CN103921496A - Conductive thin film, preparation method and application thereof - Google Patents

Conductive thin film, preparation method and application thereof Download PDF

Info

Publication number
CN103921496A
CN103921496A CN 201310008608 CN201310008608A CN103921496A CN 103921496 A CN103921496 A CN 103921496A CN 201310008608 CN201310008608 CN 201310008608 CN 201310008608 A CN201310008608 A CN 201310008608A CN 103921496 A CN103921496 A CN 103921496A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
key
layer
copper
oxide layer
substrate
Prior art date
Application number
CN 201310008608
Other languages
Chinese (zh)
Inventor
周明杰
王平
陈吉星
黄辉
Original Assignee
海洋王照明科技股份有限公司
深圳市海洋王照明技术有限公司
深圳市海洋王照明工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

A conductive thin film including a copper layer and a molybdenum trioxide layer which are arranged in a manner of lamination. The copper layer and the molybdenum trioxide layer are in nanowire structures. The conductive thin film has a high light-transmittance and a low electrical resistance. The thin film is manufactured into an integration of nanowires. Compared with a common transparent conductive thin film, the thin film increases light extraction efficiency of an organic electroluminescent device. The conductive thin film is prepared in a manner of depositing the molybdenum trioxide layer onto the surface of the copper layer to form a double-layer conductive thin film. The thin film is high in surface work function, can reduce a starting voltage of a device and improve luminous efficiency of the device. The invention also provides a preparation method and an application of the conductive thin film.

Description

导电薄膜、其制备方法及应用 A conductive film preparation method and application

技术领域 FIELD

[0001] 本发明涉及半导体光电材料,特别是涉及导电薄膜、其制备方法、使用该导电薄膜的有机电致发光器件的基板、其制备方法及有机电致发光器件。 [0001] The present invention relates to a semiconductor optoelectronic material, and more particularly to a conductive thin film, the preparation thereof, the substrate of the organic electroluminescent device using the conductive film, and a method of preparing an organic electroluminescent device.

背景技术 Background technique

[0002] 导电薄膜电极是有机电致发光器件(OLED)的基础构件,其性能的优劣直接影响着整个器件的发光效率。 [0002] The conductive thin film electrode base member is an organic electroluminescent device (OLED), which directly affect the merits of the performance efficiency of the entire light emitting device. 其中,透明导电薄膜是把光学透明性能与导电性能复合在一体的光电材料,由于其具有优异的光电特性,成为近年来的研究热点和前沿课题,可广泛应用于太阳能电池,LED,TFT,LCD及触摸屏等屏幕显示领域。 Wherein the transparent conductive thin film is optically transparent and electrically conductive properties in one of the photoelectric properties of the composite materials, because of their excellent optical characteristics, and in recent years become a hot research topic frontier, can be widely used in a solar cell, LED, TFT, LCD screen display and touch screen fields. 随着器件性能要求的提高,用于作为器件阳极的透明导电膜的性能也在要求提高。 With the improvement of the device performance requirements, the performance of a transparent conductive film for the anode of the device is also required to improve. 对于器件出光效率的需要,很多研究机构都在设法在阳极与基板之间插入散射层。 The need for optical efficiency of the device, many research organizations are trying to insert the scattering layer between the anode and the substrate.

[0003] 高性能的器件,还要求阳极有较高的表面功函数,使其与其他功能层的能级相匹配,降低势垒,提高载流子注入效率,最终达到高的电光效率。 [0003] high-performance devices, also requires a higher anode surface work function, to match the levels of other functional layers, reducing the potential barrier, to improve carrier injection efficiency, and ultimately achieve high electro-optical efficiency.

发明内容 SUMMARY

[0004] 基于此,有必要提供一种功函数较高的导电薄膜、其制备方法、使用该导电薄膜的有机电致发光器件的基板、其制备方法及有机电致发光器件。 [0004] Based on this, it is necessary to provide a high work function of the conductive thin film, the preparation thereof, the substrate of the organic electroluminescent device using the conductive film, and a method of preparing an organic electroluminescent device.

[0005] 一种导电薄膜,包括层叠的铜层及三氧化钥层,其中,所述铜层及三氧化钥层为纳米线结构,所述铜层的纳米线直径为60nm〜700nm,所述三氧化钥层的纳米线直径为4nm〜150nmo [0005] A conductive film comprising laminated layers of copper and oxide layer key, wherein the copper layer and the oxide layer is a key nanowire structure, said nanowire having a diameter of the copper layer 60nm~700nm, the key oxide layer nanowire diameter 4nm~150nmo

[0006] 在其中一个实施例中,所述铜层的厚度为15nnT50nm,所述三氧化钥层的厚度为3nm〜30nmo [0006] In one embodiment, the thickness of the copper layer 15nnT50nm, the thickness of the oxide layer is key 3nm~30nmo

[0007] —种导电薄膜的制备方法,包括以下步骤: [0007] - The method of producing a conductive film, comprising the steps of:

[0008] 将衬底通过酸处理,接着用丙酮和乙醇超声清洗,烘干后将所述衬底放入管式炉的石英管中; [0008] The acid treatment of the substrate, followed by ultrasonic cleaning with acetone and ethanol, after drying of the substrate placed in the tube furnace quartz tube;

[0009] 设置管式炉的石英管的真空度为IO2PalO3Pa,温度为350°C 〜700°C,然后向管式炉的石英管中通入惰性气体,所述惰性气体的流速为50cm3/min〜180cm3/min ; [0009] provided vacuum tube furnace quartz tube was IO2PalO3Pa, a temperature of 350 ° C ~700 ° C, and then an inert gas into the quartz tube in a tube furnace, the flow rate of the inert gas is 50cm3 / min ~180cm3 / min;

[0010] 先将铜粉放置在舟中,将所述舟放置在管式炉的石英管中;所述铜粉的蒸发时间为10分钟〜40分钟,在所述衬底表面形成铜层,停止蒸镀所述铜层; [0010] The first copper is placed in the boat, placing the boat in a quartz tube furnace tube; said copper evaporation time of 10 minutes ~ 40 minutes to form a copper layer on the substrate surface, stopping deposition of the copper layer;

[0011] 然后将三氧化钥粉放置在舟中,将所述舟放置在管式炉的石英管中;三氧化钥粉的蒸发时间为3分钟〜20分钟,在所述铜层表面形成所述三氧化钥层,停止蒸镀所述三氧化钥层,继续通入惰性气体冷却到室温;及 [0011] Key trioxide powder was then placed in a boat and the boat placed in a quartz tube in a tube furnace; key trioxide powder evaporation time is 3 minutes ~ 20 minutes to form the surface of the copper layer said oxide layer key, stop key deposition of the oxide layer, continuing to pass the inert gas is cooled to room temperature; and

[0012] 剥离所述衬底,得到所述层叠的铜层及三氧化钥层导电薄膜。 [0012] peeling of the substrate, the resulting laminate layer and a copper oxide film layer of a conductive key.

[0013] 在其中一个实施例中,所述铜层及三氧化钥层为纳米线结构,所述铜层的纳米线直径为60nm〜700nm,三氧化钥层的纳米线直径为4nm〜150nm。 [0013] In one embodiment, the copper layer and the oxide layer is a key nanowire structure, said nanowire having a diameter of the copper layer 60nm~700nm, key oxide layer nanowire diameter 4nm~150nm.

[0014] 在其中一个实施例中,所述铜层的厚度为15nnT50nm,所述三氧化钥层的厚度为3nm~30nmo [0014] In one embodiment, the thickness of the copper layer 15nnT50nm, the thickness of the oxide layer key is 3nm ~ 30nmo

[0015] 一种有机电致发光器件的基板,包括依次层叠的衬底、铜层及三氧化钥层,其中,所述铜层及三氧化钥层为纳米线结构,所述铜层的纳米线直径为60nm~700nm,三氧化钥层的纳米线直径为4nm~150nm。 [0015] An organic electroluminescent device substrate, comprising sequentially laminating a substrate layer and a copper oxide layer key, wherein the copper layer and the oxide layer is a key nanowire structure, the nano-copper layer a wire diameter of 60nm ~ 700nm, the diameter of the nanowire key oxide layer is 4nm ~ 150nm.

[0016] 在其中一个实施例中,所述铜层的厚度为15nnT50nm,所述三氧化钥层的厚度为3nm~30nmo [0016] In one embodiment, the thickness of the copper layer 15nnT50nm, the thickness of the oxide layer key is 3nm ~ 30nmo

[0017] 一种有机电致发光器件的基板的制备方法,包括以下步骤: [0017] A method of making an organic electroluminescent device substrate, comprising the steps of:

[0018] 将衬底通过酸处理,然后用丙酮和乙醇超声清洗,烘干后将所述衬底放入管式炉的石英管中; [0019] 设置管式炉的石英管的真空度为IO2PalO3Pa,温度为350°C ~700°C,然后向管式炉的石英管中通入惰性气体,所述惰性气体的流速为50cm3/min~180cm3/min ; [0018] substrate by acid treatment, and then washed with acetone and ethanol ultrasound, after drying the substrate placed in a tube furnace quartz tube; degree of vacuum in a quartz tube [0019] the tube furnace is provided IO2PalO3Pa, a temperature of 350 ° C ~ 700 ° C, and then passed through an inert gas into the quartz tube in a tube furnace, the flow rate of the inert gas 50cm3 / min ~ 180cm3 / min;

[0020] 先将铜粉放置在舟中,将所述舟放置在管式炉的石英管中;所述铜粉的蒸发时间为10分钟~40分钟,在所述衬底表面形成铜层,停止蒸镀所述铜层; [0020] The first copper is placed in the boat and the boat placed in a quartz tube furnace tube; said copper evaporation time of 10 minutes to 40 minutes to form a copper layer on the substrate surface, stopping deposition of the copper layer;

[0021] 然后将三氧化钥放置在舟中,将所述舟放置在管式炉的石英管中;三氧化钥粉末的蒸发时间为3分钟~20分钟,在所述铜层表面形成所述三氧化钥层,停止蒸镀所述三氧化钥层,继续通入惰性气体冷却到室温。 [0021] then placed in the key trioxide boat, placing the boat in a quartz tube in a tube furnace; key trioxide powder evaporation time of 3 minutes to 20 minutes to form the surface of the copper layer key oxide layer, the oxide deposition key stop layer, continuing to pass the inert gas is cooled to room temperature.

[0022] 在其中一个实施例中,所述铜层及三氧化钥层为纳米线结构,所述铜层的纳米线直径为60nm~700nm,三氧化钥层的纳米线直径为4nm~150nm,所述铜层的厚度为15nnT50nm,所述三氧化钥层的厚度为3nnT30nm。 [0022] In one embodiment, the copper layer and the oxide layer is a key nanowire structure, said nanowire having a diameter of the copper layer is 60nm ~ 700nm, key oxide layer nanowire diameter 4nm ~ 150nm, the thickness of the copper layer 15nnT50nm, the oxide layer has a thickness of key 3nnT30nm.

[0023] 一种有机电致发光器件,包括依次层叠的阳极、发光层以及阴极,所述阳极包括依次层叠的衬底、铜层及三氧化钥层,其中,所述铜层及三氧化钥层为纳米线结构,所述铜层的纳米线直径为60nm~700nm,三氧化钥层的纳米线直径为4nm~150nm。 [0023] A substrate having the copper layer and the oxide layer key organic electroluminescent device, comprising successively laminating an anode, a light emitting layer and a cathode, said anode comprising a successively laminated, wherein said copper oxide layer, and three key layer is a nanowire structure, said nanowire layer of copper having a diameter of 60nm ~ 700nm, key oxide layer nanowire diameter 4nm ~ 150nm.

[0024] 上述导电薄膜通过在铜层的表面沉积三氧化钥薄膜制备双层导电薄膜,导电薄膜做成纳米线的集合,具有较高的表面功函数,又能保证高的透光,有利于器件的出光效率提高,导电薄膜在47(T790nm长范围可见光透过率88%~91%,方块电阻范围30~92 Ω / □,表面功函数4.9^5.6eV;上述导电薄膜的制备方法,采用热蒸镀的方式制备铜层及三氧化钥层,工艺较成本低,容易操作及重复率高的优点;使用该导电薄膜作为有机电致发光器件的阳极,导电薄膜的表面功函数与一般的有机发光层的HOMO能级之间差距较小,降低了载流子的注入势垒,可显著的提高发光效率。 [0024] The two-layer conductive film is prepared by depositing a conductive film on a surface of oxide film key copper layer, the conductive thin film made of a set of nanowires, has a high surface work function, but also ensure a high light transmittance, facilitate improve the light efficiency of the device, the conductive film 47 (T790nm length range of visible light transmittance of from 88% to 91%, the sheet resistance range of 30 ~ 92 Ω / □, the surface work function of 4.9 ^ 5.6eV; preparation method of the conductive thin film, using thermal evaporation preparation of the copper layer and the manner key trioxide layer, a low cost process more, advantages, and easy to handle high repetition rate; using the conductive film as the anode of the organic electroluminescent device, the work function of the conductive surface of the film with the general the organic light emitting layer HOMO energy level of the gap between the smaller, reducing the carrier injection barrier, can significantly improve the luminous efficiency.

附图说明 BRIEF DESCRIPTION

[0025] 图1为一实施方式的导电薄膜的结构示意图; [0025] FIG. 1 is a schematic view of an embodiment of a conductive film of the embodiment;

[0026] 图2为一实施方式的有机电致发光器件的基板的结构不意图; [0026] FIG. 2 is a structure of the substrate has the organic electroluminescent device is not intended to one embodiment;

[0027] 图3为一实施方式的有机电致发光器件的结构示意图; [0027] FIG. 3 is a schematic diagram of the structure of an organic electroluminescent device according to an embodiment;

[0028] 图4为本发明制备导电薄膜和导电基板的热蒸镀的方法的设备示意图; [0028] FIG. 4 is a schematic of the apparatus thermal evaporation method of the conductive thin film and the conductive substrate of the present invention is prepared;

[0029] 图5为实施例1制备的导电薄膜的透射光谱图; [0029] FIG. 5 is a transmission spectrum of the conductive thin film prepared according to Example 1;

[0030] 图6为实施例1制备的导电薄膜的电镜扫描图; [0030] FIG. 6 is a SEM view of a conductive thin film prepared according to Example 1;

[0031] 图7为实施例1制备的电致发光器件与对比例比较的亮度与电压关系曲线。 [0031] Example 7 is prepared in an embodiment of the electroluminescent device in comparison with the comparative relationship between the luminance and voltage curve. 具体实施方式 detailed description

[0032] 下面结合附图和具体实施例对导电薄膜、其制备方法、使用该导电薄膜的有机电致发光器件的基板、其制备方法及有机电致发光器件进一步阐明。 [0032] The following examples of the conductive thin film preparation method, the organic electroluminescent device substrate using the conductive thin film and the specific embodiments in conjunction with the accompanying drawings, preparation method thereof and an organic electroluminescent device further elucidated.

[0033] 请参阅图1,一实施方式的导电薄膜100包括层叠的铜层30及三氧化钥层10。 [0033] Referring to FIG 1, the conductive thin film 100 comprising an embodiment of the laminated copper layer 30 and the oxide layer 10 is the key.

[0034] 铜层30为纳米线结构,铜层30纳米线直径为60nm~700nm。 [0034] The copper layer 30 is a nanowire structure, the copper layer 30 of the nanowire diameter 60nm ~ 700nm.

[0035] 铜层30的厚度为15nnT50nm,优选为30nm。 Thickness [0035] The copper layer 30 is 15nnT50nm, preferably 30nm.

[0036] 三氧化钥层10为纳米线结构,三氧化钥层10纳米线直径为4nm~150nm。 [0036] The oxide layer 10 is a key nanowire structures, oxide layer 10 key nanowire diameter 4nm ~ 150nm.

[0037] 三氧化钥层10的厚度为3nnT30nm,优选为10nm。 [0037] The thickness of oxide layer 10 is key 3nnT30nm, preferably 10nm. [0038] 上述导电薄膜100通过在铜层30的表面沉积三氧化钥层10薄膜制备双层导电薄膜,这样制备的双层导电薄膜既能保持良好的导电性能,又使导电薄膜100的功函数得到了显著的提高,导电薄膜100在47(T790nm波长范围可见光透过率88%~91%,方块电阻范围30 Ω / □~92 Ω / □,表面功函数4.9eV~5.6eV。 [0038] The conductive film 100 was prepared by depositing a bilayer film 10 conductive thin film layer on the surface trioxide key 30 of the copper layer, double-layer electroconductive thin film thus prepared can maintain the good conductivity, work function and a conductive film 100 has been significantly improved, the conductive thin film 100 is 47 (T790nm wavelength range of visible light transmittance of 88% to 91% range of sheet resistance 30 Ω / □ ~ 92 Ω / □, the surface work function of 4.9eV ~ 5.6eV.

[0039] 上述导电薄膜100的制备方法,包括以下步骤: Preparation [0039] The method of the conductive film 100, comprising the steps of:

[0040] S110、将衬底通过酸处理,接着用丙酮和乙醇超声清洗,烘干后将所述衬底放入管式炉的石英管中; [0040] S110, the substrate is treated by acid, followed by ultrasonic cleaning with acetone and ethanol, after drying of the substrate placed in the tube furnace quartz tube;

[0041] 设置管式炉的石英管的真空度为IO2PalO3Pa,温度为350°C ~700°C,然后向管式炉的石英管中通入惰性气体,所述惰性气体的流速为50cm3/min~180cm3/min ; [0041] provided vacuum tube furnace quartz tube was IO2PalO3Pa, a temperature of 350 ° C ~ 700 ° C, and then an inert gas into the tube furnace quartz tube, the flow rate of the inert gas is 50cm3 / min ~ 180cm3 / min;

[0042] 衬底为玻璃衬底; [0042] substrate is a glass substrate;

[0043] 惰性气体包括氦气,氮气及氩气。 [0043] The inert gases include helium, nitrogen and argon.

[0044] 本实施方式中,真空腔体的真空度优选为3X102Pa。 [0044] In the present embodiment, the degree of vacuum in the vacuum chamber is preferably 3X102Pa.

[0045] 步骤S120、先将铜粉放置在舟中,将所述舟放置在管式炉的石英管中;所述铜粉的蒸发时间为10分钟~40分钟,在所述衬底表面形成铜层,停止蒸镀所述铜层。 [0045] step S120, the first copper is placed in the boat, placing the boat in a quartz tube furnace tube; said copper evaporation time of 10 minutes to 40 minutes, is formed on the substrate surface the copper layer, the copper layer deposition is stopped.

[0046] 优选的,铜层30为纳米线结构,铜层30纳米线直径为60nm~700nm。 [0046] Preferably, the copper layer 30 is a nanowire structure, the copper layer 30 of the nanowire diameter 60nm ~ 700nm.

[0047] 铜层30的厚度为15nnT50nm,优选为30nm。 Thickness [0047] The copper layer 30 is 15nnT50nm, preferably 30nm.

[0048] 步骤S130、然后将三氧化钥放置在舟中,将所述舟放置在管式炉的石英管中;三氧化钥粉末的蒸发时间为3分钟~20分钟,在所述铜层表面形成所述三氧化钥层,停止蒸镀所述三氧化钥层,继续通入惰性气体冷却到室温。 [0048] step S130, the key trioxide is then placed in a boat and the boat placed in a quartz tube in a tube furnace; key trioxide powder evaporation time of 3 to 20 minutes, the surface of the copper layer forming the oxide layer key, stop key deposition of the oxide layer, continuing to pass the inert gas is cooled to room temperature.

[0049] 优选的,三氧化钥层10为纳米线结构,三氧化钥层10纳米线直径为4nm~150nm。 [0049] Preferably, the oxide layer 10 is a key nanowire structures, oxide layer 10 key nanowire diameter 4nm ~ 150nm.

[0050] 三氧化钥层10的厚度为3nnT30nm,优选为10nm。 [0050] The thickness of oxide layer 10 is key 3nnT30nm, preferably 10nm.

[0051] 步骤S140、剥离所述衬底,得到所述层叠的铜层30及三氧化钥层10导电薄膜100。 [0051] step S140, the peeling of the substrate, the resulting laminate 10, the conductive thin film layer 30 and the copper oxide layer 100 key.

[0052] 上述导电薄膜的制备方法,采用热蒸镀的方式制备铜层30及三氧化钥层10,工艺较成本低,容易操作及重复率高。 Preparation [0052] The method of the conductive thin film, to prepare a copper layer 30 and the oxide layer 10 by thermal evaporation key way, relatively low process cost, easy operation and high repetition rate.

[0053] 请参阅图2,一实施方式的有机电致发光器件的基板200,包括层叠的衬底201、铜层202及三氧化钥层203。 [0053] Referring to FIG. 2, the substrate 200 of the organic electroluminescent device of an embodiment, substrate 201 comprises a laminate, the copper layer 202 and the oxide layer 203 key.

[0054] 衬底201为玻璃衬底。 [0054] The substrate 201 is a glass substrate.

[0055] 铜层30为纳米线结构,铜层30纳米线直径为60nm~700nm。 [0055] The copper layer 30 is a nanowire structure, the copper layer 30 of the nanowire diameter 60nm ~ 700nm.

[0056] 铜层30的厚度为15nnT50nm,优选为30nm。 Thickness [0056] The copper layer 30 is 15nnT50nm, preferably 30nm.

[0057] 三氧化钥层10为纳米线结构,三氧化钥层10纳米线直径为4nm~150nm。 [0057] The oxide layer 10 is a key nanowire structures, oxide layer 10 key nanowire diameter 4nm ~ 150nm. [0058] 三氧化钥层10的厚度为3nnT30nm,优选为10nm。 [0058] The thickness of oxide layer 10 is key 3nnT30nm, preferably 10nm.

[0059] 上述有机电致发光器件的基板200通过在铜层202的表面沉积三氧化钥层203,既能保持良好的导电性能,又使有机电致发光器件的基板200的功函数得到了显著的提高。 [0059] The substrate having the organic electroluminescent device 200 by depositing trioxide key layer 203 in the surface of the copper layer 202, both to maintain good electrical properties, and also allows the substrate organic electroluminescent device of the work function 200 has been significantly It improved.

[0060] 上述有机电致发光器件的基板200的制备方法,包括以下步骤: [0060] The method of making an organic electroluminescent device substrate 200, comprising the steps of:

[0061] S210、将衬底通过酸处理,接着用丙酮和乙醇超声清洗,烘干后将所述衬底放入管式炉的石英管中; [0061] S210, the substrate is treated by acid, followed by ultrasonic cleaning with acetone and ethanol, after drying of the substrate placed in the tube furnace quartz tube;

[0062] 设置管式炉的石英管的真空度为IO2PalO3Pa,温度为350°C 〜700°C,然后向管式炉的石英管中通入惰性气体,所述惰性气体的流速为50cm3/min〜180cm3/min ; [0062] provided vacuum tube furnace quartz tube was IO2PalO3Pa, a temperature of 350 ° C ~700 ° C, and then an inert gas into the quartz tube in a tube furnace, the flow rate of the inert gas is 50cm3 / min ~180cm3 / min;

[0063] 衬底为玻璃衬底; [0063] The substrate is a glass substrate;

[0064] 惰性气体包括氦气,氮气及氩气。 [0064] The inert gases include helium, nitrogen and argon.

[0065] 本实施方式中,真空腔体的真空度优选为3X102Pa。 [0065] In the present embodiment, the degree of vacuum in the vacuum chamber is preferably 3X102Pa.

[0066] 步骤S220、先将铜粉放置在舟中,将所述舟放置在管式炉的石英管中;所述铜粉的蒸发时间为10分钟〜40分钟,在所述衬底表面形成铜层,停止蒸镀所述铜层。 [0066] step S220, the first copper is placed in the boat, placing the boat in a quartz tube furnace tube; said copper evaporation time of 10 minutes ~ 40 minutes to form a surface of the substrate the copper layer, the copper layer deposition is stopped.

[0067] 优选的,铜层30为纳米线结构,铜层30纳米线直径为60nm〜700nm。 [0067] Preferably, the copper layer 30 is a nanowire structure, the copper layer 30 having a diameter of nanowires 60nm~700nm.

[0068] 铜层30的厚度为15nnT50nm,优选为30nm。 Thickness [0068] The copper layer 30 is 15nnT50nm, preferably 30nm.

[0069] 步骤S230、然后将三氧化钥放置在舟中,将所述舟放置在管式炉的石英管中;三氧化钥粉末的蒸发时间为3分钟〜20分钟,在所述铜层表面形成所述三氧化钥层,停止蒸镀所述三氧化钥层,继续通入惰性气体冷却到室温。 [0069] step S230, the key trioxide is then placed in a boat and the boat placed in a quartz tube in a tube furnace; key trioxide powder evaporation time is 3 minutes ~ 20 minutes, the surface of the copper layer forming the oxide layer key, stop key deposition of the oxide layer, continuing to pass the inert gas is cooled to room temperature.

[0070] 优选的,三氧化钥层10为纳米线结构,三氧化钥层10纳米线直径为4nm〜150nm。 [0070] Preferably, the oxide layer 10 is a key nanowire structure, key oxide layer 10 having a diameter of nanowire 4nm~150nm.

[0071] 三氧化钥层10的厚度为3nnT30nm,优选为10nm。 [0071] The thickness of oxide layer 10 is key 3nnT30nm, preferably 10nm.

[0072] 上述有机电致发光器件的基板200的制备方法,采用热蒸镀的方式制备铜层202及三氧化钥层203,工艺较成本低,容易操作及重复率高。 [0072] The method of making an organic electroluminescent device substrate 200, to prepare a copper layer 202 and the oxide layer 203 by thermal evaporation key way, relatively low process cost, easy operation and high repetition rate.

[0073] 请参阅图3,一实施方式的有机电致发光器件300包括依次层叠的衬底301、阳极302、发光层303以及阴极304。 [0073] Referring to FIG. 3, including a substrate 301 are sequentially stacked organic electroluminescent device 300 to one embodiment, the anode 302, the light emitting layer 303 and a cathode 304.

[0074] 阳极302由导电薄膜100制成,包括依次层叠的铜层30及三氧化钥层10,其中,所述铜层及三氧化钥层为纳米线结构,所述铜层的纳米线直径为60nm〜700nm,所述三氧化钥层的纳米线直径为4nm〜150nm。 [0074] The anode 302 made of a conductive thin film 100 comprising a copper layer 30 are sequentially stacked and oxide layer 10 key, wherein the copper layer and the oxide layer is a key nanowire structure, said nanowire diameter copper layer is 60nm~700nm, the oxide layer key nanowire diameter 4nm~150nm.

[0075] 衬底301为玻璃衬底,可以理解,根据有机电致发光器件300具体结构的不同,衬底301可以省略。 [0075] The substrate 301 is a glass substrate, be appreciated that, in accordance with a specific configuration different organic electroluminescent light emitting device 300, the substrate 301 may be omitted. 发光层303材质为Alq3及阴极304的材质为银、金、铝、钼及镁铝合金等。 The light emitting layer 303 and a cathode made of a material Alq3 304 is silver, gold, aluminum, molybdenum, and magnesium aluminum alloy.

[0076] 铜层的厚度为15nnT50nm,优选的,铜层的厚度为30nm,所述三氧化钥层的厚度为3nnT30nm,优选的,三氧化钥层的厚度为10nm。 [0076] The thickness of the copper layer was 15nnT50nm, preferably a thickness of the copper layer is 30 nm, the oxide layer has a thickness of key 3nnT30nm, preferably a thickness of oxide layer key is 10nm.

[0077] 可以理解,上述有机电致发光器件300也可根据使用需求设置其他功能层。 [0077] It will be appreciated, the above-described organic electroluminescent device 300 other functional layers may be provided according to needs.

[0078] 图4为本发明制备上述导电薄膜和导电基板的热蒸镀的方法的设备示意图,包括气体输出装置430,管式炉的石英管410,设置在管式炉的石英管外部加热的电阻丝420,放置在管式炉的石英管410内部的舟440及衬底450,在所述衬底450的表面通过酸腐蚀形成的孔洞结构452,该热蒸镀的方法采用将衬底450和舟440放置在同一水平面上,通过气体输出装置430输入惰性气体,在真空高压条件下使蒸发源不断的蒸发,因为衬底表面具有粗糙的孔洞结构452能够促进蒸发源向相同方向生长,而不会在衬底表面形成薄膜,进而形成纳米线结构。 [0078] FIG. 4 is a schematic of the apparatus thermal evaporation method of making the conductive film and the conductive substrate of the present invention, including gas output means 430, a quartz tube furnace tube 410, disposed in a quartz tube furnace tube external heating resistance wire 420, is placed in a tube furnace boat 440 and the substrate 450 inside the quartz tube 410, the porous structure surface of the substrate 450 is formed by acid etching 452, the thermal evaporation method using the substrate 450 boat 440 and placed in the same horizontal plane, by an inert gas input 430 gas output means, the evaporation source in a vacuum evaporation constant pressure conditions, since the substrate has a rough surface structure of a hole 452 capable of promoting the growth of the evaporation source in the same direction, and not form a film on the substrate surface thereby forming a nanowire structure. [0079] 上述有机电致发光器件300,使用导电薄膜100作为有机电致发光器件的阳极,导电薄膜的表面功函数4.9^5.6eV,与一般的有机发光层的HOMO能级(典型的为5.7~ [0079] The organic electroluminescent device 300, using the conductive film 100 as an anode, the work function of the conductive thin film surface of the organic electroluminescent device of 4.9 ^ 5.6eV, general organic light-emitting layer and the HOMO level (typically 5.7 ~

6.3eV)之间差距较小,降低了载流子的注入势垒,可提高发光效率。 Between 6.3 eV) is small gaps, to reduce the carrier injection barrier can improve the luminous efficiency.

[0080] 下面为具体实施例。 [0080] The following are specific examples.

[0081] 实施例1 [0081] Example 1

[0082] 将衬底通过氢氟酸处理,接着用丙酮和乙醇超声清洗,烘干后将所述衬底放入管式炉的石英管中;设置管式炉的真空度为3.0X IO2Pa,温度为500°C,然后向管式炉的石英管中通入氩气,氩气的流速为120cm3/min ;先将铜粉放置在舟中,将舟放置在管式炉的石英管中;铜粉的蒸发时间为25分钟,在衬底表面形成铜层,停止蒸镀所述铜层;然后将三氧化钥放置在舟中,将舟放置在管式炉的石英管中;三氧化钥粉末的蒸发时间为10分钟,在铜层表面形成三氧化钥层,停止蒸镀三氧化钥层,继续通入氩气冷却到室温剥离所述衬底,得到层叠的铜层及三氧化钥层导电薄膜,铜层的厚度为30nm,三氧化钥层的厚度为10nm,导电薄膜作为有机半导体器件的阳极,发光层采用Alq3,阴极采用Ag。 [0082] A substrate by a hydrofluoric acid treatment, followed by ultrasonic cleaning with acetone and ethanol, after drying of the substrate placed in the tube furnace quartz tube; degree of vacuum tube furnace is provided 3.0X IO2Pa, temperature of 500 ° C, and then purged with argon to a quartz tube in a tube furnace, the flow rate of the argon gas is 120cm3 / min; first copper powder is placed in the boat, placing the boat in a quartz tube in a tube furnace; copper evaporation time of 25 minutes, forming a copper layer on the substrate surface, deposition of the copper layer is stopped; trioxide is then placed in the key boat, placing the boat in a quartz tube in a tube furnace; key trioxide powder evaporation time of 10 minutes to form a surface oxide layer on the copper layer key, stop key oxide layer deposition, argon was continuously peeled off the substrate was cooled to room temperature to obtain a laminated layer and a copper oxide layer key conductive thin film, the thickness of the copper layer is 30 nm, the thickness of the oxide layer is 10 nm key, the conductive thin film as an anode, an organic light-emitting layer of Alq3 using a semiconductor device, a cathode using Ag.

[0083] 测试结果:采用四探针电阻测试仪测得方块电阻范围30Ω/ □,表面功函数测试仪测得表面功函数5.6eV。 [0083] Test results: Using a four-probe resistance tester was measured sheet resistance range of 30Ω / □, surface work function tester measured surface work function 5.6eV. [0084] 请参阅图5,图5所示为得到的透明导电薄膜的透射光谱,使用紫外可见分光光度计测试,测试波长为30(T800nm。由图5可以看出薄膜在可见光470nnT790nm波长范围内平均透过率已经达到88%。 [0084] Referring to FIG. 5, FIG. 5 shows the transmission spectra of the transparent conductive film obtained using ultraviolet-visible spectrophotometer test, the test wavelength of 30 (T800nm. As can be seen from Figure 5 within the film in the visible light wavelength range 470nnT790nm The average transmittance has reached 88%.

[0085] 请参阅图6,图6为实施例1制备的导电薄膜的电镜扫描图,由图可以看出纳米线的垂直基板生长,铜层及三氧化钥层为纳米线结构,铜层的纳米线直径6(T700nm为主,三氧化钥层的纳米线4~150nm为主。 [0085] Referring to FIG. 6, FIG. 6 is a SEM view of a conductive film of Example 1 was prepared embodiment, the can be seen grown perpendicular to the substrate nanowire, a copper layer and trioxide key layer is a nanowire structure, the copper layer diameter of the nanowire 6 (T700nm main nanowire trioxide key based layer 4 ~ 150nm.

[0086] 请参阅图7,图7为实施例1制备的电致发光器件与对比例比较的亮度与电压关系曲线,由图7可以看出曲线I是实施例1制备的薄膜电致发光器件电压与亮度关系曲线,曲线2是对比例制备的薄膜电致发光器件电压与亮度关系曲线,可看出:纳米线状样品使器件的启动电压降低从5.5到5.0V,亮度提高从800至920cd/m2。 [0086] Referring to FIG. 7, FIG. 7 is an electrical prepared in Example 1 and Comparative electroluminescent device Comparative luminance versus voltage curve, can be seen from Figure 7 the curve I is prepared in Example 1 Thin film electroluminescent device embodiment voltage and the luminance curve, curve 2 is the ratio of the prepared thin film voltage electroluminescent device and the luminance curve of the relationship, it can be seen: a sample that the nano-wire device starting voltage is reduced from 5.5 to 5.0V, the brightness increased from 800 to 920cd / m2.

[0087] 对比例 [0087] Comparative Example

[0088] 将衬底用丙酮和乙醇超声清洗,烘干后将所述衬底放气相沉积设备中;设置真空度为3.0X102Pa,温度为500°C,先将铜粉放置在气相沉积设备中在衬底表面形成铜层,得到铜层导电薄膜,厚度为30nm,再在铜层表面蒸镀三氧化钥层,三氧化钥层的厚度为10nm,将铜层和三氧化钥双层导电薄膜作为有机半导体器件的阳极,发光层采用Alq3,阴极采用Ag。 [0088] The substrate with ultrasonic cleaning with acetone and ethanol, after drying the substrate is put in a vapor deposition apparatus; set degree of vacuum 3.0X102Pa, a temperature of 500 ° C, placed in the first copper vapor deposition apparatus formed in the substrate surface of the copper layer, a copper layer of the conductive film to give a thickness of 30 nm, then the key trioxide vapor deposition layer on the surface of the copper layer, the thickness of the oxide layer is 10 nm key, the copper layer and the conductive thin film bilayer key trioxide as the anode of the organic semiconductor device using the light-emitting layer of Alq3, a cathode using Ag.

[0089] 实施例2 [0089] Example 2

[0090] 将衬底通过氢氟酸处理,接着用丙酮和乙醇超声清洗,烘干后将所述衬底放入管式炉的石英管中;设置管式炉的真空度为1.0X IO3Pa,温度为500°C,然后向管式炉的石英管中通入氩气,氩气的流速为ISOcmVmin ;先将铜粉放置在舟中,将舟放置在管式炉的石英管中;铜粉的蒸发时间为40分钟,在衬底表面形成铜层,停止蒸镀所述铜层;然后将三氧化钥放置在舟中,将舟放置在管式炉的石英管中;三氧化钥粉末的蒸发时间为20分钟,在铜层表面形成三氧化钥层,停止蒸镀三氧化钥层,继续通入氩气冷却到室温剥离衬底,得到层叠的铜层及三氧化钥层导电薄膜,铜层的厚度为15nm,三氧化钥层的厚度为5nm,导电薄膜作为有机半导体器件的阳极,发光层采用Alq3,阴极采用Ag。 [0090] A substrate by a hydrofluoric acid treatment, followed by ultrasonic cleaning with acetone and ethanol, after drying of the substrate placed in the tube furnace quartz tube; degree of vacuum tube furnace is provided 1.0X IO3Pa, temperature of 500 ° C, and then purged with argon to a quartz tube in a tube furnace, the flow rate of the argon gas is ISOcmVmin; first placed in a copper boat, placing the boat in a quartz tube in a tube furnace; copper the evaporation time was 40 minutes, forming a copper layer on the substrate surface, deposition of the copper layer is stopped; trioxide is then placed in the key boat, placing the boat in a quartz tube in a tube furnace; key trioxide powder evaporation time of 20 minutes to form a surface oxide layer on the copper layer key, stop key oxide layer deposition, argon was continuously peeled off the substrate cooled to room temperature, to obtain a copper layer and a laminated layer of a conductive film key trioxide, copper layer thickness of 15nm, the thickness of the oxide layer is 5 nm key, the conductive thin film as an anode, an organic light-emitting layer of Alq3 using a semiconductor device, a cathode using Ag.

[0091] 测试结果:采用四探针电阻测试仪测得方块电阻范围85Ω/ □,表面功函数 [0091] Test Results: 85Ω / □, the surface work function of four-probe resistance tester was measured sheet resistance range

5.2eV,使用紫外可见分光光度计测试,测试波长为30(T800nm薄膜在可见光470nnT790nm波长范围内平均透过率已经达到88%。 5.2 eV, an ultraviolet-visible spectrophotometer test, the test wavelength of 30 (T800nm ​​film in the wavelength range of visible light transmittance 470nnT790nm average has reached 88%.

[0092] 实施例3 [0092] Example 3

[0093] 将衬底通过氢氟酸处理,接着用丙酮和乙醇超声清洗,烘干后将所述衬底放入管式炉的石英管中;设置管式炉的真空度为1.0X IO2Pa,温度为500°C,然后向管式炉的石英管中通入氮气,氮气的流速为50cm3/min ;先将铜粉放置在舟中,将舟放置在管式炉的石英管中;铜粉的蒸发时间为10分钟,在衬底表面形成铜层,停止蒸镀所述铜层;然后将三氧化钥放置在舟中,将舟放置在管式炉的石英管中;三氧化钥粉末的蒸发时间为3分钟,在铜层表面形成三氧化钥层,停止蒸镀三氧化钥层,继续通入氮气冷却到室温剥离衬底,得到层叠的铜层及三氧化钥层导电薄膜,铜层的厚度为50nm,三氧化钥层的厚度为3nm,导电薄膜作为有机半导体器件的阳极,发光层采用Alq3,阴极采用Ag。 [0093] A substrate by a hydrofluoric acid treatment, followed by ultrasonic cleaning with acetone and ethanol, after drying of the substrate placed in the tube furnace quartz tube; degree of vacuum tube furnace is provided 1.0X IO2Pa, temperature of 500 ° C, and then nitrogen gas into the quartz tube furnace tube, the flow rate of nitrogen was 50cm3 / min; first copper powder is placed in the boat, placing the boat in a quartz tube in a tube furnace; copper the evaporation time of 10 minutes, forming a copper layer on the substrate surface, deposition of the copper layer is stopped; trioxide is then placed in the key boat, placing the boat in a quartz tube in a tube furnace; key trioxide powder evaporation time is 3 minutes to form a surface oxide layer on the copper layer key, stop key trioxide vapor deposition layer, nitrogen was continuously peeled off the substrate cooled to room temperature to obtain a laminated layer and a copper oxide layer key conductive thin film, a copper layer a thickness of 50 nm, the thickness of the oxide layer is 3nm key, the conductive thin film as an anode, an organic light-emitting layer of Alq3 using a semiconductor device, a cathode using Ag.

[0094] 测试结果:采用四探针电阻测试仪测得方块电阻范围87Ω/ □,表面功函数 [0094] Test Results: 87Ω / □, the surface work function of four-probe resistance tester was measured sheet resistance range

4.9eV,使用紫外可见分光光度计测试,测试波长为30(T800nm薄膜在可见光470nnT790nm波长范围内平均透过率已经达到90%。 4.9 eV, an ultraviolet-visible spectrophotometer test, the test wavelength of 30 (T800nm ​​film in the wavelength range of visible light transmittance 470nnT790nm average has reached 90%.

[0095] 实施例4 [0095] Example 4

[0096] 将衬底通过氢氟酸处理,接着用丙酮和乙醇超声清洗,烘干后将所述衬底放入管式炉的石英管中;设置管式炉的真空度为6.0X IO2Pa,温度为500°C,然后向管式炉的石英管中通入氮气,氮气的流速为SOcmVmin ;先将铜粉放置在舟中,将舟放置在管式炉的石英管中;铜粉的蒸发时间为15分钟,在衬底表面形成铜层,停止蒸镀所述铜层;然后将三氧化钥放置在舟中,将舟放置在管式炉的石英管中;三氧化钥粉末的蒸发时间为8分钟,在铜层表面形成三氧化钥层,停止蒸镀三氧化钥层,继续通入氮气冷却到室温剥离衬底,得到层叠的铜层及三氧化钥层导电薄膜,铜层的厚度为40nm,三氧化钥层的厚度为15nm,导电薄膜作为有机半导体器件的阳极,发光层采用Alq3,阴极采用Ag。 [0096] A substrate by a hydrofluoric acid treatment, followed by ultrasonic cleaning with acetone and ethanol, after drying of the substrate placed in the tube furnace quartz tube; degree of vacuum tube furnace is provided 6.0X IO2Pa, temperature of 500 ° C, and then nitrogen gas into the quartz tube furnace tube, the flow rate of nitrogen is SOcmVmin; first placed in a copper boat, placing the boat in a quartz tube in a tube furnace; copper evaporation for 15 minutes to form a copper layer on the substrate surface, deposition of the copper layer is stopped; trioxide is then placed in the key boat, placing the boat in a quartz tube in a tube furnace; key trioxide powder evaporation time 8 minutes to form a surface oxide layer on the copper layer key, stop key trioxide vapor deposition layer, nitrogen was continuously peeled off the substrate cooled to room temperature, to obtain a copper layer thickness of laminated layers and the conductive thin film key trioxide, copper layer is 40nm, the thickness of the oxide layer is 15nm key, the conductive thin film as an anode, an organic light-emitting layer of Alq3 using a semiconductor device, a cathode using Ag.

[0097] 测试结果:采用四探针电阻测试仪测得方块电阻范围92Ω/ □,表面功函数 [0097] Test Results: 92Ω / □, the surface work function of four-probe resistance tester was measured sheet resistance range

5.0eV,使用紫外可见分光光度计测试,测试波长为30(T800nm薄膜在可见光470nnT790nm波长范围内平均透过率已经达到91%。 5.0 eV, an ultraviolet-visible spectrophotometer test, the test wavelength of 30 (T800nm ​​film in the wavelength range of visible light transmittance 470nnT790nm average has reached 91%.

[0098] 实施例5 [0098] Example 5

[0099] 将衬底通过氢氟酸处理,接着用丙酮和乙醇超声清洗,烘干后将所述衬底放入管式炉的石英管中;设置管式炉的真空度为9.0X IO2Pa,温度为500°C,然后向管式炉的石英管中通入氩气,氩气的流速为170cm3/min ;先将铜粉放置在舟中,将舟放置在管式炉的石英管中;铜粉的蒸发时间为35分钟,在衬底表面形成铜层,停止蒸镀所述铜层;然后将三氧化钥放置在舟中,将舟放置在管式炉的石英管中;三氧化钥粉末的蒸发时间为15分钟,在铜层表面形成三氧化钥层,停止蒸镀三氧化钥层,继续通入氩气冷却到室温剥离衬底,得到层叠的铜层及三氧化钥层导电薄膜,铜层的厚度为22nm,三氧化钥层的厚度为20nm,导电薄膜作为有机半导体器件的阳极,发光层采用Alq3,阴极采用Ag。 [0099] A substrate by a hydrofluoric acid treatment, followed by ultrasonic cleaning with acetone and ethanol, after drying of the substrate placed in the tube furnace quartz tube; degree of vacuum tube furnace is provided 9.0X IO2Pa, temperature of 500 ° C, and then purged with argon to a quartz tube in a tube furnace, the flow rate of the argon gas is 170cm3 / min; first copper powder is placed in the boat, placing the boat in a quartz tube in a tube furnace; copper evaporation time of 35 minutes to form a copper layer on the substrate surface, deposition of the copper layer is stopped; trioxide is then placed in the key boat, placing the boat in a quartz tube in a tube furnace; key trioxide powder evaporation time of 15 minutes to form a surface oxide layer on the copper layer key, stop key oxide layer deposition, argon was continuously peeled off the substrate cooled to room temperature to obtain a laminated layer and a copper oxide film layer of a conductive key , thickness of the copper layer was 22nm, the thickness of the oxide layer was 20 nm key, the conductive thin film as an anode, an organic light-emitting layer of Alq3 using a semiconductor device, a cathode using Ag.

[0100] 测试结果:采用四探针电阻测试仪测得方块电阻范围71Ω/ □,表面功函数 [0100] Test Results: 71Ω / □, the surface work function of four-probe resistance tester was measured sheet resistance range

5.leV,使用紫外可见分光光度计测试,测试波长为30(T800nm薄膜在可见光470nnT790nm波长范围内平均透过率已经达到88%。 5.leV, an ultraviolet-visible spectrophotometer test, the test wavelength of 30 (T800nm ​​film in the wavelength range of visible light transmittance 470nnT790nm average has reached 88%.

[0101] 以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。 [0101] Expression of the above-described embodiments are only several embodiments of the present invention, and detailed description thereof is more specific, but can not therefore be understood as limiting the scope of the present invention. 应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。 It should be noted that those of ordinary skill in the art, without departing from the spirit of the present invention, can make various changes and modifications, which fall within the protection scope of the present invention. 因此,本发明专利的保护范围应以所附权利要求为准。 Therefore, the protection scope of the present invention should be subject to the appended claims.

Claims (10)

  1. 1.一种导电薄膜,其特征在于,所述导电薄膜包括层叠的铜层及三氧化钥层,其中,所述铜层及三氧化钥层为纳米线结构,所述铜层的纳米线直径为60nm~700nm,所述三氧化钥层的纳米线直径为4nm~150nm。 A conductive film, wherein said conductive film comprises a lamination of a copper layer and the oxide layer key, wherein the copper layer and the oxide layer is a key nanowire structure, said nanowire diameter of the copper layer It is 60nm ~ 700nm, the oxide layer key nanowire diameter 4nm ~ 150nm.
  2. 2.根据权利要求1所述的导电薄膜,其特征在于,所述铜层的厚度为15nnT50nm,所述三氧化钥层的厚度为3nnT30nm。 2. The conductive thin film according to claim 1, characterized in that the thickness of the copper layer is 15nnT50nm, the oxide layer has a thickness of key 3nnT30nm.
  3. 3.一种导电薄膜的制备方法,其特征在于,包括以下步骤: 将衬底通过酸处理,接着用丙酮和乙醇超声清洗,烘干后将所述衬底放入管式炉的石英管中; 设置管式炉的石英管的真空度为IO2PalO3Pa,温度为350°C ~700°C,然后向管式炉的石英管中通入惰性气体,所述惰性气体的流速为50cm3/min~180cm3/min ; 先将铜粉放置在舟中,将所述舟放置在管式炉的石英管中;所述铜粉的蒸发时间为10分钟~40分钟,在所述衬底表面形成铜层,停止蒸镀所述铜层; 然后将三氧化钥粉放置在舟中,将所述舟放置在管式炉的石英管中;三氧化钥粉末的蒸发时间为3分钟~20分钟,在所述铜层表面形成所述三氧化钥层,停止蒸镀所述三氧化钥层,继续通入惰性气体冷却到室温;及剥离所述衬底,得到所述层叠的铜层及三氧化钥层导电薄膜。 3. A method for preparing a conductive film, comprising the steps of: processing the substrate by the acid, followed by ultrasonic cleaning with acetone and ethanol, after drying of the substrate placed in the tube furnace quartz tube ; providing vacuum tube furnace quartz tube was IO2PalO3Pa, a temperature of 350 ° C ~ 700 ° C, and then an inert gas into the tube furnace quartz tube, the flow rate of the inert gas 50cm3 / min ~ 180cm3 / min; first copper powder is placed in the boat, placing the boat in a quartz tube furnace tube; said copper evaporation time of 10 minutes to 40 minutes to form a copper layer on the substrate surface, stopping deposition of the copper layer; key trioxide powder was then placed in a boat and the boat placed in a quartz tube in a tube furnace; key trioxide powder evaporation time of 3 to 20 minutes, the forming the copper layer surface layer trioxide key, stop key deposition of the oxide layer, continuing to pass the inert gas is cooled to room temperature; and release the substrate, the resulting laminate and the copper layer of the conductive oxide layer key film.
  4. 4.根据权利要求3所述的导电薄膜的制备方法,其特征在于,所述铜层及三氧化钥层为纳米线结构,所述铜层的纳米线直径为60nm~700nm,三氧化钥层的纳米线直径为4nm~150nmo 4. A method for preparing a conductive film according to claim 3, characterized in that the copper layer and the oxide layer is a key nanowire structure, said nanowire diameter of the copper layer is 60nm ~ 700nm, oxide layer key nanowire diameter 4nm ~ 150nmo
  5. 5.根据权利要求3所述的导电薄膜的制备方法,其特征在于,所述铜层的厚度为15nnT50nm,所述三氧化钥层的厚度为3nnT30nm。 5. A method for preparing a conductive film according to claim 3, characterized in that the thickness of the copper layer is 15nnT50nm, the oxide layer has a thickness of key 3nnT30nm.
  6. 6.一种有机电致发光器件的基板,其特征在于,包括依次层叠的衬底、铜层及三氧化钥层,其中,所述铜层及三氧化钥层为纳米线结构,所述铜层的纳米线直径为60nm~700nm,三氧化钥层的纳米线直径为4nm~150nm。 A substrate of the organic electroluminescent device, wherein the substrate comprises a sequentially stacked, a copper layer and the oxide layer key, wherein the copper layer and the oxide layer is a key nanowire structure, the copper diameter of the nanowire layer of 60nm ~ 700nm, the diameter of the nanowire key oxide layer is 4nm ~ 150nm.
  7. 7.根据权利要求6所述的有机电致发光器件的基板,其特征在于,所述铜层的厚度为15nnT50nm,所述三氧化钥层的厚度为3nnT30nm。 7. The substrate of the organic electroluminescent device according to claim 6, wherein the thickness of the copper layer 15nnT50nm, the oxide layer has a thickness of key 3nnT30nm.
  8. 8.一种有机电致发光器件的基板的制备方法,其特征在于,包括以下步骤: 将衬底通过酸处理,然后用丙酮和乙醇超声清洗,烘干后将所述衬底放入管式炉的石英管中; 设置管式炉的石英管的真空度为IO2PalO3Pa,温度为350°C ~700°C,然后向管式炉的石英管中通入惰性气体,所述惰性气体的流速为50cm3/min~180cm3/min ; 先将铜粉放置在舟中,将所述舟放置在管式炉的石英管中;所述铜粉的蒸发时间为10分钟~40分钟,在所述衬底表面形成铜层,停止蒸镀所述铜层; 然后将三氧化钥粉放置在舟中,将所述舟放置在管式炉的石英管中;三氧化钥粉的蒸发时间为3分钟~20分钟,在所述铜层表面形成所述三氧化钥层,停止蒸镀所述三氧化钥层,继续通入惰性气体冷却到室温。 A method of making a substrate of an organic electroluminescence light emitting device, characterized by comprising the steps of: the substrate by an acid treatment, followed by ultrasonic cleaning with acetone and ethanol, after drying of the substrate placed in a tube quartz tube furnace; providing vacuum tube furnace quartz tube was IO2PalO3Pa, a temperature of 350 ° C ~ 700 ° C, and then passed through an inert gas into the quartz tube in a tube furnace, the flow rate of the inert gas is 50cm3 / min ~ 180cm3 / min; first copper powder is placed in the boat, placing the boat in a quartz tube furnace tube; said copper evaporation time of 10 minutes to 40 minutes, in the substrate forming a copper layer surface, vapor deposition of the copper layer is stopped; key trioxide powder was then placed in a boat and the boat placed in a quartz tube in a tube furnace; key trioxide powder evaporation time of 3 minutes to 20 minutes to form the oxide layer on a surface of the key copper layer, the deposition is stopped oxide layer key, continuing to pass the inert gas is cooled to room temperature.
  9. 9.根据权利要求8所述的有机电致发光器件的基板的制备方法,其特征在于,所述铜层及三氧化钥层为纳米线结构,所述铜层的纳米线直径为60nm~700nm,三氧化钥层的纳米线直径为4nm~150nm,所述铜层的厚度为15nnT50nm,所述三氧化钥层的厚度为`3nm~30nmo 9. A method of making a substrate of the organic electroluminescent device according to claim 8, wherein the copper layer and the oxide layer is a key nanowire structure, said nanowire diameter of the copper layer is 60nm ~ 700nm , the diameter of the nanowire key oxide layer is 4nm ~ 150nm, the thickness of the copper layer 15nnT50nm, the oxide layer has a thickness of key `3nm ~ 30nmo
  10. 10.一种有机电致发光器件,包括依次层叠的阳极、发光层以及阴极,其特征在于,所述阳极包括依次层叠的衬底、铜层及三氧化钥层,其中,所述铜层及三氧化钥层为纳米线结构,所述铜层的纳米线直径为60nm~700nm,三氧化钥层的纳米线直径为4nm~150nm。 10. An organic electroluminescent device, comprising successively laminating an anode, a light emitting layer and a cathode, wherein said anode comprises a substrate sequentially stacked, the copper layer and the oxide layer key, wherein the copper layer, and key oxide layer is a nanowire structure, said nanowire layer of copper having a diameter of 60nm ~ 700nm, key oxide layer nanowire diameter 4nm ~ 150nm.
CN 201310008608 2013-01-10 2013-01-10 Conductive thin film, preparation method and application thereof CN103921496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201310008608 CN103921496A (en) 2013-01-10 2013-01-10 Conductive thin film, preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201310008608 CN103921496A (en) 2013-01-10 2013-01-10 Conductive thin film, preparation method and application thereof

Publications (1)

Publication Number Publication Date
CN103921496A true true CN103921496A (en) 2014-07-16

Family

ID=51140006

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201310008608 CN103921496A (en) 2013-01-10 2013-01-10 Conductive thin film, preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN103921496A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105895196A (en) * 2016-04-07 2016-08-24 江苏三月光电科技有限公司 Novel transparent conductive thin film and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07288185A (en) * 1994-04-20 1995-10-31 Dainippon Printing Co Ltd Organic thin film electroluminescent (el) element
EP0845924A2 (en) * 1996-11-29 1998-06-03 Idemitsu Kosan Company Limited Organic electroluminescent device
CN1872660A (en) * 2006-06-01 2006-12-06 中山大学 Nano line array in multiplayer structure, and preparation method
US7781778B2 (en) * 2006-12-15 2010-08-24 Samsung Electro-Mechanics Co., Ltd. Semiconductor light emitting device and method of manufacturing the same employing nanowires and a phosphor film
CN102306709A (en) * 2011-09-23 2012-01-04 北京大学 Organic electroluminescent device and preparation method thereof
CN102569516A (en) * 2012-01-10 2012-07-11 合肥工业大学 Method for preparing p-CdS nano wire and p-CdS/n-Si nano p-n node through manganese trioxide (MoO3) surface doping
CN102723441A (en) * 2011-03-29 2012-10-10 海洋王照明科技股份有限公司 Multilayer conductive film with high work function, preparation method thereof and organic electroluminescent device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07288185A (en) * 1994-04-20 1995-10-31 Dainippon Printing Co Ltd Organic thin film electroluminescent (el) element
EP0845924A2 (en) * 1996-11-29 1998-06-03 Idemitsu Kosan Company Limited Organic electroluminescent device
CN1872660A (en) * 2006-06-01 2006-12-06 中山大学 Nano line array in multiplayer structure, and preparation method
US7781778B2 (en) * 2006-12-15 2010-08-24 Samsung Electro-Mechanics Co., Ltd. Semiconductor light emitting device and method of manufacturing the same employing nanowires and a phosphor film
CN102723441A (en) * 2011-03-29 2012-10-10 海洋王照明科技股份有限公司 Multilayer conductive film with high work function, preparation method thereof and organic electroluminescent device
CN102306709A (en) * 2011-09-23 2012-01-04 北京大学 Organic electroluminescent device and preparation method thereof
CN102569516A (en) * 2012-01-10 2012-07-11 合肥工业大学 Method for preparing p-CdS nano wire and p-CdS/n-Si nano p-n node through manganese trioxide (MoO3) surface doping

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105895196A (en) * 2016-04-07 2016-08-24 江苏三月光电科技有限公司 Novel transparent conductive thin film and preparation method thereof

Similar Documents

Publication Publication Date Title
Gaynor et al. Color in the Corners: ITO‐Free White OLEDs with Angular Color Stability
Filiatrault et al. Stretchable light‐emitting electrochemical cells using an elastomeric emissive material
JP2003045674A (en) Organic electroluminescent element
Song et al. Electrophoretic Deposition of CdSe/ZnS Quantum Dots for Light‐Emitting Devices
Hwang et al. Multilayered graphene anode for blue phosphorescent organic light emitting diodes
Kim et al. Work‐Function Engineering of Graphene Anode by Bis (trifluoromethanesulfonyl) amide Doping for Efficient Polymer Light‐Emitting Diodes
CN102723442A (en) Organic electroluminescent device and preparation method thereof
CN102683424A (en) Display device and array substrate as well as thin film transistor and manufacturing method thereof
CN102194956A (en) Method for evaporating indium tin oxide (ITO)
CN102651428A (en) Fabrication method of gradient ferroelectric film solar cell
CN102054938A (en) Sandwich anode structure of organic electroluminescent device and preparation method thereof
Dhar et al. Optimization of TiO2/Cu/TiO2 multilayer as transparent composite electrode (TCE) deposited on flexible substrate at room temperature
Zhu et al. The application of single-layer graphene modified with solution-processed TiOx and PEDOT: PSS as a transparent conductive anode in organic light-emitting diodes
CN103325944A (en) High responsibility organic solar blind ultraviolet light detector
JP2006244941A (en) Forming method for transparent conductive membrane, transparent conductive substrate using the same, and organic el device substrate
Yu et al. Highly flexible transparent and conductive ZnS/Ag/ZnS multilayer films prepared by ion beam assisted deposition
CN101841001A (en) Organic electroluminescent diode apparatus
JP2012076385A (en) Gas barrier film, method of manufacturing gas barrier film, and organic electronic device having the gas barrier film
CN102051578A (en) Transparent conductive metallic film and preparation method thereof
US20140008634A1 (en) Electrode Sheet for Organic Device, Organic Device Module, and Method for Producing Same
JPH09156022A (en) Transparent conductive laminate
CN103426991A (en) Coining method for metal nanowire transparent ohmic electrode
CN102779944A (en) Transparent conductive thin film and preparation method thereof
Yang et al. Flexible organic light-emitting diodes with ZnS/Ag/ZnO/Ag/WO3 multilayer electrode as a transparent anode
CN103972266A (en) Organic electroluminescent display panel and display device

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)