CN103928484A - Image sensor micro lens structure for improving sensitivity of red pixels and blue pixels - Google Patents

Image sensor micro lens structure for improving sensitivity of red pixels and blue pixels Download PDF

Info

Publication number
CN103928484A
CN103928484A CN201410164450.4A CN201410164450A CN103928484A CN 103928484 A CN103928484 A CN 103928484A CN 201410164450 A CN201410164450 A CN 201410164450A CN 103928484 A CN103928484 A CN 103928484A
Authority
CN
China
Prior art keywords
pixels
red
image sensor
pixel
blue
Prior art date
Application number
CN201410164450.4A
Other languages
Chinese (zh)
Inventor
郭同辉
唐冕
旷章曲
Original Assignee
北京思比科微电子技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京思比科微电子技术股份有限公司 filed Critical 北京思比科微电子技术股份有限公司
Priority to CN201410164450.4A priority Critical patent/CN103928484A/en
Publication of CN103928484A publication Critical patent/CN103928484A/en

Links

Abstract

The invention discloses an image sensor micro lens structure for improving the sensitivity of red pixels and blue pixels. The red pixels, green pixels and the blue pixels are arranged in a Bayer mode to form a pixel array of an image sensor, wherein the micro lens plane area of the red pixels and the micro lens plane area of the blue pixels are larger than the micro lens plane area of the green pixels, and the micro lens plane area of the red pixels is equal to or unequal to the micro lens plane area of the blue pixels. The micro lens plane dimension of the red pixels and the micro lens plane dimension of the blue pixels are increased, as a result, the red pixels and the blue pixels can receive a larger amount of light, the sensitivity of the red pixels and the sensitivity of the blue pixels are effectively improved compared with the green pixels, the luminous sensitivity of the red pixels, the luminous sensitivity of the green pixels and the luminous sensitivity of the blue pixels are approximately the same, and the processing complexity of white balance operation on a digital backend image signal is effectively reduced.

Description

提高红色和蓝色像素灵敏度的图像传感器微透镜结构 Improving the image sensor microlens structure sensitivity red and blue pixels

技术领域 FIELD

[0001] 本发明涉及一种图像传感器,尤其涉及一种提高红色和蓝色像素灵敏度的图像传感器微透镜结构。 [0001] The present invention relates to an image sensor, particularly to an improved image sensor microlens structure sensitivity red and blue pixels.

背景技术 Background technique

[0002] 图像传感器已经被广泛地应用于数码相机、移动手机、医疗器械、汽车和其他应用场合。 [0002] The image sensor has been widely used in digital cameras, mobile phones, medical equipment, automobiles and other applications. 特别是制造CMOS (互补型金属氧化物半导体)图像传感器和CCD (电荷耦合器件)图像传感器技术的快速发展,使人们对图像传感器的输出图像品质有了更高的要求。 Especially the rapid development of manufacturing a CMOS (Complementary Metal Oxide Semiconductor) image sensor and a CCD (Charge Coupled Device) image sensor technology, it makes the image sensor output image quality have higher requirements.

[0003] 现有技术中的图像传感器,一般采用Bayer模式的红绿蓝彩色滤光片阵列结构排列,所对应的像素称为红色、绿色和蓝色像素,由红色、绿色和蓝色像素排列成为二维像素阵列。 [0003] an image sensor in the prior art, the general RGB Bayer pattern color filter array is arranged in a configuration, known as pixels corresponding to red, green and blue pixels, arrayed red, green and blue pixels become a two-dimensional array of pixels.

[0004] 如图1所示,现有技术中的图像传感器像素阵列中的每个颜色像素所使用的微透镜平面面积及像素面积相等,图1中,每个像素的微透镜(ML)平面宽和高尺寸都为P,即红绿蓝三种颜色像素的微透镜平面面积相等。 [0004] As shown, the planar area of ​​each of the microlenses color pixel image sensor pixel array of the prior art and used in the pixel area is equal to 1, in FIG. 1, each pixel microlens (ML) plane both width and height dimensions is P, i.e., the plane area of ​​the microlens is equal to the three colors red, green and blue pixels.

[0005] 以图1所示的像素微透镜单元在垂直和水平方向上排列称为二维像素微透镜阵列,如图2所示,图2中,R为红色像素微透镜,G为绿色像素微透镜,B为蓝色像素微透镜,并且RGB三种颜色的像素微透镜平面面积相等,所以像素微透镜所汇聚到的光量相等。 [0005] In the pixel unit microlenses are arranged as shown in FIG. 1 in the vertical and horizontal directions is called two-dimensional pixel microlens array, shown in Figure 2, in FIG. 2, R is a red pixel microlenses, G is the green pixel microlenses, B is a blue pixel microlenses, the microlenses and the pixel plane area equal to three colors of RGB, the amount of light converging microlenses of pixels to be equal. 依据半导体硅对不同波长光的吸收属性,G像素的感光灵敏度最高,R像素和B像素的感光灵敏度相近,并且在白光环境下,例如D65光源环境,G像素的感光灵敏度是R像素和B像素感光灵敏度的1.2〜1.3倍。 Based semiconductor silicon absorption properties wavelength of light different photosensitivity G pixel is the highest, photosensitive R and B pixels sensitivity similar, and in white light environment, such as a D65 light source environment, photosensitivity G pixel is the R pixel and the B pixel 1.2~1.3 times the sensitivity of the photoconductor.

[0006] 如图3所示,为现有技术的图像传感器,在白光环境下,三色像素的光电响应曲线,G像素的响应斜率是R和B像素的响应斜率的1.2〜1.3倍,即G像素的像素感光灵敏度是R和B像素感光灵敏度的1.2〜1.3倍。 [0006] As shown in FIG. 3, the prior art image sensor, in ambient white light, the photo response curve, the slope of the response of three-color pixel G pixels is 1.2~1.3 times the slope of the response of the R and B pixels, i.e., sensitivity of the photosensitive pixel is 1.2~1.3 times the G pixels R and B pixels photosensitivity.

[0007] 现有技术中的图像传感器至少存在以下缺陷: [0007] The image sensor of the prior art has at least the following drawbacks:

[0008] 在白光环境下,G像素的感光灵敏度明显高于R和B像素的感光灵敏度,使得在后期图像信号处理中,R和B像素的信号增益需要调整为1.2〜1.3倍,以便使图像恢复到与环境一致的真实颜色白色;由于,RGB像素的感光灵敏度不相同,使得后期信号白平衡处理变得复杂,给图像颜色矫正操作带来了困难。 [0008] In the white light environment, photosensitivity G pixels is significantly higher than the sensitivity of the photosensitive pixels of R and B, so that the image signal post-processing, the signal gain of R and B pixels is 1.2~1.3 times need to be adjusted so that the image to a consistent with the white color of the real environment; because photosensitivity RGB pixels are not the same, so that the signal post-processing becomes complicated white balance, color correction operation to the image makes it difficult.

发明内容 SUMMARY

[0009] 本发明的目的是提供一种提高红色和蓝色像素灵敏度的图像传感器微透镜结构,使RGB三色像素的感光灵敏度大致相等,降低数字后端图像信号白平衡操作的处理难度。 [0009] The object of the present invention is to provide an improved image sensor microlens structure sensitivity red and blue pixels, the sensitivity of the photosensitive RGB three-color pixel are substantially equal, to reduce the difficulty of processing the digital image signal of the rear end of the white balance operation.

[0010] 本发明的目的是通过以下技术方案实现的: [0010] The object of the present invention is achieved by the following technical solution:

[0011] 本发明的提高红色和蓝色像素灵敏度的图像传感器微透镜结构,图像传感器的像素阵列采用Bayer模式的红绿蓝排列方式,红色像素和蓝色像素的微透镜平面面积大于绿色像素的微透镜平面面积。 [0011] the present invention to improve the red and blue pixels of the image sensor sensitivity microlens structure, the pixel array of the image sensor using the RGB Bayer pattern arrangement, the microlens plane area of ​​the red and blue pixels is larger than the green pixel plane area of ​​the microlenses. [0012] 由上述本发明提供的技术方案可以看出,本发明实施例提供的提高红色和蓝色像素灵敏度的图像传感器微透镜结构,由于红色像素和蓝色像素的微透镜平面面积大于绿色像素的微透镜平面面积,增大了R和B像素的微透镜平面尺寸,使得R和B像素能够接受到更多的光量,因此相对G像素有效地提高了R像素和B像素的灵敏度,使R、G、B三色像素的感光灵敏度大致相等,有效地降低了数字后端图像信号白平衡操作的处理复杂度。 [0012] provided by the technical solution of the present invention can be seen to improve the sensitivity of the red and blue pixels of the image sensor microlens structure according to an embodiment of the present invention, since the plane area of ​​the microlens red and blue pixels is larger than the green pixel plane area of ​​the microlenses, the microlenses increases the planar size of the R and B pixels, so that the R and B pixels be able to receive more amount of light, so the G pixel relatively effectively improves the sensitivity of R and B pixels of the R , photosensitivity G, B three color pixel are substantially equal, the process effectively reduces the complexity of the digital image signal of the rear end of the white balance operation.

附图说明 BRIEF DESCRIPTION

[0013] 图1为现有技术中的图像传感器像素所使用的微透镜单元平面示意图。 [0013] FIG. 1 is a planar microlens unit pixels of the image sensor used in the prior art FIG.

[0014] 图2为现有技术中的图像传感器像素阵列所使用的Bayer模式排列的微透镜阵列示意图。 [0014] Fig 2 a schematic view of the microlens array is arranged in a Bayer pattern image sensor pixel array of the prior art is used.

[0015] 图3为现有技术中的图像传感器红绿蓝三色像素的光电响应曲线示意图。 [0015] FIG. 3 is a schematic view of the response curve of image sensor, a photoelectric prior art three-color RGB pixels.

[0016] 图4a、图4b为本发明实施例中图像传感器红绿蓝像素所使用的微透镜单元平面示意图。 [0016] Figures 4a, 4b a schematic plan view of the lens unit of the micro RGB pixel image sensor used in the embodiment of the present invention.

[0017]图5为本发明实施例中图像传感器像素阵列所使用的Bayer模式排列的微透镜阵列示意图。 [0017] FIG. 5 is a schematic embodiment of a microlens array in a Bayer pattern image sensor pixel array used in the arrangement of the embodiment of the present invention.

[0018] 图6a、图6b为本发明实施例中图像传感器像素阵列所使用的微透镜阵列中的其中相邻两行的微透镜横切面示意图。 [0018] Figures 6a, 6b a schematic cross-section microlens of the microlens array embodiment using the image sensor pixel array in which two adjacent rows of the embodiment of the present invention.

[0019] 图7为本发明实施例中图像传感器红绿蓝三色像素的光电响应曲线示意图。 [0019] FIG. 7 is a schematic embodiment photoresponse curve of the image sensor RGB three-color pixel embodiment of the invention. 具体实施方式 Detailed ways

[0020] 下面将对本发明实施例作进一步地详细描述。 [0020] The following embodiments will be described in further detail according to the present invention.

[0021] 本发明的提高红色和蓝色像素灵敏度的图像传感器微透镜结构,其较佳的具体实施方式是: [0021] The red and blue pixels to improve the sensitivity of the present invention, an image sensor microlens structure, specific embodiments thereof are preferred:

[0022] 图像传感器的像素阵列采用Bayer模式的红绿蓝排列方式,红色像素和蓝色像素的微透镜平面面积大于绿色像素的微透镜平面面积。 The pixel array [0022] image sensor using a Bayer pattern of RGB arrangement, the microlens plane area of ​​red and blue pixels is larger than the planar area of ​​the microlens green pixels.

[0023] 所述红色像素和蓝色像素的微透镜平面面积是所述绿色像素微透镜平面面积的1.2 〜1.3 倍。 [0023] The microlens plane area of ​​the red and blue pixels are the plane area of ​​the green pixel microlens 1.2 ~1.3 times.

[0024] 所述红色像素与蓝色像素的微透镜平面面积相等或不相等。 [0024] The microlens plane area of ​​the red pixel and the blue pixel of equal or unequal.

[0025] 所述红色像素、蓝色像素和绿色像素的微透镜平面形状为多边形。 The [0025] red pixel, the planar shape of the microlens blue and green pixels of a polygon.

[0026] 所述红色像素、蓝色像素和绿色像素的微透镜平面形状为正方形或长方形。 The [0026] red pixel, a plane shape of the microlens blue and green pixels are square or rectangular.

[0027] 该提高红色和蓝色像素灵敏度的图像传感器微透镜结构用于CMOS型图像传感器或C⑶型图像传感器。 [0027] The improved image sensor microlens structure sensitivity red and blue pixels for CMOS-type image sensor or image sensor C⑶.

[0028] 本发明的提高红色和蓝色像素灵敏度的图像传感器微透镜结构,增大了R和B像素的微透镜平面尺寸,使得R和B像素能够接受到更多的光量,因此相对G像素有效地提高了R像素和B像素的灵敏度,使R、G、B三色像素的感光灵敏度大致相等,有效地降低了数字后端图像信号白平衡操作的处理复杂度。 [0028] improve the sensitivity of the red and blue pixels of the image sensor of the present invention, the microlens structure, increases the planar size of the microlens R and B pixels, so that the R and B pixels be able to receive more light amount, so the relative pixel G effectively improves the sensitivity of R and B pixels, the sensitivity of the photosensitive R, G, B three-color pixel is substantially equal to effectively reduce the processing complexity of the digital image signal of the rear end of the white balance operation.

[0029] 具体实施例: [0029] Specific Example:

[0030] 在实施例中,RGB三色像素尺寸以正方形结构为例,以R像素和B像素面积相等为例。 [0030] In an embodiment, the RGB three-color pixel size in square configuration, for example, the R and B pixels as an example equal area. [0031] 图4a、4b所示,图4a为G像素所使用的ML (微透镜)单元平面尺寸示意图,其大小为PgXPg ;图4b为R和B像素所使用的ML单元平面尺寸示意图,其大小为PrbXPrg,其中R和B像素的ML平面面积是G像素的ML平面面积的1.2〜1.3倍。 [0031] FIG. 4a,, ML G pixel 4a is used (microlens) unit shown in schematic planar size 4b, size of PgXPg; FIG. 4b ML cell dimensions a schematic plane R and B pixels is used, which size PrbXPrg, wherein ML plane area R and B pixels is 1.2~1.3 times the planar area of ​​ML G pixels. 图4a、4b所不的R和B像素使用的ML平面面积相对G像素使用的ML平面面积大,较大平面面积的ML能够汇聚到更多的光量,使像素的感光器件能够产生更多的光电电荷,即提高了该像素的感光灵敏度。 FIG. 4A, the plane area of ​​ML ML plane area 4b of the R and B pixels are not used to use a relatively large pixel G, ML large planar area can be converged more amount of light, the pixel is capable of generating more sensitive photoelectric charge, i.e., improved sensitivity of the photosensitive pixels.

[0032] 图5所示,为本发明的图像传感器像素阵列所使用的ML阵列示意图,本像素阵列采用Bayer模式排列,R为红色像素微透镜,G为绿色像素微透镜,B为蓝色像素微透镜,M行和M+1行分别表征ML阵列中的第M和M+1行的ML位置;其中R、G和B像素的ML平面面积分别为图4所示的R、G和B像素所使用的ML平面面积尺寸。 [0032] As shown in FIG. 5, a schematic view of an image sensor pixel array ML array used in the present invention, the present pixel array arranged in a Bayer pattern employed, R is the red pixel microlenses, G is the green pixel microlens, B is a blue pixel micro lenses, M rows and M + 1 and M-th row, respectively, characterized by a position M + 1 ML ML row array; ML plane area where R, G, and B are R pixels shown in FIG. 4, G, and B ML plane area size of the pixel used.

[0033] 图6a、图6b所示,为本发明的图像传感器像素阵列所使用的ML阵列中的其中相邻两行的微透镜横切面不意图,图6a为图5所不的第M行ML横切面不意图,图6b为图5所示的第M+1行ML横切面示意图;如图6a、图6b所示,R和B像素的ML尺寸Prb大于G像素的ML尺寸Pg,所以R和B像素的ML能够汇聚到的光量大于G像素ML汇聚到的光量。 [0033] Figures 6a, 6b, the cross-section of the microlens ML array image sensor pixel array of the present invention used in which two adjacent rows are not intended, in FIG. 5 FIG. 6a is not the M-th row ML is not intended cross-section, Figure 6b a schematic view of a first row M + 1 ML cross section as shown in FIG. 5; FIG. 6a, as shown in FIG, R and B pixels ML ML dimension larger than the size of Prb pixel Pg G 6b, so and R & lt ML B pixel can converge light greater than the amount of light converge to the G pixels ML.

[0034] 图7所示,为本发明像素阵列结构的RGB三色像素的光电响应曲线,其中水平轴为像素曝光量,垂直轴为像素产生的光电信号量,在白光环境下,RGB三色像素的光电响应斜率差别较小,即RGB三色像素的感光灵敏度大致相等。 [0034] As shown in FIG. 7, RGB pixel array structure of the three-color pixel photo response curve of the present invention, where the horizontal axis is the pixel exposure, the amount of the photoelectric signals produced by the pixels of a vertical axis, under white light environment, the RGB three-color photoresponse slope smaller pixel difference, i.e., the sensitivity of the photosensitive RGB three-color pixel are substantially equal.

[0035] 以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。 [0035] The above are only the preferred specific embodiments of the invention, but the scope of the present invention is not limited thereto, any skilled in the art in the art within the technical scope disclosed in the present invention can be easily thought variations or replacements shall fall within the protection scope of the present invention. 因此,本发明的保护范围应该以权利要求书的保护范围为准。 Accordingly, the scope of the present invention, the scope of the claims should prevail.

Claims (6)

1.一种提高红色和蓝色像素灵敏度的图像传感器微透镜结构,图像传感器的像素阵列采用Bayer模式的红绿蓝排列方式,其特征在于,红色像素和蓝色像素的微透镜平面面积大于绿色像素的微透镜平面面积。 1. A method of increasing the pixel array of red and blue pixels of the image sensor sensitivity microlens structure, an image sensor using a Bayer pattern of RGB arrangement, wherein the microlens plane area of ​​the red and blue pixels is larger than the green microlens plane area of ​​the pixel.
2.根据权利要求1所述的提高红色和蓝色像素灵敏度的图像传感器微透镜结构,其特征在于,所述红色像素和蓝色像素的微透镜平面面积是所述绿色像素微透镜平面面积的1.2 〜1.3 倍。 The increase of the red and blue pixels of an image sensor sensitivity microlens structure as claimed in claim, wherein the microlens plane area of ​​the red and blue pixels of the green pixel microlens is planar area 1.2 ~1.3 times.
3.根据权利要求2所述的提高红色和蓝色像素灵敏度的图像传感器微透镜结构,其特征在于,所述红色像素与蓝色像素的微透镜平面面积相等或不相等。 The image sensor microlens structure improves the sensitivity of the red and blue pixel according to claim 2, wherein the microlens is equal to the planar area of ​​the red pixel and blue pixel or unequal.
4.根据权利要求3所述的提高红色和蓝色像素灵敏度的图像传感器微透镜结构,其特征在于,所述红色像素、蓝色像素和绿色像素的微透镜平面形状为多边形。 The image sensor microlens structure improves the sensitivity of the red and blue pixels according to claim 3, wherein the planar shape of the microlenses of the red pixel, blue pixel and green pixel is polygonal.
5.根据权利要求4所述的提高红色和蓝色像素灵敏度的图像传感器微透镜结构,其特征在于,所述红色像素、蓝色像素和绿色像素的微透镜平面形状为正方形或长方形。 The image sensor microlens structure improves the sensitivity of the red and blue pixel as claimed in claim 4, wherein the planar shape of the microlenses of the red pixels, blue pixels and green pixels are square or rectangular.
6.根据权利要求1至5任一项所述的提高红色和蓝色像素灵敏度的图像传感器微透镜结构,其特征在于,该提高红色和蓝色像素灵敏度的图像传感器微透镜结构用于CMOS型图像传感器或CCD型图像传感器。 The image sensor microlens structure improves the sensitivity of the red and blue pixels according to any one of claims 1 to 5, wherein the image sensor to improve the microlens structure sensitivity red and blue pixels for CMOS type The image sensor or CCD type image sensor.
CN201410164450.4A 2014-04-22 2014-04-22 Image sensor micro lens structure for improving sensitivity of red pixels and blue pixels CN103928484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410164450.4A CN103928484A (en) 2014-04-22 2014-04-22 Image sensor micro lens structure for improving sensitivity of red pixels and blue pixels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410164450.4A CN103928484A (en) 2014-04-22 2014-04-22 Image sensor micro lens structure for improving sensitivity of red pixels and blue pixels

Publications (1)

Publication Number Publication Date
CN103928484A true CN103928484A (en) 2014-07-16

Family

ID=51146646

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410164450.4A CN103928484A (en) 2014-04-22 2014-04-22 Image sensor micro lens structure for improving sensitivity of red pixels and blue pixels

Country Status (1)

Country Link
CN (1) CN103928484A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105934946A (en) * 2014-08-20 2016-09-07 奥林巴斯株式会社 Observation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6744032B1 (en) * 2001-10-17 2004-06-01 Ess Technology, Inc. Arrangement of microlenses in a solid-state image sensor for improving signal to noise ratio
JP2008022521A (en) * 2006-06-14 2008-01-31 Toshiba Corp Solid imaging element
CN102339839A (en) * 2010-07-16 2012-02-01 美商豪威科技股份有限公司 CMOS image sensor with improved photodiode area allocation
US20140042579A1 (en) * 2008-12-11 2014-02-13 Korea Basic Science Institute Image sensor comprising a digital-alloy microlens array, and manufacturing method thereof
CN203812882U (en) * 2014-04-22 2014-09-03 北京思比科微电子技术股份有限公司 Image sensor micro-lens structure for increasing sensitivity of red and blue pixels

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6744032B1 (en) * 2001-10-17 2004-06-01 Ess Technology, Inc. Arrangement of microlenses in a solid-state image sensor for improving signal to noise ratio
JP2008022521A (en) * 2006-06-14 2008-01-31 Toshiba Corp Solid imaging element
US20140042579A1 (en) * 2008-12-11 2014-02-13 Korea Basic Science Institute Image sensor comprising a digital-alloy microlens array, and manufacturing method thereof
CN102339839A (en) * 2010-07-16 2012-02-01 美商豪威科技股份有限公司 CMOS image sensor with improved photodiode area allocation
CN203812882U (en) * 2014-04-22 2014-09-03 北京思比科微电子技术股份有限公司 Image sensor micro-lens structure for increasing sensitivity of red and blue pixels

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105934946A (en) * 2014-08-20 2016-09-07 奥林巴斯株式会社 Observation device
CN105934946B (en) * 2014-08-20 2017-06-13 奥林巴斯株式会社 Observation means

Similar Documents

Publication Publication Date Title
CN101437168B (en) Image pickup apparatus
CN103579268B (en) A lens array divided image sensor having a color filter
US8227737B2 (en) Imaging device camera system and driving method of the same
US7750278B2 (en) Solid-state imaging device, method for driving solid-state imaging device and camera
US8106994B2 (en) Image pickup apparatus having a microlens array
KR100818987B1 (en) Apparatus for photographing image and operating method for the same
CN102334188B (en) Solid-state imaging element, method for manufacturing same, and electronic information device
CN102917184B (en) Imaging means and the imaging apparatus
EP2255389B1 (en) Stacked image sensor with shared diffusion regions
US20190096940A1 (en) Solid-state imaging device, manufacturing method thereof, and camera with alternatively arranged pixel combinations
US7990444B2 (en) Solid-state imaging device and camera
US20110109776A1 (en) Imaging device and imaging apparatus
US20090190024A1 (en) Image pickup apparatus
US9287316B2 (en) Systems and methods for mitigating image sensor pixel value clipping
US20100128152A1 (en) Image pickup apparatus
US9888194B2 (en) Array camera architecture implementing quantum film image sensors
US9197807B2 (en) Imaging device including phase detection pixels arranged to perform capturing and to detect phase difference
US9497370B2 (en) Array camera architecture implementing quantum dot color filters
US20110298074A1 (en) Solid-state imaging element and electronic information device
US20120274811A1 (en) Imaging devices having arrays of image sensors and precision offset lenses
WO2006064564A1 (en) Imaging device, imaging element, and image processing method
CN102037734B (en) Camera Sensor Calibration
CN101395926A (en) Fused multi-array color image sensor
CN102449999A (en) Imager having global and rolling shutter processes
CN204720451U (en) Imaging system and treater system

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
RJ01