CN103845052A - Human body faint early warning method based on acquired electroencephalogram signals - Google Patents

Human body faint early warning method based on acquired electroencephalogram signals Download PDF

Info

Publication number
CN103845052A
CN103845052A CN 201410058482 CN201410058482A CN103845052A CN 103845052 A CN103845052 A CN 103845052A CN 201410058482 CN201410058482 CN 201410058482 CN 201410058482 A CN201410058482 A CN 201410058482A CN 103845052 A CN103845052 A CN 103845052A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
human
body
eeg
faint
early
Prior art date
Application number
CN 201410058482
Other languages
Chinese (zh)
Other versions
CN103845052B (en )
Inventor
张涛
李毅峰
邓略
陈勇胜
Original Assignee
清华大学
中国人民解放军空军航空医学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention provides a human body faint early warning method based on acquired electroencephalogram (EEG) signals. The human body faint early warning method comprises the following steps of acquiring EEG signals of M channels of a human centrifuge at different G values by an EEG acquirer, wherein M is a positive integer; preprocessing the EEG signals in the M channels for acquiring low-frequency EEG data of each channel in the M channels; acquiring the parameter correlation rate of a frequency band of each EEG signal at each data field; when one parameter correlation rate meets early warning conditions before faint, carrying out human body faint early warning reminding. According to the method disclosed by the embodiment of the invention, the state before the human body faint can be recognized in advance and be early warned, the physical signs of a trainee are facilitated to be comprehensively learnt, and the practical application value for guiding human body training is realized.

Description

基于采集脑电信号的人体昏厥预警方法 Based on the human body fainting Early Warning acquisition of EEG

技术领域 FIELD

[0001] 本发明涉及航空医学及生物医学工程领域,尤其涉及一种基于采集脑电信号的人体昏厥预警方法。 [0001] The present invention relates to aviation medicine and biomedical engineering field, particularly to a warning based on EEG acquisition humans fainting.

背景技术 Background technique

[0002] 高性能战斗机问世以来,高G防护已成为航空医学亟待解决的重大理论和现实问题。 Since [0002] the advent of high-performance fighter aircraft, high G protection has become a major theoretical and practical issues in aviation medicine to be solved. 重力加速度引起的意识丧失(G — L0C(G_induced loss of consciousness,G-L0C)严重威胁着飞行安全。为此,在飞行和训练中,为了保证飞行员的安全,需要实时监测人体的生理状态以进行判断和预警。 Acceleration of gravity-induced loss of consciousness (G - L0C (G_induced loss of consciousness, G-L0C) a serious threat to flight safety that end, and in-flight training, in order to ensure the safety of the pilots, real-time monitoring of human physiological state needs to be. judgment and warning.

[0003]目前,可通过监测飞行员的心电、耳脉信号和脑电信号来了解飞行员的身体状态。 [0003] Currently, the pilot can be monitored by ECG, EEG signals and pulse ear to understand the physical condition of the pilot. 其中,心电中的心律失常经常作为训练过程中停机的指标,并且心率是选拔高G特级飞行和储备飞行员的具有价值的重要指标。 Among them, ECG arrhythmia is often used as an indicator of the training process downtime, and heart rate is an important indicator of value selection of super high-G flight and reserve pilots. 当心电中的心律失常时,说明人体的心脏已出现严重异常,此时需要立即停机以免对受试者造成更大的伤害。 Beware of electrical arrhythmia, indicating the body has severe abnormalities of the heart, then you need to be shut down immediately to avoid more damage to the subject. 耳脉搏和头水平血压具有一致性,通常耳脉搏可作为判断+Gz耐力终点的客观指标,其中,+Gz表示z轴正方向的重力加速度。 Ear pulse and blood pressure levels consistent head, generally as determined pulse ear + Gz tolerance objective indicator end, wherein, represents gravitational acceleration + Gz z-axis positive direction. 通常耳脉搏拉平I~2秒,即可作为黑视或意识丧失的预警。 Ear generally leveled pulse I ~ 2 seconds, and can be used as loss of consciousness or blackout warning. 现在普遍认为脑电信号是一个很好的检测指标,目前可通过缺氧、意识丧失、下体负压等各种方法来模拟高G时产生的加速度效果来间接研究高G环境下的脑电变化特征。 EEG is now generally considered a good indicator for detecting the current by hypoxia, unconsciousness, indirectly EEG changes under environment of high G acceleration effects produced when a variety of methods to simulate the lower body negative pressure high G feature.

[0004]目前存在的问题是,由于心率的变化受个体差异影响较大,且和行为及心理活动密切相关,容易受到外界影响,因此,将其作为耐力终点判别意义不大。 [0004] Currently there is a problem, due to changes in heart rate influenced by individual differences, and the behavior and mental activity and is closely related to, vulnerable to outside influence, and therefore, it is not the end of discrimination as endurance significance. 耳脉反映的是脑颅外动脉压的变化,并不是脑颅内动脉压的变化。 Ear veins outside the skull reflects the changes in arterial pressure, the change is not brain intracranial arterial pressure. 此外,由于受温度的影响,所测量的耳脉信号并不准确,且不稳定。 Further, due to the influence of temperature, the measured ear clock signal is not accurate, and unstable. 脑电信号的研究目前多基于静态脑电数据来研究人体处于昏厥或已经临近昏厥时的脑电变化特征,并且以目测分析暴发性的高幅慢波为特征,当发现肉眼可辨识的“高幅慢波”(比如δ波或Θ波)时,脑功能状态可能已处于严重的抑制状态,再进行G-LOC预警已失去意义。 At present, many research EEG EEG data based on static characteristics to study the changes in EEG during syncope or near syncope has been in the human body, and visually analyze outbreak of high-amplitude slow wave is characterized by the naked eye can identify when found "high when the amplitude slow wave "(such as wave or Θ δ wave), the state of brain function may have been in a serious state of suppression, then G-LOC warning has lost its meaning. 此外,由于个体不同产生的差异,目前评价脑电变化的判断依据并不准确,缺乏客观性。 In addition, due to the differences generated by the individual, judgments based on currently evaluating EEG changes are not accurately, the lack of objectivity.

发明内容 SUMMARY

[0005] 本发明旨在至少解决上述技术问题之一。 [0005] The present invention aims to solve at least one of the technical problems described above.

[0006] 为此,本发明的目的在于提出一种基于采集脑电信号的人体昏厥预警方法。 [0006] To this end, an object of the present invention is to provide a method for collecting human fainting warning based on EEG. 该方法可对人体大脑昏厥前的状态进行提前识别和预警,从而避免了对受训者造成更大的伤害,对解决高G防护问题具有重要现实意义。 This method can be early detection and early warning of the state before the human brain, fainting, thus avoiding more damage to the trainee, it has important practical significance to solve the problem of high G protection.

[0007] 为了实现上述目的,本发明实施例的基于采集脑电信号的人体昏厥预警方法,包括:通过脑电图EEG采集仪采集不同G值下载人离心机的M个通道中的脑电信号,其中,M为正整数;对所述M个通道中的脑电信号进行预处理,以获取所述M个通道中每个通道的低频脑电数据;根据所述低频脑电数据获取每个所述脑电信号的频段在每个数据段的参数相 [0007] To achieve the above object, an embodiment of the present invention is based on the method of collecting human fainting warning EEG, comprising: acquiring EEG downloaders different G values ​​of M channels in the centrifuge by EEG electroencephalogram acquisition instrument wherein, M is a positive integer; EEG signals of the M channels is pretreated to obtain a low frequency of the M channels of EEG data for each channel; each of acquiring data in accordance with said low frequency EEG the band EEG data segment for each parameter in the phase

关率(%);当所述参数相关率<(%)符合昏厥前预警条件时,进行人体昏厥预警提醒。 Clearance rate (%); and when the rate parameter associated <(%) meet the alarm conditions before syncope, syncope body for warning alert. [0008] 本发明实施例的基于采集脑电信号的人体昏厥预警方法,具有以下有益效果:1、通过直接在载人离心机上开展人体实验,研究离心机+Gz下的脑电变化特征,根据脑电变化特征可以充分了解到晕厥前或G-LOC前仅通过肉眼判图而无法了解的有关的脑功能状态的变化信息,并根据参数相关率的变化情况对+Gz引起的晕厥提出预警及判别方法,对于全面了解受训者的体征,指导人体训练具有实际应用价值,对于提醒飞行员在训练和执行飞行任务中及早采取相应的防护措施,解决高G防护问题具有重要现实意义;2、通过参 [0008] Example embodiments of the present invention is based on the method of collecting human fainting warning EEG, has the following advantages: 1, by conducting human trials, study of EEG Changes in the centrifuge Gz + manned directly on the centrifuge, in accordance with EEG changes can fully understand presyncopal before G-LOC only by visual judgment can not understand FIG change information related to brain function or status, and according to the changes of the parameters related to the rate of + Gz syncope due to early warning and discrimination method for comprehensive understanding of the signs of trainees, training guide body has a practical value, has important practical significance to alert the pilot to take early and appropriate protective measures in the implementation of training and missions, solve the problem of high G protection; 2, by reference

数相关率/?«(%)可以消除个体不同产生的差异,在评价人体的脑电变化时能够给出客观的 Number of relevant rate /? << (%) can eliminate individual differences arising in the evaluation of EEG changes in the human body can give an objective

和较为准确的判断依据。 And more accurate judgment basis.

[0009] 本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。 [0009] This additional aspects and advantages of the invention will be set forth in part in the description which follows, from the following description in part be apparent from, or learned by practice of the present invention.

附图说明 BRIEF DESCRIPTION

[0010] 本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中, [0010] The present invention described above and / or additional aspects and advantages of the embodiment will be described embodiments will become apparent and more readily appreciated from the following drawings, wherein

[0011] 图1是本发明一个实施例的基于采集脑电信号的人体昏厥预警方法的流程图; [0011] FIG. 1 is a flowchart based on human fainting warning EEG acquisition method according to one embodiment of the present invention;

[0012] 图2是alpha频带的参数相关率<(%)随不同G值变化的示意图;以及 [0012] FIG. 2 is a rate-related parameter alpha schematic band (%) value change with different G <; and

[0013] 图3是beta频带的参数相关率^(%)随不同G值变化的示意图。 [0013] FIG. 3 is a parameter related to beta-band rate ^ (%) with different G values ​​schematic change.

具体实施方式 detailed description

`[0014] 下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。 `[0014] Example embodiments of the present invention is described in detail below, exemplary embodiments of the embodiment shown in the accompanying drawings, wherein same or similar reference numerals designate the same or similar elements or functionally similar or identical elements are provided with. 下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。 By following with reference to the embodiments described are exemplary only for explaining the present invention and should not be construed as limiting the present invention. 相反,本发明的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。 In contrast, embodiments of the present invention includes all variations that fall within the appended claims the spirit and terms, modifications and equivalents thereof.

[0015] 在本发明的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。 [0015] In the description of the present invention, it is to be understood that the terms "first," "second," and the like for illustrative purposes only, and not intended to indicate or imply relative importance. 在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。 In the description of the present invention, it should be noted that, unless otherwise expressly specified or limited, the term "coupled", "connected" are to be broadly understood, for example, may be a fixed connection, the connection may be detachable or integrally connected; may be a mechanical connector, it may be electrically connected; may be directly connected, can also be connected indirectly through an intermediary. 对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。 Those of ordinary skill in the art, be appreciated that the specific circumstances of the specific meanings in the present invention. 此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。 Further, in the description of the present invention, unless otherwise specified, the meaning of "more" is two or more.

[0016] 流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。 [0016] In the flowchart in any process or method or otherwise described in this description may be understood as representing modules comprises one or more steps for implementing specific logical functions or processes executable instructions, fragment or portion, and the scope of the preferred embodiment of the present invention includes other implementations, which may be shown or discussed in order not press, comprising a substantially simultaneous manner or in reverse order, depending upon the functionality to perform the functions involved it should be understood that embodiments skilled in the art of the present invention.

[0017] 下面参考附图描述本发明实施例的基于采集脑电信号的人体昏厥预警方法。 [0017] Referring human fainting warning based on EEG acquired description of the embodiments of the present invention are shown.

[0018]目前,由于在载人离心机上对人体进行试验要求的特殊性以及+Gz环境下脑电信号易受干扰并且脑电信号的测量难度较大。 [0018] Currently, due to the specificity of the human EEG test requirements on a centrifuge and manned + Gz environment susceptible to interference and the difficulty of measuring large EEG. 因此,目前对脑电变化特征的研究多通过缺氧、意识丧失、下体负压等各种方法来间接研究高G环境下的脑电变化特征,其主要以目测分析暴发性的高幅慢波为特征。 Thus, current research characteristic EEG changes by more hypoxia, loss of consciousness, and other various methods LBNP indirectly EEG Characteristics Variation in high G environments, which is mainly in visual analysis of a high amplitude slow wave fulminant It is characterized. 然而,当发现肉眼可辨识的“高幅慢波”时,人体脑功能状态可能已处于严重的抑制状态,此时再对G-LOC进行预警已失去意义。 However, when the discovery of the naked eye can identify "high-amplitude slow wave" of human brain function may have been in a serious state of inhibition state, then again early warning of G-LOC has lost its meaning. 如果可以在不同G值下,直接采集载人离心机中的脑电信号,并对采集到的脑电信号进行综合分析以获取不同G值下人体昏厥前或G-LOC前脑电信号的变化特征,则可以更方便地了解受训者的体征变化,当飞行员或者受训者在训练和执行任务中如果脑电变化符合预设昏厥前则可进行提前预警,并及时采取相应的防护措施,从而避免了对飞行员或者受试者造成更大的伤害。 If you can at different G values, collected directly EEG manned centrifuge, and comprehensive analysis of collected EEG for the human body before fainting or former G-LOC under different G values ​​EEG changes feature, you can more easily understand the signs of change trainees, or when a pilot trainee in training and perform tasks in line with changes in the EEG if you can be preset before fainting early warning, and promptly take appropriate protective measures to avoid the more damage to the pilot or subjects. 为此,本发明提出了一种基于采集脑电信号的人体昏厥预警方法。 To this end, the present invention proposes a method based on human fainting warning acquired EEG.

[0019] 图1是本发明一个实施例的基于采集脑电信号的人体昏厥预警方法的流程图。 [0019] FIG. 1 is a flowchart based on human fainting warning EEG acquisition method according to one embodiment of the present invention.

[0020] 如图1所示,该基于采集脑电信号的人体昏厥预警方法包括。 [0020] As shown in FIG. 1, the warning based on the EEG signal acquisition method comprising human fainting. [0021] S101,通过脑电图EEG采集仪采集不同G值(即重力加速度值)下载人离心机的M个通道中的脑电信号,其中,M为正整数。 [0021] S101, the acquisition of different values ​​of G (i.e., the value of the acceleration of gravity) centrifuge EEG downloaders M channels, where, M is a positive integer by EEG electroencephalogram acquisition instrument.

[0022] 具体而言,在新型三轴向高性能新型载人离心机中进行人体试验。 [0022] Specifically, the novel human trials in three axial manned new high-performance centrifuge. 其中,新型三轴向高性能新型载人离心机主臂长度为8m,具有3轴向加速度。 Wherein, the new high-performance three-axis Human Centrifuge new boom length of 8m, having three axial acceleration. 每个轴向的加速度变化将会对人体产生不同的影响,Gz方向的加速度对人体脑电信号的影响最大,也就是说,z轴方向的重力加速度对人体脑电信号的影响最大。 Each axial acceleration change will produce different effects on the human body, the maximum impact acceleration Gz human EEG direction, that is, the greatest influence on the z-axis direction gravitational acceleration human EEG. 本发明主要研究+Gz (即,z轴正方向的重力加速度)作用下人体脑电信号的变化情况,也就是说,主要研究受训者在受到z轴正方向的重力加速度而引起的脑电信号的变化情况。 The main invention EEG + Gz (i.e., gravitational acceleration in the z-axis positive direction) changes under the action of the human EEG, i.e., trainee main positive z-axis by the gravitational acceleration caused by the changes in circumstances. 因此在设计新型三轴向高性能新型载人离心机的加速度曲线时,将Gx和Gy方向的加速度值(即X轴和I轴方向的重力加速度)控制地尽可能的小。 Therefore, the design of new high-performance three-axis acceleration curve manned new centrifuge, the acceleration value Gx (i.e., gravitational acceleration and the X-axis direction of the I axis) and the direction of Gy controlled as small as possible. 例如,可将Gx方向的加速度控制在I以下,Gy方向的加速度控制在0.5以下。 For example, acceleration Gx can be controlled in the direction I the following, the direction of acceleration Gy is controlled to 0.5 or less.

[0023] 进一步而言,每一次运行的加速度曲线的具体设置为:离心机静止时,受试者感受加速度为1G。 [0023] Further, particularly an acceleration curve for each run: centrifuge is stationary, subject to feel acceleration 1G. 新型三轴向高性能新型载人离心机启动时先以lG/s的加速度增长率到达基线持续数秒,之后以3G/s的加速度增长率到达而各次运行的设定的最大G值,持续10s-15s后,再以3G/s的加速度增长率降为1G,回到初始状态,离心机停止。 Novel Human Centrifuge new high-performance three-axis prior to the start acceleration rate lG / s reaches baseline for a few seconds, after the acceleration rate 3G / s reaches the maximum G value set for each of the runs, continuing after 10s-15s, then the acceleration rate 3G / s reduced to 1G, back to the initial state, the centrifuge is stopped. 其中,直接将受试者曝露于较大G值是危险的,因此每次运行的最大G值从2.5G开始,按照0.5G的幅度递增,直至受试者到达耐力终点或出现停机指标。 Wherein the subject is directly exposed to the larger value of G it is dangerous, so that the maximum G value for each run from the beginning 2.5G, 0.5G the amplitude increment to, or until the subject reaches the end stop endurance indicator appears. 同时,经验丰富的医生还通过载人离心机的生理信号记录系统对受试者的耳脉和心电信号实时监测并进行记录,每次运行后询问受试者主观对座舱内周边灯和中央灯的视觉感知情况,并结合受试者的表情,对其耐力做出综合判断。 At the same time, experienced doctors physiological signal recording system manned by centrifuge real-time monitoring of the subject's ear vein and ECG and records, interviews with subjects after each run on subjective cockpit lights and surrounding Central visual perception of light, combined with the subject's face, its endurance to make comprehensive judgments.

[0024] 由于动态情况下的脑电信号极其微弱,且易受干扰,因此,动态情况下测量脑电信号的难度相对于静态情况较大。 [0024] Since the EEG dynamics in extremely weak, and susceptible to interference, and therefore, the difficulty of measuring EEG dynamic situation relative to the static case larger. 如果电极位置固定不好,或过程中产生松动,则采集到的脑电数据中可用的较少。 If the electrode is not less fixed position, or during loosening, the collected data available in the EEG. 为了可以准确地采集到动态情况下的脑电数据,可在通过新型三轴向高性能新型载人离心机进行试验时,选用便携式脑电记录仪安装固定在座舱内采集和记录脑电信号。 In order to accurately collect the EEG data in the dynamic case, when tested by a new high-performance passenger novel tri-axial centrifuge, the choice of the portable EEG recorder fixed in the cockpit and recorded EEG signal acquisition. 电极安放时,需根据受试者头型的不同大小,为他们佩戴相应型号的紧固网帽,每个电极上加贴医用胶布以加紧固定,防止运转中松动。 The electrode placement, depending on the required size of the subject's head shape, their respective wear caps tightly fixed model, to tighten each of the fixed electrode affixed medical tape, to prevent loosening operation. 其中,脑电电极放置采用国际10/20 标准,取16 路电极,取电极Fpl,F3, C3, P3, O1, Fp2, F4, C4, P4, O2, F7, T3, T5, F8, T4, T60 所有电极的参考电极选用同侧耳垂处的电极A1或A2,选用单极导联的测量方式。 Wherein EEG electrode placement 10/20 of international standards, taking electrode 16, the electrode take Fpl, F3, C3, P3, O1, Fp2, F4, C4, P4, O2, F7, T3, T5, F8, T4, All references T60 electrode selection electrode A1 or A2 at the ipsilateral ear lobe, the choice of measurement unipolar leads. 具体而言,在不同G值的作用下,通过新型三轴向高性能新型载人离心机中的便携式脑电记录仪可以采集离心机中的16路中的脑电信号,也就是说通过16路电极即可获取载人离心机中的16个通道中的脑电信号。 Specifically, under the effect of different values ​​of G may be acquired EEG centrifuge 16 through the new path in the new high-performance three-axis centrifuge manned portable EEG recorder, that is, by 16 Road EEG electrodes to obtain manned centrifuge 16 channels. [0025] 在本发明的实施例中,在获取16个通道中的脑电信号之后,脑电信号首先进入座舱内的干扰抑制盒经过初步的干扰处理,之后进入到座舱内的放大记录盒,以特有格式记录到SD卡上进行后续处理。 After [0025] In an embodiment of the present invention, the EEG signal acquisition channels 16, the EEG signal into the first interference suppression cassettes in the cabin after preliminary processing of the interference, after entering the enlarged recording cartridge in the cabin, to the unique recording format for subsequent processing to the SD card. 例如,SD卡的采样频率128Hz。 For example, the sampling frequency of 128Hz SD card. 其中,干扰抑制盒和放大记录盒的位置可选取+Gz作用下,脑电信号易被采集和记录的合适位置加以固定。 Wherein the interference suppression cassettes and cassette enlargement position can be selected at + Gz action, EEG acquisition easily be fixed and a suitable location records.

[0026]S102,对M个通道中的脑电信号进行预处理,以获取M个通道中每个通道的低频脑电数据。 [0026] S102, the M channels of EEG is preprocessed to obtain a low frequency of M channels of EEG data for each channel.

[0027] 在本发明的实施例中,对M个通道中的脑电信号进行预处理,具体包括:可通过带通滤波器对脑电信号进行滤波,并可对滤波后的脑电信号进行伪迹干扰消除处理。 [0027] In an embodiment of the present invention, the M EEG channels preprocessing comprises: EEG signal may be filtered through a bandpass filter, and the filtered EEG signals were artifact interference cancellation process.

[0028] 具体地,可将采集到的16个通道中的脑电信号通过带通数字滤波器进行预处理,然后选择合适的小波基,设计合理的小波包分解层数,利用小波包分解重构的方法,消除脑电信号中的肌电、工频电源、基线漂移、电极干扰等信号,主要提取出含有alpha (α):8_13Hz、beta ( β ):13_25Hz、delta ( δ ): (0.5_4Hz)、theta ( Θ ): (4_8Hz)频带的低频脑电数据。 EEG [0028] In particular, it can be collected in the channels 16 by a band-pass digital filter pretreated, then select the appropriate wavelet base, the rational design of wavelet packet decomposition layers using wavelet packet decomposition weight configuration of a method of eliminating EMG EEG, commercial power supply, baseline drift, interference signal electrode mainly containing the extracted alpha (α): 8_13Hz, beta (β): 13_25Hz, delta (δ): (0.5 _4Hz), theta (Θ): (4_8Hz) low frequency band EEG data. 具体而言,动态情况下采集的脑电信号中含有各种伪迹干扰,所以需选用合适的方法对其进行伪迹干扰消除,以提高数据特征提取的性能和效果。 Specifically, EEG acquisition of the dynamic case contains a variety of artifacts of interference, so the need to choose the appropriate method for its artifact interference cancellation, feature extraction data to improve the performance and effect. 小波滤波是时频滤波中的一种方法,其可以使信号在不同部位得到相应最佳的时域和频域分辨率,从而把信号在一系列的不同层次的空间上完成分解和重构。 Wavelet filtering is a method of time-frequency filtering, which allows to obtain a signal corresponding to the optimum time and frequency domains in the different parts of the resolution, so that the signal decomposition and reconstruction is completed on a series of different spatial levels. 它非常适合于对非平稳信号的瞬态特性和时变特性的分析。 It is ideally suited to the analysis of non-stationary characteristics of the transient signal and the time-varying characteristics. 也就是说,在低频部分,有着较高的频率分辨率和较低的时间分辨率,而在高频部分,则有着较高的时间分辨率和较低的频率分辨率。 In other words, at low frequencies, it has a higher frequency resolution and lower time resolution, at a high frequency part, has a high time resolution and a low frequency resolution. 而其中新兴的小波包方法,比小波分解更为精细,它在低频和高频部分可同时进行分解。 Wavelet packet of which the emerging, more sophisticated than wavelet decomposition, which can be decomposed at the same time low and high frequency. 即它能够将频带进行多层次划分,进而对多分辨率分析没有进行细分的高频部分进行进一步分解,而且能够根据被分析信号的特征自适应性地选择相应的频带,使之与信号的频谱进行匹配,进而提高时频上的分辨率。 I.e., it is capable of dividing a frequency band multi-level, multi-resolution analysis and thus no high frequency part is further subdivided decomposition, and can adaptively select a frequency band to be analyzed according to the characteristic signal, so that the signal spectrum matching, thereby increasing the time and frequency resolution. 其中,脑电信号中的脑电伪迹主要有肌电图EMG (electromyography)、眼电图EOG (electro-oculogram)、体动、旋转、基线漂移及电源等。 Wherein EEG EEG artifacts mainly EMG EMG (electromyography), EOG EOG (electro-oculogram), body motion, rotation, baseline drift, and power supplies. 受训者在座舱内经历+Gz曝露时,不可避免地会紧张且做一定的对抗动作,因此受肌电的影响较大,该频段主要集中在35.8-5IHz的频段;E0G较难去除,它可能混杂在脑电数据的多个频带之中,在消除过程中很容易造成有用信息的丢失,因此根据实验经验可主要对0.5-lHz频段内的信号进行去除;交流电的工频集中在50Hz左右;电极固定和基线漂移容易形成0.8Hz和0.2Hz以下的低频慢波;离心机旋转产生的干扰作用较强,不可忽视,根据实验可达到的最大G值,离心机主臂半径,通向心加速度的换算公式可计算出可知离心机旋转对信号的干扰大致主要在 Trainee cockpit experience at + Gz exposure, inevitably tense confrontation and do some action, and therefore greatly influenced by the EMG, the band focused on 35.8-5IHz band; E0G difficult to remove, it may EEG frequency bands among a plurality of mixed data, the elimination process is likely to result in loss of useful information, thus the main signal in the frequency band 0.5-lHz the experimental experience removal; AC frequency centered around 50Hz; the fixed electrode is easily formed and the baseline drift of a low frequency 0.8Hz and 0.2Hz less slow wave; interference centrifuge rotation strong, can not be ignored, the maximum G value attainable experiments, the main arm radius of the centrifuge, leading to a centripetal acceleration the conversion formula to calculate the apparent rotation of the centrifuge primary interference signal at substantially

0.5Hz频率以下。 The following 0.5Hz frequency. 此外,工频电源、磁场、体动等也会产生不同程度的影响。 Further, the commercial power supply, the magnetic field of the body movement, etc., which affect the extent. 基于以上综合考虑,滤波器下限取IHz左右,上限取35Hz左右。 Based on the above consideration, the lower limit of the filter is about to take IHz, taking the upper limit of about 35Hz. 根据采样频率和动态脑电信号的特点,选择daubechies5小波对原始信号进行6层分解,其最小分辨率可用下式来估计,式中fs为采样 The sampling frequency and dynamic characteristic EEG choose daubechies5 original signal wavelet decomposition layer 6, which is a minimum resolution is estimated by the following formula, where fs is the sampling

频率Δ/ = $.1 = life。 Frequency Δ / = $ .1 = life. 通过小波包方法可较好地去除+Gz作用下的脑电信号中的EMG、工频 It may be preferably removed by wavelet packet Gz + EEG under action of the EMG, frequency

电源、及其它高频干扰,对基线漂移、电极干扰等低频段的慢波干扰也有较明显的效果,去噪后的信噪比大幅度提高。 Slow wave low frequency noise on the power, and other high frequency interference, baseline drift, the electrodes, also have a more significant interference effects, the denoised signal to noise ratio is greatly improved.

[0029] S103,根据低频脑电数据获取每个脑电信号的频段在每个数据段的参数相关率 [0029] S103, each acquisition of EEG data according to the low frequency band EEG parameter related to the rate of each data segment

[0030] 在本发明的实施例中,对低频脑电数据进行分析以获取脑电信号的特征参数,其中,脑电信号的特征参数包括脑电信号特征参数包括平均幅值(了(//V))、平均周期能量比 [0030] In an embodiment of the present invention, low frequency EEG data is analyzed to obtain the characteristic parameters of the EEG, wherein the characteristic parameters include EEG EEG feature parameters including the average amplitude (a (@ V)), the average energy ratio cycle

(万:(%))和平均中心频率(瓦(Hz));对脑电信号的特征参数进行归一化处理,并根据归一化处理后的特征参数获取低频脑电数据的每个频段的估计值Bz;根据每个频段的估计值匕获取每个频段的参数相关率f (%)。 (Million: (%)) and an average center frequency (W (Hz)); EEG characteristic parameters will be normalized, and the low frequency EEG data acquired according to the characteristic parameters of the normalization for each frequency band It estimates Bz; dagger value acquisition parameters related to each frequency band of f (%) estimated for each frequency band. 其中,z表示脑电信号的各个频段,例如z可为α、β频段或者其他频段。 Wherein, z denotes each band EEG, for example, z may be α, β or other frequency bands.

[0031] 具体而言,在获取低频脑电数据之后,可对低频脑电数据以预设时间间隔进行周期化处理,并对周期化的脑电数据进行快速傅里叶变换FFT (Fast FourierTransformation)。 [0031] Specifically, after acquiring the low frequency EEG data, EEG data may be low-frequency periodic intervals at a predetermined treatment, and period of EEG data is a Fast Fourier Transform FFT (Fast FourierTransformation) . 例如,可将低频脑电数据以2s为一段,分成连续的多段,以及对各个通道每段的脑电数据进行快速傅里叶变换,并做出每个2s数据段的周期图,其中,周期图由16个通道内的以0.5Hz长度分割的频域中的傅里叶成分的平方和构成。 For example, low frequency EEG data 2s is a length, into a plurality of consecutive segments, and may be a fast Fourier transform on each segment of each channel of EEG data, and make every 2s FIG period data segment, wherein the period FIG square configuration and a length of the frequency domain 0.5Hz divided in the channels 16 of the Fourier components. 以及在获取周期图之后,可通过各周期图参数把各个通道的信号特征表达出来。 FIG acquisition period and after, by the parameters of each cycle of FIG signal characteristics of the respective channels expressed.

[0032] 在本发明的实施例中,平均幅值(1(/^))可通过以下公式计算: [0032] In an embodiment of the present invention, the average amplitude (1 (/ ^)) can be calculated by the following equation:

Figure CN103845052AD00081

[0034] 其中,Az(J)为第j个通道z频段的脑电信号的幅度,j=l, 2,...,16,其中,Az(J)可通过以下公式计算: [0034] wherein, Az (J) for the j-th amplitude of EEG frequency bands of the channel z, j = l, 2, ..., 16, wherein, Az (J) can be calculated by the following equation:

Figure CN103845052AD00082

[0036] 其中,Sz(J)表示第j个通道z频段的脑电信号的能量。 [0036] wherein, Sz (J) represents the energy of the j-th channel of EEG frequency z.

[0037] 在本发明的实施例中,平均周期能量比(万.(%))可通过以下公式计算: [0037] In an embodiment of the present invention, the energy may be computed than the average period (Wan (%).) By the following equation:

Figure CN103845052AD00083

[0039] 其中,Dz(j)为第j个通道z频段的脑电信号的周期能量比,j=l, 2,...,16,其中,Dz(J)可通过以下公式计算: [0039] wherein, Dz (j) is the j-th channel EEG z band energy ratio of the cycle, j = l, 2, ..., 16, wherein, Dz (J) can be calculated by the following equation:

[0040] Dz (j)=Sz(j)/ST(j) XlOO [0040] Dz (j) = Sz (j) / ST (j) XlOO

[0041] 其中,Sz(j)表示第j个通道z频段的脑电信号的能量,j=l, 2,...,16, St(j)表示第j个通道T (0.5-25HZ)频段的脑电信号的能量。 [0041] wherein, Sz (j) represents the energy of the j-th EEG band channel z, j = l, 2, ..., 16, St (j) represents the j-th channel T (0.5-25HZ) EEG energy band.

[0042] 在本发明的实施例中,平均中心频率(户:(//4)可通过以下公式计算: [0042] In an embodiment of the present invention, an average center frequency (user: (4 //) can be calculated by the following equation:

Figure CN103845052AD00084

[0044] 其中,Fz(j)为第j个通道z频段脑电信号的中心频率,j=l,2,...,16,其中,Fz(j)可通过以下公式计算: [0044] where, Fz (j) is the center frequency of the j-th frequency channel EEG z, j = l, 2, ..., 16, where, Fz (j) can be calculated by the following equation:

Figure CN103845052AD00085

[0046] 表示第j个通道z频段中最大能量谱的中心频率,flower表示第j个通道z频段的下界;fup表示第j个通道z频段的上界,P(fz(j))表示第j个通道在z频段的能量。 [0046] indicates the j-th channel z band maximum energy spectrum center frequency, flower represents a lower bound of the j-th channel z bands; FUP represents band upper bound of the j-th channel z, P (fz (j)) represents z j channels in the energy band. [0047] 在本发明的实施例中,在获取每个频道的脑电信号的平均幅值ΰ.(//V))、平均周 [0047] In an embodiment of the present invention, the acquisition of the EEG signal for each channel of the average amplitude ΰ. (// V)), the average weekly

期能量比(D: (%))和平均中心频率(A(Hz))后,可通过以下公式对脑电信号的特征参数进行归一化处理: Of energy ratio (D: (%)) and after an average center frequency (A (Hz)), can be normalized EEG characteristic parameters by the following equation:

[0048] [0048]

Figure CN103845052AD00091

[0049]其中,i 表示数据段的序列号,Qz(i)表示A_(/_)或D..(/_)成F_(/_), minQz(i) % Qz(i)中的最小值,maxQz(i)为Qz(i)中的最大值; [0049] where, i denotes the sequence number of the data segment, Qz (i) represented by A _ (/ _) or D .. (/ _) as F _ (/ _), the minQz (i)% Qz (i) Minimum value, maxQz (i) the maximum value Qz (i);

[0050] 具体而言,通过上述归一化公式对脑电信号的平均幅值(孓(/W))、平均周期能量比Φ: (%))和平均中心频率(F: (Hz j)分别进行归一化处理。 [0050] Specifically, by the above normalization equation the average amplitude of EEG signal (relic (/ W)), the average energy ratio cycle Φ: (%)) and an average center frequency (F: (Hz j) They were normalized.

[0051] 在对脑电信号的特征参数进行归一化处理后,可通过以下公式计算估计值Bz: [0051] After the parameters of the characteristic EEG is normalized, the estimated value may be calculated by the following equation Bz:

[0052] [0052]

Figure CN103845052AD00092

[0053] 在本发明的实施例中,在获取每个频段的估计值Bz后,可通过以下公式计算参数相关率#(%): [0053] In an embodiment of the present invention, after obtaining the estimated value Bz each band, may be calculated by the following equation parameters and correlation of # (%):

[0054] [0054]

Figure CN103845052AD00093

[0055] 其中,i表示数据段的序列号,Bz(std)表示数据段为i时,估计值匕中的标准值。 [0055] where, i denotes the sequence number of the data segment, Bz (std) represents the segment when data is i, the estimated value of the standard value of the dagger. 具体而言,数据段为i时,所对应的每个频段的估计值Bz中的最大值通常被定义为该数据段i所对应的标准值。 Specifically, the maximum estimated value for each band segment Bz is i, the corresponding standard value is typically defined for the data corresponding to the segment i. 也就是说,不同数据段对应着不同的标准值。 That is, different data segments corresponding to a different standard values. 通过计算参数相关率&"(%)可以很好地消除个体不同的差异,因此,在评价脑电变化时能够给出客观的和比较准确的判断依据。 & Parameter by calculating "(%) can be a good cancellation-related differences in rates of different individuals, so when evaluating the EEG changes can give more accurate and objective judgment basis.

[0056] S104,当参数相关率/?"(%)符合昏厥前预警条件时,进行人体昏厥预警提醒。 [0056] S104, when the parameter related to the rate /? "When (%) in line with syncope before warning conditions, human fainting warning reminder.

[0057] 在本发明的实施例中,通过反复试验发现,不同G值下alpha( α ):8_13Ηζ和beta(β ):13-25Ηζ频段脑电数据的参数相关率变化比较的明显,通过分析参数相关率和 [0057] In an embodiment of the present invention, was found by trial and error, alpha (α) different G values: 8_13Ηζ and beta (β): 13-25Ηζ band parameter related EEG data rate change significantly compared by analysis and parameters related to rate

<(%)是否满足预设昏厥前条件即可实现人体昏厥前预警。 <(%) Satisfies a preset condition before fainting can be realized before the body fainting warning.

[0058] 具体而言,图2和图3是受试者在载人离心机中分别经过了4G和5G的重力加速度所引起的脑电信号和耳脉信号的变化图,并且图2和图3中对G值期间载人离心机的生理信号记录系统记录的耳脉信号所对应的耳脉较低和耳脉拉平的状态分别予以标出。 [0058] Specifically, FIG. 2 and FIG. 3 is subject manned centrifuge after each change in EEG and FIG ear 4G and 5G clock signal due to gravitational acceleration, and FIG. 2 and FIG. ear veins and lower ear ear vein flattened state of the clock signal 3 in physiological signal recording system during manned centrifuge value G corresponding to the recording are to be marked. 对应 correspond

耳脉的不同变化状态,参数相关率和<(%)表现出一定的变化特性。 Different variations of the state of the ear vein, and parameters related to rate <(%) showed some variation characteristics. 通过分析可以 By analyzing possible

发现当耳脉拉平或者耳脉较低时,参数相关率<(%)和^(%)表现出较明显的变化特性。 It found that when a lower ear or ear vein clock leveled, rate-related parameter <(%) and ^ (%) showed obvious change in characteristics. 由于耳脉拉平持续2s通常被认为人体已经处于晕厥前的状态,因此重点研究对应耳脉拉平时的参数相关率<"(%)和^^(%)的变化特性。即在基于脑电信号分析人体的当前状态 Since the flare pulse duration 2s ear is generally considered to have been in a state before the body syncope, so focused on the corresponding ear vein flare rate related parameter < "(%) and ^^ (%) change in characteristics based on EEG i.e. analysis of the current state of the human body

时,可以基于参数相关率和对人体的当前状态进行分析,并判断参数相关率 When, it can be analyzed and the current state of the human body based on the relevant parameters, and determine parameters associated rate

Κ(%)和K(%)是否满足预设昏厥前预警条件。 Κ (%) and K (%) meets a preset alarm conditions before fainting. 在本发明的实施例中,脑电信号的频段包括α频段和β频段,其中α频段和β频段分别为8-13Ηζ和13_25Ηζ,昏厥前预警条件为:a.α频段和β频段脑电数据的参数相关率和i^(%)均大于90%;b.在满足条件 In an embodiment of the present invention, EEG frequency bands comprises α and β bands, wherein α and β frequency bands respectively and 8-13Ηζ 13_25Ηζ, warning conditions before fainting: a.α EEG frequency bands and β the parameters related to rate and i ^ (%) greater than 90%; b is satisfied conditions.

a后的2~IOs内,参数相关率<(%)小于50%,并且参数相关率小于50%的状态持 After the 2 ~ IOs, a, parameter related to the rate of <(%) less than 50%, and the parameter related to the state of less than 50% holding

续段数大于或者等于2。 Continued segment number greater than or equal 2. 当参数相关率和^^(%)满足预设昏厥前预警条件,即确定人 When the parameters related to the rate and ^^ (%) satisfy a preset warning before fainting condition, that is, to determine the person

体处于昏厥前状态,进行昏厥预警提醒,从而可避免对受训者造成更大的伤害。 Before fainting body in state, fainting early warning alerts, which can avoid greater damage to the trainees.

[0059] 本发明实施例的基于采集脑电信号的人体昏厥预警方法,具有以下有益效果:1、通过直接在载人离心机上开展人体实验,研究离心机+Gz下的脑电变化特征,根据脑电变化特征可以充分了解到晕厥前或G-LOC前仅通过肉眼判图而无法了解的有关的脑功能状态的变化信息,并根据参数相关率的变化情况对+Gz引起的晕厥提出预警及判别方法,对于全面了解受训者的体征,指导人体训练具有实际应用价值,对于提醒飞行员在训练和执行飞行任务中及早采取相应的防护措施,解决高G防护问题具有重要现实意义;2、通过参数相关率#(%)可以消除个体不同产生的差异,在评价脑电变化时能够给出客观的和较为准确的判断依据。 [0059] Example embodiments of the present invention is based on the method of collecting human fainting warning EEG, has the following advantages: 1, by conducting human trials, study of EEG Changes in the centrifuge Gz + manned directly on the centrifuge, in accordance with EEG changes can fully understand presyncopal before G-LOC only by visual judgment can not understand FIG change information related to brain function or status, and according to the changes of the parameters related to the rate of + Gz syncope due to early warning and discrimination method for comprehensive understanding of the signs of trainees, training guide body has a practical value, has important practical significance to alert the pilot to take early and appropriate protective measures in the implementation of training and missions, solve the problem of high G protection; 2, parameter Related # rate (%) can be generated to eliminate individual differences, changes in the evaluation of the EEG can give more accurate and objective judgment basis.

[0060] 应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。 [0060] It should be understood that various portions of the present invention may be implemented in hardware, software, firmware or a combination thereof to achieve. 在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。 In the above-described embodiment, a plurality of steps or methods may be implemented in software or firmware and executed by a suitable system executing instructions stored in a memory with. 例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。 For example, if implemented in hardware, as in another embodiment, the present technique may be any one of the following well-known in the art, or their combination thereof: a logic gate circuit for implementing logic functions upon data signals discrete logic circuits having appropriate combinational logic gate circuit ASIC, a programmable gate array (PGA), a field programmable gate array (FPGA) and the like.

[0061] 在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。 [0061] In the description of the present specification, reference to the term "one embodiment," "some embodiments", "an example", "a specific example", or "some examples" means that a description of the exemplary embodiment or embodiments described a particular feature, structure, material, or characteristic is included in at least one embodiment of the present invention, embodiments or examples. 在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。 In the present specification, a schematic representation of the above terms necessarily referring to the same embodiment or example. 而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。 Furthermore, the particular features, structures, materials, or characteristics described embodiments or examples may be at any one or more in a proper manner.

[0062]尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。 [0062] While there has been illustrated and described embodiments of the present invention, those of ordinary skill in the art can be appreciated: that various changes may be made to these embodiments without departing from the principles and spirit of the invention, modifications, substitutions and modifications, the scope of the present invention is defined by the claims and their equivalents.

Claims (9)

  1. 1.一种基于采集脑电信号的人体昏厥预警方法,其特征在于,包括: 通过脑电图EEG采集仪采集不同G值下载人离心机的M个通道中的脑电信号,其中,M为正整数; 对所述M个通道中的脑电信号进行预处理,以获取所述M个通道中每个通道的低频脑电数据; 根据所述低频脑电数据获取每个所述脑电信号的频段在每个数据段的参数相关率R'U%) , 当所述参数相关率K"(%)符合昏厥前预警条件时,进行人体昏厥预警提醒。 An alarming method based on human fainting acquired EEG, wherein, comprising: collecting EEG downloaders different G values ​​of M channels in the centrifuge by EEG electroencephalogram collection device, wherein, M is positive integer; EEG signals of the M channels is pretreated to obtain a low frequency of the M channels of EEG data for each channel; obtaining each of the EEG signal data in accordance with the low frequency EEG the frequency band associated parameters for each data segment rate R'U%), when the parameter associated rate K "(%) meet the alarm conditions before syncope, syncope body for warning alert.
  2. 2.如权利要求1所述的方法,其特征在于,所述对M个通道中的脑电信号进行预处理具体包括: 通过带通滤波器对所述脑电信号进行滤波,并对滤波后的脑电信号进行伪迹干扰消除处理。 After filtering and filter the EEG signal through a bandpass filter,: 2. A method as claimed in claim 1, wherein said preprocessing comprises M channels of the EEG of the EEG artifact interference canceller processing.
  3. 3.如权利要求1所述的方法,其特征在于,所述根据低频脑电数据获取每个所述脑电信号的频段在每个数据段的参数相关率Rf (%)具体包括: 对所述低频脑电数据进行分析以获取所述脑电信号的特征参数,其中,所述脑电信号的特征参数包括平均幅值(1(//ν))、平均周期能量比(万_-(%))和平均中心频率(I(Hz)); 对所述脑电信号的特征参数进行归一化处理,并根据归一化处理后的特征参数获取所述低频脑电数据的每个频段的估计值Bz ; 根据所述每个频段的估计值Bz获取每个频段的参数相关率#(%)。 3. The method according to claim 1, wherein each of the obtaining of the band-related EEG rate Rf (%) in the specific parameters for each data segment comprising a low frequency EEG data: of their said low frequency EEG data is analyzed to obtain the characteristic parameters of the EEG signal, wherein the characteristic parameter comprises the average amplitude of EEG (1 (// ν)), the average energy ratio cycle (Wan _- ( %)) and an average center frequency (I (Hz)); the characteristic parameters of the EEG is normalized, and acquiring the EEG data in each low frequency band in accordance with the characteristic parameter normalized It estimates Bz; Bz acquisition parameters related to each frequency band # rate (%) based on the estimated value of each band.
  4. 4.如权利要求3所述的方法,其特征在于,所述平均幅值(]..(//v))通过以下公式计算: 4. The method according to claim 3, wherein said average amplitude (] .. (// v)) is calculated by the following equation:
    Figure CN103845052AC00021
    其中,Az (j)为第j个通道z频段的脑电信号的幅度,j=l,2,..., 16,所述Az (j)可通过以下公式计算: Wherein, Az (j) is the j-th channel amplitude EEG frequency bands z, j = l, 2, ..., 16, the Az (j) can be calculated by the following equation:
    Figure CN103845052AC00022
    其中,Sz(J)表示第j个通道Z频段的脑电信号的能量。 Wherein, Sz (J) represents the energy of the j-th channel EEG Z bands.
  5. 5.如权利要求3所述的方法,其特征在于,所述平均周期能量比(万_(%))通过以下公式计算: 5. The method according to claim 3, characterized in that the average period calculated energy ratio (Wan _ (%)) by the following equation:
    Figure CN103845052AC00023
    其中,Dz (j)为第j个通道z频段的脑电信号的周期能量比,j=l, 2,..., 16,所述Dz (j)可通过以下公式计算: Dz (j)=Sz(j)/ST(j) XlOO 其中,Sz(J)表示第j个通道z频段的脑电信号的能量,j=l, 2,...,16, St (j)表示第j个通道T (0.5-25Hz)频段的脑电信号的能量。 Wherein, Dz (j) for the period of the j-th EEG channel band energy ratio z, j = l, 2, ..., 16, the Dz (j) can be calculated by the following formula: Dz (j) = Sz (j) / ST (j) XlOO wherein, Sz (J) represents the energy of the j-th channel of EEG frequency z, j = l, 2, ..., 16, St (j) represents the j energy (0.5-25Hz) EEG band channels T.
  6. 6.如权利要求3所述的方法,其特征在于,所述平均中心频率(/^(//z)).通过以下公式计算: 6. The method according to claim 3, wherein the mean center frequency (/ ^ (// z)) is calculated by the following equation:
    Figure CN103845052AC00031
    其中,Fz (j)为第j个通道z频段脑电信号的中心频率,j=l,2,..., 16,所述Fz (j)通过以下公式计算: Wherein, Fz (j) is the center frequency of the j-th frequency channel EEG z, j = l, 2, ..., 16, the Fz (j) is calculated by the following equation:
    Figure CN103845052AC00032
    yf (刀表示第j个通道z频段中最大能量谱的中心频率,flower表示第j个通道z频段的下界;fup表示第j个通道Z频段的上界,P(fz(j))表示第j个通道在Z频段的能量。 YF (X denote the maximum energy of the spectrum of the center frequency of the j-th channel z bands, flower j-th channel lower bound z band; FUP represents band upper bound of the j-th channel Z, P (fz (j)) represents j channels in the Z energy band.
  7. 7.如权利要求3所述的方法,其特征在于,所述对脑电信号的特征参数进行归一化处理,并根据归一化处理后的特征参数获取所述低频脑电数据的每个频段的估计值Bz具体包括: 通过以下公式对所述脑电信号的特征参数进行归一化处理: 7. The method according to claim 3, wherein said normalizing treatment EEG characteristic parameters, each of said low frequency and acquires EEG data after the feature parameters normalized Bz frequency estimate comprises: normalizing a characteristic parameter of the processing of EEG signal by the following equation:
    Figure CN103845052AC00033
    其中,i表示数据段的序列号,Qz(i)表示A_⑴或D_(/)成/7_(/'), minQz(i)为仏(:0中的最小值,maxQz(i)为Qz(i)中的最大值; 在对所述脑电信号的特征参数进行归一化处理后,通过以下公式计算估计值Bz: Where, i denotes the sequence number of the data segment, Qz (i) represents A_⑴ or D _ (/) as / 7 _ (/ '), minQz (i) as Fo (: minimum value of 0 in, maxQz (i) is Qz ( the maximum value i) is; in the characteristic parameters of the EEG is normalized, Bz estimated value calculated by the following equation:
    Figure CN103845052AC00034
  8. 8.如权利要求3所述的方法,其特征在于,所述根据估计值Bz获取每个频段的参数相关率#(%),具体包括: 通过以下公式计算参数相关率i^(%): 8. The method according to claim 3, wherein said obtaining each parameter Bz rate related frequency band # (%) according to the estimated value, comprises: correlation parameter calculated by the formula of i ^ (%):
    Figure CN103845052AC00035
    其中,i表示数据段的序列号,Bz(Std)表示数据段为i时,估计值Bz中的标准值。 Where, i denotes the sequence number of the data segment, Bz (Std) is represented by a data segment i, the estimated value of the standard values ​​of Bz.
  9. 9.如权利要求1所述的方法,其特征在于,所述脑电信号的频段包括α频段和β频段,所述α频段和β频段分别为8-13Ηζ和13-25ΗΖ,所述昏厥前预警条件为: a.α频段和β频段脑电数据的参数相关率i?f(%)和Α=(%)均大于90%; b.在满足条件a后的2~IOs内,所述参数相关率(%)小于50%,且所述参数相关率<(%)小于50%的状态持续段数大于或者等于2。 9. The method according to the former as claimed in claim 1, wherein said band comprises α EEG frequency bands and β, the α and β frequency bands respectively and 8-13Ηζ 13-25ΗΖ, the fainting warning conditions were: rate related parameter β a.α frequency bands and EEG data of i f (%), and Α = (%) greater than 90%; b within 2 ~ IOs satisfies the condition a, the?. parameters related to rate (%) less than 50%, and the rate parameters related <(%) less than 50% of the continuous state the number of stages equal to or greater than 2.
CN 201410058482 2014-02-20 2014-02-20 Based on the human body fainting warning device acquisition of EEG CN103845052B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201410058482 CN103845052B (en) 2014-02-20 2014-02-20 Based on the human body fainting warning device acquisition of EEG

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201410058482 CN103845052B (en) 2014-02-20 2014-02-20 Based on the human body fainting warning device acquisition of EEG

Publications (2)

Publication Number Publication Date
CN103845052A true true CN103845052A (en) 2014-06-11
CN103845052B CN103845052B (en) 2016-06-01

Family

ID=50853490

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201410058482 CN103845052B (en) 2014-02-20 2014-02-20 Based on the human body fainting warning device acquisition of EEG

Country Status (1)

Country Link
CN (1) CN103845052B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105564659A (en) * 2016-01-02 2016-05-11 无锡桑尼安科技有限公司 Spring type emergency alarm device used on plane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7373198B2 (en) * 2002-07-12 2008-05-13 Bionova Technologies Inc. Method and apparatus for the estimation of anesthetic depth using wavelet analysis of the electroencephalogram
CN101690659A (en) * 2009-09-29 2010-04-07 华东理工大学 Brain wave analysis method
US20110152633A1 (en) * 2007-03-28 2011-06-23 The London Health Sciences Centre Research Inc. Eeg monitor of fetal health
CN103300850A (en) * 2013-04-19 2013-09-18 杭州电子科技大学 Method for collecting and processing EEG (Electroencephalogram) signals of stroke patient
DE102012013733A1 (en) * 2012-07-11 2014-01-16 Hans-Peter Blomeyer-Bartenstein Head attachable device for electroencephalography (EEG) dissipation with integrated electronic unit for neuro feedback, has sound generator provided for acquisition of EEG signals to receipt of acoustic information of computer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7373198B2 (en) * 2002-07-12 2008-05-13 Bionova Technologies Inc. Method and apparatus for the estimation of anesthetic depth using wavelet analysis of the electroencephalogram
US20110152633A1 (en) * 2007-03-28 2011-06-23 The London Health Sciences Centre Research Inc. Eeg monitor of fetal health
CN101690659A (en) * 2009-09-29 2010-04-07 华东理工大学 Brain wave analysis method
DE102012013733A1 (en) * 2012-07-11 2014-01-16 Hans-Peter Blomeyer-Bartenstein Head attachable device for electroencephalography (EEG) dissipation with integrated electronic unit for neuro feedback, has sound generator provided for acquisition of EEG signals to receipt of acoustic information of computer
CN103300850A (en) * 2013-04-19 2013-09-18 杭州电子科技大学 Method for collecting and processing EEG (Electroencephalogram) signals of stroke patient

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
智屹忠 等: "《晕厥的临床和脑电地形图研究》", 《现代点生理学杂志》, vol. 4, no. 4, 31 December 1997 (1997-12-31) *
李毅峰 等: "《高重力加速度及其模拟条件下脑电变化研究综述》", 《北京生物医学工程》, vol. 32, no. 6, 31 December 2013 (2013-12-31) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105564659A (en) * 2016-01-02 2016-05-11 无锡桑尼安科技有限公司 Spring type emergency alarm device used on plane

Also Published As

Publication number Publication date Type
CN103845052B (en) 2016-06-01 grant

Similar Documents

Publication Publication Date Title
Celka et al. A computer-aided detection of EEG seizures in infants: a singular-spectrum approach and performance comparison
Dauwels et al. Diagnosis of Alzheimer's disease from EEG signals: where are we standing?
Acharya et al. Analysis and automatic identification of sleep stages using higher order spectra
US5775330A (en) Neurometric assessment of intraoperative anesthetic
Lal et al. Electroencephalography activity associated with driver fatigue: Implications for a fatigue countermeasure device.
US20110015503A1 (en) Medical apparatus for collecting patient electroencephalogram (eeg) data
Shoeb et al. Application of machine learning to epileptic seizure detection
Duman et al. Efficient sleep spindle detection algorithm with decision tree
US20150011907A1 (en) Systems and Methods To Infer Brain State During Burst Suppression
Davidson et al. EEG-based lapse detection with high temporal resolution
CN101690659A (en) Brain wave analysis method
Henderson et al. Development and assessment of methods for detecting dementia using the human electroencephalogram
Poza et al. Extraction of spectral based measures from MEG background oscillations in Alzheimer's disease
WO2008037820A1 (en) System for monitoring and analysing cardiorespiratory signals and snoring
Ovchinnikov et al. An algorithm for real-time detection of spike-wave discharges in rodents
Halford Computerized epileptiform transient detection in the scalp electroencephalogram: Obstacles to progress and the example of computerized ECG interpretation
Lee et al. Automatic motion and noise artifact detection in holter ECG data using empirical mode decomposition and statistical approaches
US7860561B1 (en) Method of quantifying a subject&#39;s wake or sleep state and system for measuring
US20050137494A1 (en) Method and apparatus for determining the cerebral state of a patient using generalized spectral entropy of the EEG signal
Sun et al. Phase synchronization analysis of EEG signals: an evaluation based on surrogate tests
Boashash et al. Time-frequency processing of nonstationary signals: Advanced TFD design to aid diagnosis with highlights from medical applications
Choi et al. Slow-wave sleep estimation on a load-cell-installed bed: a non-constrained method
US20110224570A1 (en) Method and apparatus for automatic evoked potentials assessment
Valenza et al. Oscillations of heart rate and respiration synchronize during affective visual stimulation
Mardi et al. EEG-based drowsiness detection for safe driving using chaotic features and statistical tests

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model