CN103988304A - 用于形成具有etsoi晶体管的芯片上高质量电容器的方法和结构 - Google Patents

用于形成具有etsoi晶体管的芯片上高质量电容器的方法和结构 Download PDF

Info

Publication number
CN103988304A
CN103988304A CN201280061177.1A CN201280061177A CN103988304A CN 103988304 A CN103988304 A CN 103988304A CN 201280061177 A CN201280061177 A CN 201280061177A CN 103988304 A CN103988304 A CN 103988304A
Authority
CN
China
Prior art keywords
capacitor
grid
etsoi
pseudo
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280061177.1A
Other languages
English (en)
Other versions
CN103988304B (zh
Inventor
程慷果
B·B.·多丽丝
A·克哈基弗尔鲁茨
G·沙赫迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Core Usa Second LLC
GlobalFoundries Inc
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN103988304A publication Critical patent/CN103988304A/zh
Application granted granted Critical
Publication of CN103988304B publication Critical patent/CN103988304B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/66181Conductor-insulator-semiconductor capacitors, e.g. trench capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors having potential barriers
    • H01L29/94Metal-insulator-semiconductors, e.g. MOS
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

ETSOI晶体管和电容器通过在替代栅极HK/MG流程中蚀刻通过ETSOI和薄BOX层,分别在其晶体管和电容器区域中形成。电容器形成与ETSOI替代栅极CMOS流程兼容。低电阻电容器电极使获得高质量电容器或变容管成为可能。通过光刻结合伴随的适当的蚀刻来实现在伪栅图案化期间没有拓扑结构。

Description

用于形成具有ETSOI晶体管的芯片上高质量电容器的方法和结构
相关申请的交叉引用
本美国申请No.13/316,635与同时提交的美国申请No.13/316,641有关,其全部细节以引用的方式合并。
技术领域
本公开总体上涉及半导体器件,更具体地涉及具有与极薄SOI(ETSOI)CMOS晶体管一起的芯片上电容器的场效应晶体管(FET),尤其用于诸如芯片上系统(SoC)应用的各种应用。
背景技术
随着各种集成电路组件的尺寸的缩小,诸如FET的晶体管在性能和功耗方面都经历了明显的改进。这些改进可能主要归因于其中使用的组件的尺寸的减小,组件尺寸的减小通常转变为减小的电容、电阻和增加的来自晶体管的电流通量(through-put current)。
但是,在器件尺寸的这种“经典的”缩放超过某一点时,由于不可避免地与器件尺寸的持续减小相关联的泄露电流和变异性的增加,由该缩放带来的性能改进近来遇到障碍,并且,在一些情况下甚至被质疑。诸如金属氧化物半导体场效应晶体管(MOSFET)的平面型晶体管尤其很好地适用于高密度集成电路。随着MOSFET和其它器件的尺寸减小,这些器件的源极/漏极区域、沟道区域和栅极电极的尺寸也减小。
而且,极薄SOI(ETSOI)器件已经被作为用于持续的CMOS缩放的器件构架。为了使ETSOI成为真正的技术,需要芯片上电容器和ETSOI CMOS晶体管,用于诸如芯片上系统(SoC)应用的各种应用。
绝缘体上硅(SOI)技术允许形成高速的浅结器件。另外,SOI器件通过减少寄生结电容来提高性能。在SOI衬底中,在单晶硅上形成由硅氧化物制成的掩埋氧化物(BOX)膜,并且,在其上形成单晶硅薄膜。已知制造这种SOI衬底的各种方法,其中的一种方法是注氧隔离(SIMOX)工艺,其中,氧离子以期望的深度被注入到硅衬底中,以形成BOX膜。然后,在高温(通常为1300℃)和具有少量氧的惰性环境下对衬底进行退火,从而衬底的注氧区域被转换为硅氧化物。形成SOI衬底的另一种方法是晶片接合,其中,具有硅氧化物表面层的两个半导体衬底在硅氧化物表面处被接合在一起,以在两个半导体衬底之间形成BOX层,然后进行薄化。ETSOI(完全耗尽的器件)使用超薄硅沟道,其中,多数载流子在操作期间被完全耗尽(FD)。
参照图1,示出了现有技术的在绝缘体上硅(SOI)衬底上的FET器件的示范性结构,绝缘体上硅(SOI)衬底被描述为具有极薄绝缘体上硅(ETSOI)层。(ETSOI)层存在于SOI衬底的掩埋绝缘层的顶上,ETSOI层的厚度优选地在3nm到20nm的范围内。在其中存在半导体的ETSOI层的上表面上形成凸起的(raised)源极区域和凸起的漏极区域,优选地使用外延沉积工艺来形成。
由于未掺杂的极薄SOI主体的高电阻,现有的ETSOI电容器遭受高体电阻,从而导致差的质量。为了使ETSOI成为真正的技术,工业上需要集成有ETSOI CMOS晶体管的高质量的芯片上电容器,用于诸如芯片上系统(SoC)应用的各种应用。
发明内容
在一个方面中,本发明的实施例提供一种用于在与具有薄BOX的极薄SOI晶体管相同的芯片上集成高质量电容器的方法和结构。
在另一方面中,实施例提供通过使用替代栅极形成的本发明的电容器。在去除伪栅之后,ETSOI和薄BOX层被凹进,以露出重掺杂的背栅区域。然后,与标准替代HK/MG工艺一起形成高k/金属栅极。使用重掺杂的背栅区域来形成电容器的主体,以减小电容器的体电阻,从而提高电容器和/或变容管质量。
在另一个方面中,本发明的实施例提供一种用于在与薄BOX上的ETSOI晶体管相同的芯片上集成高质量电容器/变容管的方法和结构。本发明的电容器通过使用替代栅极来形成。在去除伪栅之后,ETSOI和薄BOX层被凹进,以露出重掺杂的背栅区域。然后,与标准替代HK/MG工艺一起形成高k/金属栅极。重掺杂的背栅区域被用作电容器的主体,以减小电容器的体电阻,由此,它提高电容器质量。
本发明的电容器可以是提供可电控的电容的变容管,也称为具有可变电容的电容器,其可用于调谐电路中。
在另一个实施例中,通过在以高k栅极电介质作为电容器电介质的情况下使用金属栅极和重掺杂的凸起的源极/漏极作为两个电极,利用高质量电容器来形成本发明的电容器。
在另一个实施例中,在BOX之下的衬底中制造器件。在一个实施例中,在SOI衬底中形成MIS电容器。在一个实施例中,半导体器件可以是接触件、二极管或结变容管。
在另一个实施例中,蚀刻区域被外延硅或硅合金回填,以使得表面与具有在外延层中构造的前述器件的其他FET近似共面。
在另一个实施例中,在SOI衬底上的半导体结构包括在SOI衬底上形成的极薄绝缘体上半导体(ETSOI)晶体管;以及在集成有ETSOI晶体管的SOI衬底上的电容器,具有由ETSOI的掺杂的背栅区域形成的第一电极、由替代伪栅的金属栅极形成的第二电极、以及分开第一电极和第二电极的替代高K电介质。
在另一个实施例中,一种形成芯片上半导体结构的方法包括:在SOI衬底上的ETSOI层上形成既在晶体管区域中又在电容器区域中的伪栅,并且,用隔离物包围伪栅中的每一个;在ETSOI层上形成凸起的源极和漏极,该凸起的源极和漏极邻接隔离物;通过蚀刻从晶体管区域去除伪栅,并且,凹进以从电容器区域去除ETSOI和薄BOX;在晶体管区域中的栅极中和在凹进的电容器区域中沉积高K电介质和金属栅极。
附图说明
下面的详述以举例的方式被给出,并不意图将本发明仅限于此,结合附图将被最好地理解,在附图中,相同的附图标记表示相同的元件和部件,在附图中:
图1是在具有凸起的S/D及其扩展区(extension)的绝缘体上半导体(SOI)衬底上形成的现有技术的ETSOI器件的侧向截面图;
图2示出SOI,ETSOI的SOI晶片,示出了在其上叠加的薄BOX层和ETSOI层;
图3示出浅沟槽隔离(STI)和优选通过注入形成背栅;
图4示出根据本发明的一个实施例的通过STI相互隔离的晶体管区域和电容器或变容管区域,其中的每一个都被设置有由凸起的源极和漏极(RSD)包围的伪电容器;
图5示出在伪栅上沉积和平坦化停止的层间电介质层(ILD)的示范性说明的侧向截面图;
图6描绘示出阻挡掩模覆盖晶体管区域使电容器区域露出然后使ETSOI和薄BOX层凹进的图示的侧向截面图;
图7是在从晶体管区域去除掩模然后沉积高K(HK)电介质和金属栅极(MG)的情况下的结构的侧向截面图;以及
图8是示出根据本发明的实施例的沉积电介质和形成到金属栅极、源极和漏极以及背栅的接触件的侧向截面图。
具体实施方式
在下文中公开本发明的详细的实施例。将会理解,它们仅仅说明可以用各种形式来实施的本发明。另外,结合本发明的各个方面给出的每一个示例应当是说明性而非限制性的。此外,附图不必一定按比例绘制,一些特征可能被放大以示出具体组件的细节。因此,本文中公开的特定的结构和功能细节并不被解释为限制性的,而仅仅作为用于教导本领域的技术人员以各种方式利用本发明的代表性基础。
参照图2,描述用于在绝缘体上半导体(SOI)衬底上形成半导体FET器件的示范性结构和方法,在该结构上具有极薄绝缘体上半导体(ETSOI)层20。ETSOI层被沉积在SOI衬底的掩埋绝缘层15的顶上,该ETSOI层的厚度优选地在2nm到20nm的范围内,更优选地在4到10nm的范围内。
ETSOI层20优选地由任何半导体材料制成,所述半导体材料包括但不限于:Si、应变Si、SiC、SiGe、SiGeC、Si合金、Ge、Ge合金、GaAs、InAs、和InP或它们的任意组合。ETSOI层20可以通过平坦化、研磨、湿法蚀刻、干法蚀刻、氧化然后氧化蚀刻、或前述工艺的任意组合被薄化到期望的厚度。对ETSOI层20进行薄化的另一种方法包括通过热干法或湿法氧化工艺对硅进行氧化,然后优选地使用氢氟(HF)酸混合物来湿法蚀刻氧化物层。该工艺可以被重复,以达到期望的厚度。ETSOI层20可以具有在1.0nm到10.0nm的范围内的厚度,或者,在另一种实例下,具有在1.0nm到5.0nm的范围内的厚度,或者,在另一种实例下,具有在3.0nm到8.0nm的范围内的厚度。
在体衬底10上的薄掩埋氧化物(BOX)层15可以被制成硅氧化物、氮化物、硅氮化物和/或氧氮化物(例如,硅氧氮化物),其厚度在5nm到80nm的范围内,或者优选地,在10nm到50nm的范围内,更优选地,在10nm到25nm的范围内。
仍然参照图2,SOI晶片可以通过晶片接合或SIMOX技术来制成。ETSOI层可以包括任何半导体材料,所述半导体材料包括但不限于:Si、应变Si、SiC、SiGe、SiGeC、Si合金、Ge、Ge合金、GaAs、InAs、和InP或它们的任意组合。
参照图3,可以通过包括图案化的浅沟槽隔离(STI)工艺来形成隔离,例如,沉积牺牲垫层(例如,垫氧化物和垫氮化物),图案化(例如,通过光刻)和蚀刻STI沟槽25(例如,通过反应离子蚀刻(RIE)),用包括但不限于氧化物、氮化物、氧氮化物、高k电介质或这些材料的任何合适的组合的一种或多种绝缘体来填充沟槽。诸如化学机械抛光(CMP)的平坦化工艺可以优选地用来提供平坦结构。除了STI25以外,还可以使用诸如台面隔离(mesa isolation)、硅的局部氧化(LOCOS)的其它隔离。然后,可以对牺牲垫氧化物和垫氮化物进行条带化。
背栅12可以通过离子注入然后热退火以激活掺杂物来形成,其中,背栅掺杂物包括用于n型掺杂的砷和磷以及用于p型掺杂的硼、铟。掺杂浓度在5×1017cm-3到5×1019cm-3的范围内,更优选地在2×1018cm-3到1×1019cm-3的范围内。在BOX层15的背侧的下面,背栅厚度(垂直地)在25nm到150nm的范围内,更优选地在35nm到80nm的范围内。
参照图4,在晶体管区域和电容器区域中形成伪栅27。伪栅电介质27可以包括通过氧化形成的硅氧化物,厚度在1nm到5nm的范围内。伪栅可以包括通过诸如化学气相沉积(CVD)的沉积来形成的多晶硅,厚度在10nm到70nm的范围内,更优选地在20nm到50nm的范围内。伪栅27还可以包括在多晶硅的顶上的硅氮化物盖。硅氮化物可以通过CVD沉积来形成,厚度在5nm到50nm的范围内,更优选地在20nm到30nm的范围内。伪栅15通过常规图案化和蚀刻工艺来形成。采用适用于伪栅的其它材料的实施例也被设想到。
然后,形成隔离物30,隔离物通常由电介质材料构成,优选地,使用覆盖层沉积和各向异性回刻(etchback)来形成。虽然在图中隔离物被描绘为每一个作为单层,但是,其中隔离物中的每一个是多层结构的电介质材料的实施例已被设想到。在一个实施例中,隔离物优选地通过沉积由RIE形成的膜(例如,硅氮化物)来形成。隔离物厚度在3nm到20nm的范围内,更优选地在4nm到8nm的范围内。
形成外延生长的凸起的源极/漏极(RSD)40和扩展区,其中,RSD优选地由Si或SiGe制成。RSD可以原位掺杂或者掺杂之后外延,优选地,通过注入和等离子体掺杂。RSD厚度在10到30nm变化。扩展区可以通过注入或通过从原位掺杂的RSD驱动掺杂物来形成。
更具体地,掺杂物从凸起的源极区域38和凸起的漏极区域39的原位掺杂的半导体材料扩散到ETSOI层20来形成扩展区45。掺杂物从原位掺杂的半导体材料通过退火工艺被扩散到ETSOI层20,所述退火工艺包括但不限于:快速热退火、炉退火、闪光灯退火、激光退火或它们的任何合适的组合。在从850℃到1350℃的范围内的温度下进行热退火,以将掺杂物从原位掺杂的半导体材料扩散到ETSOI层20。
原位掺杂的半导体材料被掺杂到p型导电性的在ETSOI层20中形成的扩展区45中,具有p型导电性的扩展区45的掺杂物浓度在1×1019原子/cm3到2×1021原子/cm3的范围内。扩展区45的材料具有在2×1019原子/cm3到5×1020原子/cm3的范围内的掺杂物浓度。
扩展区45具有在ETSOI层20的整个深度上扩展的深度。如从ETSOI层20的上表面测量,扩展区45优选地具有小于10nm的深度,通常深度为2nm到8nm。虽然扩展区45在上面被描述为通过将掺杂物从凸起的源极区域38和凸起的漏极区域39扩散到ETSOI层20来形成,但是,扩展区45也可以通过如下来形成:在形成伪栅27之后且在形成凸起的源极区域39和凸起的漏极区域40之前,将n型或p型掺杂物离子注入到ETSOI层20。
参照图5,接着进行层间电介质(ILD,例如,氧化物)的沉积和平坦化,在伪栅处停止。可以使用CVD通过旋涂等来进行沉积。可以优选地使用化学机械抛光(CMP)来进行平坦化。然后,在该工艺之后去除伪栅25。
关于伪栅25的去除,硅氮化物盖(如果使用的话)可以通过蚀刻去除,优选地,通过干法蚀刻(例如,RIE)或者用热磷酸的湿法蚀刻来去除。多晶硅可以通过干法蚀刻(例如,RIE)或者湿法蚀刻(例如,TMAH或氨水)来去除,伪栅氧化物可以通过氢氟酸或化学氧化物去除来去除。
关于湿法蚀刻工艺,在存在硅氧化物的情况下可以用含有氟化氢的蚀刻溶液来进行。可替换地,用诸如化学氧化物去除(COR)的干法蚀刻来蚀刻多晶硅和伪栅氧化物。
在一个示范性说明中,化学氧化物去除(COR)工艺可以包括将结构暴露于氢氟酸(HF)和氨水(NH4OH)的气态混合物。在近似室温(25℃)下在0.75毫托和15毫托之间的气压下,化学氧化物去除(COR)工艺中的氢氟酸(HF)和氨水(NH4OH)之比可以在2.25:1到1.75:1的范围内。在一个示例中,在约25℃的温度下在1毫托和10毫托之间的气压下,化学氧化物去除(COR)中的氢氟酸(HF)和氨水(NH4OH)之比是2:1。在该暴露期间,HF和氨气与来自制造伪栅的蚀刻工艺的在电介质膜的暴露表面上存在的侧壁残留物反应,以形成固体反应产物。固体反应产物可以在第二步骤中被去除,该第二步骤包括将结构加热到大于约90℃的温度,例如100℃,由此导致反应产物蒸发。反应产物可以通过在水中冲洗结构或者用水溶液去除来被去除。
参照图6,使用阻挡掩模60来覆盖晶体管区域并暴露电容器区域。掩模60可以是通过光刻形成的软掩模,即,光致抗蚀剂。如果交替地使用硬掩模,则在掩模层之上施加光致抗蚀剂材料,以对硬掩模层进行图案化。掩模60可以是通过光刻形成的软掩模(光致抗蚀剂)。
关于凹进以从电容器区域去除ETSOI和薄BOX,在去除窄开口部分内的材料的一部分时,优选地,通过RIE,可以使ETSOI和薄BOX层凹进。
参照图7,优选地,通过干法剥离(等离子体蚀刻)或湿法剥离(通过过氧化硫)来去除掩模(光致抗蚀剂)60。
现在沉积高k电介质85和金属栅极(MG)80。高k电介质材料可以通过本领域中已知的标准方法(例如,原子层沉积(ALD)或化学气相沉积(CVD))来沉积。可替换地,电介质材料可以包括通过化学气相沉积(例如,低压化学气相沉积(LPCVD)并可任选地与化学氧化、热氧化和/或热氮化结合)来沉积的含硅电介质材料。
关于电容器,背栅12(在薄box之下的高度掺杂的区域)变成第一电极、第二电极,并且,高k85变成电容器电介质。高k材料的示例包括但不限于:金属氧化物,例如氧化铪、氧化铪硅、铪硅氧氮化物、氧化镧、氧化镧铝、氧化锆、氧化锆硅、锆硅氧氮化物、氧化钽、氧化钛、氧化钡锶钛、氧化钡钛、氧化锶钛、氧化钇、氧化铝、氧化铅钪钽和铌酸铅锌。高k材料还可以包括掺杂物,例如,镧或铝。
金属栅极的示例包括钨、钛、钽、钌、锆、钴、铜、铝、铅、铂、锡、银、金、导电的金属化合物材料(例如,氮化钽,氮化钛,硅化钨,氮化钨,氧化钌,硅化钴,硅化镍)、碳纳米管、导电性碳或这些材料的任何合适的组合。导电材料还可以包括在沉积期间或之后合并的掺杂物。
参照图8,优选地,使用CVD、旋涂等沉积电介质(例如,氧化物)110。可以在接触形成之前或期间形成到金属栅极100、源极/漏极(S/D)107和108、以及背栅105(在S/D上的硅化物(未示出))的接触件。举例来说,背栅电极优选地通过导电材料的沉积然后通过去除导电材料的一部分的凹进蚀刻来形成。导电材料可以是但不限于:掺杂的半导体材料(例如,多晶或非晶硅、锗和硅锗合金)、金属(例如,钨,钛,钽,钌,钴,铜,铝,铅,铂,锡,银和金)、导电金属化合物材料(例如,氮化钽,氮化钛,硅化钨,氮化钨,氮化钛,氮化钽,氧化钌,硅化钴,和硅化镍)或这些材料的任何合适的组合。
接触件通过图案化(例如,光刻),蚀刻接触沟槽(例如,通过RIE),用诸如W、WN、TiN、TAN等的导电材料填充沟槽然后平坦化(例如,通过CMP)来形成。
仍然参照图8中示出的结构,在第二实施例中,可以通过消除背栅的形成来修改结构。结构的形成与图8中示出的实施例的不同之处还在于,BOX直接叠加在衬底之上,并且,优选地,从晶体管区域的开头延伸邻接电容器区域的末端(即,没有如图8所示被STI分开)。
关于电容器/变容管,高度掺杂的RSD变成第一电极,金属栅极(MG)变成第二电极,高k变成电容器电介质。
总而言之,本发明的实施例公开了一种与ETSOI替代栅极CMOS流程兼容的电容器形成。如解释的,低电阻电容器电极有助于提供高质量电容器和/或变容管。此外,由于在伪栅图案化的同时没有使用拓扑结构(topography),所以使得光刻和蚀刻都是用户友好的。
虽然本文中公开的结构和方法针对其优选实施例被具体地示出和描述了,但是,本领域的技术人员将会理解,可以在不脱离本公开的精神和范围的情况下在形式和细节上进行前述和其它的改变。因此,本文中公开的方法和结构并不限于描述和示出的确切的形式和细节,但落入在所附权利要求的范围内。
工业实用性
本发明发现了在合并于集成电路芯片中的高性能半导体场效应晶体管(FET)器件的设计和制造中的工业应用,所述集成电路芯片在各种各样的电子和电气设备中得到了应用。

Claims (25)

1.一种SOI衬底上的半导体结构,包括:
在所述SOI衬底上形成的极薄绝缘体上半导体(ETSOI)晶体管,具有替代伪栅27的金属栅极35;以及
在所述SOI衬底上的与所述ETSOI晶体管共面的电容器或变容管,具有由所述ETSOI的高度掺杂的背栅区域形成的第一电极90、由替代所述伪栅27的所述金属栅极80形成的第二电极95、以及将所述第一电极90和所述第二电极95分开的替代高K电介质85。
2.根据权利要求1所述的半导体结构,其中,所述高K电介质85由金属氧化物制成。
3.根据权利要求2所述的半导体结构,其中,所述高K电介质包括掺杂物。
4.根据权利要求3所述的半导体结构,其中,所述掺杂物具有从2×1018cm-3到1×1020cm-3的范围内的浓度。
5.根据权利要求1所述的半导体结构,其中,所述ETSOI晶体管包括在体衬底的顶上的叠加在背栅层12上的薄掩埋氧化物BOX层。
6.根据权利要求1所述的半导体结构,其中,所述ETSOI晶体管通过浅沟槽隔离(STI)25与所述电容器隔离。
7.根据权利要求1所述的半导体结构,其中,所述ETSOI晶体管和所述电容器包括分别由金属栅极35、85替代的伪栅27。
8.根据权利要求5所述的半导体结构,其中,所述电容器具有金属栅极,所述金属栅极延伸通过所述薄掩埋氧化物BOX层,邻接所述背栅的顶面。
9.根据权利要求8所述的半导体结构,其中,所述电容器是金属-绝缘体-半导体(MIS)电容器。
10.根据权利要求1所述的半导体结构,其中,隔离物包围所述ETSOI晶体管的所述金属栅极和所述电容器栅极的暴露的壁。
11.一种形成芯片上半导体结构的方法,包括:
在SOI衬底的ETSOI层20上形成晶体管区域中的第一伪栅27和电容器区域中的第二伪栅27,通过隔离物30包围所述伪栅中的每一个;
在所述ETSOI层20上形成凸起的源极和漏极(RSD)40,所述RSD在所述隔离物处邻接;
通过蚀刻从所述晶体管区域去除第一伪栅27,并且,通过蚀刻凹进以从所述电容器区域去除所述ETSOI和薄BOX,包括去除所述第二伪栅;以及
在所述晶体管区域中的所述栅极中和在所述凹进的电容器区域65中沉积高K电介质85和金属栅极80。
12.根据权利要求11所述的方法,还包括在所述形成所述凸起的源极和漏极之后沉积和平坦化层间电介质55,层间电介质55在所述伪栅处邻接。
13.根据权利要求11所述的方法,其中,通过干法或湿法蚀刻来进行所述去除所述伪栅27。
14.根据权利要求14所述的方法,还包括通过阻挡掩模60覆盖所述晶体管区域并使所述电容器区域露出。
15.根据权利要求11所述的方法,还包括去除所述阻挡掩模。
16.根据权利要求15所述的方法,还包括使用光致抗蚀剂去除所述阻挡掩模,使用等离子体蚀刻进行干法剥离或者使用过氧化硫进行湿法剥离。
17.根据权利要求11所述的方法,还包括使用由在所述SOI衬底的薄BOX下面的背栅形成的第一电极95、由所述金属栅极80形成的第二电极90、以及形成电容器电介质的所述高K电介质85来形成电容器。
18.根据权利要求11所述的方法,还包括形成到所述金属栅极、凸起的源极和漏极40的接触件。
19.根据权利要求11所述的方法,其中,所述凹进的伪栅、ETSOI和薄BOX层暴露重掺杂的背栅区域12。
20.根据权利要求11所述的方法,其中,通过替代高k和金属栅极工艺来形成所述高k和所述金属栅极。
21.根据权利要求11所述的方法,其中,所述暴露所述重掺杂的背栅区域形成电容器的主体,减少所述电容器体电阻,并且,所述电容器使用所述金属栅极和掺杂的凸起的源极和漏极作为第一电极和第二电极,并且,使所述高k栅极电介质作为电容器介质。
22.根据权利要求11所述的方法,其中,所述高K电介质由金属氧化物50或电介质材料制成。
23.根据权利要求11所述的方法,其中,通过沉积膜或者通过使用覆盖层沉积和各向异性回刻来形成所述隔离物30。
24.根据权利要求11所述的方法,其中,所述RSD外延地生长,形成扩展区。
25.根据权利要求24所述的方法,还包括通过注入或通过从原位掺杂的RSD驱动掺杂物来形成所述扩展区,所述掺杂物包括镧或铝。
CN201280061177.1A 2011-12-12 2012-09-13 用于形成具有etsoi晶体管的芯片上高质量电容器的方法和结构 Active CN103988304B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/316,635 US8748258B2 (en) 2011-12-12 2011-12-12 Method and structure for forming on-chip high quality capacitors with ETSOI transistors
US13/316,635 2011-12-12
PCT/US2012/055037 WO2013089853A1 (en) 2011-12-12 2012-09-13 Method and structure for forming on-chip quality capacitors with etsoi transistors

Publications (2)

Publication Number Publication Date
CN103988304A true CN103988304A (zh) 2014-08-13
CN103988304B CN103988304B (zh) 2017-09-08

Family

ID=48571194

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280061177.1A Active CN103988304B (zh) 2011-12-12 2012-09-13 用于形成具有etsoi晶体管的芯片上高质量电容器的方法和结构

Country Status (5)

Country Link
US (2) US8748258B2 (zh)
CN (1) CN103988304B (zh)
DE (1) DE112012005166B4 (zh)
GB (1) GB2510544B (zh)
WO (1) WO2013089853A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105789188A (zh) * 2015-01-14 2016-07-20 格罗方德半导体公司 Fdsoi电容器
CN107039535A (zh) * 2016-02-03 2017-08-11 中芯国际集成电路制造(上海)有限公司 电容器件及其形成方法
CN109946584A (zh) * 2017-12-05 2019-06-28 意法半导体(鲁塞)公司 检测集成电路的衬底经由其背面的可能减薄的方法、以及相关联的器件
CN118471926A (zh) * 2024-07-09 2024-08-09 武汉新芯集成电路股份有限公司 半导体器件及其制造方法

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5840505B2 (ja) * 2012-01-12 2016-01-06 株式会社東芝 半導体装置の製造方法
JP5968708B2 (ja) 2012-01-23 2016-08-10 ルネサスエレクトロニクス株式会社 半導体装置
US9105577B2 (en) 2012-02-16 2015-08-11 International Business Machines Corporation MOSFET with work function adjusted metal backgate
US9748338B2 (en) * 2012-06-29 2017-08-29 Intel Corporation Preventing isolation leakage in III-V devices
CN103531539B (zh) * 2012-07-02 2015-12-16 中芯国际集成电路制造(上海)有限公司 Cmos管的形成方法
CN103531455B (zh) * 2012-07-03 2017-06-06 中国科学院微电子研究所 半导体器件及其制造方法
US9029208B2 (en) * 2012-11-30 2015-05-12 International Business Machines Corporation Semiconductor device with replacement metal gate and method for selective deposition of material for replacement metal gate
US9093285B2 (en) * 2013-03-22 2015-07-28 United Microelectronics Corp. Semiconductor structure and process thereof
US9969613B2 (en) 2013-04-12 2018-05-15 International Business Machines Corporation Method for forming micro-electro-mechanical system (MEMS) beam structure
US8946819B2 (en) * 2013-05-08 2015-02-03 Globalfoundries Singapore Pte. Ltd. Silicon-on-insulator integrated circuits with local oxidation of silicon and methods for fabricating the same
US9293586B2 (en) * 2013-07-17 2016-03-22 Globalfoundries Inc. Epitaxial block layer for a fin field effect transistor device
US10170315B2 (en) 2013-07-17 2019-01-01 Globalfoundries Inc. Semiconductor device having local buried oxide
US20150129967A1 (en) 2013-11-12 2015-05-14 Stmicroelectronics International N.V. Dual gate fd-soi transistor
US9252272B2 (en) 2013-11-18 2016-02-02 Globalfoundries Inc. FinFET semiconductor device having local buried oxide
US9876110B2 (en) 2014-01-31 2018-01-23 Stmicroelectronics, Inc. High dose implantation for ultrathin semiconductor-on-insulator substrates
US9800204B2 (en) * 2014-03-19 2017-10-24 Stmicroelectronics International N.V. Integrated circuit capacitor including dual gate silicon-on-insulator transistor
US9391156B2 (en) * 2014-08-28 2016-07-12 Globalfoundries Inc. Embedded capacitor
US9660110B2 (en) 2014-09-26 2017-05-23 Qualcomm Incorporated Varactor device with backside contact
US9640538B2 (en) * 2014-10-29 2017-05-02 Globalfoundries Inc. Embedded DRAM in replacement metal gate technology
US9443871B2 (en) * 2015-01-08 2016-09-13 Globalfoundries Inc. Cointegration of bulk and SOI semiconductor devices
US9419075B1 (en) * 2015-01-28 2016-08-16 Texas Instruments Incorporated Wafer substrate removal
FR3036530B1 (fr) * 2015-05-19 2018-03-02 Stmicroelectronics Sa Procede de realisation de cellules memoires du type a programmation unique comportant des condensateurs mos et circuit integre correspondant
JP2017022377A (ja) * 2015-07-14 2017-01-26 株式会社半導体エネルギー研究所 半導体装置
US9768254B2 (en) * 2015-07-30 2017-09-19 International Business Machines Corporation Leakage-free implantation-free ETSOI transistors
US9490252B1 (en) 2015-08-05 2016-11-08 International Business Machines Corporation MIM capacitor formation in RMG module
US10312318B2 (en) 2015-09-22 2019-06-04 International Business Machines Corporation Metal-insulator-metal capacitor structure
US10199461B2 (en) * 2015-10-27 2019-02-05 Texas Instruments Incorporated Isolation of circuit elements using front side deep trench etch
US9893145B1 (en) 2016-08-09 2018-02-13 International Business Machines Corporation On chip MIM capacitor
US9728543B1 (en) * 2016-08-15 2017-08-08 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor structure and fabricating method thereof
US9847293B1 (en) 2016-08-18 2017-12-19 Qualcomm Incorporated Utilization of backside silicidation to form dual side contacted capacitor
US10418364B2 (en) 2016-08-31 2019-09-17 Globalfoundries Inc. Semiconductor device structure with self-aligned capacitor device
US9997606B2 (en) * 2016-09-30 2018-06-12 International Business Machines Corporation Fully depleted SOI device for reducing parasitic back gate capacitance
US9972721B1 (en) * 2016-10-28 2018-05-15 Globalfoundries Inc. Thick FDSOI source-drain improvement
KR101903861B1 (ko) * 2016-12-23 2018-10-02 전자부품연구원 엠아이에스 캐패시터
US9929148B1 (en) 2017-02-22 2018-03-27 Globalfoundries Inc. Semiconductor device including buried capacitive structures and a method of forming the same
TWI708329B (zh) 2017-03-20 2020-10-21 聯華電子股份有限公司 記憶體元件及其製作方法
US10707210B2 (en) 2017-12-07 2020-07-07 Micron Technology, Inc. Devices having a transistor and a capacitor along a common horizontal level, and methods of forming devices
EP3732729A4 (en) * 2017-12-27 2021-07-28 INTEL Corporation FINFET-BASED CAPACITORS AND RESISTORS AND ASSOCIATED APPARATUS, SYSTEMS AND PROCESSES
US10600910B2 (en) * 2018-06-26 2020-03-24 Qualcomm Incorporated High voltage (HV) metal oxide semiconductor field effect transistor (MOSFET) in semiconductor on insulator (SOI) technology
US11476363B2 (en) * 2019-04-10 2022-10-18 United Microelectronics Corp. Semiconductor device and method of fabricating the same
US11183452B1 (en) * 2020-08-12 2021-11-23 Infineon Technologies Austria Ag Transfering informations across a high voltage gap using capacitive coupling with DTI integrated in silicon technology
US12057387B2 (en) 2020-12-03 2024-08-06 International Business Machines Corporation Decoupling capacitor inside gate cut trench
CN113035716B (zh) * 2021-02-08 2022-07-22 西安电子科技大学 基于22nm工艺的SONOS结构抗辐照FDSOI场效应管及其制备方法
US20220406956A1 (en) * 2021-06-22 2022-12-22 Texas Instruments Incorporated Integrated circuit with a galvanically-isolated commuincation channel using a back-side etched channel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005465A (ja) * 2003-06-11 2005-01-06 Toshiba Corp 半導体記憶装置及びその製造方法
US20050287718A1 (en) * 2004-06-29 2005-12-29 International Business Machines Corporation Integrated soi fingered decoupling capacitor
CN101106018A (zh) * 2006-07-14 2008-01-16 E.I.内穆尔杜邦公司 用于电容器具有共烧制电极的薄膜电介质及其制造方法
CN101232015A (zh) * 2007-01-22 2008-07-30 台湾积体电路制造股份有限公司 半导体装置
US20090072290A1 (en) * 2007-09-19 2009-03-19 International Business Machines Corporation Soi cmos compatible multiplanar capacitor
US20110175152A1 (en) * 2010-01-19 2011-07-21 International Business Machines Corporation Method and structure for forming high performance mos capacitor along with fully depleted semiconductor on insulator devices on the same chip

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770875A (en) * 1996-09-16 1998-06-23 International Business Machines Corporation Large value capacitor for SOI
US5805494A (en) * 1997-04-30 1998-09-08 International Business Machines Corporation Trench capacitor structures
US6346446B1 (en) 1998-06-01 2002-02-12 Massachusetts Institute Of Technology Methods of forming features of integrated circuits using modified buried layers
JP2000091534A (ja) * 1998-09-11 2000-03-31 Mitsubishi Electric Corp 半導体装置
US6888750B2 (en) 2000-04-28 2005-05-03 Matrix Semiconductor, Inc. Nonvolatile memory on SOI and compound semiconductor substrates and method of fabrication
WO2002015277A2 (en) 2000-08-14 2002-02-21 Matrix Semiconductor, Inc. Dense arrays and charge storage devices, and methods for making same
US6496034B2 (en) 2001-02-09 2002-12-17 Micron Technology, Inc. Programmable logic arrays with ultra thin body transistors
US6531727B2 (en) 2001-02-09 2003-03-11 Micron Technology, Inc. Open bit line DRAM with ultra thin body transistors
US6566682B2 (en) 2001-02-09 2003-05-20 Micron Technology, Inc. Programmable memory address and decode circuits with ultra thin vertical body transistors
US6424001B1 (en) 2001-02-09 2002-07-23 Micron Technology, Inc. Flash memory with ultra thin vertical body transistors
US6559491B2 (en) 2001-02-09 2003-05-06 Micron Technology, Inc. Folded bit line DRAM with ultra thin body transistors
US7563715B2 (en) 2005-12-05 2009-07-21 Asm International N.V. Method of producing thin films
US6593624B2 (en) 2001-09-25 2003-07-15 Matrix Semiconductor, Inc. Thin film transistors with vertically offset drain regions
US6841813B2 (en) 2001-08-13 2005-01-11 Matrix Semiconductor, Inc. TFT mask ROM and method for making same
WO2003025984A2 (en) 2001-09-21 2003-03-27 Amberwave Systems Corporation Semiconductor structures employing strained material layers with defined impurity gradients and methods for fabricating same
AU2002341803A1 (en) 2001-09-24 2003-04-07 Amberwave Systems Corporation Rf circuits including transistors having strained material layers
US6998298B1 (en) 2003-08-11 2006-02-14 T-Ram Semiconductor, Inc. Thyristor semiconductor memory device and method of manufacture
US7202123B1 (en) * 2004-07-02 2007-04-10 Advanced Micro Devices, Inc. Mesa isolation technology for extremely thin silicon-on-insulator semiconductor devices
US20060175659A1 (en) * 2005-02-07 2006-08-10 International Business Machines Corporation A cmos structure for body ties in ultra-thin soi (utsoi) substrates
JP2007201062A (ja) * 2006-01-25 2007-08-09 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
US7671394B2 (en) * 2007-10-17 2010-03-02 International Business Machines Corporation Embedded trench capacitor having a high-k node dielectric and a metallic inner electrode
DE102010003559B4 (de) * 2010-03-31 2019-07-18 Globalfoundries Dresden Module One Llc & Co. Kg Halbleiterbauelement mit Metallgatestrukturen, die durch ein Austauschgateverfahren hergestellt sind, und E-Sicherung mit einem Silizid
US8772123B2 (en) * 2010-11-09 2014-07-08 Intermolecular, Inc. Band gap improvement in DRAM capacitors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005465A (ja) * 2003-06-11 2005-01-06 Toshiba Corp 半導体記憶装置及びその製造方法
US20050287718A1 (en) * 2004-06-29 2005-12-29 International Business Machines Corporation Integrated soi fingered decoupling capacitor
CN101106018A (zh) * 2006-07-14 2008-01-16 E.I.内穆尔杜邦公司 用于电容器具有共烧制电极的薄膜电介质及其制造方法
CN101232015A (zh) * 2007-01-22 2008-07-30 台湾积体电路制造股份有限公司 半导体装置
US20090072290A1 (en) * 2007-09-19 2009-03-19 International Business Machines Corporation Soi cmos compatible multiplanar capacitor
US20110175152A1 (en) * 2010-01-19 2011-07-21 International Business Machines Corporation Method and structure for forming high performance mos capacitor along with fully depleted semiconductor on insulator devices on the same chip

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105789188A (zh) * 2015-01-14 2016-07-20 格罗方德半导体公司 Fdsoi电容器
CN105789188B (zh) * 2015-01-14 2018-07-06 格罗方德半导体公司 Fdsoi电容器
CN107039535A (zh) * 2016-02-03 2017-08-11 中芯国际集成电路制造(上海)有限公司 电容器件及其形成方法
CN107039535B (zh) * 2016-02-03 2019-12-31 中芯国际集成电路制造(上海)有限公司 电容器件及其形成方法
CN109946584A (zh) * 2017-12-05 2019-06-28 意法半导体(鲁塞)公司 检测集成电路的衬底经由其背面的可能减薄的方法、以及相关联的器件
CN109946584B (zh) * 2017-12-05 2021-07-06 意法半导体(鲁塞)公司 检测集成电路的衬底经由其背面的可能减薄的方法、以及相关联的器件
US11562933B2 (en) 2017-12-05 2023-01-24 Stmicroelectronics (Rousset) Sas Method of detecting a possible thinning of a substrate of an integrated circuit via the rear face thereof, and associated device
CN118471926A (zh) * 2024-07-09 2024-08-09 武汉新芯集成电路股份有限公司 半导体器件及其制造方法

Also Published As

Publication number Publication date
US20140124845A1 (en) 2014-05-08
WO2013089853A1 (en) 2013-06-20
DE112012005166T5 (de) 2014-08-28
GB2510544A (en) 2014-08-06
US20130146959A1 (en) 2013-06-13
GB201410069D0 (en) 2014-07-16
CN103988304B (zh) 2017-09-08
DE112012005166B4 (de) 2020-06-04
US8748258B2 (en) 2014-06-10
US8969938B2 (en) 2015-03-03
GB2510544B (en) 2014-11-05

Similar Documents

Publication Publication Date Title
CN103988304A (zh) 用于形成具有etsoi晶体管的芯片上高质量电容器的方法和结构
US8709890B2 (en) Method and structure for forming ETSOI capacitors, diodes, resistors and back gate contacts
CN102456579B (zh) 具有局部的极薄绝缘体上硅沟道区的半导体器件
US8617956B2 (en) Method and structure for forming high-K/metal gate extremely thin semiconductor on insulator device
US7879675B2 (en) Field effect transistor with metal source/drain regions
US8507989B2 (en) Extremely thin semiconductor-on-insulator (ETSOI) FET with a back gate and reduced parasitic capacitance
CN103843120B (zh) 具有不对称栅极的垂直晶体管
US6780694B2 (en) MOS transistor
US7820513B2 (en) Nonplanar semiconductor device with partially or fully wrapped around gate electrode and methods of fabrication
US7700466B2 (en) Tunneling effect transistor with self-aligned gate
TWI390666B (zh) 絕緣體上半導體裝置之製造方法
CN1728402B (zh) 超薄型本体超陡后退阱场效应晶体管器件及其制造方法
US9024389B2 (en) Borderless contact for ultra-thin body devices
CN102983105B (zh) 用于高-k金属栅极器件的自对准绝缘膜
CN101677088B (zh) 半导体装置的制造方法
US8395217B1 (en) Isolation in CMOSFET devices utilizing buried air bags
US20130175625A1 (en) Low series resistance transistor structure on silicon on insulator layer
WO2014003842A1 (en) Shallow trench isolation structures
CN106373924A (zh) 半导体结构的形成方法
WO2013159416A1 (zh) 一种半导体结构及其制造方法
US9543436B2 (en) Method and structure of making enhanced UTBB FDSOI devices
CN104167358B (zh) 半导体器件制造方法
US11670689B2 (en) Method for eliminating divot formation and semiconductor device manufactured using the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20171117

Address after: Grand Cayman, Cayman Islands

Patentee after: GLOBALFOUNDRIES INC.

Address before: American New York

Patentee before: Core USA second LLC

Effective date of registration: 20171117

Address after: American New York

Patentee after: Core USA second LLC

Address before: American New York

Patentee before: International Business Machines Corp.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20171123

Address after: Grand Cayman, Cayman Islands

Patentee after: GLOBALFOUNDRIES INC.

Address before: American New York

Patentee before: Core USA second LLC

Effective date of registration: 20171123

Address after: American New York

Patentee after: Core USA second LLC

Address before: American New York

Patentee before: International Business Machines Corp.

TR01 Transfer of patent right