CN103954917A - 一种单体电池测试模拟装置及实现方法 - Google Patents

一种单体电池测试模拟装置及实现方法 Download PDF

Info

Publication number
CN103954917A
CN103954917A CN201410220355.1A CN201410220355A CN103954917A CN 103954917 A CN103954917 A CN 103954917A CN 201410220355 A CN201410220355 A CN 201410220355A CN 103954917 A CN103954917 A CN 103954917A
Authority
CN
China
Prior art keywords
battery
cell
switch
test
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410220355.1A
Other languages
English (en)
Other versions
CN103954917B (zh
Inventor
张承慧
商云龙
崔纳新
史永超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Techpow Electric Co ltd
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201410220355.1A priority Critical patent/CN103954917B/zh
Publication of CN103954917A publication Critical patent/CN103954917A/zh
Application granted granted Critical
Publication of CN103954917B publication Critical patent/CN103954917B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种单体电池测试模拟装置及实现方法,包括微控制器、充电电路和放电电路,能够实现单体电池的恒流、恒压、恒功率充电和恒流、恒功率放电以及能够对单体电池进行自定义UDDS、DST循环工况测试,并且具有模拟电池的功能;本发明能够自动完成单体电池的诸多特殊测试:①单体电池循环寿命试验;②单体电池容量试验;③单体电池直流内阻试验;④单体电池充/放电特性试验;⑤单体电池荷电保持能力试验;⑥单体电池充/放电效率试验;⑦单体电池过充速率承受能力试验;⑧单体电池过放速率承受能力试验;⑨单体电池温度特性试验;⑩单体电池模拟试验。

Description

一种单体电池测试模拟装置及实现方法
技术领域
本发明涉及一种单体电池测试模拟装置及实现方法。
背景技术
能源危机和环境污染使具有高效节能、绿色环保优势的电动汽车发展迅猛,极大促进了动力电池等新兴行业的快速增长。其中,锂离子电池因其高能量密度、低放电率和没有记忆效应,作为动力源广泛应用在电动汽车和混合电动汽车中。研究电池的充放电特性和循环寿命特性,测试电池在不同条件下的性能,对保证电池安全性、提高其利用效率以及开发更合适电动汽车的电机驱动器具有重要的理论意义和工程应用价值。与此同时,电动汽车复杂的运行环境对动力电池品质提出了严苛要求,必须对动力电池予以精确测量,为其建模、特性分析提供数据支撑,从而为电池优化设计、分选、一致性测试以及高效能量管理策略制定提供科学依据。
目前,国内外动力电池测试系统主要有Digatron、AVL、德普电气、新威等,现有的电池测试设备一般功率较大、电流/电压工作幅值较高,难以实现对电池单体进行测试,特别是电池单体的循环寿命测试试验。例如,AVL电池测试设备输出电压为8~800V,输出电流为±600A,峰值功率可到达160kW。总体来说,现有的电池测试设备存在以下问题:①能耗高、效率低;②输出电压较高,难以对电池单体进行测试;③自动化程度不高,稳定性、可靠性较差;④控制简单,部分测试设备只能进行简单的电池充放电试验,不具有对电池进行复杂工况的测试功能;⑤不能够对电池进行模拟;⑥软件功能简单,不具有数据存储的功能。
中国实用新型专利申请(申请号201220512987.1)提出了一种电池测试仪,该发明只能进行电池内阻和电压的测量,且要求电池电压的范围在60V以上。
中国发明专利申请(申请号201210544381.0)提出了一种电池充放电测试仪,用于对待测电池的充放电性能进行测定,主要包括主控单元、充电单元、放电负载单元和待测电池。但是,该发明只能进行简单地恒流、恒压、恒功率充放电测试,不能够对电池进行复杂工况测试,也不具有模拟电池的功能,且不能用于单体电池测试。
发明内容
本发明为了解决上述问题,提出了一种单体电池测试模拟装置及实现方法,包括微控制器、充电电路和放电电路,能够实现单体电池的恒流、恒压、恒功率充电和恒流、恒功率放电以及能够对单体电池进行自定义Urban Dynamometer Driving Schedule(UDDS)、DynamicStress Test(DST)循环工况测试,并且具有模拟电池的功能。
为了实现上述目的,本发明采用如下技术方案:
一种单体电池测试模拟装置,包括微控制器、充电电路和放电电路,所述充电电路包括滤波器、整流桥、半桥变换器、切换开关、电池模拟模块和电池测试模块;其中,微控制器通过多路选通开关连接电源开关,电源开关连接滤波器,滤波器连接整流桥,整流桥连接半桥变换器,半桥变换器通过测试模拟转换开关连接电池模拟模块和电池测试模块;微控制器通过电压/电流/温度采集模块连接电池模拟模块、电池测试模块和电池单体;电池测试模块连接放电电路。
所述放电电路包括Boost变换电路,所述Boost变换电路包括电容、MOSFET开关、二极管和电感,其中,电容反相串联二极管后与MOSFET开关并联,MOSFET开关一端串联电感后通过一个切换开关连接电池测试模块,MOSFET开关另一端连接电池测试模块;Boost变换电路的电容两端并联有一个电阻。
所述微控制器包括模数转换模块、脉冲宽度调制PWM信号输出端和通用IO端;所述模数转换模块,通过电压/电流/温度采集模块与电池测试模块、电池模拟模块和电池单体连接,用于将电压/电流/温度模拟信号转换成数字信号,作为控制器的输入;
所述脉冲宽度调制PWM信号输出端通过PWM驱动电路连接半桥变换器、切换开关和放电电路,用于产生MOSFET开关的控制驱动信号;
所述通用IO端通过一个多路选通开关与电源开关连接用于接通和断开电网与单体电池测试模拟装置的连接;与电池测试模块的负载开关和电池模拟模块的负载开关连接,用于接通和断开负载与电池测试模块和电池模拟模块的连接。
所述充电电路的半桥变换器采用半桥型高频开关电源电路结构。
所述切换开关采用2位按键式开关,当按键开关处于1时,装置工作在电池模拟模式;当按键开关处于2时,装置工作在电池测试模式。
所述快速切换开关由两个反向串联的MOSFET开关组成,其中,两个MOSFET开关的漏极与漏极相连,两个MOSFET开关的源极一个为输入端,一个为输出端。
所述充电电路的切换开关和放电电路的切换开关由一对状态互补的信号控制,当放电电路的切换开关断开充电电路的切换开关闭合时,电池处于充电状态;当充电电路的切换开关断开放电电路的切换开关闭合时,电池处于放电状态。
所述半桥变换器的两个MOSFET开关M1和M2采用双极性控制方式:由两对状态互补的PWM信号控制,其中M1由第一对状态互补的PWM信号的第一个信号控制,M2由第二对状态互补的PWM信号的第二个信号控制。
所述两对状态互补的PWM信号的占空比之和为1。
所述半桥变换器的控制方式采用PI控制,根据微控制器采集的电流、电压值与设定值比较采用PI控制器调节两对状态互补的PWM信号的占空比,可实现恒压、恒流、恒功率和变电流充电以及能够精确模拟电池的I-V特性。
所述放电主电路的Boost变换的控制方式采用PI控制,根据微控制器采集的电流值与设定的电流值比较采用PI控制器控制Boost变换的MOSFETM1的占空比,可实现恒流、恒功率和电动汽车复杂工况放电。
一种基于上述单体电池测试模拟装置的实现方法,包括以下步骤:
(1)选择装置的工作模式,通过控制开关,选择电池模拟工作模式或电池测试工作模式;
(2)如果选择电池测试工作模式,首先将按键开关S1拨到2处,并判断电池电压、电流和温度值是否超出限值,若超出限值则断开电源开关K1和测试负载开关K2,否则闭合K1和K2进行电池测试。电池测试模式又有三种工作模式:充电模式、放电模式和混合充放电模式,可通过控制充放电快速切换开关M4,M5实现上述三种工作模式的切换;
(3)对于电池模拟模式,首先将按键开关S1拨到1处,获取电池电压、电流和温度信号,并判断是否超出限值,若超出限值则断开电源开关K1和模拟负载开关K3,否则闭合K1和K3
(4)用户根据实际情况建立电池模型,微控制器根据用户建立的电池模型和负载电流,计算出电池模型输出电压,并采用PI控制算法和双极性控制方式调节PWM信号的占空比,控制半桥变换器的两个MOSFETM1和M2,使得电池模拟模块的输出电压跟随电池模型输出电压的变化而变化,从而实现精确模拟电池的I-V特性,并对电池电压、电流和温度数据进行显示和存储。
所述步骤(2)中,对于充电模式,首先微控制器根据采集的电压、电流信号,借助模数转换模块转换成数字量,并判断电池电压、电流和温度值是否超出限值,若超出限值则断开电源开关K1和测试负载开关K2,否则闭合K1和K2,再发控制信号让电池测试模块的切换开关M5导通;然后,微控制器根据采集的电压、电流值,并与设定值比较,采用PI控制算法和双极性控制方式调节半桥变换器的两个MOSFET M1和M2的PWM信号的占空比,使得电池测试装置的输出随着设定值的变化而变化,并对电池电压、电流和温度数据进行显示和存储。可实现恒流、恒压、恒功率和脉冲充电模式。
所述步骤(2)中,对于放电模式,首先微控制器根据采集的电压、电流信号,借助模数转换模块转换成数字量,并判断电池电压、电流和温度值是否超出限值,若超出限值则断开测试负载开关K2,否则闭合K2,再发控制信号让电池测试模块的切换开关M4导通;然后,微控制器根据采集的电压、电流值,并与设定值比较,采用PI控制算法,调节Boost变换器的MOSFET M3的PWM信号的占空比,使得电池放电电流随着设定值的变化而变化,并对电池电压、电流和温度数据进行显示和存储。可实现恒流、恒功率和脉冲放电模式;
所述步骤(2)中,对于混合充放电模式,即UDDS或DST循环工况,首先微控制器根据采集的电压、电流信号,借助模数转换模块转换成数字量,并判断电池电压、电流和温度值是否超出限值,若超出限值则断开电源开关K1和测试负载开关K2,否则闭合K1和K2;然后,微控制器根据电流设定值的正、负控制电池充电或放电;当电流设定值为正时,对电池进行充电,控制M5导通M4断开;当电流设定值为负时,对电池进行放电,控制M4导通M5断开,其充、放电控制方式与上述充电模式和放电模式的控制方式一致。
本发明的有益效果为:
1、该装置能够实现单体电池的恒流、恒压、恒功率充电和恒流、恒功率放电以及能够对单体电池进行自定义UDDS、DST循环工况测试;并且具有模拟电池I-V特性的功能;
2、能够自动完成单体电池的诸多特殊测试:①电池单体循环寿命试验;②电池单体容量试验;③电池单体直流内阻试验;④电池单体充/放电特性试验;⑤电池单体荷电保持能力试验;⑥电池单体充/放电效率试验;⑦电池单体过充速率承受能力试验;⑧电池单体过放速率承受能力试验;⑨电池单体温度特性试验;⑩电池单体模拟试验;
3、具有数据存储和显示的功能。
附图说明
图1为本发明的应用原理图;
图2为本发明的半桥变换器的双极性PWM控制方式示意图;
图3为本发明的单体电池恒流、恒压充电实验波形图;
图4为本发明的单体电池恒流放电实验波形图。
图5为本发明的单体电池UDDS循环工况实验波形图。
图6为本发明的单体电池DST循环工况实验波形图。
图7为本发明的用户根据实际需要搭建的单体电池模型原理图。
具体实施方式:
下面结合附图与实施例对本发明作进一步说明。
如图1所示,一种单体电池测试/模拟装置,包括微控制器、充电主电路和放电主电路。其中,充电主电路包括AC交流源、电源开关K1、滤波器、变压器T1、整流桥、半桥变换器、电池测试/模拟转换开关S1、电池模拟输出端、模拟器负载开关K3、电池测试输出端、电池测试负载开关K2和快速充放电切换开关M5。放电主电路包括一个Boost变换、一个大功率、低阻值电阻和快速充放电切换开关M4。微控制器通过多路选通开关连接电源开关K1、电池测试负载开关K2和模拟器负载开关K3;微控制器通过PWM驱动电路连接MOSFET开关M1~M5;微控制器通过电压、电流、温度采集模块连接电池测试输出端、电池模拟输出端和电池单体;微控制器通过CAN总线连接显示器和存储模块。其中,
微控制器选用数字信号处理DSP(TMS320F28335),具有高精度AD采样和PWM输出;多路选通开关选用CD4051,是单8通道数字控制模拟电子开关,有A、B和C三个二进制控制输入端以及EN共4个输入,具有低导通阻抗和很低的截止漏电流;电压检测电路采用凌特公司的LTC6802专用电池电压测量芯片实时测量电池电压。
所述微控制器包括模数转换模块、脉冲宽度调制PWM信号输出端和通用IO端;
所述模数转换模块,通过电压、电流、温度采集模块与电池测试输出端、电池模拟输出端和电池单体连接,用于将电压、电流、温度模拟信号转换成数字信号,作为控制器的输入;
所述脉冲宽度调制PWM信号输出端通过PWM驱动电路连接半桥变换器、充放电切换开关M4、M5和Boost变换,用于产生MOSFET开关的控制驱动信号;
所述通用IO端通过一个多路选通开关与电源开关连接用于接通和断开电网与电池测试/模拟器的连接;与电池测试负载开关和模拟器负载开关连接,用于接通和断开负载与电池测试器和模拟器的连接。
所述充电主电路的半桥变换器采用半桥型高频开关电源电路结构。
所述电池测试/模拟切换开关采用2位按键式开关,当按键开关处于1时,装置工作在电池模拟模式;当按键开关处于2时,装置工作在电池测试模式。
所述电池测试/模拟器电源开关和负载开关K1~K3采用一个常开触点和一个常闭触点的继电器,其型号为ZHNQIQ3F-1Z-05V,当发生故障时,可快速断开电源、负载与电池测试/模拟器的连接。
所述充放电快速切换开关由两个反向串联(漏极与漏极相连)的MOSFET组成,其中,输出端1和2分别为两个MOSFET的源极。
所述充放电快速切换开关M4和M5由一对状态互补的信号控制,当M4断开M5闭合时,电池处于充电状态;当M5断开M4闭合时,电池处于放电状态,由于M4和M5由MOSFET构成,可实现充放电的快速切换。
所述充放电快速切换开关M4和M5能够使得电池测试装置模拟电动汽车的复杂工况。
如图2所示为本发明的半桥式变换器的双极性PWM控制示意图。其中,半桥变换器的两个MOSFETM1和M2由两对状态互补的PWM信号控制,其中M1由第一对状态互补的PWM信号的第一个信号PWMA控制,M2由第二对状态互补的PWM信号的第二个信号PWMD控制。所述两对状态互补的PWM信号的占空比之和为1。
所述半桥变换器的控制采用PI控制器,控制双极性PWM信号的占空比,可实现恒压、恒流、恒功率和变电流充电以及精确模拟电池的I-V特性。
所述放电主电路的Boost变换的控制方式采用PI控制,根据微控制器采集的电流值与设定值比较,采用PI控制器控制Boost变换的MOSFETM1的占空比,可实现恒流、恒功率和电动汽车复杂工况放电。
一种应用上述单体电池测试/模拟装置的实现方法,包括以下步骤:
(1)选择工作模式,将按键开关拨到1处时,电路工作在电池模拟工作模式;将按键开关拨到2处时,电路工作在电池测试工作模式;
(2)对于电池测试模式,又有三种工作模式:充电模式、放电模式和混合充放电模式;
(3)对于充电模式,首先获取电池电压、电流和温度信号,借助模数转换模块转换成数字量,并判断是否超出限值,若超出限值则断开K1和K2,否则闭合K1和K2,再发控制信号让M5导通;
(4)微控制器根据采集的电压、电流值,并与设定值比较,采用PI控制算法和双极性控制模式,调节半桥变换器的两个MOSFET M1和M2的PWM信号的占空比,使得电池测试装置的输出随着设定值的变化而变化,并对电池电压、电流和温度数据进行显示和存储。可实现恒流、恒压、恒功率和脉冲充电模式;
(5)对于放电模式,首先获取电池电压、电流和温度信号,借助模数转换模块转换成数字量,并判断是否超出限值,若超出限值则断开K2,否则闭合K2,再发控制信号让M4导通;
(6)微控制器根据采集的电压、电流值,并与设定值比较,采用PI控制算法,调节Boost换器的MOSFET M3的PWM信号的占空比,使得电池放电电流随着设定值的变化而变化,并对电池电压、电流和温度数据进行显示和存储。可实现恒流、恒功率和脉冲等放电模式;
(7)对于混合充放电模式,即UDDS或DST循环工况,首先获取电池电压、电流和温度信号,借助模数转换模块转换成数字量,并判断是否超出限值,若超出限值则断开K1和K2,否则闭合K1和K2
(8)微控制器根据电流设定值的正、负控制电池充电或放电;
(9)当电流设定值为正时,对电池进行充电,控制M5导通M4断开;
(10)当电流设定值为负时,对电池进行放电,控制M4导通M5断开;
(11)并根据采集的电压、电流值,并与设定值比较,采用PI控制算法,调节半桥变换器或Boost换器的PWM信号的占空比,使得电池充、放电电流跟随设定值的变化而变化,并对电池电压、电流和温度数据进行显示和存储。可实现自定义UDDS、DST循环工况测试;
(12)对于电池模拟模式,首先获取电池电压、电流和温度信号,借助模数转换模块转换成数字量,并判断是否超出限值,若超出限值则断开K1和K3,否则闭合K1和K3
(13)用户根据实际情况建立电池模型,微控制器根据用户建立的电池模型和负载电流,计算出电池模型输出电压,并采用PI控制算法和双极性PWM模式,调节半桥变换器的两个MOSFET M1和M2的PWM信号的占空比,使得模拟器的输出电压跟随电池模型输出电压的变化而变化,从而实现精确模拟电池的I-V特性,并对电池电压、电流和温度数据进行显示和存储。
如图3~4所示为本发明的单体电池恒流恒压充电和恒流放电的实验波形图。说明本发明能够实现单体电池的恒流充放电测试,且控制精度和稳定性较高。
如图5~6为本发明的单体电池UDDS和DST循环工况实验波形图。说明本发明能够实现单体电池的复杂工况的动态测试,且跟踪性能、控制精度和稳定性都较高。
如图7为本发明的用户根据实际需要建立的单体电池模型原理图。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

1.一种单体电池测试模拟装置,其特征是:包括微控制器、充电电路和放电电路,所述充电电路包括滤波器、整流桥、半桥变换器、切换开关、电池模拟模块和电池测试模块;其中,微控制器通过多路选通开关连接电源开关,电源开关连接滤波器,滤波器连接整流桥,整流桥连接半桥变换器,半桥变换器通过测试模拟转换开关连接电池模拟模块和电池测试模块;微控制器通过电压/电流/温度采集模块连接电池模拟模块、电池测试模块和电池单体;电池测试模块连接放电电路。
2.如权利要求1所述的一种单体电池测试模拟装置,其特征是:所述放电电路包括Boost变换电路,所述Boost变换电路包括电容、MOSFET开关、二极管和电感,其中,电容反相串联二极管后与MOSFET开关并联,MOSFET开关一端串联电感后通过一个切换开关连接电池测试模块,MOSFET开关另一端连接电池测试模块;Boost变换电路的电容两端并联有一个电阻。
3.如权利要求1所述的一种单体电池测试模拟装置,其特征是:所述微控制器包括模数转换模块、脉冲宽度调制PWM信号输出端和通用IO端;所述模数转换模块,通过电压/电流/温度采集模块与电池测试模块、电池模拟模块和电池单体连接,用于将电压/电流/温度模拟信号转换成数字信号,作为控制器的输入;
所述脉冲宽度调制PWM信号输出端通过PWM驱动电路连接半桥变换器、切换开关和放电电路,用于产生MOSFET开关的控制驱动信号;
所述通用IO端通过一个多路选通开关与电源开关连接用于接通和断开电网与单体电池测试模拟装置的连接;与电池测试模块的负载开关和电池模拟模块的负载开关连接,用于接通和断开负载与电池测试模块和电池模拟模块的连接。
4.如权利要求1所述的一种单体电池测试模拟装置,其特征是:所述充电电路的半桥变换器采用半桥型高频开关电源电路结构;所述半桥变换器的两个MOSFETM1和M2采用双极性控制方式:由两对状态互补的PWM信号控制,其中M1由第一对状态互补的PWM信号的第一个信号控制,M2由第二对状态互补的PWM信号的第二个信号控制;所述两对状态互补的PWM信号的占空比之和为1。
5.如权利要求1所述的一种单体电池测试模拟装置,其特征是:所述切换开关采用2位按键式开关,当按键开关处于1时,装置工作在电池模拟模式;当按键开关处于2时,装置工作在电池测试模式;所述快速切换开关由两个反向串联的MOSFET组成,其中,两个MOSFET的漏极与漏极相连,两个MOSFET的源极一个为输入端,一个为输出端。
6.如权利要求1所述的一种单体电池测试模拟装置,其特征是:所述充电电路的切换开关和放电电路的切换开关由一对状态互补的信号控制,当放电电路的切换开关断开充电电路的切换开关闭合时,电池处于充电状态;当充电电路的切换开关断开放电电路的切换开关闭合时,电池处于放电状态。
7.一种如权利要求1~6中任一项的所述的模拟装置的实现方法,其特征是:包括以下步骤:
(1)选择装置的工作模式,通过控制开关,选择电池模拟工作模式或电池测试工作模式;
(2)如果选择电池测试工作模式,首先将按键开关S1拨到2处,并判断电池电压、电流和温度值是否超出限值,若超出限值则断开电源开关K1和测试负载开关K2,否则闭合K1和K2进行电池测试,电池测试模式又有三种工作模式:充电模式、放电模式和混合充放电模式,可通过控制充放电快速切换开关M4,M5实现上述三种工作模式的切换;
(3)对于电池模拟模式,首先将按键开关S1拨到1处,获取电池电压、电流和温度信号,并判断是否超出限值,若超出限值则断开电源开关K1和模拟负载开关K3,否则闭合K1和K3
(4)用户根据实际情况建立电池模型,微控制器根据用户建立的电池模型和负载电流,计算出电池模型输出电压,并采用PI控制算法和双极性控制方式调节PWM信号的占空比,控制半桥变换器的两个MOSFETM1和M2,使得电池模拟模块的输出电压跟随电池模型输出电压的变化而变化,从而实现精确模拟电池的I-V特性,并对电池电压、电流和温度数据进行显示和存储。
8.如权利要求7所述的的实现方法,其特征是:所述步骤(2)中,对于充电模式,首先微控制器根据采集的电压、电流信号,借助模数转换模块转换成数字量,并判断电池电压、电流和温度值是否超出限值,若超出限值则断开电源开关K1和测试负载开关K2,否则闭合K1和K2,再发控制信号让电池测试模块的切换开关M5导通;然后,微控制器根据采集的电压、电流值,并与设定值比较,采用PI控制算法和双极性控制方式调节半桥变换器的两个MOSFET M1和M2的PWM信号的占空比,使得电池测试装置的输出随着设定值的变化而变化,并对电池电压、电流和温度数据进行显示和存储,实现恒流、恒压、恒功率和脉冲充电模式。
9.如权利要求7所述的的实现方法,其特征是:所述步骤(2)中,对于放电模式,首先微控制器根据采集的电压、电流信号,借助模数转换模块转换成数字量,并判断电池电压、电流和温度值是否超出限值,若超出限值则断开测试负载开关K2,否则闭合K2,再发控制信号让电池测试模块的切换开关M4导通;然后,微控制器根据采集的电压、电流值,并与设定值比较,采用PI控制算法,调节Boost变换器的MOSFET M3的PWM信号的占空比,使得电池放电电流随着设定值的变化而变化,并对电池电压、电流和温度数据进行显示和存储,实现恒流、恒功率和脉冲放电模式。
10.如权利要求7所述的的实现方法,其特征是:所述步骤(2)中,对于混合充放电模式,即UDDS或DST循环工况,首先判断电池电压、电流和温度值是否超出限值,若超出限值则断开电源开关K1和测试负载开关K2,否则闭合K1和K2;然后,微控制器根据电流设定值的正、负控制电池充电或放电;当电流设定值为正时,对电池进行充电,控制M5导通M4断开;当电流设定值为负时,对电池进行放电,控制M4导通M5断开,其充、放电控制方式与上述充电模式和放电模式的控制方式一致。
CN201410220355.1A 2014-05-22 2014-05-22 一种单体电池测试模拟装置及实现方法 Active CN103954917B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410220355.1A CN103954917B (zh) 2014-05-22 2014-05-22 一种单体电池测试模拟装置及实现方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410220355.1A CN103954917B (zh) 2014-05-22 2014-05-22 一种单体电池测试模拟装置及实现方法

Publications (2)

Publication Number Publication Date
CN103954917A true CN103954917A (zh) 2014-07-30
CN103954917B CN103954917B (zh) 2016-08-24

Family

ID=51332215

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410220355.1A Active CN103954917B (zh) 2014-05-22 2014-05-22 一种单体电池测试模拟装置及实现方法

Country Status (1)

Country Link
CN (1) CN103954917B (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104617616A (zh) * 2015-01-19 2015-05-13 深圳市中科源电子有限公司 一种移动电源测试充放电控制电路及移动电源测试装置
CN105223505A (zh) * 2014-06-30 2016-01-06 北京瑞龙鸿威科技有限公司 基于嵌入式系统控制的蓄电池模拟器
CN105515067A (zh) * 2014-09-22 2016-04-20 神讯电脑(昆山)有限公司 移动电源充放电自动转换治具
CN105911473A (zh) * 2016-04-08 2016-08-31 山东大学 一种动力电池无模型快速模拟系统及方法
CN106451707A (zh) * 2016-07-04 2017-02-22 上海交通大学 一种恒流恒压控制的充电电路
CN106494247A (zh) * 2016-10-18 2017-03-15 华南理工大学 一种纯电动车整车控制器充电电流计算方法
CN107912060A (zh) * 2015-06-24 2018-04-13 菲尼克斯电气公司 用于识别蓄能器设备故障的测量设备
CN107942260A (zh) * 2017-12-11 2018-04-20 上海木爷机器人技术有限公司 一种电池充放电测试的控制方法及系统
CN108387847A (zh) * 2018-02-28 2018-08-10 长沙优力电驱动系统有限公司 充电电池充放电测试方法、计算机设备和存储介质
CN108490368A (zh) * 2018-07-02 2018-09-04 桂林电子科技大学 一种锂电池充放电测试装置及方法
CN109307843A (zh) * 2018-10-17 2019-02-05 湖南恩智测控技术有限公司 一种电路实现的模拟电源
CN110168841A (zh) * 2016-12-29 2019-08-23 威拓股份有限公司 混合电池充电器/测试器
CN110426644A (zh) * 2019-07-29 2019-11-08 南京微盟电子有限公司 一种模拟锂电池测试锂电池充电芯片的方法
CN110515010A (zh) * 2019-08-30 2019-11-29 联动天翼新能源有限公司 一种动力电池测试控制装置
CN111337834A (zh) * 2020-02-27 2020-06-26 中国人民解放军陆军工程大学 一种电池电特性模拟系统及其模拟方法
CN111781502A (zh) * 2019-04-04 2020-10-16 宁德时代新能源科技股份有限公司 电动汽车的电池检测方法、装置和检测设备
CN112255557A (zh) * 2019-07-22 2021-01-22 华北电力大学(保定) 一种用于非车载充电机现场检测的轻量化电动汽车电池模拟装置
CN112803388A (zh) * 2021-03-19 2021-05-14 株洲中车时代电气股份有限公司 储能装置的放电系统及新能源交通车辆的地面放电系统
CN114280486A (zh) * 2021-12-30 2022-04-05 迪卡龙(青岛)电子有限公司 负电压电池测试仪及其使用方法
US11474160B2 (en) 2020-08-18 2022-10-18 Rohde & Schwarz Gmbh & Co. Kg Battery emulation apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266439A (ja) * 2009-05-12 2010-11-25 Avl List Gmbh ハイブリッド駆動システムまたはそのシステムのサブコンポーネントを試験するための方法および試験台
CN102183984A (zh) * 2011-03-25 2011-09-14 重庆长安汽车股份有限公司 一种动力电池模拟系统
CN102654565A (zh) * 2012-04-17 2012-09-05 华中科技大学 一种电池模拟方法及模拟器
CN102841317A (zh) * 2011-06-23 2012-12-26 康舒科技股份有限公司 电池模拟装置
CN203930015U (zh) * 2014-05-22 2014-11-05 山东大学 一种单体电池测试模拟装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266439A (ja) * 2009-05-12 2010-11-25 Avl List Gmbh ハイブリッド駆動システムまたはそのシステムのサブコンポーネントを試験するための方法および試験台
CN102183984A (zh) * 2011-03-25 2011-09-14 重庆长安汽车股份有限公司 一种动力电池模拟系统
CN102841317A (zh) * 2011-06-23 2012-12-26 康舒科技股份有限公司 电池模拟装置
CN102654565A (zh) * 2012-04-17 2012-09-05 华中科技大学 一种电池模拟方法及模拟器
CN203930015U (zh) * 2014-05-22 2014-11-05 山东大学 一种单体电池测试模拟装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOHN CHATZAKIS ET AL.: "Designing a new generalized battery management system", 《IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS》, vol. 50, no. 5, 31 October 2003 (2003-10-31), XP011101942, DOI: doi:10.1109/TIE.2003.817706 *
颜湘武 等: "虚拟电池管理系统", 《电力电子技术》, vol. 45, no. 12, 31 December 2011 (2011-12-31) *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105223505A (zh) * 2014-06-30 2016-01-06 北京瑞龙鸿威科技有限公司 基于嵌入式系统控制的蓄电池模拟器
CN105515067B (zh) * 2014-09-22 2018-09-18 神讯电脑(昆山)有限公司 移动电源充放电自动转换治具
CN105515067A (zh) * 2014-09-22 2016-04-20 神讯电脑(昆山)有限公司 移动电源充放电自动转换治具
CN104617616B (zh) * 2015-01-19 2018-01-05 深圳市中科源电子有限公司 一种移动电源测试充放电控制电路及移动电源测试装置
CN104617616A (zh) * 2015-01-19 2015-05-13 深圳市中科源电子有限公司 一种移动电源测试充放电控制电路及移动电源测试装置
CN107912060A (zh) * 2015-06-24 2018-04-13 菲尼克斯电气公司 用于识别蓄能器设备故障的测量设备
US10534041B2 (en) 2015-06-24 2020-01-14 Phoenix Contact Gmbh & Co. Kg Measuring arrangement for identifying a malfunction in an energy accumulator arrangement
CN105911473A (zh) * 2016-04-08 2016-08-31 山东大学 一种动力电池无模型快速模拟系统及方法
CN106451707A (zh) * 2016-07-04 2017-02-22 上海交通大学 一种恒流恒压控制的充电电路
CN106494247A (zh) * 2016-10-18 2017-03-15 华南理工大学 一种纯电动车整车控制器充电电流计算方法
CN106494247B (zh) * 2016-10-18 2019-04-09 华南理工大学 一种纯电动车整车控制器充电电流计算方法
CN110168841A (zh) * 2016-12-29 2019-08-23 威拓股份有限公司 混合电池充电器/测试器
CN107942260A (zh) * 2017-12-11 2018-04-20 上海木爷机器人技术有限公司 一种电池充放电测试的控制方法及系统
CN108387847A (zh) * 2018-02-28 2018-08-10 长沙优力电驱动系统有限公司 充电电池充放电测试方法、计算机设备和存储介质
CN108387847B (zh) * 2018-02-28 2020-05-29 长沙优力电驱动系统有限公司 充电电池充放电测试方法、计算机设备和存储介质
CN108490368A (zh) * 2018-07-02 2018-09-04 桂林电子科技大学 一种锂电池充放电测试装置及方法
CN109307843A (zh) * 2018-10-17 2019-02-05 湖南恩智测控技术有限公司 一种电路实现的模拟电源
CN111781502A (zh) * 2019-04-04 2020-10-16 宁德时代新能源科技股份有限公司 电动汽车的电池检测方法、装置和检测设备
CN112255557A (zh) * 2019-07-22 2021-01-22 华北电力大学(保定) 一种用于非车载充电机现场检测的轻量化电动汽车电池模拟装置
CN110426644A (zh) * 2019-07-29 2019-11-08 南京微盟电子有限公司 一种模拟锂电池测试锂电池充电芯片的方法
CN110426644B (zh) * 2019-07-29 2021-04-27 南京微盟电子有限公司 一种模拟锂电池测试锂电池充电芯片的方法
CN110515010A (zh) * 2019-08-30 2019-11-29 联动天翼新能源有限公司 一种动力电池测试控制装置
CN110515010B (zh) * 2019-08-30 2021-07-23 联动天翼新能源有限公司 一种动力电池测试控制装置
CN111337834A (zh) * 2020-02-27 2020-06-26 中国人民解放军陆军工程大学 一种电池电特性模拟系统及其模拟方法
US11474160B2 (en) 2020-08-18 2022-10-18 Rohde & Schwarz Gmbh & Co. Kg Battery emulation apparatus
CN112803388A (zh) * 2021-03-19 2021-05-14 株洲中车时代电气股份有限公司 储能装置的放电系统及新能源交通车辆的地面放电系统
CN112803388B (zh) * 2021-03-19 2022-04-15 株洲中车时代电气股份有限公司 储能装置的放电系统及新能源交通车辆的地面放电系统
CN114280486A (zh) * 2021-12-30 2022-04-05 迪卡龙(青岛)电子有限公司 负电压电池测试仪及其使用方法

Also Published As

Publication number Publication date
CN103954917B (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
CN103954917B (zh) 一种单体电池测试模拟装置及实现方法
CN203930015U (zh) 一种单体电池测试模拟装置
CN101762800B (zh) 电池组管理系统测试平台
CN103066671B (zh) 锂电池组均充方法和装置
CN103675707A (zh) 锂离子电池峰值功率在线评估方法
CN104953659B (zh) 一种电池组充放电均衡电路和充放电方法
CN203705621U (zh) 电池组剩余电量的计量电路
CN105929336A (zh) 一种动力锂离子电池健康状态估算方法
CN106129509A (zh) 一种充放电控制器集成蓄电池
CN106300545A (zh) 一种用于液态金属电池的主动均衡控制装置及控制方法
CN102593882A (zh) 一种电池组内的电池能量均衡装置
CN104122884A (zh) 一种电池管理系统的模拟测试装置
CN103760496B (zh) 一种电动汽车动力电池组充放电能力测试装置及方法
CN204287437U (zh) 一种动力电池测试装置
CN113009370B (zh) 一种低能耗动力电池循环寿命测试系统及方法
CN103558557B (zh) 动力电池组检测电路
CN204330169U (zh) 温度取样装置及遥控器
CN109428362B (zh) 一种电池管理系统的主动均衡策略优化方法
CN109856562A (zh) 基于自适应“i-u-r”法的锂电池梯次利用检测方法
CN203720330U (zh) 一种电动汽车动力电池组充放电能力测试装置
CN113009245A (zh) 一种充电桩移动式检测系统
CN103823190A (zh) 大容量动力电池综合参数测试装置与测试方法
CN210347800U (zh) 充电桩试验检测系统
CN110208583B (zh) 一种基于电芯充放电的涟波电流发生装置
CN212321725U (zh) 一种新型回路电阻测试仪

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220726

Address after: 441000 No.16 YEDIAN Road, high tech Zone (Free Trade Zone), Xiangyang City, Hubei Province

Patentee after: HUBEI TECHPOW ELECTRIC Co.,Ltd.

Address before: 250061, No. ten, No. 17923, Lixia District, Ji'nan City, Shandong Province

Patentee before: SHANDONG University

TR01 Transfer of patent right