040397C CN 1040397 C CN1040397 C CN 1040397C CN 92109866 CN92109866 CN 92109866 CN 92109866 A CN92109866 A CN 92109866A CN 1040397 C CN1040397 C CN 1040397C
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
catalyst
reaction
fe
mn
cs
Prior art date
Application number
CN 92109866
Other languages
Chinese (zh)
Other versions
CN1083415A (en )
Inventor
徐龙伢
王清遐
周智远
蔡光宇
赵修松
陈国权
王开立
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of products other than chlorine, adipic acid, caprolactam, or chlorodifluoromethane, e.g. bulk or fine chemicals or pharmaceuticals
    • Y02P20/52Improvements relating to the production of products other than chlorine, adipic acid, caprolactam, or chlorodifluoromethane, e.g. bulk or fine chemicals or pharmaceuticals using catalysts, e.g. selective catalysts

Abstract

由合成气(CO+H From synthesis gas (CO + H

Description

合成气制低碳烯烃含铁锰催化剂及合成反应 Synthesis gas to olefins and synthesis catalysts containing Fe and Mn

本发明涉及一种由合成气(CO+H2)直接合成低碳烯烃的新型催化剂及相应的工艺过程。 The present invention relates to a novel catalyst synthesis of light olefins and the corresponding process directly from synthesis gas (CO + H2). 具体地说,在Fe-Mn/MgO(CaO,SrO)或Fe-Mn/高硅沸石(磷铝沸石)及相应助剂的催化作用下,合成气能高活性,高选择性地直接转化成低碳烯烃(C2~C4)。 Specifically, under the catalysis of Fe-Mn / MgO (CaO, SrO), or Fe-Mn / silicalite (aluminum zeolite P) and the corresponding additives, synthesis gas can be high activity, high selectivity is directly converted to olefins (C2 ~ C4).

乙烯、丙烯等低碳烯烃是重要的基本有机化工原料,随着化学工业的发展,对它们的需求量愈来愈大。 Ethylene, propylene and other olefins is an important basic organic chemical raw materials, with the development of the chemical industry, the demand for them is getting bigger and bigger. 迄今为止,制取乙、丙烯等低碳烯烃的途径主要通过轻油裂解过程,由于石油资源有限,将难以满足市场对乙、丙烯日益增长的需求。 To date, route preparation B, propylene and other lower olefins mainly by naphtha cracking process, since petroleum resources are limited, it is difficult to meet the market demand for ethylene, propylene growing. 而从合成气(可由天然气和煤转换得到)直接制取乙、丙烯的技术开发,不仅可减少对石油资源的依赖,而且对一些富气缺油地区化学工业的发展有着重要意义。 And (natural gas and coal can be converted) from synthesis gas made directly from B, propylene technology development, not only can reduce dependence on oil resources, but also for some of the development of the chemical industry in oil-rich gas region of great significance. 过去的费-托合成反应其目的是由合成气合成燃料用液态烃类,而现在的碳-化学合成烃类的目的是将其作为化工原料的低碳烯烃,尤其乙烯和丙烯是目前最有价值的物料。 Past Fischer - Tropsch synthesis reaction which are liquid hydrocarbons object from synthesis gas using synthetic fuel, now a carbon - hydrocarbons purpose chemical synthesis is as a chemical raw material olefins, particularly ethylene and propylene is most material value. 并且由合成气直接制取低碳烯烃为一步反应生成目的产物,其工艺流程要比间接法简单,经济评价也较合算。 And made directly from synthesis gas to lower olefins step reaction to generate the desired product, which is a simple process than the indirect method, economic evaluation are more cost-effective. 由合成气直接合成低碳烯烃是最近十年才开始研究的。 Direct synthesis of light olefins from synthesis gas is only the beginning of the last decade of research. 例如,Ger.Pat.2536438,Ger.Pat. 2518964所研制的Fe-Tl-Zn-K四元素烧结金属催化剂;Get.Pat.2818308所研制的Fe-Cu-Zn-K催化剂及USPat.40393 02所报导的含钴催化剂等等,都取得比较好的结果。 For example, Ger.Pat.2536438, Ger.Pat 2518964 developed by Fe-Tl-Zn-K of the four elements of a sintered metal catalyst; Get.Pat.2818308 developed by Fe-Cu-Zn-K catalysts and USPat.40393 02 the reported cobalt-containing catalyst, etc., have achieved good results. 但这些催化剂在制备重复性能、放大制备等程序中遇到不同程度的困难。 However, these catalysts experience different degrees of difficulty in performance was repeated, and the like prepared amplification procedure. 本发明者们曾提过一种技术(CN91106157.6)由合成气经两个连续反应步骤直接制取低碳烯烃反应及为该反应提供了工业合成甲醇铜基催化剂与固体酸性氧化物催化剂两组份复合催化剂和分子筛沸石催化剂。 The present inventors have mentioned technique (CN91106157.6) by the reaction of syngas two successive steps directly preparing lower olefins and provides a copper-based catalyst industrial synthesis of methanol and the solid acidic oxide catalyst for two component composite catalyst and molecular sieve zeolite catalyst.

本发明的目的是提供由合成气直接制取乙烯丙烯等低碳烯烃的担载型催化剂。 Object of the present invention to provide a supported catalyst to make ethylene and propylene olefins directly from synthesis gas. 该催化剂具有良好的制造重复性能和很高的活性及生成低碳烯烃的选择性。 The catalyst has excellent manufacturing repeatability and high activity and selectivity to light olefins. 同时,本发明还为合成气直接制取低碳烯烃提供相应、可行的工艺流程,且该流程能够直接利用反应所生成的乙烯合成乙苯。 Meanwhile, the present invention is a synthesis gas producing light olefins directly provide viable process, and this process can be utilized as ethylene synthesis reaction of ethylbenzene produced.

本发明的由合成气直接制取低碳烯烃反应用的含铁锰担载型催化剂其活性组分为Fe-Mn元素、担载在IIA族碱土金属氧化物(MgO,SrO或CaO),高硅沸石分子筛(Silicalite-1,Silicalite-2,ZSM-12或ZSM-48)、磷铝分子筛(APO-5)或它们的复合物制成的担体上。 Preparation of light olefins from synthesis gas is directly used in the reaction of the present invention containing Fe, Mn supported catalyst whose active component is Fe-Mn element, supported on a Group IIA alkaline earth metal oxides (MgO, SrO, or CaO), high silicalite molecular sieves (silicalite-1, silicalite-2, ZSM-12 or ZSM-48), aluminum phosphate molecular sieves (APO-5) or a supporting body made of a composite thereof. 同时,为调变催化剂的性能,在上述催化剂中添加K或Cs离子,及其氢氧化物或卤化物(OH-1、Cl-1、Br-1、I-1)作助剂。 Meanwhile, for the modulation performance of the catalyst added K or Cs ions, and a hydroxide or halide in the above-described catalysts (OH-1, Cl-1, Br-1, I-1) as additives. 其中Cs+离子及KOH作助剂其催化效果最佳。 And wherein the Cs + ions as additives KOH its optimum catalytic effect. 催化剂中各组份的重量比为:(100)担体∶(5~20)Fe∶(5~15)Mn∶(3~20)K或CS。 Catalyst weight ratio of the components: (100) supporting the body: (5 ~ 20) Fe: (5 ~ 15) Mn: (3 ~ 20) K or CS. 其最佳范围的重量比为(100)担体∶(5~15)Fe∶(7~11)Mn∶(3~15)K或CS。 The optimum range of the weight ratio of (100) supporting the body: (5 ~ 15) Fe: (7 ~ 11) Mn: (3 ~ 15) K or CS.

本发明的催化剂的制备过程按下述步骤:1、将担体(IIA族碱土金属氧化物,高硅沸石分子筛,磷铝分子筛或它们的复合物)加压成型;2、用含有活性组分Fe、Mn的无机盐及含助剂K、Cs元素的碱或盐溶液浸渍担体,将活性组分和助剂元素担载在担体; The catalyst preparation process of the present invention by the following steps: 1, the carrier body (IIA alkaline earth group metal oxides, silicalite molecular sieves, aluminum phosphate molecular sieves, or composites thereof) pressure molding; 2, containing the active ingredient Fe , Mn-containing inorganic salts and additives K, Cs base or a salt impregnation solution supporter elements, auxiliary elements and the active ingredient supported on a supporting member;

3、浸渍活性组分的担体经干燥后在400~750℃温度下进行焙烧;4、焙烧后的催化剂在300~500℃下用氢气进行还原制成成品催化剂。 3, the active ingredient carrier body impregnated calcined after drying at a temperature of 400 ~ 750 ℃; 4, reduction of the catalyst after calcination is made in the finished catalyst at 300 ~ 500 ℃ with hydrogen. 催化剂的还原反应也可在催化反应前在反应器内进行。 Reduction reaction catalyst may also be carried out in the reactor before the catalytic reaction. 还原气氢的压力为0.5~1.5MPa,还原反应应不少于2小时。 Reducing the hydrogen gas pressure of 0.5 ~ 1.5MPa, the reduction reaction should be less than 2 hours. 上述最佳的还原温度为400~480℃。 The above preferred reduction temperature is 400 ~ 480 ℃.

在上述催化剂的制备过程中,也可将含有活性组分Fe或Mn的无机盐固体粉末与担体粉末混合均匀后加压成型,再浸渍活性组分。 During the preparation of the catalyst may also be an inorganic salt containing a solid powder of the active ingredient with Mn or Fe supported uniformly mixed powder press molding, and then impregnated with the active ingredient. 其较佳的制备过程是:1、将担体和含Mn无机盐粉末充分混合后加压成型;2、用含有Fe元素的无机盐和含有助剂K或Cs的碱或卤化物溶液浸渍担体,将活性组分和助剂元素担载在担体上;3、再按上述3、4步骤进行焙烧和还原制成催化剂。 Its preparation process are preferred: 1, the supporting body and the Mn-containing inorganic powder is thoroughly mixed after press molding; 2, impregnated with an inorganic salt or alkali halide solution containing Fe element and contain adjuvants K or Cs-supported body, the active ingredient and auxiliary elements supported on the supporting body; 3, then the above-described calcination and reduction steps 3 and 4 to prepare a catalyst.

本发明的催化剂可用于由合成气直接制取乙烯、丙烯等低碳烯烃,且该反应还可直接进行乙烯与苯烷基化反应获得乙苯。 The catalyst of the present invention can be used directly from synthesis gas preparation of ethylene, propylene and other olefins, and the reaction can also be carried out directly alkylation of benzene with ethylene to get ethylbenzene. 本发明由合成气直接制取低碳烯烃的反应过程由附图1给出。 The reaction process of the present invention is directly prepared light olefins from synthesis gas is given by Figure 1. 图1中:1、合成气原料(CO+H2);2、在催化剂存在下进行催化反应;3,水吸收工序;4、C3、C4组分分离工序;5、低碳烯烃制备;6、与苯烷基化反应;7、未反应的气体重复循环工序。 Figure 1: 1, the synthesis gas feed (CO + H2); 2, catalytic reaction in the presence of a catalyst; 3, water absorption step; 4, C3, C4 fractionation step; 5, the preparation of lower olefins; 6, the alkylation of benzene; 7, unreacted gas recycle procedure was repeated. 由附图1所示工艺流程,具体地说合成气1原料在上述催化剂存在下进行合成反应2,直接合成以乙烯、丙烯为主要产物的低碳烯烃。 1 by the process shown in the drawings, particularly a synthesis gas feed synthesis reaction 2 in the presence of the catalyst, the direct synthesis of ethylene, propylene lower olefins as the major product. 反应后气体经工序3水吸收气体CO2后,再经分离工序4将C3、C4组分分离得到含有部分反应气CO、H2及CH4的稀乙烯气体。 After the step 3 reaction gas through a water absorption gas CO2, then 4 C3, C4 fractionation separation step contains a portion of the reaction gas obtained by the CO, H2 and CH4 dilute the ethylene gas. 这种含有浓度较低的乙烯混合气体作为原料可直接与苯进行烷基化反应制备乙苯。 This mixture contains a lower concentration of ethylene gas as a starting material can be prepared by direct alkylation of ethylbenzene with benzene. 其反应过程和采用的催化剂可按本发明者们前期曾提供的专利技术CN87105054.4号)进行。 Reaction process and catalyst employed may be present inventors have patented technology has provided a number of pre CN87105054.4).

本发明的催化剂能在反应温度320~500℃,1.0~5.0MPa压力下操作,尤其当使用3.0~4.0MPa压力时,能直接与分离CO2及C3、C4组分系统相联,工序简单,因而该流程有其独特的优越性。 The catalyst of the present invention can, under pressure 1.0 ~ 5.0MPa operated at a reaction temperature of 320 ~ 500 ℃, especially when using pressure 3.0 ~ 4.0MPa, and direct the separated CO2 C3, C4 associated system components, the process is simple, and thus the process has its unique advantages.

本发明的催化剂可以在较宽的活性范围操作,当要求CO的单程转化率达90%以上时,尾气中的CO、H2、CH4可以不再循环使用,直接作为燃料气使用。 The catalyst of the present invention can operate in a wide range of activity, when the above requirements CO conversion per pass rate of 90%, the exhaust CO, H2, CH4 can not be recycled, directly used as fuel gas. 若要求提高烯烃选择性,可适当降低催化剂的CO转化活性,尾气中的CO、H2、CH4可通过再循环与原料气一道继续进行合成烯烃反应,这种情况下,甲烷气可作为取热介质,催化剂性能仍不受影响。 If required to improve olefin selectivity, may be appropriate to reduce the CO conversion activity of the catalyst, the exhaust gas CO, H2, CH4 may be an olefin proceed by recycling synthesis gas with the feed, in this case, methane gas as a medium for heat The catalyst performance remains unaffected. 本发明流程的特点是不仅能直接与分离CO2、C3、C4组分系统相联,并且能直接使用尾气中的稀乙烯与苯反应生成乙苯,提高了过程的经济效益。 The flow characteristics of the present invention is not only directly associated with the separation of CO2, C3, C4 components of the system, and can be used directly to dilute the reaction of ethylene with benzene in the exhaust gas ethylbenzene, improve the economic efficiency of the process.

下面通过实例对本发明的内容给予详细说明:实施例1 IIA族金属氧化物担载型催化剂A的制备将MgO(CaO,SrO)10克粉末与2.6克KMnO4机械混合,在400大气压下压片后破碎成20~30目的颗粒,600℃焙烧数小时后,抽真空浸渍Fe(NO3)3或Fe(NO3)+KOH(Cs)混合溶液,然后120℃烘8小时,540℃焙烧20小时,所得的催化剂称为催化剂A。 After MgO (CaO, SrO) 10 g of the powder KMnO4 mechanically mixed with 2.6 g, tableting under 400 atm Preparation Example 1 IIA metal oxide-supported Catalyst A of Embodiment: The following by way of example to give a detailed description of the present invention. broken into 20 to 30 mesh granules, after calcination at 600 ℃ for several hours, vacuum impregnation Fe (NO3) 3 or Fe (NO3) + KOH (Cs) mixed solution, and then bake 120 ℃ 8 hours and calcined 540. deg.] C for 20 hours resulting the catalyst is referred to as catalyst A. 其组成(重量比)为:100MgO∶(5~20)Fe∶(5~15)Mn∶(5~15)K(或3~20Cs)。 Composition (weight ratio): 100MgO: (5 ~ 20) Fe: (5 ~ 15) Mn: (5 ~ 15) K (or 3 ~ 20Cs). 催化剂具体组成见表1。 DETAILED catalyst composition shown in Table 1.

实施例2 IIA族金属氧化物担载型催化剂B的制备将MgO(CaO,SrO)10克粉末在400大气压下压片后,再破碎成20~30目的颗粒,然后抽真空浸渍Fe(NO3)3+KMnO4+KOH(或Cs)混合溶液,120℃烘10小时,540℃焙烧16小时,所得的催化剂称为催化剂B。 Preparation Example 2 IIA metal oxide-supported catalyst B The embodiment MgO (CaO, SrO) for 10 g of the powder at atmospheric pressure plate 400, and then broken into 20 to 30 mesh granules, and then vacuum impregnated with Fe (NO3) 3 + KMnO4 + KOH (or Cs) mixed solution, 120 ℃ baked 10 hours, 540 ℃ calcined 16 hours, the resulting catalyst is referred to as catalyst B. 其组成(重量比)为:100MgO∶(5~20)Fe∶(5~15)Mn∶(5~15)K(或3~20Cs)。 Composition (weight ratio): 100MgO: (5 ~ 20) Fe: (5 ~ 15) Mn: (5 ~ 15) K (or 3 ~ 20Cs). 催化剂具体组成见表2。 DETAILED catalyst composition shown in Table 2.

实施例3 IIA族金属氧化物担载型催化剂C制备将MgO(CaO,SrO)10克粉末(或MgO与Si-2混合粉末)与Fe(NO3)3+KMnO4+KOH(或Cs)固相机械混合,在400大气压下压片后破碎成20~30目的颗粒,600℃焙烧24小时,所得催化剂称为催化剂C。 Example 3 IIA metal oxide supported catalysts embodiment C Preparation MgO (CaO, SrO) 10 g of the powder (or MgO powder mixed with Si-2) with Fe (NO3) 3 + KMnO4 + KOH (or Cs) a solid phase mechanically mixed under atmospheric pressure for 400 tablets broken into 20 to 30 mesh granules, 600 ℃ calcined for 24 hours, the resulting catalyst is referred to as catalyst C. 其组成(重量比)为:100MgO∶(5~20)Fe∶(5~15)Mn∶(5~15)K(或3~15Cs)。 Composition (weight ratio): 100MgO: (5 ~ 20) Fe: (5 ~ 15) Mn: (5 ~ 15) K (or 3 ~ 15Cs). 催化剂具体组成见表3。 DETAILED catalyst composition shown in Table 3.

实施例4 IIA族金属氧化物担载型催化剂D的制备在MgO担载的Fe-Mn催化剂体系中添加KX或CsX(X=Cl,Br,I)助剂,所得催化剂称为催化剂D。 Preparation Example 4 IIA metal oxide supported catalysts D KX added Fe-Mn or CsX the supported catalyst system of MgO (X = Cl, Br, I) additives, the resulting catalyst is referred to as catalyst D. 其组成(重量比)为:100MgO∶(5~20)Fe∶(5~15)Mn∶(5~15)K(或5~15Cs)∶(1~5)X。 Composition (weight ratio): 100MgO: (5 ~ 20) Fe: (5 ~ 15) Mn: (5 ~ 15) K (or 5 ~ 15Cs): (1 ~ 5) X. 催化剂具体组成见表4。 DETAILED catalyst composition shown in Table 4.

实施例5 高硅(磷铝)沸石担载型催化剂E的制备将Silicalite-2(Silicalite-1,ZSM-12,ZSM-48)或APO-5粉末成型后,抽真空浸渍Fe(NO3)3+KMnO4+KOH(或Cs)等混合溶液,然后120℃烘8小时,540℃焙烧15小时,所得催化剂称为催化剂E,其组成(重量比)为:100分子筛∶(5~20)Fe∶(5~15)Mn∶(5~15)K(或5~15Cs)。 Example 5 High silicon (phosphorus aluminum) prepared carrier catalyst E zeolite-supported embodiment of the Silicalite-2 (Silicalite-1, ZSM-12, ZSM-48), or APO-5 powder molding, vacuum impregnation Fe (NO3) 3 + KMnO4 + KOH (or Cs), a mixed solution, and 120 deg.] C bake 8 hours, 540 ℃ calcined 15 hours, the resulting catalyst is referred to catalyst E, which composition (weight ratio): 100 molecular sieves: (5 ~ 20) Fe: (5 ~ 15) Mn: (5 ~ 15) K (or 5 ~ 15Cs). 催化剂具体组成见表5。 DETAILED catalyst composition shown in Table 5.

实施例6 高硅(磷铝)沸石担载型催化剂F的制备将Silicalite-2(Silicalite-1,ZSM-48,ZSM-12)或APO-5粉末与KMnO4机械混合成型后,于600℃焙烧5小时,抽真空浸渍Fe(NO3)3+KOH(Cs)溶液,然后120℃烘8小时,540℃焙烧16小时,所得催化剂称为催化剂F。 After Example 6 high silicon (phosphorus aluminum) preparing carrier-type catalyst F zeolite supporting the Silicalite-2 (Silicalite-1, ZSM-48, ZSM-12), or APO-5 powder and KMnO4 mechanically mixed molding embodiment, calcined at 600 ℃ 5 hours, vacuum impregnation Fe (NO3) 3 + KOH (Cs) was then baked 120 ℃ 8 hours and calcined 540. deg.] C for 16 hours and the resulting catalyst is referred to as catalyst F. 其组成(重量比)为:100分子筛∶(5~20)Fe∶(5~5)Mn∶(5~15)K(或5~15Cs)。 Composition (weight ratio): 100 molecular sieves: (5 ~ 20) Fe: (5 ~ 5) Mn: (5 ~ 15) K (or 5 ~ 15Cs). 催化剂具体组成见表6。 DETAILED catalyst composition shown in Table 6.

实施例7 合成气制烯烃反应实验1在连续流动固定床反应装置上装填1ml上述例1所研制的催化剂A。 Example 7 Synthesis gas produced olefin embodiment 1 in a continuous flow fixed bed experiment described above in Example 1 developed 1ml of catalyst loading on reactor A. 首先在400~500℃,0.5~1.5MPa的H2气氛中还原5~15小时,降温到320~400℃切换CO/H2=1/1~1/2的合成气进料,在1.0~5.0MPa、500~2500h-1条件下进行反应,催化剂A的反应结果见表1。 5 first reduced to 15 hours in 400 ~ 500 ℃, H2 atmosphere for 0.5 ~ 1.5MPa, the temperature was lowered to 320 ~ 400 ℃ switched CO / H2 = syngas feed 1/1 ~ 1/2, in 1.0 ~ 5.0MPa , reaction was carried out at 500 ~ 2500h-1 conditions, the reaction results are shown in Table 1 catalyst a. 其中C2~C4烯烃选择性最高达66.1%,CO转化率可达93.7%。 Wherein C2 ~ C4 olefin selectivity of up to 66.1%, CO conversion rate of 93.7%.

实施例8 合成气制烯烃反应实验2将上述例2所制的催化剂B 1ml装填在连续流动固定床反应装置上,采用与上述例7相同的还原条件及反应条件,催化剂B的反应结果见表2。 Example 8 Synthesis gas produced olefin Experiment B Example 2 The catalyst prepared in Example 2 above 1ml loading on a continuous flow fixed bed reactor, as described above in Example 7 using the same reduction conditions and the reaction conditions, the reaction of the catalyst results in Table B 2. 其中CO转化率可达83.4%,C2~C4烯烃选择性达62.1%。 Wherein the CO conversion was 83.4%, C2 ~ C4 olefins selectivity of 62.1%.

实施例9 合成气制烯烃反应实验3将催化剂C 1ml在连续流动固定床反应装置上,采用与例7相同的还原条件还原后,在1.0~5.0MPa、330℃、800h-1、CO/H2=1/2的反应条件下进行评价,其反应结果见表3。 Syngas Synthesis Example 9 Experimental Example 3 olefin C 1ml of the catalyst in a continuous flow fixed bed reactor, after reduction using the same conditions as in Example 7 Reduction in 1.0 ~ 5.0MPa, 330 ℃, 800h-1, CO / H2 It was evaluated under reaction conditions = 1/2, the result of the reaction are shown in Table 3. 其中C2~C4烯烃选择性为68.0%,CO转化率为83.3%。 Wherein C2 ~ C4 olefin selectivity of 68.0%, CO conversion was 83.3%.

实施例10 合成气制烯烃反应实验4采用与上述例7相同的还原条件和反应条件对催化剂D的CO/H2反应性能进行评价,其结果见表4。 Example 10 Synthesis Experiment 4 gas-to-olefins reaction using the same reaction conditions and the reducing conditions described above in Example 7 Catalyst D was evaluated in CO / H2 reactions performance, results shown in Table 4. 其中CO转化率达77.3%,C2~C4烯烃选择性为64.7%。 Wherein the CO conversion was 77.3%, C2 ~ C4 olefin selectivity of 64.7%.

实施例11 合成气制烯烃反应实验5将分子筛担载型催化剂E在固定床反应装置上采用与例7相同的装填量及还原条件进行还原后,在1.0~5.0MPa,400℃、2000h-1、CO/H2=1/2的反应条件下进行催化反应,其结果见表5。 Example 11 The reaction of synthesis gas to olefins Experiment 5 using the same reduction of loadings and reducing conditions in Example 7, the 1.0 ~ 5.0MPa, 400 ℃, 2000h-1 in a fixed bed reactor the molecular sieve supported catalyst E , CO / H2 = 1 under the reaction conditions / 2 catalytic reaction which results in Table 5. 其中,CO转化率最高达69.4%,C2~C4烯烃选择性为62.5%。 Wherein, CO conversion of up to 69.4%, C2 ~ C4 olefin selectivity of 62.5%.

实施例12 合成气制烯烃反应实验6将催化剂F1ml装填在固定床反应装置上,采用与例7相同的还原条件还原后,在1.0~5.0MPa、400℃、1500h-1、CO/H2=1/2的条件下进行反应,其结果见表6,其CO转化率为72.8%,C2~C4烯烃选择性为63.9%。 Example 12 The reaction of synthesis gas to olefins catalyst F1ml Experimental Example 6 packed in a fixed bed reactor, after reduction using the same conditions as in Example 7 Reduction in 1.0 ~ 5.0MPa, 400 ℃, 1500h-1, CO / H2 = 1 under conditions / reaction 2, results shown in Table 6, which the CO conversion was 72.8%, C2 ~ C4 olefin selectivity of 63.9%.

由上述实例,本发明提供的催化剂可用于由合成气为原料直接制取低碳烯烃。 From the above examples, the present invention provides a catalyst can be used directly as raw materials from synthesis gas producing light olefins. 在反应压为1.0~5.0MPa,温度为300~1000℃的反应条件下,可高活性(CO转化率达90%以上),高选择性(烯烃选择性达66%以上)地制取低碳烯烃。 Under reaction conditions pressure 1.0 ~ 5.0MPa, a temperature of 300 ~ 1000 ℃ can be highly active (CO conversion rate of 90%) and high selectivity (olefin selectivity of more than 66%) to producing light olefins. 同时这种工艺过程可直接由反应尾气经水吸收分离CO2及经中压油吸收分离C3、C4组分,然后用苯与尾气中的烯浓度乙烯进行烷基化反应生产乙苯。 At the same time this process can be directly absorbed by the reaction off-gas CO2 separation with water and separated by medium pressure oil absorption C3, C4 components, and the concentration of benzene with ethylene in the tail gas with alkylene alkylation reaction of ethylbenzene production. 其操作过程简单,适于推广应用。 The process is simple and suitable for application.

表1.实施例1催化剂A的CO加氢制烯烃反应结果 Table olefin CO Hydrogenation Catalyst A results of Example 1. 1

</tables>反应条件:2.0MPa,350℃,900h-1,CO/H2=1/2。 </ Tables> Reaction conditions: 2.0MPa, 350 ℃, 900h-1, CO / H2 = 1/2. (*)反应条件:1.0MPa,350℃,1000h-1,CO/H2=1/1。 (*) Reaction conditions: 1.0MPa, 350 ℃, 1000h-1, CO / H2 = 1/1.

表2. 实施例2催化剂B的CO加氢制烯烃反应结果 CO hydrogenation reaction of olefins results in Table 2. Example 2 Catalyst B of Example

</tables>反应条件:2.0MPa,330℃,800h-1,CO/H2=1/2。 </ Tables> Reaction conditions: 2.0MPa, 330 ℃, 800h-1, CO / H2 = 1/2.

表3.实施例3催化剂C的CO加氢制烯烃反应结果 CO hydrogenation reaction of olefins results in Table 3. Example 3 Catalyst C

</tables>反应条件:2.0MPa,335℃,1200h-1,CO/H2=1/2。 </ Tables> Reaction conditions: 2.0MPa, 335 ℃, 1200h-1, CO / H2 = 1/2.

表4.实施例4催化剂D的CO加氢制烯烃反应结果 Table 4. CO Hydrogenation results of olefin of Example 4 Catalyst D

</tables>反应条件:2.0MPA,360℃,1100h-1,CO/H2=1/2。 </ Tables> Reaction conditions: 2.0MPA, 360 ℃, 1100h-1, CO / H2 = 1/2.

表5.实施例5催化剂E的CO加氢制烯烃反应结果 CO hydrogenation reaction of olefins results in Table 5. Example 5 of Catalyst E

</tables>反应条件:2.0MPA,400℃,2000h-1,CO/H2=1/2。 </ Tables> Reaction conditions: 2.0MPA, 400 ℃, 2000h-1, CO / H2 = 1/2.

Claims (1)

  1. 1.一种由合成气制取低碳烯烃反应用含铁锰催化剂,其特征在于:(1)其活性组分Fe-Mn元素担载在IIA族碱土金属氧化物,高硅沸石分子筛、磷铝分子筛或它们的复合物制成的担体上;所谓的高硅沸石分子筛为Silicalite-1,Silicalite-2,ZSM-12,ZSM-48分子筛,磷铝分子筛为APO-5分子筛;(2)在上述催化剂中添加K或Cs元素的阳离子,氢氧化物或卤化物作助剂;(3)催化剂中各组分的重量比为:(100)担体∶(5~20)Fe∶(5~15)Mn∶(3~20)K或Cs;(4)该催化剂的制备过程按下述步骤:①将担体加压成型;②用含有活性组分Fe、Mn的无机盐及含助剂K、Cs元素的碱或卤化物溶液浸渍担体;③浸渍活性组分的担体,经干燥后在400~750℃温度下进行焙烧。 A take light olefins from synthesis gas containing ferromanganese reaction catalyst, wherein: (1) an active ingredient which is supported Fe-Mn element in Group IIA alkaline earth metal oxides, silicalite molecular sieves, phosphorus aluminum zeolite or a supported body made of a composite thereof; so-called high silica zeolite molecular sieve is silicalite-1, silicalite-2, ZSM-12, ZSM-48 zeolite, aluminophosphate molecular sieve is APO-5 zeolite; (2) adding the catalyst element K or Cs cations, hydroxide or halide as builder; (3) the weight ratio of each component in the catalyst are: (100) supporting the body: (5 ~ 20) Fe: (5 ~ 15 ) Mn: (3 ~ 20) K or Cs; (4) preparation of the catalyst is as follows: ① From press molding the supporting member; ② the active ingredient containing Fe, Mn additives containing inorganic salts and K, Cs or alkali halide solution impregnated carrier body element; ③ active ingredient carrier body impregnated, calcined after drying at a temperature of 400 ~ 750 ℃.
CN 92109866 1992-09-03 1992-09-03 Iron manganese catalyst for prepn. of low carbon olefines by synthetic gas and synthetic reaction CN1040397C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 92109866 CN1040397C (en) 1992-09-03 1992-09-03 Iron manganese catalyst for prepn. of low carbon olefines by synthetic gas and synthetic reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 92109866 CN1040397C (en) 1992-09-03 1992-09-03 Iron manganese catalyst for prepn. of low carbon olefines by synthetic gas and synthetic reaction

Publications (2)

Publication Number Publication Date
CN1083415A true CN1083415A (en) 1994-03-09
CN1040397C true CN1040397C (en) 1998-10-28

Family

ID=4944418

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 92109866 CN1040397C (en) 1992-09-03 1992-09-03 Iron manganese catalyst for prepn. of low carbon olefines by synthetic gas and synthetic reaction

Country Status (1)

Country Link
CN (1) CN1040397C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014173229A1 (en) 2013-04-25 2014-10-30 武汉凯迪工程技术研究总院有限公司 Fischer-tropsch synthesis catalyst for syngas to low carbon olefins, modified molecular sieve carrier and preparation method thereof

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293027C (en) * 2002-10-08 2007-01-03 碳氢技术公司 Process for preparing hydrocarbon product by synthetic gas using skeleton catalyst paste phase technology
CN100471561C (en) 2007-02-07 2009-03-25 中国科学院山西煤炭化学研究所 Catalyst for preparing low-carbon olefin, its preparation method and application
CN101745414B (en) 2008-12-12 2013-01-09 北京化工大学 Catalyst for producing light olefins through methanol and preparation method thereof
EP2496347B1 (en) * 2009-11-06 2014-12-10 Basf Se Ferrous heterogeneous catalyst and method for producing olefins by converting carbon monoxide with hydrogen
CN102234212B (en) * 2010-04-20 2014-02-05 中国石油化工股份有限公司 Method for directly converting synthetic gas into low-carbon olefins
US20130046033A1 (en) 2010-05-10 2013-02-21 Casale Chemicals Sa Process for the Production of Light Olefins from Synthesis Gas
CN103521240B (en) * 2012-07-03 2015-06-17 中国石油化工股份有限公司 Catalyst for preparing olefin employing synthesis gas and preparation method thereof
CN103736499B (en) * 2012-10-17 2016-06-08 中国石油化工股份有限公司 Fluidized bed synthesis gas to olefins iron-based catalyst, method of preparation and use thereof
EP3024577A1 (en) * 2013-07-24 2016-06-01 Shell Internationale Research Maatschappij B.V. Process for preparing a chlorine comprising catalyst, the prepared catalyst, and its use
CN104437524B (en) * 2013-09-24 2017-01-11 中国石油化工股份有限公司 Iron-based catalysts producing light olefins, preparation and method of use
CN103752337B (en) * 2013-12-09 2016-01-27 中国科学院山西煤炭化学研究所 Prepared using the Fischer-Tropsch tail gas of lower olefins and the catalyst preparation method and application
CN105709771B (en) * 2014-12-04 2017-10-03 中国石油化工股份有限公司 A synthetic gas to olefins catalyst and preparation method
CN104815688B (en) * 2015-04-23 2017-05-24 中国科学院大连化学物理研究所 An iron-based molecular sieve catalyst and a preparation method and application
CN106311317A (en) * 2015-07-02 2017-01-11 中国科学院大连化学物理研究所 Catalyst and method for directly preparing light olefins from synthesis gas by one-step process
CN105384147A (en) * 2015-11-04 2016-03-09 中国科学院山西煤炭化学研究所 Ammonia-synthesis and carbon-containing-chemical combinative production technology

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4604375A (en) * 1983-12-20 1986-08-05 Exxon Research And Engineering Co. Manganese-spinel catalysts in CO/H2 olefin synthesis
US4629718A (en) * 1982-08-30 1986-12-16 Atlantic Richfield Company Alkali promoted manganese oxide compositions containing silica and/or alkaline earth oxides
US4705769A (en) * 1985-07-25 1987-11-10 Phillips Petroleum Company Composition of matter for conversion of C3 and C4 hydrocarbons
CN1020678C (en) * 1987-10-23 1993-05-19 斯塔特石油公司 Catalyst and process for production of hydrocarbons

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4629718A (en) * 1982-08-30 1986-12-16 Atlantic Richfield Company Alkali promoted manganese oxide compositions containing silica and/or alkaline earth oxides
US4604375A (en) * 1983-12-20 1986-08-05 Exxon Research And Engineering Co. Manganese-spinel catalysts in CO/H2 olefin synthesis
US4705769A (en) * 1985-07-25 1987-11-10 Phillips Petroleum Company Composition of matter for conversion of C3 and C4 hydrocarbons
CN1042317A (en) * 1985-07-25 1990-05-23 菲利普石油公司 Composition of matter and method for conversion of c3 and c4 hydrocarbons
CN1020678C (en) * 1987-10-23 1993-05-19 斯塔特石油公司 Catalyst and process for production of hydrocarbons

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014173229A1 (en) 2013-04-25 2014-10-30 武汉凯迪工程技术研究总院有限公司 Fischer-tropsch synthesis catalyst for syngas to low carbon olefins, modified molecular sieve carrier and preparation method thereof

Also Published As

Publication number Publication date Type
CN1083415A (en) 1994-03-09 application

Similar Documents

Publication Publication Date Title
US4062905A (en) Manufacture of light olefins
Ge et al. Bifunctional catalysts for conversion of synthesis gas to dimethyl ether
US6239057B1 (en) Catalyst for the conversion of low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons, process for preparing the catalyst and process using the catalyst
Liu et al. New progress in R&D of lower olefin synthesis
Sun et al. Catalysis chemistry of dimethyl ether synthesis
Fujimoto et al. Selective synthesis of C2-C5 hydrocarbons from carbon dioxide utilizing a hybrid catalyst composed of a methanol synthesis catalyst and zeolite
CN101607858A (en) Method for preparing aromatic hydrocarbons and propylene simultaneously employing methanol/dimethyl ether
US4417000A (en) Dimethyl ether process
CN102452878A (en) Method for preparing low-carbon olefin by synthetic gas one-step technology
US4874733A (en) Cobalt Fischer-Tropsch catalysts having improved selectivity
CN101121624A (en) Method for preparing ethylene by ethanol dehydration
CN102234212A (en) Method for directly converting synthetic gas into low-carbon olefins
US4450313A (en) Oxidative dehydrogenation of paraffins
US4595702A (en) Conversion of synthesis gas to liquid hydrocarbons
CN101475443A (en) Method for preparing ethylene glycol
US4624967A (en) Fe-Co catalyst slurry system for use in alpha olefin production
CN101475442A (en) Method for preparing ethylene glycol from oxalic ester
US3424808A (en) Dehydrogenation and methanation catalyst and process
CN102126915A (en) Method for preparing paraxylene and ethylene by transforming methanol or dimethyl ether
CN101172246A (en) Process for preparation of propylene catalysts with methanol conversion
US4206135A (en) Catalyst comprising nickel supported on tantalum oxide or niobium oxide and their use as hydrocarbon synthesis catalysts in CO/H2 reactions
CN101417911A (en) Method for preparing light olefins from methanol using hydrocarbons as part material
CN101265149A (en) Method for preparing low-carbon olefin from synthetic gas by two-stage process
CN1373007A (en) Catalyst for preparing propylene by dismutation reaction and its preparing process and application
US2354892A (en) Dehydrogenation of hydrocarbons

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
C19 Lapse of patent right due to non-payment of the annual fee