CN103925872A - Laser scanning measurement device and method for acquiring spatial distribution of target objects - Google Patents

Laser scanning measurement device and method for acquiring spatial distribution of target objects Download PDF

Info

Publication number
CN103925872A
CN103925872A CN 201310717949 CN201310717949A CN103925872A CN 103925872 A CN103925872 A CN 103925872A CN 201310717949 CN201310717949 CN 201310717949 CN 201310717949 A CN201310717949 A CN 201310717949A CN 103925872 A CN103925872 A CN 103925872A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
laser
coordinate system
data
scanning
module
Prior art date
Application number
CN 201310717949
Other languages
Chinese (zh)
Inventor
谷红伟
李瑛�
王元臣
许文海
陈明华
张望
华夏
缪希伟
杨德山
严魏
王鹤
白增辉
曹保卿
Original Assignee
中国神华能源股份有限公司
神华销售集团有限公司
北京神华恒运能源科技有限公司
大连海事大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention discloses a laser scanning measurement device for acquiring spatial distribution of target objects. The device comprises a laser rangefinder module, a global positioning module, an attitude measurement module and a data processing module, wherein the laser rangefinder module is used for conducting laser scanning on the target objects to determine the relative positions of multiple scanning points on the target objects, the global positioning module and the attitude measurement module are used for obtaining the position and attitude of the scanning measurement device in the geodetic coordinate system, and the data processing module is used for obtaining the positions of the scanning points in the geodetic coordinate system, namely the spatial distribution condition of the target objects, through coordinate transformation. The invention further provides a laser scanning measurement method for acquiring spatial distribution of the target objects. The scanning measurement process is fast and efficient. The device and method are suitable for scanning measurement of target objects in any shapes.

Description

—种用于获取目标物空间分布的激光扫描测量装置和方法 - laser scanning apparatus and method for spatial distribution of the target species for obtaining

技术领域 FIELD

[0001] 本发明涉及测绘技术领域,具体涉及一种用于获取目标物空间分布的激光扫描测量装置和方法。 [0001] The present invention relates to the field of mapping technology, particularly relates to a method for obtaining laser scanning apparatus and method for measuring spatial distribution of the object.

背景技术 Background technique

[0002] 三维激光扫描仪利用激光测距装置记录被测物体表面大量的密集的点的三维坐标、反射率和纹理等信息,快速复建出被测目标物的三维模型及其线、面、体等各种图件数据。 [0002] laser scanner using a laser distance measuring device for recording three-dimensional coordinates, a large number of reflectance and texture dense object surface point information, rapid rehabilitation and three-dimensional model of the object under test line, plane, FIG various pieces of data and the like. 由于三维激光扫描系统可以密集地大量获取目标对象的数据点,因此相对于传统的测绘技术,三维激光扫描技术有其突破性。 Since the three-dimensional laser scanning system can be densely acquire a large number of data points of the target object, so the conventional mapping technology with respect to three-dimensional laser scanning technology has its breakthrough.

[0003] 根据大量研究分析发现,三维激光扫描技术虽然能够快速地绘制目标物的三维点云图,但是在特定情况下使用仍存在弊端。 [0003] The analysis of a large number of studies found that, although the three-dimensional laser scanning technology to quickly draw a three-dimensional point cloud of the object, but there are still shortcomings in certain situations. 例如,针对堆储现代化管理中的煤炭等大宗散货的工作,需要便捷、准确地测量出例如储煤基地的煤垛体积,进而折算质量等参数,是储煤基地科学管理的重要工作。 For example, work for bulk cargo storage heap of coal and other modern management, need convenient and accurate measurement of the volume, such as coal pile coal storage base, and then convert quality parameters is an important work of scientific management of coal storage base. 其中,若采用三维激光扫描技术,首先需要根据煤垛堆场情况,在煤垛周围选取多个特定的固定点,在固定点位置上对煤垛进行三维激光扫描,再将每个固定点视角获得的扫描点拼接起来,最终形成煤垛的点云图,得到煤垛整体空间分布情况,进而计算煤垛体积等。 Wherein, when the three-dimensional laser scanning technique, coal is first need to stack yard, the selected plurality of specific fixing points around the stack of coal, coal stack three-dimensionally scanning the laser spot at a fixed position, and then each of the fixing point Perspective stitching together the scanning spot obtained, the final point cloud forming stacks of coal, coal to obtain the spatial distribution of the whole stack, and then calculate the volume of the coal pile and the like. 该种扫描测量方式需要根据堆场情况人工确定多个具有代表性的固定点作为扫描位置,还需要对不同位置视角获得的扫描点进行精确拼接,扫描测量过程复杂,另外,三维激光扫描仪的价格昂贵,多在百万元以上,使用成本较高。 This kind of measurement requires manual scanning a plurality of fixed points is determined according to the representative case where the yard as the scanning position, but also requires precise splicing of the different positions of the scanning spot obtained in perspective, the scan measurement process is complex, Further, the laser scanner expensive, and more in more than one million yuan, the higher cost.

发明内容 SUMMARY

[0004] 有鉴于此,本发明提供了一种用于获取目标物空间分布的激光扫描测量装置和方法,能够方便快捷地获得目标物的空间分布参数,且适用于对任意外形目标物的扫描测量。 [0004] Accordingly, the present invention provides a laser scanning apparatus for obtaining spatial distribution method and object can be scanned quickly and easily obtain an arbitrary shape object space distributed parameter object, and suitable for measuring.

附图说明 BRIEF DESCRIPTION

[0005] 图1为本发明用于获取目标物空间分布的激光扫描测量装置的结构示意图。 [0005] Figure 1 is a schematic structural diagram of the invention for measuring the laser scanning apparatus of the spatial distribution of target acquisition.

[0006] 图2为本发明用于获取目标物空间分布的激光扫描测量方法框图。 [0006] FIG. 2 is a block diagram of the invention for laser scanning method spatial distribution of target acquisition.

[0007] 图3为以煤垛为目标物的实施例处理示意图。 [0007] FIG. 3 is a schematic diagram of a coal processing stack of Example target object.

[0008] 图4为图3实施例中煤垛表面三维点云图的示意图。 [0008] FIG. 4 is a schematic diagram of a three-dimensional point cloud surface coal pile embodiment FIG. 3 embodiment.

[0009] 图5为对任一扫描点进行三维坐标转换的坐标系关系不意图。 [0009] FIG. 5 is one of the scanning point on the coordinate relationship between the three-dimensional coordinate transformation is not intended.

[0010] 图6为利用本发明实施例多次测量同一煤垛所得体积值的比较曲线图。 [0010] FIG. 6 is a embodiment of the invention utilizing a plurality of measurements graph comparing the resulting value of the same volume of coal pile.

具体实施方式 Detailed ways

[0011] 以下结合附图并举实施例,对本发明的技术方案进行详细描述。 [0011] conjunction with the accompanying drawings and the following embodiments, the technical solutions of the present invention will be described in detail.

[0012] 图1为本发明用于获取目标物空间分布的激光扫描测量装置的结构示意图,包括激光测距仪模块11、全球定位模块12、姿态测量模块13和数据处理模块14, [0012] Figure 1 is a schematic structural diagram of the invention for measuring the laser scanning apparatus acquires spatially distributed object, comprising a laser range finder module 11, a global positioning module 12, the posture measuring module 13 and the data processing module 14,

[0013] 激光测距仪模块11包括激光测距仪,激光测距仪采集从激光测距仪出光口到目标物上多个扫描点的距离数据,并传输给数据处理模块14 ; [0013] The module 11 includes a laser rangefinder laser rangefinder, the rangefinder laser rangefinder collecting data from a plurality of scan points on the object from the laser fiber cable, and transmitted to the data processing module 14;

[0014] 全球定位模块12包括全球定位系统接收机,接收机通过全球定位系统获取激光测距仪出光口的位置数据,并传输给数据处理模块14 ; [0014] The GPS module 12 includes a global positioning system receiver, the receiver acquires location data of a laser rangefinder optical port through a global positioning system, and transmitted to the data processing module 14;

[0015] 姿态测量模块13包括倾角传感器和电子罗盘,倾角传感器采集激光测距仪的俯仰角数据和倾斜角数据,电子罗盘采集激光测距仪的方位角数据,并传输给数据处理模块14 ;并且, [0015] The attitude measurement module 13 comprises an electronic compass and a tilt sensor, tilt sensor data collected laser rangefinder pitch angle and the tilt angle data, electronic compass azimuth data acquisition laser rangefinder, and transmitted to the data processing module 14; and,

[0016] 数据处理模块14对接收到的距离数据、激光测距仪出光口的位置数据、俯仰角数据、倾斜角数据和方位角数据进行处理,经过坐标转换得到多个扫描点在大地坐标系中的位置数据。 The distance data [0016] The data processing module 14 is received, the laser range finder optical interfaces location data, pitch data, inclination angle data and the azimuthal data is processed through coordinate conversion to obtain a plurality of scanning points in the world coordinate system the position data.

[0017] 图2为本发明用于获取目标物空间分布的激光扫描测量方法框图,包括: [0017] FIG. 2 is a block diagram of the invention method the spatial distribution of laser scanning acquisition target object, comprising:

[0018] S101,以激光测距仪围绕目标物移动并做激光扫描,获得从激光测距仪出光口到目标物的多个扫描点的距离数据; [0018] S101, the object to move around and do the laser rangefinder laser scanning to obtain data from a plurality of scanning points from the laser rangefinder optical port to a target object;

[0019] S102,获得激光测距仪出光口在大地坐标系中的位置数据; [0019] S102, the position data of the laser range finder to obtain an optical port in the world coordinate system;

[0020] S103,获得激光测距仪的俯仰角、倾斜角和方位角数据; [0020] S103, the pitch angle of the laser rangefinder is obtained, the inclination angle and azimuth data;

[0021] S104,基于多个扫描点的距离数据、激光测距仪出光口在大地坐标系中的位置数据、俯仰角、倾斜角和方位角数据,经过坐标转换得到多个扫描点在大地坐标系中的位置数据。 [0021] S104, the distance data based on a plurality of scan points, the position data of the laser rangefinder light port in the world coordinate system, the pitch angle, the inclination angle and azimuth data obtained through the coordinate transformation geodetic coordinates in a plurality of scanning points position data lines.

[0022] 利用上述技术方案,通过对目标物进行激光扫描确定目标物上若干扫描点的相对位置,并利用相关设备获得扫描测量装置在大地坐标系中的位置及其姿态,进而通过坐标转换获得扫描点在大地坐标系的位置,也就得到了目标物的空间分布情况,可绘制三维点云图。 [0022] With the above technical solution, the relative position of several points on the object scanned by laser scanning of the object, and obtains the measurement position of the scanning device and a posture in the world coordinate system using the related equipment, and further is obtained by coordinate transformation the position of the scanning spot in the world coordinate system, also the spatial distribution of the obtained target object, draw a three-dimensional point cloud. 整个过程不需要根据目标物外形选取扫描位置,不需要对扫描点数据进行拼接,扫描测量过程快捷高效。 The whole process need to select the scanning position based on the object shape, the scan point data does not need to be spliced, the scan measurement process is quick and efficient.

[0023] 图3所示为以煤垛为目标物的具体实施例过程示意图,待测目标物煤垛为棱台状,操作者手持测量装置围绕煤垛移动进行扫描,扫描测量装置的激光测距仪发出二维激光扫描线照射到煤垛上,形成若干扫描点,操作者围绕煤垛行进一周形成图示中虚线所示的测量轨迹,另外,扫描测量装置还通过无线数据链路实时接收全球定位系统基准站发来的数据。 [0023] Figure 3 shows a specific embodiment of the process for the target stack coal schematic, of the test object coal truncated pyramid shaped stack, the operator holds the measuring device is scanned, the scanning means measuring movement around the coal pile laser altimetry instrument emitted from the two-dimensional laser scan lines is irradiated onto the coal pile, forming a plurality of scanning points, an operator travels around the coal pile forming one week shown in dashed lines in measurement tracks, in addition, the scanning apparatus further measuring received in real time via a wireless data link data sent to the global positioning system reference stations.

[0024] 扫描时,一方面,扫描测量装置中的激光测距仪测出本体到煤垛表面扫描点的距离数据;另一方面,扫描测量装置中的全球定位模块利用全球定位系统基准站发来的观测数据,得到扫描测量装置在移动轨迹上的实时位置;再另一方面,扫描测量装置中的姿态测量模块利用倾角传感器实时采集激光测距仪的俯仰角和倾斜角数据,还利用电子罗盘实时采集激光测距仪的方位角数据。 [0024] When scanning, on the one hand, a scanning laser rangefinder measuring device to measure the distance from the body surface of the scanning spot data stack coal; on the other hand, a scanning device, a global positioning measurement using a global positioning system module send base station to the observational data, in real time on the position of the scanning means measuring the movement locus; yet another aspect, the posture of the scanning measuring device using a tilt sensor module measuring real-time collection of data pitch angle and the tilt angle of the laser range finder, but also the use of electronic Real-time data acquisition azimuth compass laser rangefinder.

[0025] 将上述采集到的数据传输给扫描测量装置中的数据处理模块,数据处理模块分析激光测距仪到煤垛表面扫描点的距离,获得扫描点在以激光测距仪为原点所建立空间坐标系中的位置坐标。 [0025] The above-described acquired measurement data to the scanning apparatus data processing module, the processing module analyzes the data from the laser rangefinder to the surface of the coal pile scanning spot, the scanning spot obtained in establishing the origin laser rangefinder space coordinate system position coordinates. 并根据激光测距仪在移动轨迹上的实时位置,利用实时动态差分法(RealTime Kinematic, RTK)确定激光测距仪在大地坐标系中的位置坐标(全球定位模块经过实时动态差分运算可获得厘米量级的定位精度)。 The laser range finder and real-time position on the movement trajectory, determining the position coordinates of the laser rangefinder geodetic coordinate system using the RTK method (RealTime Kinematic, RTK) (global positioning module RTK operation can be obtained through cm the order of positioning accuracy). 结合激光测距仪的实时姿态(以俯仰角、倾斜角和方位角表征)计算出建立的空间坐标系与大地坐标系之间的转换关系。 Real-time binding laser rangefinder posture (the pitch angle, the inclination angle and azimuth characterization) is calculated to establish the conversion between spatial coordinate system and the world coordinate system. 最终将煤垛表面扫描点在该空间坐标系的三维位置坐标全部转换为大地坐标系下的三维位置坐标,即得到了煤垛空间分布参数,随后按照需要可建立煤垛空间模型,进而计算体积、质量等物理参数。 The final coal pile surface of the scanning spot in the three-dimensional position coordinates of the space coordinate system are converted to their three-dimensional position coordinates of the world coordinate system, i.e., to obtain a coal pile spatial distribution of the parameter, and then as needed coal stack space model can be established, and then calculate the volume physical quality parameters.

[0026] 优选地,图3实施例中的激光扫描测量装置本体绕煤垛至少移动一圈,且不间断地以预定频率扫描,能够全面获取煤垛的三维分布数据,根据煤垛堆场形状的不规则程度调整扫描频率,以适当的数据采集量制作煤垛三维点云图,提高处理效率,保证结果精确度。 [0026] Preferably, the laser scanning apparatus of FIG. 3 in this embodiment the body movement of at least one turn around the coal pile, and continuously scanned at a predetermined frequency, to fully acquire the three-dimensional distribution data of the coal pile, according to the shape of the coal stack yard the degree of irregularity adjust the scanning frequency to produce an appropriate amount of data to collect three-dimensional point cloud coal stack to improve the processing efficiency, and ensure the accuracy of the results.

[0027] 在本发明实施例中,利用全球定位系统确定扫描仪在大地坐标系中的位置。 [0027] In an embodiment of the present invention, by using a global positioning system determines the position of the scanner in the world coordinate system. 具体来讲,扫描之前,打开全球定位系统基准站电源并等待完成初始化,通过指示灯核实基准站已经搜索到多颗用于定位的卫星,且正通过无线数据链实时向外发送基准站观测值和测站坐标。 Specifically, prior to scanning, a global positioning system reference station to open the power and wait for the completion of initialization, the search has been verified by the lamp base station to a plurality of satellites for positioning, and the base station is sending out real-time observations of a wireless data link and the station coordinates. 然后打开扫描测量装置的电源并等待各模块完成初始化,核实其中的“全球定位模块”已搜索到多颗用于定位的卫星,全球定位模块与扫描测量装置相对位置固定,其中的接收机接收无线数据链实时发送来的基准站观测值和测站坐标,得到激光测距仪在大地坐标系中的位置坐标。 Then turn the power measurement device scans each module completes the initialization and waits, wherein the verification "global positioning module" has been searched for a plurality of satellites for positioning, fixing the relative position of the global positioning module and the scanning measuring device, wherein the wireless receiver receives real-time data transmission link to the observations, and the base station coordinates, the position coordinates of the laser rangefinder to give the earth coordinate system. 可在30km内建立全球定位系统基准站。 You can establish a Global Positioning System reference stations within 30km.

[0028] 其中,全球定位系统可以美国“GPS” (Global Positioning System)为主、俄罗斯“GL0NASS”和中国“北斗”为辅,实现扫描测量装置本体的实时三维定位,还可根据扫描测量装置本体在不同时刻的位置获得移动轨迹。 [0028] where can the United States Global Positioning System "GPS" (Global Positioning System) dominated the Russian "GL0NASS" and Chinese "Compass", supplemented by real-time three-dimensional positioning scanning measuring device body, but also according to the apparatus body scan measurement movement locus obtained at different time positions. 由于本发明的全球定位模块固定在扫描测量装置本体内,经校准其测量到的三维位置可以表征激光测距仪的三维位置。 Since the global positioning module of the present invention is fixed to the apparatus body scan measurement, which is measured by the calibration position may be characterized into three-dimensional laser rangefinder three-dimensional position.

[0029] 在本发明实施例中,利用二维倾角传感器获得扫描测量装置本体与水平面之间的夹角,包括俯仰角和左右倾斜角。 [0029] In an embodiment of the present invention, the tilt sensor to obtain a two-dimensional angle between the scanning plane and the measuring device main body, comprising a pitch angle and a tilt angle of about. 由于二维倾角传感器固定在测量装置本体内,所以经过校准后其测量到的俯仰角和倾斜角可表征激光测距仪的二维倾角。 Since the two-dimensional tilt measuring sensor is fixed in the apparatus body, so that after the calibration the measured pitch angle and angle of inclination can be characterized by a two-dimensional laser rangefinder. 同时,利用电子罗盘(也称数字罗盘)获得扫描测量装置本体与正北方向的夹角。 At the same time, using an electronic compass (also called digital compass) to obtain the scanning angle measuring apparatus body and the north direction. 由于电子罗盘固定在测量装置本体内,所以经过校准后其测量到的与磁场北极的夹角可表征激光测距仪与磁场北极的夹角,进而可换算出激光测距仪与正北方向的夹角即方位角。 Since the electronic compass measuring means fixed to the body, so that after calibration with measured angle of magnetic North can be characterized by the angle between the laser rangefinder and magnetic north, and thus may be converted from the north direction laser rangefinder i.e., azimuth angle.

[0030] 在本发明实施例中,优选地,利用惯性导航系统(Inertial Navigation System,INS)实时检测扫描测量装置本体的三维加速度,通过两次时间积分可求解出扫描测量装置的移动轨迹,以计算其在大地坐标系中的位置坐标。 [0030] In an embodiment of the present invention, preferably, using an inertial navigation system (Inertial Navigation System, INS) Real-time measuring three-dimensional acceleration detection scanning device body, it can be solved by two time integration of a mobile track scanning measuring device, to calculate the position coordinates of the world coordinate system. 将惯性导航系统模块固定在扫描测量装置内,经过校准后其测量到的三维运动轨迹可表征激光测距仪的三维运动轨迹,可根据初始位置计算得到运动轨迹上任意一点的三维位置。 The inertial measurement module is fixed in the scanning means, after the calibration measurement to characterize the three-dimensional trajectory may be a three-dimensional trajectory of a laser rangefinder, may be obtained at any point on the trajectory from the initial position of the three-dimensional position calculation. 惯性导航系统的作用主要是作为全球定位技术的补充,在全球定位系统受到天气等因素干扰时,保证仍可获得扫描测量装置的准确移动轨迹。 When the inertial navigation system is implemented as a supplement to GPS technology, the GPS interference by weather and other factors, it can still ensure accurate track scanning movement measuring device.

[0031] 在本发明实施例中,优选地,采用铝合金骨架和碳纤维背板构成扫描测量装置的壳体,并利用锂电池供电,可使装置重量控制在便于手提使用的7kg以内,相比目前的三维激光扫描仪重量可减少近一半,操作者手提装置围绕煤垛步行一周即可完成煤垛表面位置数据的采集。 [0031] In an embodiment of the present invention, preferably, the aluminum alloy frame and the housing employ carbon fibers constituting the back sheet scanning measurement apparatus, and using battery, the weight of the apparatus can be controlled within 7kg use and handy to carry, as compared to current laser scanner can be reduced by nearly half by weight, hand-held device the operator can complete the acquisition of position data of the coal pile surface around the coal pile foot week. 本发明的激光扫描测量装置成本大幅降低,且整个扫描测量过程高效便捷,适用于各种目标物的扫描测量场合。 Laser scanning apparatus of the present invention is greatly reduced cost, and the entire scanning process is efficient and convenient measurement, scanning measurement occasions for a variety of target object.

[0032] 在本发明实施例中,需要注意,扫描测量装置内除了集成有激光测距仪、姿态测量模块、全球定位模块、数据处理模块以及供电模块之外,还含有同步授时模块,确保所处理的数据对应于同一时刻。 [0032] In an embodiment of the present invention, it is noted, in addition to the measuring apparatus integrated with the scanning laser rangefinder, attitude measurement module, GPS module, a data processing module and a power module, but also contains a synchronization timing module to ensure that the processing data corresponding to the same time. 同步授时模块具有同步时钟,激光测距仪、姿态测量模块和全球定位模块在同步授时模块的控制下运行,采集目标物表面激光点云的相对位置、俯仰角、倾斜角、方位角以及定位等数据。 Timing synchronization module has run under the control of the synchronous clock, the laser range finder, the posture measuring module and a global positioning module timing synchronization module, the relative position of the laser point cloud acquisition target surface, the pitch angle, the tilt angle, and azimuth positioning data. 数据处理模块在随后的数据处理中,针对扫描点在同一时刻的上述相关数据进行运算,确保输入输出数据正确可靠。 Data processing module in the subsequent data processing for calculating the scanning spot in the correlation data of the same time, to ensure accurate and reliable data input and output.

[0033] 集合图3实施例煤垛表面各扫描点在大地坐标系中的三维位置坐标,形成煤垛表面的三维点云图,如图4所示。 Three-dimensional position coordinates of each scan point stack surface coal Example geodetic coordinate system [0033] FIG 3 embodiments set, a three-dimensional point cloud coal pile surface, as shown in FIG. 以三维点云图为基础,可采用三角剖分法建立准三维模型,将煤垛内部体积分割成由多个三棱柱构成的集合体,再分别计算每个三棱柱的体积,进而累加求得煤垛体积,用于存储量评估、经济效益评估等。 Three-dimensional point cloud is based on a quasi three-dimensional model can be established triangulation method, dividing the internal volume into a coal stack assembly constituted by a plurality of triangular prism, and then calculate the volume of each triangular prism, and then accumulated to obtain coal stack volume for storage evaluation, economic evaluation.

[0034] 本发明实施例以非接触式测量方法在短时间内得到大量扫描点位置数据,优选地,建立一个空间坐标系,如图5所示,以扫描测量装置的激光测距仪出光口为原点建立坐标系O' -V Y' Z',激光测距仪的前向为O' Y'轴方向,扫描平面与Y' O' V平面重合。 [0034] In embodiments of the present invention, a non-contact method of measuring the scanning position to obtain a large amount of data, preferably in a short time, to establish a spatial coordinate system, shown in Figure 5, the scanning laser distance meter measuring the light outlet means coordinate system is established as the origin O '-VY' Z ', before the laser rangefinder to O' Y 'axis direction, the scanning plane and Y' O 'V plane coincides. 则具体地,设任意扫描测量点P与激光测距仪出光口O'的距离为I (由激光测距仪测得),则点P在O' -X' Y' V坐标系中的位置(x',y',Z')可表示为: The particular, set point P of the laser rangefinder light outlet O 'for the distance I (as measured by the laser range finder), then P at point O' in any position of the scanning measuring -X 'Y' V coordinate system (x ', y', Z ') can be expressed as:

Figure CN103925872AD00071

[0036] 其中,Ψ为点P到原点O'的连线O'P与O'Y'轴的夹角。 [0036] wherein, Ψ is the point P to the origin O 'connection O'P and O'Y' axis angle. 此外,设O' -X' Y' Ζ'坐标系的原点O'在大地坐标系O-XYZ中的位置坐标为(ΛΧ,ΔΥ, ΔΖ)(由全球定位模块测得),设O' -V Y' V坐标系的坐标轴O' Χ',0' Y',O' V相对于大地坐标系的旋转角度分别为εΧ、εΥ、εΖ (分别为姿态测量模块测得的倾斜角、俯仰角、方位角),则任意扫描点P在O-XYZ坐标系中的位置坐标(X, y, Z)为: Further, provided O '-X' Y 'Ζ' coordinate system of the origin O 'at the position coordinates of the world coordinate system O-XYZ is from (ΛΧ, ΔΥ, ΔΖ) (as measured by a global positioning module), provided O' - VY 'axis O V coordinate system' Χ ', 0' Y ', O' V with respect to the rotation angle of the world coordinate system respectively εΧ, εΥ, εΖ (respectively the tilt angle posture measuring module measured pitch angle , azimuth), the coordinates of an arbitrary point P in the scanning O-XYZ coordinate system (X, y, Z) as:

Figure CN103925872AD00072

[0038] 其中λ为两个坐标系间的尺度比例因子,λ =1,R为三维坐标旋转矩阵,其与激光测距仪即建立的空间坐标轴的俯仰角、倾斜角、方位角有关,按定义为下式: [0038] wherein [lambda] is the ratio of the scale factor between the two coordinate systems, λ = 1, R is a rotation matrix three-dimensional coordinates, i.e., space with a laser rangefinder to establish a pitch angle coordinate axis, angle of inclination, azimuth related, It is defined by the following formula:

[0039] [0039]

Figure CN103925872AD00073

[0040] 这里,若设激光测距仪的初始扫描点N (—列扫描点中最下方的扫描点)和原点O'的连线Ο'Ν与O'Y'轴的夹角为Θ (激光测距仪固有参数),设激光束的角度间隔为2供(激 [0040] Here, assuming that the initial scanning point of the laser rangefinder N (- scanning spot column scanning lowermost point), and the angle between the origin O 'of the connecting Ο'Ν O'Y' axis is [Theta] ( laser rangefinder intrinsic parameters), the laser beam is set to 2 for the angular interval (excitation

光测距仪固有参数),则^ = ,其中η表示点P为本列扫描点中从初始扫描点开始 Optical rangefinder intrinsic parameter), ^ =, where η denotes the point P of the present column scanning points from the initial scanning point

的第η+1个点。 First η + 1 points.

[0041] 对目标物上所有表面扫描点进行上述坐标变换处理,将得到的三维坐标标示在大地坐标系O-XYZ中,即得到了扫描点构成的点云,如图4所示的煤垛表面三维点云图。 [0041] for all points on the scanning surface of the object for the coordinate conversion process, the resulting three-dimensional coordinates in the world coordinate system indicated O-XYZ, i.e. to obtain a point cloud scan points constituted coal stack shown in FIG. three-dimensional point cloud surface.

[0042] 需要时,以三维点云图为基础采用三角剖分法建立准三维模型,并将煤垛内部体积分割成由多个三棱柱构成的集合体,分别计算每个三棱柱的体积并累加求得煤垛体积。 [0042] If desired, the three-dimensional point cloud based on the establishment of quasi-three-dimensional model using the triangulation method, and the internal volume of the coal pile into an aggregate composed of a plurality of triangular prisms, each triangular prism volume are calculated and accumulated volume determined coal pile. 图6所示为利用上述方法多次测量同一煤垛所得体积值的比较曲线图,其最大相对误差为0.93%,结果可靠性高。 As shown in FIG. 6 is a graph comparing a number of measurements of the same stack volume values ​​obtained by the above method of coal, the maximum relative error is 0.93%, the results of high reliability.

[0043]以上,结合具体实施例对本发明的技术方案进行了详细介绍,所描述的具体实施例用于帮助理解本发明的思想。 [0043] The above embodiments with reference to specific embodiments of the aspect of the present invention has been described in detail, specific embodiments are described to aid in understanding the inventive idea. 本领域技术人员在本发明具体实施例的基础上做出的推导和变型也属于本发明保护范围之内。 Made basic to those skilled in the embodiment of the present invention, the derivation and modifications also fall within the scope of the present invention.

Claims (10)

  1. 1.一种用于获取目标物空间分布的激光扫描测量装置,其特征在于,包括: 激光测距仪模块、全球定位模块、姿态测量模块和数据处理模块,激光测距仪模块、全球定位模块和姿态测量模块三者与数据处理模块电连接;其中, 激光测距仪模块包括激光测距仪,激光测距仪采集从激光测距仪出光口到目标物上多个扫描点的距离数据,并传输给所述数据处理模块; 全球定位模块包括全球定位系统接收机,全球定位系统接收机通过全球定位系统获取所述激光测距仪出光口的位置数据,并传输给所述数据处理模块; 姿态测量模块包括倾角传感器和电子罗盘,倾角传感器采集所述激光测距仪的俯仰角数据和倾斜角数据,电子罗盘采集所述激光测距仪的方位角数据,并传输给所述数据处理丰旲块;并且, 数据处理模块对接收到的所述距离数据、所述激光测距 A laser scanning apparatus for obtaining spatial distribution of the target object, characterized by comprising: a laser range finder module, GPS module, measurement module and the attitude data processing module, a laser rangefinder module, a global positioning module and the attitude of the three measurement module electrically connected with the data processing module; wherein the module includes a laser rangefinder laser rangefinder, the rangefinder laser rangefinder collecting distance data from the laser optical port to a plurality of scan points on the object, and transmitting to the data processing module; global positioning module comprises a global positioning system receiver, the global positioning system receiver acquired by the global positioning system position data of the laser distance measuring optical ports, and transmitted to the data processing module; attitude measurement module comprises an electronic compass and a tilt sensor, the tilt sensor to collect data laser rangefinder pitch angle and the tilt angle data acquisition electronic compass azimuth data of the laser rangefinder, and to transmit to said data processing Fung Dae block; and a data processing module from the received data of the laser ranging 出光口的位置数据、所述俯仰角数据、所述倾斜角数据和所述方位角数据进行处理,经过坐标转换得到所述多个扫描点在大地坐标系中的位置数据。 The position data of the light opening, the pitch angle data, the tilt angle data and the azimuth data is processed through coordinate conversion of said position data to obtain a plurality of scan points in the world coordinate system.
  2. 2.如权利要求1所述的激光扫描测量装置,其特征在于,激光扫描测量装置还包括惯性导航系统,惯性导航系统与数据处理模块电连接,其中,惯性导航系统根据所述激光测距仪的移动加速度获得激光测距仪出光口的位置数据,并传输给所述数据处理模块。 2. A laser scanning apparatus according to claim 1, wherein the laser scanning apparatus further includes an inertial navigation system, inertial navigation system and the data processing module is electrically connected, wherein the inertial navigation system according to the laser rangefinder the laser rangefinder movement acceleration obtained the position data of the light opening, and transmitted to the data processing module.
  3. 3.如权利要求1所述的激光扫描测量装置,其特征在于,激光扫描测量装置还包括同步授时模块,同步授时模块含有同步时钟,激光测距仪、全球定位模块和姿态测量模块三者在同步时钟的控制下运行。 3. A laser scanning apparatus according to claim 1, wherein the laser scanning apparatus further comprises a synchronous time module, a synchronization synchronous time clock module, a laser rangefinder, a global positioning module and the attitude at the three measurement module operating under the control of the synchronization clock.
  4. 4.如权利要求1所述的激光扫描测量装置,其特征在于,所述数据处理模块处理数据时,所述多个扫描点中的一个点A在大地坐标系(O-XYZ)中的位置坐标(X, y, z)为: 4. A laser scanning apparatus according to claim 1, wherein, when said data processing module, said plurality of scan points is a point in the world coordinate system position A (O-XYZ) of the coordinates (X, y, z) is:
    Figure CN103925872AC00021
    其中,(X,, y',Z')为点A在空间坐标系(O' -V Y' Z')中的坐标,所述空间坐标系(O' -V Y' Ζ')为以所述激光测距仪出光口位置为原点的空间坐标系,(ΔΧ, ΔΥ, ΔΖ)为激光测距仪出光口在大地坐标系中的坐标,λ为所述空间坐标系与大地坐标系之间的尺度比例因子,R为所述空间坐标系相对于大地坐标系的三维坐标旋转矩阵; 其中,(X',y',ζ')按照下式计算: Wherein, (X ,, y ', Z') of the point A in the spatial coordinate system (O '-VY' Z ') coordinates, said spatial coordinate system (O' -VY 'Ζ') is in the the light exit position of the laser rangefinder as the origin of the space coordinate system, (ΔΧ, ΔΥ, ΔΖ) is a laser rangefinder coordinate light port in the world coordinate system, λ is the space between the coordinate system and the world coordinate system scale ratio factor, R is the spatial coordinate system relative to the three-dimensional coordinates of the world coordinate system rotation matrix; wherein, (X ', y', ζ ') is calculated according to the following formula:
    Figure CN103925872AC00022
    其中,I为点A到激光测距仪出光口(O')的距离,Ψ为点A到激光测距仪出光口(O')的连线(O' A)与所述空间坐标系中与激光测距仪的前向为同向的坐标轴(O' Y')的夹角。 Wherein, I is the laser rangefinder to the point A 'distance, Ψ point A laser rangefinder to the light outlet (O optical port (O)') connection (O 'A) of the space coordinate system before the laser rangefinder to the same direction as the axis (O 'Y') of the angle.
  5. 5.如权利要求4所述的激光扫描测量装置,其特征在于,其中ν = 其中,Θ为激光测距仪出光口(O')到激光测距仪的初始扫描点(N)的连线(O' N)与所述空间坐标系中与激光测距仪的前向为同向的坐标轴(O' Y')的夹角,Δφ为激光测距仪的任意两条扫描线的夹角,η表不点A为第η+1个扫描点。 5. The laser scanning apparatus according to claim 4, characterized in that, where ν = wherein, [Theta] is the laser rangefinder light outlet (O ') to the initial scanning point of the laser rangefinder (N) connection (O 'N) of the space coordinate system prior to the laser rangefinder in the same direction as the axis (O' the angle between any two scan lines Y ') is, Δφ laser rangefinder folder angle, η table is not the first point A scanning η + 1 points.
  6. 6.如权利要求1所述的激光扫描测量装置,其特征在于,激光扫描测量装置采用锂电池供电,壳体为碳纤维板,骨架为铝合金材料。 6. A laser scanning apparatus according to claim 1, wherein the laser scanning device powered by lithium batteries, the case is carbon fiber, aluminum alloy skeleton.
  7. 7.一种用于获取目标物空间分布的激光扫描测量方法,其特征在于,包括: 以激光测距仪围绕目标物移动并做激光扫描,获得从激光测距仪出光口到目标物的多个扫描点的距离数据; 获得所述激光测距仪出光口在大地坐标系中的位置数据; 获得所述激光测距仪的俯仰角、倾斜角和方位角数据; 基于所述多个扫描点的距离数据、所述激光测距仪出光口在大地坐标系中的位置数据、所述俯仰角、倾斜角和方位角数据,经过坐标转换得到所述多个扫描点在大地坐标系中的位置数据。 A laser scanning method for acquiring a spatial distribution of the object, characterized by comprising: a laser range finder and moving around the object to make the laser scanning rangefinder light obtained from the laser port to multiple targets data from the scan points; obtaining position data of the laser distance measuring light port in the world coordinate system; obtaining the pitch angle of the laser rangefinder, the inclination angle and azimuth data; said plurality of scan points on distance data, the position data of the laser distance measuring light port in the world coordinate system, the pitch angle, the inclination angle and azimuth data obtained through coordinate transformation of the position of the plurality of scanning points geodetic coordinate system data.
  8. 8.如权利要求7所述的方法,其特征在于,以激光测距仪围绕目标物移动并做激光扫描时,所述方法还包括: 所述激光测距仪围绕目标物移动并不间断地扫描,且激光测距仪围绕目标物的移动轨迹至少走过360°。 8. The method according to claim 7, characterized in that the laser range finder to move around the object and scanning time of the laser, the method further comprising: said laser range finder and move around the object without interruption scanning, laser range finder and target trajectories around through at least 360 °.
  9. 9.如权利要求7所述的方法,其特征在于,其中,所述多个扫描点中的一个点A在大地坐标系(O-XYZ)中的位置坐标(X, y, Ζ)为: 9. The method according to claim 7, wherein, wherein said plurality of scan points is a point A in the world coordinate system (O-XYZ) position coordinates (X, y, Ζ) in the range:
    Figure CN103925872AC00031
    其中,(X,, y',z')为点A在空间坐标系(O' -V Y' Z')中的坐标,所述空间坐标系(O' -V Y' Ζ')为以所述激光测距仪出光口位置为原点的空间坐标系,(ΔΧ, ΔΥ, ΔΖ)为激光测距仪出光口在大地坐标系中的坐标,λ为所述空间坐标系与大地坐标系之间的尺度比例因子,R为所述空间坐标系相对于大地坐标系的三维坐标旋转矩阵;.其中,(X,,y',z')按照下式计算: Wherein, (X ,, y ', z') of the point A in the spatial coordinate system (O '-VY' Z ') coordinates, said spatial coordinate system (O' -VY 'Ζ') is in the the light exit position of the laser rangefinder as the origin of the space coordinate system, (ΔΧ, ΔΥ, ΔΖ) is a laser rangefinder coordinate light port in the world coordinate system, λ is the space between the coordinate system and the world coordinate system scale ratio factor, R is the spatial coordinate system relative to the three-dimensional coordinates of the world coordinate system rotation matrix; wherein, (X ,, y ', z') is calculated according to the formula:
    Figure CN103925872AC00032
    其中,I为点A到激光测距仪出光口(O')的距离,Ψ为点A到激光测距仪出光口(O')的连线(O' A)与所述空间坐标系中与激光测距仪的前向为同向的坐标轴(O' Y')的夹角。 Wherein, I is the laser rangefinder to the point A 'distance, Ψ point A laser rangefinder to the light outlet (O optical port (O)') connection (O 'A) of the space coordinate system before the laser rangefinder to the same direction as the axis (O 'Y') of the angle.
  10. 10.如权利要求9所述的方法,其特征在于,其中ψ =n*Δφ-θ ,其中,Θ为激光测距仪出光口(O')到激光测距仪的初始扫描点(N)的连线(O' N)与所述空间坐标系中与激光测距仪的前向为同向的坐标轴(O' Y')的夹角,Δφ为激光测距仪的任意两条扫描线的夹角,η表示点A为第η+1个扫描点。 10. The method according to claim 9, characterized in that, where ψ = n * Δφ-θ, where, [Theta] is the laser rangefinder light outlet (O ') to the initial scanning point of the laser rangefinder (N) connection (O 'N) of the space coordinate system prior to the laser rangefinder in the same direction as the axis (O' angle Y ') is, Δφ any two of the scanning laser rangefinder line angle, η represents the point a as the first scanning point η + 1.
CN 201310717949 2013-12-23 2013-12-23 Laser scanning measurement device and method for acquiring spatial distribution of target objects CN103925872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201310717949 CN103925872A (en) 2013-12-23 2013-12-23 Laser scanning measurement device and method for acquiring spatial distribution of target objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201310717949 CN103925872A (en) 2013-12-23 2013-12-23 Laser scanning measurement device and method for acquiring spatial distribution of target objects

Publications (1)

Publication Number Publication Date
CN103925872A true true CN103925872A (en) 2014-07-16

Family

ID=51144173

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201310717949 CN103925872A (en) 2013-12-23 2013-12-23 Laser scanning measurement device and method for acquiring spatial distribution of target objects

Country Status (1)

Country Link
CN (1) CN103925872A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104697489A (en) * 2015-04-02 2015-06-10 北京天源科创风电技术有限责任公司 Plane normal azimuth angle measuring device and method and application thereof
CN104897059A (en) * 2015-06-17 2015-09-09 珠江水利委员会珠江水利科学研究院 Portable irregular accumulation body volume measurement method
CN104931976A (en) * 2015-06-17 2015-09-23 珠江水利委员会珠江流域水土保持监测中心站 Portable geographic information field real-time mapping method
CN105973145A (en) * 2016-05-19 2016-09-28 深圳市速腾聚创科技有限公司 Movable type three dimensional laser scanning system and movable type three dimensional laser scanning method
CN104279955B (en) * 2014-09-26 2017-02-15 华北电力大学(保定) Coal thermal power plant calculation method based on four axes disk aircraft
CN105548197B (en) * 2015-12-08 2018-08-28 深圳大学 Species rail surface Flaw detection method and apparatus for non-contact

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102425991A (en) * 2011-09-15 2012-04-25 武汉武大卓越科技有限责任公司 Automation storage yard laser measurement device and application method thereof
CN102878928A (en) * 2012-09-19 2013-01-16 武汉武大卓越科技有限责任公司 Storage yard real-time dynamic three dimensional measurement and control system
CN103090791A (en) * 2013-01-08 2013-05-08 中联重科股份有限公司 Measurement system, method and device of scattered materials and material piling and taking control system
JP2013101045A (en) * 2011-11-08 2013-05-23 Fanuc Ltd Recognition device and recognition method of three-dimensional position posture of article
CN103438829A (en) * 2013-08-30 2013-12-11 北京三维麦普导航测绘技术有限公司 Intelligent laser three-dimensional information measurement instrument

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102425991A (en) * 2011-09-15 2012-04-25 武汉武大卓越科技有限责任公司 Automation storage yard laser measurement device and application method thereof
JP2013101045A (en) * 2011-11-08 2013-05-23 Fanuc Ltd Recognition device and recognition method of three-dimensional position posture of article
CN102878928A (en) * 2012-09-19 2013-01-16 武汉武大卓越科技有限责任公司 Storage yard real-time dynamic three dimensional measurement and control system
CN103090791A (en) * 2013-01-08 2013-05-08 中联重科股份有限公司 Measurement system, method and device of scattered materials and material piling and taking control system
CN103438829A (en) * 2013-08-30 2013-12-11 北京三维麦普导航测绘技术有限公司 Intelligent laser three-dimensional information measurement instrument

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈莹等: "大型物料堆体积的计算机视觉测量方法", 《上海交通大学学报》, vol. 36, no. 7, 31 July 2002 (2002-07-31), pages 984 - 986 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104279955B (en) * 2014-09-26 2017-02-15 华北电力大学(保定) Coal thermal power plant calculation method based on four axes disk aircraft
CN104697489A (en) * 2015-04-02 2015-06-10 北京天源科创风电技术有限责任公司 Plane normal azimuth angle measuring device and method and application thereof
CN104897059A (en) * 2015-06-17 2015-09-09 珠江水利委员会珠江水利科学研究院 Portable irregular accumulation body volume measurement method
CN104931976A (en) * 2015-06-17 2015-09-23 珠江水利委员会珠江流域水土保持监测中心站 Portable geographic information field real-time mapping method
CN104897059B (en) * 2015-06-17 2017-11-14 珠江水利委员会珠江水利科学研究院 A portable irregularly stacked body Volume Measurement
CN105548197B (en) * 2015-12-08 2018-08-28 深圳大学 Species rail surface Flaw detection method and apparatus for non-contact
CN105973145A (en) * 2016-05-19 2016-09-28 深圳市速腾聚创科技有限公司 Movable type three dimensional laser scanning system and movable type three dimensional laser scanning method

Similar Documents

Publication Publication Date Title
US6590640B1 (en) Method and apparatus for mapping three-dimensional features
Blanco et al. A collection of outdoor robotic datasets with centimeter-accuracy ground truth
US20060167648A1 (en) 3-Dimensional measurement device and electronic storage medium
US20090046895A1 (en) Method and measurement system for contactless coordinate measurement on an object surface
US6507406B1 (en) Three-dimensional data input apparatus
Li et al. Large-scale three-dimensional object measurement: a practical coordinate mapping and image data-patching method
US20090225161A1 (en) Geographical data collecting device
CN201173773Y (en) GPS RTK total station type measuring apparatus
JP2011158371A (en) Three-dimensional position measuring and marking system, and method of using the same
US20140156219A1 (en) Determining tilt angle and tilt direction using image processing
CN103343498A (en) Track irregularity detecting system and method based on INS/GNSS
Scaioni Direct georeferencing of TLS in surveying of complex sites
JP2007248156A (en) Geographic data collecting device
EP1662228A1 (en) Scanning of three-dimensional objects
CN101962925A (en) Method for efficiently measuring three-dimensional coordinates of track based on track precise control net
CN102072725A (en) Spatial three-dimension (3D) measurement method based on laser point cloud and digital measurable images
US20090267827A1 (en) Position measurement results by a surveying device using a tilt sensor
CN103267491A (en) Method and system for automatically acquiring complete three-dimensional data of object surface
CN1670474A (en) Video super-station instrument and forest measuring method
CN101484777A (en) Managed traverse system and method to acquire accurate survey data in absence of precise GPS data
CN102538693A (en) Vertical wood diameter detection method based on laser and vision technology
CN103644896A (en) Three-dimensional laser scanning-based engineering geological mapping method
US20150116693A1 (en) Three-Dimensional Measuring Method And Surveying System
US20140132729A1 (en) Method and apparatus for camera-based 3d flaw tracking system
Fraser Automated vision metrology: a mature technology for industrial inspection and engineering surveys

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)