CN104008943B - 聚焦离子束低千伏增强 - Google Patents

聚焦离子束低千伏增强 Download PDF

Info

Publication number
CN104008943B
CN104008943B CN201410066714.2A CN201410066714A CN104008943B CN 104008943 B CN104008943 B CN 104008943B CN 201410066714 A CN201410066714 A CN 201410066714A CN 104008943 B CN104008943 B CN 104008943B
Authority
CN
China
Prior art keywords
charged particle
particle beam
post
interlude
target body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410066714.2A
Other languages
English (en)
Other versions
CN104008943A (zh
Inventor
M.马佐斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FEI Co
Original Assignee
FEI Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50151208&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN104008943(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by FEI Co filed Critical FEI Co
Publication of CN104008943A publication Critical patent/CN104008943A/zh
Application granted granted Critical
Publication of CN104008943B publication Critical patent/CN104008943B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/07Eliminating deleterious effects due to thermal effects or electric or magnetic fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/02Electron guns
    • H01J3/026Eliminating deleterious effects due to thermal effects, electric or magnetic field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/10Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • H01J37/1474Scanning means
    • H01J37/1477Scanning means electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/21Means for adjusting the focus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/248Components associated with high voltage supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching for evaporating or etching
    • H01J37/3056Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching for evaporating or etching for microworking, e. g. etching of gratings or trimming of electrical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/047Changing particle velocity
    • H01J2237/0473Changing particle velocity accelerating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/047Changing particle velocity
    • H01J2237/0473Changing particle velocity accelerating
    • H01J2237/04735Changing particle velocity accelerating with electrostatic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/047Changing particle velocity
    • H01J2237/0475Changing particle velocity decelerating
    • H01J2237/04756Changing particle velocity decelerating with electrostatic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/15Means for deflecting or directing discharge
    • H01J2237/151Electrostatic means
    • H01J2237/1518Electrostatic means for X-Y scanning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/153Correcting image defects, e.g. stigmators
    • H01J2237/1534Aberrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31749Focused ion beam

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Electron Beam Exposure (AREA)

Abstract

本发明提供了一种带电粒子束系统,其中,聚焦离子束柱的中间段被偏置到高负电压,该电压允许该束在比该柱的那个区段内的最终束能量更高的电势下移动。在低kV电势下,减少了色差和库仑相互作用,这使斑点尺寸产生显著改进。

Description

聚焦离子束低千伏增强
技术领域
本发明涉及带电粒子束系统,如聚焦离子束系统。
背景技术
聚焦离子束系统将带电粒子引导至工件或靶体上,以便对工件进行加工或以便形成工件的图像。带电粒子束系统用在例如集成电路制造和其他纳米技术加工中。带电粒子束系统典型地包括粒子源、束消隐装置、加速透镜、聚焦光学器件和偏转光学器件。
高分辨率聚焦离子束(FIB)已经被证明对多种任务而言是有用的,如显微术、光刻、微机械加工(离子铣削和材料沉积)以及掺杂剂注入。许多年来,已经为聚焦离子束应用开发出多种离子源,包括气相场致电离、等离子体和液态金属。迄今为止,在所有开发的源中,液态金属离子源(LMIS)已经被证明是最有用的并且是当今最广泛使用的。液态金属离子源的有用性根本上源于其非常高的亮度,该亮度允许以近似10 nm量级的斑点尺寸产生聚焦离子束同时将电流维持在1 pA至10 pA的范围内。这些特征赋予聚焦离子束必要的分辨率和离子电流来执行一系列现有技术水平纳米技术任务。
尽管其广泛使用,但现有离子源具有局限性,这些局限性妨碍了向更广应用和更高分辨率的进步。聚焦离子束(其中在靶体处的高着陆能量高于5 keV)的使用会对工件造成显著破坏。然而,具有低着陆能量的束的使用产生制作薄层所需的差斑点尺寸性能。
相应地,需要一种具有低keV着陆能量但有效斑点尺寸的聚焦离子束的改进系统和策略。可以用低C物镜或四极管/五极管可切换透镜来实现低keV改进的聚焦离子束。
浸入比率越高,阴极透镜就变得越强。随着浸入比率k的增加,轴向色差系数显著地降低。例如,色差系数C与浸入比率k几乎成反比,该色差系数在低着陆能量下对分辨率具有重要影响。这在不使用束减速度的情况下看到的低束能量下引起部分补偿束直径退化。但对使用低C物镜和四极管/五极管可切换透镜的性能改进是非常小的并且对使超薄透镜成像和对其进行创造而言是不足够的。
此外,难于使来自源的离子加速而不在合成束中引起大的能量分散。离子源的空间范围越大,就越难于将离子聚焦成一个点。系统的改进需要产生更小的探针尺寸和产生这种系统理论上能够产生的分辨率。
聚焦光学器件使束在靶体的表面上聚焦成一个斑点或一个预定义的形状。聚焦光学器件典型地包括聚束透镜和物镜的组合。透镜可以是静电的、磁性的、或两者的各种组合。带电粒子透镜(像光透镜)具有防止粒子聚焦到清晰图像的色差。色差对传递通过透镜中心的带电粒子而言是最小的,并且色差随着距离透镜中心的距离的增加而增加。因此,对带电粒子束而言,令人希望是在非常接近透镜中心处传递。因为束中全都具相同电荷的粒子相互排斥,所以出现一种被称为“束相互作用”的类型的色差。粒子距离彼此越近,斥力就越大。因为粒子在传递通过物镜后典型地会聚,所以令人希望的是将物镜定位得离工件尽可能近,以减少粒子聚焦成一条紧束的时间。物镜与工件之间的距离被称为“工作距离”。
偏转光学器件将束引导至工件表面的多个点上(被称为“停留点(dwell point)”或“像素”)。例如,可以用光栅图案、蛇形图案引导束,或将其引向一任意序列的单独点。束将典型地停留在一个点上持续一段规定的时期(被称为“停留时期(dwell period)”)来输送规定“剂量”的带电粒子,并且然后被偏转至下一个停留点。停留时期的持续时间被称为“停留时间(dwell time)”或“像素速率”。(虽然像素“速率”更准确地被称为每秒扫描的像素数量,但该术语还用来指示束保持在每个像素处的时间。)
偏转光学器件可以是磁性的或者静电的。在聚焦离子束系统中,偏转光学器件典型地是静电的。用于聚焦离子束的静电偏转器典型地是八极的,即,每个偏转器包括八块分布在圆周周围的板。不同的电压施加在这八个板上以使束在不同方向上偏转远离光轴。
如果将偏转器放置在物镜下方,则束可以传递通过物镜的中心以使色差最小化。例如,在本发明的受让人FEI公司销售的VisION系统中使用这种配置。然而,将偏转器放置在物镜下方增加了工作距离,从而增加束色差。
为了最小化工作距离,我们可以将偏转器放置在物镜上方。然而,在偏转器在透镜上方的情况下,当使束偏转时,其移动远离透镜的中心,从而增加某些色差。为了解决此问题,许多聚焦离子束系统实用两级偏转器。
需要一种可以实现需要的最优斑点尺寸的聚焦离子束,以在超薄薄片上工作,而在靶体处没有高着陆能量。
发明内容
本发明的目标是提供一种用于使用低kV形成基本上从常规斑点尺寸改进而来的聚焦离子束斑点尺寸的方法和装置。
本发明由以下内容组成:使FIB柱的中间段偏置到允许该束在比该柱的区段内的最终束能量更高的电势下移动的高负电压,这有助于减少色差和库仑相互作用。结果是低kV下的斑点尺寸具有显著的改进。
为了可以更好地理解以下本发明的详细说明,上文已经相当广泛地概述了本发明的特征和技术优点。下文将描述本发明的附加特征和优点。本领域技术人员应认识到所披露的概念和具体实施例可容易地用作改进或设计用于实施本发明相同目的其他结构的基础。本领域的技术人员还应认识到这些同等构造不脱离如所附权利要求中所阐明的本发明的精神和范围。
附图说明
为了更加彻底地理解本发明及其优点,现在结合附图参考以下说明,其中:
图1A示出了典型聚焦离子束系统的示意性横截面图。
图1B示出了包含接地中间段的典型聚焦离子束系统。
图2示出了具有增压器管的聚焦离子束的示意性横截面图。
图3A至图3C示出了在具有增压器管的系统vs没有增压器管的系统中探针尺寸与探针电流之间的关系。
具体实施方式
本发明通过将聚焦离子束柱的中间段偏置到高负电压使聚焦离子束产生的斑点尺寸得到显著改进。
图2示出了根据本发明的实施例的具有电子源102的聚焦离子束柱101。电子源102具有横贯聚焦离子束柱101的长度并且被引导至靶体106的光轴。聚焦离子束柱101由两个透镜系统104、105组成。透镜系统104由三个电极110、111和112组成。透镜系统105由三个电极113、114和115组成。
根据本发明的实施例,聚焦离子束柱101的中间段由增压器管120组成。增压器管可以由封装聚焦离子束柱101的中间组件的管组成。增压器管120的管可以由多种材料制成,如钛合金,其允许管内的组件与接地电势电绝缘。增压器管120不一定必须由实体管组成。其还可以被称为包括聚焦离子束柱101的中间段的系统,其中,该中间段可以被设置到更高的电压水平。在图2中,增压器管120由透镜112、限束孔径(BDA)130、柱隔离阀(CIV)132的差分泵送孔径(DPA)131、转向极133和法拉第杯134、扫描八极135和透镜113构成。
术语“限束孔径(BDA)”通常用于描述盘形的元件本身和孔、或孔径。BDA中的孔径明显小并且只允许初始束的一小部分传递通过靶体106。DPA 131放置在能够使装置在真空室和柱内的不同真空水平下操作的柱内。万一出现室真空损失,CIV 132可以存在用于在使真空密封并保护离子源和聚焦柱装置。束消隐装置给予使束消隐从而使得没有离子可以碰撞工件的选项。可以使用可选法拉第杯134测量离子束电流。通过扫描板135来跨靶体106的表面扫描聚焦离子束。
通常,在现有技术聚焦离子束柱中,聚焦离子束柱101的中间段接地至0V。图1A中示出了这种情况,其中没有增压器管。如图1B中进一步所示,常规系统具有聚焦离子束柱的多个组件,如物镜和偏转器,其中这些组件接地。
根据本发明的实施例,增压器管120被偏置到高负电压,该电压允许束在比最终束能量更高的电势下移动。增压器管120和组件必须与地电绝缘。增压器管120允许将透镜系统104的最后的透镜112、BDA 130、DPA 131、CIV 132、转向极133、遮光板和法拉第杯134、扫描八极135以及透镜系统105的第一透镜113设置到比通常被设置成对地电压常规系统更高的电压。
当使用增压器管120时,减小靶体106上的最终斑点尺寸。带电离子相互排斥,并且当向下行进过聚焦离子柱101时,这些离子将获取垂直于束轴的速度分量。通过提升聚焦离子管101的中间段内的电压,离子经历更小的能量分散并且最后在靶体106处产生更高的分辨率。
大多数聚焦离子束应用需要将离子加速至几keV。当使用常规静电电极长距离使离子加速时,则这些电极的面积将必须近似将它们分离开的距离的平方的量级以便保证场均匀性。如果透镜作用诱导离子沿着靶体前的束路径(所谓的‘跨越(cross-over)’)来到一个焦点,则离子间的库仑力将降低离子束的质量并且在使该束再次聚焦时再次产生更大的斑点尺寸。通过将聚焦离子束的中间段偏置到更高的电势电压,系统减少了不希望的跨越影响并且降低了库仑力,这实质性地改进了靶体106处的斑点尺寸。
本发明的实施例解决了这些问题并且使用增压器管120产生更高分辨率的束。能量越高,在靶体106处造成的破坏越大。优选的是降低着陆能量处的能量水平。如这些图中的每个图中所示,在施加在增压器管120上的更高电压的使用下,改进了斑点尺寸。
图3A、图3B和图3C示出了在不同增压器管能量水平下的探针尺寸与探针电流之间的关系。如所示,在每个实例中,增压器管的使用大幅度减小了靶体处的斑点尺寸。用高负电压模块140将增压器管120偏置到高负电压。这种高负电压在工业中是众所周知的,如Spellman HVPS。根据本发明的实施例,披露了低着陆能量系统的使用,如0.5 keV着陆能量,其中,增压器管的应用被设置到高负电压(如高负电压模块被偏置到1 kV)。这种系统将最低限度地对靶体造成破坏而同时产生可用的斑点尺寸。如此,增压器管120允许和低能量一起使用,即,5 kV以下的能量。
取决于束能量,可以用两种模式使用聚焦离子束柱101。第一模式是高kV模式,其中着陆能量高于5 kV,并且其中增压器管接地。在第二模式中,柱在低kV模式情况下操作,该模式通常在5 kV着陆能量以下,其中,增压器管120被偏置到合适的电压,该增压器管偏置电压下被直接占用或者浮动。聚焦离子束柱将这些不同模式考虑在内并且根据这些模式遵照对准程序。
根据本发明的一些实施例,一种装置包括:用于在靶体上使用的初级离子束源;具有增压器管的聚焦离子束柱,该增压器管被偏置到高负电压,其中,该增压器管包括第一透镜电极、第二透镜电极、以及一个或多个静电扫描偏转器,其中,这些偏转器电极被该增压器偏置负电压引用。
在一些实施例中,该聚焦离子束柱在该初级离子束源和该增压器管之间包含至少一个透镜。在一些实施例中,该聚焦离子束柱在该增压器管和该靶体之间包含至少一个透镜。在一些实施例中,该增压器管包含用于束电流测量的法拉第杯。
在一些实施例中,该增压器管具有两种模式,一个可以接地的第一模式和一个其中将该增压器管偏置到负高电压的第二模式。在一些实施例中,该负高电压低于5 kV。在一些实施例中,该负高电压在1 kV和3 kV之间。在一些实施例中,该装置进一步包括限束孔径、柱隔离阀和束消隐装置。
根据本发明的一些实施例,一种用于使用聚焦离子束使靶体成像和对其进行加工的方法包括:生成聚焦离子束,该聚焦离子束包括沿着离子柱向靶体行进的离子;将该聚焦离子束引导通过至少一个透镜、限束孔径和被偏置到高负电压的扫描八极;以及从该聚焦离子束在该靶体上生成斑点尺寸,其中,从该高负电压减小该斑点尺寸。
在一些实施例中,该负高电压低于5 kV。在一些实施例中,该高负电压在1 kV和3kV之间。在一些实施例中,该方法进一步包括在该增压器管内使用法拉第杯以便使该靶体成像。在一些实施例中,这些扫描八极使该聚焦离子束偏转。
尽管已经详细描述了本发明及其优点,但是应理解到,在不脱离所附权利要求定义的本发明的精神和范围的情况下,可以在此进行各种变化、代替以及改变。而且,本发明的范围并非旨在局限于在本说明书中所述的工艺、机器、制造物、物质的组合物、手段、方法以及步骤的具体实施例。如本领域的普通技术人员将从本发明的披露中轻易认识到的,可以根据本发明利用现有的或往后要开发的、大体上执行相同功能或大体上实现和此处所述的对应实施例相同结果的工艺、机器、制造物、物质的组合物、手段、方法或步骤。相应地,所附权利要求书是旨在于将此类工艺、机器、制造物、物质的组合物、手段、方法或步骤包括在它们的范围内。

Claims (23)

1.一种带电粒子束系统,包括:
带电粒子的源;
带电粒子束聚焦柱,被配置成将所述带电粒子聚焦成带电粒子束,其中所述带电粒子束聚焦柱的中间段的组件包括被配置成跨靶体的表面扫描所述带电粒子束的扫描静电偏转器;以及
电压模块,被配置成将浮动偏置电压施加到所述组件,使得所述带电粒子束在所述中间段内部比在所述表面处以更高的动能移动。
2.如权利要求1所述的带电粒子束系统,其中,所述浮动偏置电压是提高所述中间段与所述靶体之间的电势差的浮动偏置电压。
3.如权利要求1所述的带电粒子束系统,进一步包括光轴,所述光轴从所述带电粒子的源延伸,且横贯所述带电粒子束聚焦柱的长度,并且其中,所述带电粒子束聚焦柱进一步包括沿所述光轴在所述扫描静电偏转器的下游设置的透镜。
4.如权利要求1所述的带电粒子束系统,其中,所述带电粒子束聚焦柱是聚焦离子束柱,所述带电粒子束是聚焦离子束,并且所述浮动偏置电压包括负电压。
5.如权利要求4所述的带电粒子束系统,其中,所述浮动偏置电压包括处于0与-5 kV之间的负电压。
6.如权利要求5所述的带电粒子束系统,其中,所述负电压处于从-1 kV到-3 kV的范围内。
7.如权利要求4所述的带电粒子束系统,其中,所述扫描静电偏转器包括八极。
8.如权利要求1所述的带电粒子束系统,其中,所述浮动偏置电压包括高于地的电压。
9.如权利要求1所述的带电粒子束系统,其中,所述带电粒子的源包括电子源。
10.一种带电粒子束系统,包括:
带电粒子的源;
带电粒子束柱,被配置成将包括来自所述源的带电粒子的带电粒子束引导至靶体上,其中,所述带电粒子束柱的中间段包括增压器管,所述增压器管包含被配置成跨所述靶体的表面扫描所述带电粒子束的扫描静电偏转器;以及
电压模块,被配置成随着所述带电粒子束沿光轴横贯所述带电粒子束柱的长度而将浮动偏置电压施加到所述增压器管,使得所述带电粒子束在所述中间段内部比在所述表面处以更高的动能移动,所述光轴从所述源延伸到所述靶体。
11.如权利要求10所述的带电粒子束系统,其中:
所述带电粒子束柱进一步包括沿从所述源延伸到所述靶体的光轴在所述扫描静电偏转器的下游设置的透镜。
12.如权利要求10所述的带电粒子束系统,其中,所述带电粒子束柱是聚焦离子束柱,所述带电粒子束是聚焦离子束,并且将浮动偏置电压施加到所述增压器管包括将负电压施加到所述增压器管。
13.如权利要求10所述的带电粒子束系统,其中,所述增压器管封装所述带电粒子束柱的中间组件,并且所述扫描静电偏转器是所述中间组件之一。
14.如权利要求13所述的带电粒子束系统,其中,所述增压器管将所述中间组件与接地电势电绝缘。
15.如权利要求14所述的带电粒子束系统,其中,所述增压器管的材料将所述中间组件与接地电势电绝缘。
16.如权利要求10所述的带电粒子束系统,其中,所述增压器管和所述带电粒子束柱的其他组件与地电绝缘。
17.如权利要求10所述的带电粒子束系统,其中:
所述增压器管包括所述带电粒子束柱的设置在所述带电粒子束柱的中间段内的组件;并且
所述增压器管不包括封装所述组件的实体管。
18.一种用于使用带电粒子束使靶体成像和/或对靶体进行加工的方法,所述方法包括:
沿从带电粒子的源向靶体的表面延伸的带电粒子束柱的光轴引导带电粒子束;以及
将浮动偏置电压施加到所述带电粒子束柱的中间段的组件,使得所述带电粒子束在所述中间段内部比在所述表面处以更高的动能移动,其中,所述组件包括被配置成跨所述表面扫描所述带电粒子束的扫描静电偏转器。
19.如权利要求18所述的方法,其中,所述带电粒子束柱包括沿所述光轴在所述扫描静电偏转器的下游设置的透镜,并且所述方法进一步包括将所述带电粒子束引导通过所述扫描静电偏转器和所述透镜。
20.如权利要求18所述的方法,其中,所述带电粒子束柱包括聚焦离子束柱,所述带电粒子束是聚焦离子束,并且所述浮动偏置电压包括处于零与-5 kV之间的负电压。
21.如权利要求20所述的方法,其中,所述负电压处于从-1 kV到-3 kV的范围内。
22.如权利要求19所述的方法,其中,所述浮动偏置电压包括高于地的电压。
23.一种带电粒子束系统,包括:
带电粒子的源;
带电粒子束柱,被配置成沿从所述源延伸到靶体的路径聚焦和引导带电粒子束,所述带电粒子束柱包括:中间段;位于所述中间段中的扫描静电偏转器,被配置成将所述带电粒子束引导至所述靶体的表面上的点;以及透镜,沿所述路径在所述扫描静电偏转器的下游设置;以及
电压模块,被配置成将浮动偏置电压施加到所述中间段以增加所述中间段与所述靶体之间的电势差,其使所述带电粒子束在所述中间段内部比在所述表面处以更高的动能移动。
CN201410066714.2A 2013-02-27 2014-02-26 聚焦离子束低千伏增强 Active CN104008943B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/779,142 US8933414B2 (en) 2013-02-27 2013-02-27 Focused ion beam low kV enhancement
US13/779142 2013-02-27

Publications (2)

Publication Number Publication Date
CN104008943A CN104008943A (zh) 2014-08-27
CN104008943B true CN104008943B (zh) 2018-02-16

Family

ID=50151208

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410066714.2A Active CN104008943B (zh) 2013-02-27 2014-02-26 聚焦离子束低千伏增强

Country Status (4)

Country Link
US (3) US8933414B2 (zh)
EP (1) EP2772930B1 (zh)
JP (1) JP6341680B2 (zh)
CN (1) CN104008943B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8933414B2 (en) * 2013-02-27 2015-01-13 Fei Company Focused ion beam low kV enhancement
US9666407B2 (en) * 2015-02-25 2017-05-30 Industry-University Cooperation Foundation Sunmoon University Electrostatic quadrupole deflector for microcolumn
JP2019003863A (ja) * 2017-06-16 2019-01-10 株式会社島津製作所 電子ビーム装置、ならびに、これを備えるx線発生装置および走査電子顕微鏡
CN109633359B (zh) * 2019-01-10 2021-05-28 许继电源有限公司 一种三母线中单母线接地绝缘监测方法和监测装置
JP7154593B2 (ja) * 2019-02-15 2022-10-18 株式会社日立ハイテクサイエンス 複合荷電粒子ビーム装置、及び制御方法
JP7308582B2 (ja) * 2019-10-18 2023-07-14 株式会社日立ハイテクサイエンス 集束イオンビーム装置、及び集束イオンビーム装置の制御方法
JP7308581B2 (ja) * 2019-10-18 2023-07-14 株式会社日立ハイテクサイエンス 荷電粒子ビーム装置、複合荷電粒子ビーム装置、及び荷電粒子ビーム装置の制御方法
CN112713070B (zh) * 2019-10-25 2022-10-18 中国电子科技集团公司第四十八研究所 一种真空机械扫描装置
DE102019133658A1 (de) * 2019-12-10 2021-06-10 Carl Zeiss Smt Gmbh Vorrichtung und Verfahren zum Bearbeiten einer mikrostrukturierten Komponente
US11887810B2 (en) 2022-04-20 2024-01-30 Applied Materials Israel Ltd. Reduced charging by low negative voltage in FIB systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101026080A (zh) * 2006-02-22 2007-08-29 Fei公司 装备有气体离子源的粒子光学设备
CN102598195A (zh) * 2009-09-18 2012-07-18 Fei公司 分布式离子源加速镜筒

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617103U (ja) * 1992-08-07 1994-03-04 日新電機株式会社 低エネルギーイオン銃の真空排気装置
US5393985A (en) * 1992-11-26 1995-02-28 Shimadzu Corporation Apparatus for focusing an ion beam
JP2945952B2 (ja) * 1995-03-06 1999-09-06 科学技術庁金属材料技術研究所長 減速集束イオンビーム堆積装置
JP2000133185A (ja) * 1998-10-30 2000-05-12 Nikon Corp 偏向器及びそれを用いた荷電粒子線装置
US7601953B2 (en) * 2006-03-20 2009-10-13 Alis Corporation Systems and methods for a gas field ion microscope
JP2006114225A (ja) * 2004-10-12 2006-04-27 Hitachi High-Technologies Corp 荷電粒子線装置
WO2006050613A1 (en) * 2004-11-15 2006-05-18 Credence Systems Corporation System and method for focused ion beam data analysis
DE602005006967D1 (de) * 2005-03-17 2008-07-03 Integrated Circuit Testing Analyse-System und Teilchenstrahlgerät
KR101384260B1 (ko) * 2005-12-05 2014-04-11 전자빔기술센터 주식회사 전자칼럼의 전자빔 포커싱 방법
JP2010519697A (ja) * 2007-02-22 2010-06-03 アプライド マテリアルズ イスラエル リミテッド 高スループットsemツール
US8227752B1 (en) * 2011-02-17 2012-07-24 Carl Zeiss Nts Gmbh Method of operating a scanning electron microscope
EP2444990B1 (en) * 2010-10-19 2014-06-25 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Simplified particle emitter and method of operating thereof
JP5438161B2 (ja) * 2012-04-13 2014-03-12 株式会社アドバンテスト Da変換装置
US8742361B2 (en) * 2012-06-07 2014-06-03 Fei Company Focused charged particle column for operation at different beam energies at a target
US8933414B2 (en) * 2013-02-27 2015-01-13 Fei Company Focused ion beam low kV enhancement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101026080A (zh) * 2006-02-22 2007-08-29 Fei公司 装备有气体离子源的粒子光学设备
CN102598195A (zh) * 2009-09-18 2012-07-18 Fei公司 分布式离子源加速镜筒

Also Published As

Publication number Publication date
US20150083929A1 (en) 2015-03-26
JP6341680B2 (ja) 2018-06-13
US9443692B2 (en) 2016-09-13
EP2772930B1 (en) 2018-07-04
US20150325403A1 (en) 2015-11-12
US20140239175A1 (en) 2014-08-28
EP2772930A2 (en) 2014-09-03
CN104008943A (zh) 2014-08-27
US8933414B2 (en) 2015-01-13
US9087672B2 (en) 2015-07-21
JP2014165174A (ja) 2014-09-08
EP2772930A3 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
CN104008943B (zh) 聚焦离子束低千伏增强
US5146090A (en) Particle beam apparatus having an immersion lens arranged in an intermediate image of the beam
JP4215282B2 (ja) 静電対物レンズ及び電気走査装置を装備したsem
US6614026B1 (en) Charged particle beam column
US6452175B1 (en) Column for charged particle beam device
JPS6213789B2 (zh)
EP2727129B1 (en) Multiple-column electron beam apparatus and methods
US8314404B2 (en) Distributed ion source acceleration column
KR20090046699A (ko) 웨이퍼의 전압 콘트라스트를 강화시키는 장치 및 방법
JP2014220241A (ja) 電子ビームウェーハ検査システム及びその作動方法
JP2014220241A5 (zh)
JP2014165174A5 (zh)
JP2001513254A (ja) 粒子光学機器の中の色収差を補正する補正装置
US9355818B2 (en) Reflection electron beam projection lithography using an ExB separator
CN108807118A (zh) 一种扫描电子显微镜系统及样品探测方法
JP2001185066A (ja) 電子線装置
KR100543382B1 (ko) 하전 입자 빔 장치용 컬럼
KR20210137207A (ko) 하전 입자 디바이스를 위한 빔 분할기
JPH1125895A (ja) 電子線装置
US20040000640A1 (en) Scanning electron microscope and method of controlling same
KR101761227B1 (ko) 입자 빔 칼럼에서 입자 빔을 블랭킹하는 방법
JPH0218847A (ja) 荷電粒子ビーム装置
JP2000011936A (ja) 電子線光学系
Kuroda et al. Optimized secondary electron collection in in-lens-type objective lens
JPH09251846A (ja) 走査型荷電粒子線装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant