CN103837525B - Enrichment total chromium elution apparatus and method of measuring flow injection chemiluminescence Water - Google Patents

Enrichment total chromium elution apparatus and method of measuring flow injection chemiluminescence Water Download PDF

Info

Publication number
CN103837525B
CN103837525B CN 201410082137 CN201410082137A CN103837525B CN 103837525 B CN103837525 B CN 103837525B CN 201410082137 CN201410082137 CN 201410082137 CN 201410082137 A CN201410082137 A CN 201410082137A CN 103837525 B CN103837525 B CN 103837525B
Authority
CN
Grant status
Grant
Patent type
Application number
CN 201410082137
Other languages
Chinese (zh)
Other versions
CN103837525A (en )
Inventor
刘岩
褚东志
李洋
吴丙伟
张述伟
吴宁
马然
张颖颖
曹煊
刘东彦
郭翠莲
张颖
王茜
石小梅
王昭玉
范萍萍
张国华
吕靖
张婷
曹璐
任国兴
王洪亮
陈朝贵
杨小满
高杨
程岩
侯广利
Original Assignee
山东省科学院海洋仪器仪表研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

本发明提供了一种富集洗脱流动注射化学发光法测量水体总铬的装置及方法,它是基于磁性纳米材料富集总铬,再洗脱,通过洗脱下来总铬与二甲基二甲氧基硅烷形成络合物,该络合物与过氧化草酸酯氧化产生化学发光,同时化学发光强程度与水体中总铬元素的浓度具有线性关系,通过利用富集-洗脱-络合-化学发光技术建立了一种磁性纳米材料富集-洗脱流动注射化学发光法测定水体中总铬的方法。 The present invention provides an apparatus and method for enriching total chromium elution of water flow injection chemiluminescence measurement, which is based on magnetic nanomaterials total chromium enriched, then eluted by eluting total chromium and dimethyldiallylammonium methoxysilane form a complex, the peroxide complex with oxalate ester chemiluminescent oxidation, while the concentration of the chemiluminescence intensity and the degree of chromium in water column have a linear relationship, by using the enrichment - elution - envelope co - chemiluminescence technique establishes a magnetic nanomaterial enrichment - water method Determination of total chromium elution flow injection chemiluminescence. 本发明测定水体中总铬具有快速,简便,准确度高的特点。 Determination of total chromium in the present invention has a water fast, simple and highly accurate characteristics.

Description

富集洗脱流动注射化学发光法测量水体总铬的装置及方法 Enrichment total chromium elution apparatus and method of measuring flow injection chemiluminescence Water

技术领域 FIELD

[0001] 本发明涉及环境化学监测技术领域,具体地说,是涉及测量水体重金属的方法。 [0001] The present invention relates to a method of environmental monitoring of chemical technologies, and particularly, to measuring the heavy metals in the water.

背景技术 Background technique

[0002] 铬是水体环境监测中的重要内容之一。 [0002] Chromium is an important water environment monitoring. 目前,测定水体中总铬的常用方法有二苯碳酰二肼分光光度法、无火焰原子吸收光谱法等,这些方法共性是持续时间长,分析过程繁杂,条件苛刻、试剂消耗量大,而且有些方法还不同程度的引入了对人体有害的有机溶剂,造成大量试剂的浪费,产生二次污染。 At present, common methods of total chromium was measured with a water Diphenylcarbazide dihydrazide spectrophotometry, flameless atomic absorption spectrometry, these methods are common long duration, complex analysis, harsh conditions, high reagent consumption, and some methods also introduces a different degree of harmful organic solvents, resulting in substantial waste of reagents, secondary pollution. 同时多数方法需要价格昂贵大型仪器,另外方法都是采用现场取样后到实验室分析的模式,即不能实现现场、实时测量的方式,样品运输过程以及处理过程易引入其他干扰物质,影响分析的准确性。 While most methods require expensive and large equipment, additional methods are based on the model after field sampling to laboratory analysis, that can not achieve on-site, real-time measurement of the way, sample transportation and processing process is easy to introduce other interfering substances, accurate impact analysis sex. 因此这个过程对于痕量级元素分析,不可能保证不会出现二次受污的可能性,而且对于复杂多变的水体环境,例如:元素形态受时空影响大;多数又处于相互关联、相互影响的状态;环境中温度压力变化大,其结果的准确性和可靠性受到质疑,从而不能确切掌握水质现状及其异常变化。 Thus the process for trace levels of elemental analysis, not possible to guarantee the possibility of secondary pollution by not occur, but also for complicated water environment, for example: large temporal influence by the elemental form; most interrelated in turn, influence each other state; large changes in temperature and pressure environment, its accuracy and reliability of the results has been questioned, and thus can not accurately grasp the status of water quality and abnormal changes.

[0003] 近年来,随着电子技术、新材料、新工艺、新的光学器件的发展,尤其是计算机技术的日新月异,通过自动分析仪来分析水体总铬的方法相应出现,虽然这些技术摆脱了实验室分析的一些缺点,如持续时间长,分析过程繁杂,条件苛刻等,但其还存在着稳定性差、灵敏度和分辨率低、离子干扰等难以克服的缺陷,使之应用范围受到限制,没能得到广泛的应用。 [0003] In recent years, with the development of electronic technology, new materials, new processes, new optical devices, especially changing process were analyzed for total chromium of water by the automatic analyzer appears appropriate, although these techniques out of computer technology Some disadvantages of laboratory analysis, such as a long duration, complex analysis, and other harsh conditions, but there are still poor stability, low sensitivity and resolution, it is difficult to overcome the ionic interference defects, so the scope of application is limited, not It can be widely used.

[0004]另外现有富集方法以及装置存在富集效率低,体系选择性不好,容易引入干扰,有机溶剂使用量大,具有二次污染等问题。 [0004] Further there is a low efficiency of enrichment, selective system is not good, easy to introduce interference, the use of large amount of organic solvent, a secondary pollution problems of the prior enrichment method and apparatus. 现在使用的化学发光检测室由于使用流通式结构,样品停留时间短,化学反光检测效率低的缺陷。 Now using chemiluminescent detection chamber due to the flow-through structures, sample short residence time, low chemical reflective defect detection efficiency.

发明内容 SUMMARY

[0005] 本发明提供了一种富集洗脱流动注射化学发光法测量水体总铬的装置及方法,它可以解决现有技术存在的不能现场工作,分析持续时间长,分析过程繁杂,条件苛刻、能耗大,尤其是产生二次污染等问题。 [0005] The present invention provides an apparatus and method for measuring the total enrichment of chromium water flow injection chemiluminescence elution, it can not solve the field work in the prior art, long-duration analysis, complex analysis, harsh conditions , energy consumption, especially in secondary pollution. 通过创新性设计富集-洗脱室和化学发光检测室,解决了现有富集方法存在富集效率低,体系选择性不好,容易引入干扰,有机溶剂使用量大,具有二次污染等问题;解决了现在使用的化学发光检测室由于使用流通式结构,样品停留时间短,化学反光检测效率低的缺陷,实现了高效富集-洗脱、快速流动注射化学发光法测量水体总铬。 Enrichment through innovative design - the elution chamber and chemiluminescent detection chamber, solves the problems of the conventional method of enrichment the enrichment of low efficiency, poor selectivity of the system, easy to introduce interference, the use of large amount of organic solvent, a secondary pollution problem; now solved using chemiluminescent detection chamber due to the flow-through structures, sample short residence time, low chemical reflective defect detection efficiency, achieves efficient enrichment - elution, measuring the total chromium rapid water flow injection chemiluminescence.

[0006] 为了达到解决上述技术问题的目的,本发明的技术方案是,一种富集洗脱流动注射化学发光法测量水体总铬的装置,所述装置包括富集-洗脱室、检测室、光电探测装置、控制装置、数据处理装置,水样栗、缓冲液栗、氧化剂栗、富集液栗、洗脱液栗、洗脱后水样栗、络合剂栗、发光试剂栗,所述富集-洗脱室通过管路与水样管路、缓冲液管路、氧化剂管路、富集液管路、洗脱液管路连接,检测室通过管路与发光试剂管路、络合剂管路、洗脱液管路连接,所述富集-洗脱室包括上部的富集-洗脱腔室和下部的气室,所述富集-洗脱腔室上部设有水样入口和洗脱液入口,所述富集-洗脱腔室下部设有洗脱液排出口和富集液排出口,所述富集-洗脱腔室中间隔设有多道筛板,至少部分筛板上装填有颗粒状磁性纳米材料,在所述富集-洗脱腔室和所述气室之间 [0006] For the purpose of solving the above technical problem, the technical solution of the present invention is a chromium enriched eluting unit total water flow injection chemiluminescence measurement, the apparatus comprising enriching - the elution chamber, the detection chamber , photoelectric detection means, control means, data processing means, like water chestnut, chestnut buffers, oxidizing agents Li, Li enriched liquid eluent chestnut, chestnut water sample after elution, complexing agents chestnut, chestnut luminescence reagent, the said enrichment - eluting the sample chamber via a line with the water conduit, line buffers, the oxidant conduit, enriched fluid conduit, pipe connections eluent, detection chamber via a line with chemiluminescence reagent conduit, network agent conduit, connected to an eluent conduit, said enriched - elution chamber includes an upper enriched - the elution chamber and a lower gas chamber, said enriched - upper chamber eluting with watery eluent inlet and an inlet, said enriched - provided with a lower portion of the elution chamber and outlet enriched eluate liquid discharge outlet, said enriched - the elution chamber is provided with multi-channel spacing sieve, at least sieve filled portion on magnetic nano granular material in said enriched - between the elution chamber and the plenum 有微孔电磁铁,所述气室设有氮气入口。 Micropores electromagnet, said air chamber is provided with a nitrogen inlet.

[0007] 所述颗粒状磁性纳米材料是以四氧化三铁为载体包裹聚二甲基硅氧烷涂层,利用腐植酸钠负载修饰聚二甲基硅氧烷涂层的磁性纳米材料。 The [0007] magnetic nano particulate tri-iron tetroxide material is surrounded by a carrier is a polydimethyl siloxane coating, a modified polydimethylsiloxane magnetic coating material using nano sodium humate load.

[0008] 所述的筛板是由聚四氟乙烯材料制成,除最上层筛板外,其余筛板上装填有所述颗粒状磁性纳米材料。 [0008] The sieve is made of a Teflon material, excepting the uppermost sieve, the rest of the deck loaded with magnetic nano particulate material.

[0009] 所述检测室侧壁上设有絮状玻璃棉。 Wool batt is provided on a sidewall of the [0009] the detection chamber.

[0010] 一种富集洗脱流动注射化学发光法测量水体总铬的方法,所述方法通过上述装置按下述步骤进行: [0010] A method for measuring the total chromium enriched water flow injection chemiluminescence elution, the method proceeds by the following steps by the above means:

[0011] (1)、化学发光试剂-过氧化草酸酯在发光试剂栗作用下作为载流; [0011] (1), a chemiluminescent reagent - peroxide chemiluminescence reagent in oxalate Li acting as a carrier;

[0012] (2)、水样和缓冲溶液分别在水样栗和缓冲液栗的作用下,使水样与缓冲溶液-醋酸-醋酸铵管路中的醋酸-醋酸铵溶液混合; [0012] (2), the water sample and a buffer solution under the effect of water samples are Li and Li of the buffer, buffer solution and the water sample - acetic acid - ammonium acetate in acetic acid line - mixing a solution of ammonium acetate;

[0013] (3)、混合后继续在管路中流动,再与氧化剂-过硫酸钾管路中的过硫酸钾溶液混合,在醋酸-醋酸铵缓冲溶液提供的pH4.5〜5.5条件下,在流动过程中,过硫酸钾氧化水中三价铬为六价铬; [0013] (3) After mixing continues to flow in the pipeline, and then with an oxidizing agent - a mixed solution of potassium persulfate line too, in acetic acid - ammonium acetate buffer under conditions pH4.5~5.5 provided in solution, in the flow process, persulfate oxidation of trivalent to hexavalent chromium in water;

[0014] (4)、氧化反应后,混合溶液一同流入富集-洗脱室,流入时间为10-15S,而后停止流入。 [0014] (4) after oxidation reaction, a mixed solution enriched with flows - the elution chamber, inflow time of 10 -15 S, then stop the inflow. 富集-洗脱室上部主要完成富集-洗脱工作,设有聚四氟乙烯筛板,筛板上装填有颗粒状磁性纳米材料,富集室下部设有气室,气室与富集-洗脱室上部之间安装有微孔电磁铁,气室设有氮气通入阀,通入氮气鼓泡30-50S后停止通入氮气,使得颗粒状磁性纳米材料与水体混均,完成富集过程; Enrichment - the upper chamber mainly to complete the elution Enrichment - work eluting with PTFE sieve trays, packed with the particulate magnetic nanomaterials upper deck, a lower chamber enriched air chamber, the air chamber and enrichment - at the elution chamber is mounted between the upper electromagnet microporous, gas chamber with the nitrogen through a valve, bubbled with nitrogen 30-50S nitrogen was stopped, so that the particulate material with magnetic nanoparticles are mixed with water to complete the rich collection process;

[0015] (5)、对微孔电磁铁加电,使得电磁铁产生磁性,电磁铁吸引磁性纳米材料沉降到每层筛板上,富集液栗开启20-30s后停止,吸走富集液; [0015] (5), powering on the microporous electromagnets generate a magnetic solenoid such that the electromagnet attracts the magnetic nanomaterials on each deck to settle, the liquor Li 20-30s stopped after opening, sucked enriched liquid;

[0016] (6)、开启洗脱液-高氯酸钾栗10-15S后停止,微孔电磁铁断电,使得电磁铁失去磁性,通入氮气使得颗粒状磁性纳米材料与水体混均,鼓泡30-50S后停止通入氮气; [0016] (6), opening eluent - stopped after 10 -15 S Li perchlorate, microporous electromagnet de-energized, so that the electromagnet loses its magnetism, nitrogen gas such that the particulate magnetic material and the nano-water mixed, bubbled 30-50S after stopping the flow of nitrogen;

[0017] (7 )、微孔电磁铁加电,使得电磁铁产生磁性,电磁铁吸弓I磁性纳米材料沉降到每层筛板上,洗脱后水样栗开启,吸走洗脱液; [0017] (7), an electromagnet power micropores, such that the electromagnet generates a magnetic, magnetic solenoid pull bow I nanomaterials on each deck to settle, after elution Li turned watery, sucked eluent;

[0018] (8)、洗脱液在洗脱后水样栗的作用下与络合剂-二甲基二甲氧基硅烷管路中的二甲基二甲氧基硅烷溶液混合,二甲基二甲氧基硅烷与洗脱液中总铬形成络合物; [0018] (8), under the action of the eluent after elution of the water sample and the complexing agent Li - mixed solution of dimethyl dimethoxy silane, dimethyl dimethoxy silane line of dimethyl dimethoxy silane and total chromium in the eluate to form a complex;

[0019] (9)、络合物溶液与载流混合后一起流通检测室,检测室侧壁设有絮状玻璃棉,溶液通过浸润的方式,从上部流下,絮状玻璃棉为絮状结构,微孔多、表面积大,具有很强的吸附能力,增强了化学反光效率,浸润方式提供光电探测装置中的光电倍增管检测溶液中的化学发光信号的效率; [0019] (9), the carrier complex solution were mixed together after the flow detection chamber, the detection chamber side wall is provided with glass wool fluff, by way of infiltration of the solution, from the upper stream, a flocculent wool batt structure , porous, large surface area, has a strong adsorption capacity enhanced chemical reflective efficiency, to provide a photoelectric photodetection device iNVASION photomultiplier tube detection efficiency of the chemiluminescent signal solution;

[0020] (10)、光电倍增管对流通过的溶液所发出的光信号进行采集放大,并转换成电信号送入微型计算机数据处理装置,数据处理装置对得到的空白信号与样品信号进行计算,再根据信号程度差值数据和标准样品的信号程度差值数据对应关系,计算出水体中总铬的浓度,并进行显示、打印输出。 [0020] (10), an optical signal by the photomultiplier tube convection emitted was collected amplified and converted into electrical signals fed to the microcomputer data processing apparatus, data processing apparatus of the blank signal obtained sample signal is calculated, the signal then corresponds to the degree of difference between the signal level of difference data and data relationships standard sample calculation of the concentration of total chromium in water, and the display, printout.

[0021] 本发明还具有以下附加技术特征: [0021] The present invention has the following additional features:

[0022] 所述的水样溶液流量为5.0-10ml/min。 [0022] The flow rate of the aqueous sample solution of 5.0-10ml / min.

[0023] 所述醋酸-醋酸铵缓冲溶液流量为0.1- - 0.5ml/min,浓度为(1.0-1.5) X 10_ 2mol/L。 [0023] The acetic acid - ammonium acetate buffer solution flow 0.1- - 0.5ml / min, the concentration of (1.0-1.5) X 10_ 2mol / L.

[0024] 所述过硫酸钾溶液流量为0.1-0.5ml/min,浓度为(0.5-1.0) X 10~ 2 mol/L。 [0024] The flow rate of solution of potassium persulfate 0.1-0.5ml / min, a concentration of (0.5-1.0) X 10 ~ 2 mol / L.

[0025] 所述颗粒状磁性纳米材料是以四氧化三铁为载体包裹聚二甲基硅氧烷涂层,利用腐植酸钠负载修饰制备的功能性磁性纳米材料。 The [0025] magnetic nano particulate tri-iron tetroxide material is surrounded by a carrier is a polydimethyl siloxane coating prepared modified load functional magnetic nano materials using sodium humate.

[0026] 所述的富集-洗脱室采用聚四氟材料,结构分为上部富集-洗脱腔室和下部气室,上部主要完成富集-洗脱工作,设有聚四氟乙烯筛板,共5层,每层筛板上装填有颗粒状磁性纳米材料,最上层筛板为空,主要防止颗粒混合过程中堵塞进样口。 [0026] The enrichment - PTFE material using the elution chamber, divided into an upper structure Enrichment - elution chamber and a lower chamber, the upper portion of the main enrichment is completed - work eluting with polytetrafluoroethylene sieve, a total of five layers, each upper deck loaded with particulate magnetic nano material, the uppermost sieve is empty, the main mixing process to prevent particles from clogging the inlet. 富集室下部设有气室,气室与富集-洗脱腔室之间安装有微孔电磁铁,气室设有氮气通入阀。 A lower chamber enriched air chamber, the air chamber and enriched - microporous solenoid mounted between the elution chamber, the air chamber is provided with nitrogen through valve. 当富集-洗脱过程中,通入氮气鼓泡,保证颗粒与溶液均匀混合,当富集-洗脱过程完成后,微孔电磁铁加电,吸引磁性纳米材料沉降到每层筛板上,完成富集液和洗脱液顺利排出。 When enrichment - elution, bubbled with nitrogen, to ensure uniform mixing of particles with the solution, when enriched - After elution is complete, the electromagnet power microporous, attract magnetic nano materials to settle on each deck complete smooth discharge of the liquor eluate. 设置多层筛板,保证了每层筛板上颗粒状磁性纳米材料与水体的均匀混合,增加了富集和洗脱效率。 The multilayer sieve provided, ensuring uniform mixing of particulate material on each magnetic nano-deck with a body of water, increased enrichment and elution efficiency.

[0027] 所述鼓泡进入富集-洗脱室的氮气流量为20_50ml/min。 The [0027] Enrichment bubbled into - a nitrogen flow rate of the elution chamber 20_50ml / min.

[0028] 所述洗脱液-高氯酸钾流量为0.5-1.0ml/min。 [0028] The eluate - perchlorate flow 0.5-1.0ml / min.

[0029] 所述络合剂在栗作用下流量为(λ 5-1.0ml/min,浓度为(λ 1-0.3mol/L。 [0029] The action of the complexing agent at a flow rate of Li (λ 5-1.0ml / min, concentration (λ 1-0.3mol / L.

[0030] 所述过氧化草酸酯在栗作用下作为载流,流量为0.1-0.3ml/min,浓度为0.01-0.03mol/Lo [0030] The oxalate peroxide under the action of Li as a carrier, the flow rate of 0.1-0.3ml / min, concentration of 0.01-0.03mol / Lo

[0031] 所述检测室采用不锈钢材料,室侧壁设有絮状玻璃棉,溶液通过浸润的方式,从上部流下,絮状玻璃棉为絮状结构,微孔多、表面积大,具有很强的吸附能力,增强了化学反光效率,浸润方式提供光电探测装置中光电倍增管检测溶液中的化学发光信号的效率。 [0031] The detection chamber made of stainless steel, the chamber side wall is provided with glass wool fluff, by way of infiltration of solution, from the upper stream, glass wool floc floc structure, porous, large surface area, has a strong adsorption capacity, enhanced chemical reflective efficiency, the efficiency of invasion providing a chemiluminescent signal in the photoelectric detection device photomultiplier detector solution.

[0032] 所述的光电倍增管米用日本滨松Photosensor Modules H5784 Series。 Said photovoltaic [0032] m with a Hamamatsu photomultiplier Photosensor Modules H5784 Series.

[0033] 所述栗均为蠕动栗,所述管路采用聚四氟乙烯材料制成。 [0033] The peristaltic Li Li are the line made of Teflon material.

[0034] 利用微型计算机数据处理装置,通过软件编程实现对所述数据处理装置控制、信号处理和水体中总铬浓度的计算。 [0034] The data processing apparatus using a microcomputer to realize the data processing means calculates a control, signal processing and total chromium concentration of water through software programming.

[0035] 纳米材料由于比表面积大,对许多重金属离子的吸附能力强、吸附容量大,在较短时间内即可达到吸附平衡,是一种非常理想的固相萃取吸附材料。 [0035] The nanomaterials large specific surface area, adsorption capacity for many heavy metal ions, a large adsorption capacity, in relatively short time to reach the adsorption equilibrium, is a very good adsorbent by solid phase extraction. 特别是磁性纳米材料,因具有超顺磁性,借助于外加磁场,可大大缩短富集时间。 Magnetic nano-materials in particular, due to superparamagnetic, by means of a magnetic field, can greatly shorten the accumulation time. 硅氧烷涂层材料经过修饰可增强吸附性能、简化富集操作、提高回收率等,腐植酸钠一种大分子量离子液体,通过利用腐植酸钠负载修饰四氧化三铁-裹聚二甲基硅氧烷核壳结构磁性纳米材料萃取富集水中总铬具有非常大的应用前景,是一种非常理想的重金属离子萃取富集方式。 Silicone coating material may be modified to enhance adsorption properties, to simplify the enrichment operation, increase the recovery rate and the like, high molecular weight sodium humate one kind of ionic liquids, by using a modified sodium humate load triiron tetroxide - wrapped polydimethylsiloxane the magnetic core-shell structure nano-materials extracted silicone total chromium enriched water having a very large application prospect, is an ideal way of enrichment of heavy metal ions was extracted. 另外利用化学发光反应的高灵敏性已经成为目前分析测量的理想手段,水体中铬与二甲基二甲氧基硅烷溶液混合形成络合物;该络合物与过氧化草酸酯混合具有特异性化学发光现象;同时化学发光强程度与水体中总铬元素的浓度具有线性关系,因此通过利用富集-洗脱-络合-化学发光技术建立的磁性纳米材料富集-洗脱流动注射化学发光法测定水体中总铬的方法具有快速,简便,准确度高的特点。 Also the use of high sensitivity of the chemiluminescent reaction has become an ideal means of measurement analysis, water and chromium dimethyl dimethoxy silane solution was mixed to form a complex; the peroxide complex is mixed with the oxalic acid ester with a specific chemiluminescence phenomenon; chemiluminescence intensity while the degree of concentration of total chromium in the water have a linear relationship, so by using enriched - elution - complex - chemiluminescence establish magnetic nanomaterials enrichment - elution flow injection the method of determination of total chromium luminescence water having a rapid, simple and highly accurate characteristics.

[0036] 磁性纳米材料富集-洗脱流动注射化学发光法测量水体总铬的方法是由光、机、电、计算机组成的一体化流动注射化学发光光电探测系统。 [0036] Magnetic enrichment nanomaterials - chromium elution method measuring the total water flow injection chemiluminescence is integrated flow injection system by the light emission photodetection, mechanical, electrical, computer composition. 按工作模块可分成五部分: Press the operating module can be divided into five parts:

[0037] 第一部分是富集一洗脱系统,富集-洗脱室结构分为富集-洗脱室上部和气室,上部主要完成富集-洗脱工作,设有聚四氟乙烯筛板,共5层,每层筛板上装填有颗粒状磁性纳米材料,颗粒状磁性纳米材料是以四氧化三铁为载体包裹聚二甲基硅氧烷涂层,利用腐植酸钠负载修饰制备的功能性磁性纳米材料,最上层筛板为空,主要防止颗粒混合过程中堵塞进样口。 [0037] a first part elution system is enriched, the enriched - enriched into the elution chamber structure - eluting the upper chamber and the gas chamber, an upper portion of the main enrichment is completed - work eluting with PTFE sieve , a total of five layers, each layer filled with the particulate magnetic nano sieve material, the particulate material is magnetic nano triiron tetroxide is surrounded by a carrier polydimethylsiloxane coatings prepared using the modified load of sodium humate functional magnetic nano material, the uppermost sieve is empty, the main mixing process to prevent particles from clogging the inlet. 富集室下部设有气室,气室与富集-洗脱室上部之间安装有微孔电磁铁,气室设有氮气通入阀。 A lower chamber enriched air chamber, the air chamber and enriched - microporous mounted between the upper electromagnet elution chamber, the air chamber is provided with nitrogen through valve. 当富集-洗脱过程中,通入氮气鼓泡,保证颗粒与溶液均匀混合,当富集-洗脱过程完成后,微孔电磁铁加电,吸引磁性纳米材料沉降到每层筛板上,完成富集液和洗脱液顺利排出。 When enrichment - elution, bubbled with nitrogen, to ensure uniform mixing of particles with the solution, when enriched - After elution is complete, the electromagnet power microporous, attract magnetic nano materials to settle on each deck complete smooth discharge of the liquor eluate. 设置多层筛板,保证了每层筛板上颗粒状磁性纳米材料与水体的均匀混合,增加了富集和洗脱效率。 The multilayer sieve provided, ensuring uniform mixing of particulate material on each magnetic nano-deck with a body of water, increased enrichment and elution efficiency.

[0038] 第二部分是流动注射部分,主要是水体中总铬与络合剂-二甲基二甲氧基硅烷作为一个运动着的、无空气间隔的连续流动,发生络合反应,形成络合物,该络合物再与化学发光试剂-过氧化草酸酯发生化学反应,最后产生可被检测的化学发光信号,被载带到检测室中。 [0038] The second portion is a part of a flow injection, total chromium is mainly water and the complexing agent - dimethyl dimethoxysilane as the movement of a continuous flow of free air space, complexation reaction, complex formation compound, and then the complex with a chemiluminescent reagent - a chemical reaction occurs oxalate peroxide, and finally produce a chemiluminescent signal that can be detected, is carried to the detection chamber.

[0039] 第三部分是光电转换和放大部分,主要采用微光光电倍增管作为探测元件,载液流通检测室,检测室侧壁设有絮状玻璃棉,溶液通过浸润的方式,从上部流下,絮状玻璃棉为絮状结构,微孔多、表面积大,具有很强的吸附能力,增强了化学反光效率,浸润方式提供光电探测装置中光电倍增管检测溶液中的化学发光信号的效率;产生的光信号被立即转变成电信号,并被连续记录。 [0039] The third part is the part of the photoelectric conversion and amplification, mainly LLL photomultiplier tube as the probe element, the carrier liquid flow detection chamber, the detection chamber side wall is provided with glass wool fluff, by way of infiltration of the solution, from the upper stream , glass wool floc floc structure, microporous, large surface area, has a strong adsorption capacity enhanced chemical reflective efficiency, to provide a photoelectric detection device of invasion in the detection efficiency of the photomultiplier tube chemiluminescent signal solution; generating an optical signal is immediately converted into an electrical signal, and continuous recording.

[0040] 第四部分是数据采集、记录部分,该部分完成电信号的采集、A / D转换、传输和存储。 [0040] The fourth data acquisition, recording portion, the portion to complete the acquisition of electrical signals, A / D conversion, transmission and storage.

[0041] 第五部分是微型计算机数据处理系统,主要负责对得到的空白信号与样品信号进行计算,再根据信号增强程度差值数据和标准样品的信号增强程度差值数据对应关系,计算出水体中总铬元素的浓度,并进行显示、打印输出。 [0041] The fifth data processing system is a microcomputer, is mainly responsible for the blank signal obtained sample signal is calculated, and then the correspondence relationship according to the degree of signal enhancement degree of an enhanced signal difference data and difference data of the standard sample, body water calculated the total concentration of chromium, and the display, printout.

[0042] 由于通常化学发光反应速度很快,所以必须保证样品与发光试剂能够快速、有效、高度重现的混合,流动注射技术满足了这一要求,因此通过富集-洗脱-络合-流动注射技术与化学发光分析相结合产生的流动注射化学发光方式测量水体中总铬的方法不仅灵敏度高,线性范围宽,而且快速、重现性好、自动化程度高,可以在环境分析等领域得到迅速的发展。 [0042] Since the chemiluminescent reaction is usually very fast, it is necessary to ensure that the sample and reagent capable of emitting fast, efficient, highly reproducible mixing, flow injection technology to meet this requirement. Therefore, by enrichment - elution - Complex - the method of flow injection chemiluminescence embodiment flow injection analysis and chemiluminescence measurements generated water combined total chromium not only high sensitivity, wide linear range, and rapid, reproducible, high degree of automation can be obtained in the field of environmental analysis rapid development.

[0043] 本发明是通过集成富集-洗脱-络合技术、流动注射技术、化学发光技术、光电转换器件、数据采集、软件处理对水体中总铬的进行测量的方法。 [0043] The present invention is achieved by an integrated enrichment - elution - complex technology, flow injection, chemiluminescence, photoelectric conversion device, data acquisition, the software performs processing method measured total chromium water. 通过富集-洗脱-络合-一体化设计,能实现水体中痕量总铬高效富集-快速洗脱和络合结合流动注射技术具有自动注入,受控分散和精确快速的特点,再采用灵敏的化学发光检测方法,因此利用一体化富集-洗脱-络合-技术,再通过检测所形成的络合物对化学发光程度值建立起来的流动注射化学发光法测定水体中总铬的方法具有现场、快速,简便,灵敏的特点,它可以解决现有技术存在的不能现场工作,分析持续时间长,分析过程繁杂,条件苛刻、能耗大,尤其是产生二次污染等问题,是目前非常有效的快速分析手段,是理想的环境分析检测方法,属于绿色环保方法。 Enrichment by - elution - Complex - integrated design, to achieve efficient enrichment of trace amounts of total chromium - complex and fast eluting with automatic flow injection injection, controlled dispersion characteristics of fast and accurate, then chemiluminescence detection methods sensitive, so the use of integrated enrichment - elution - complex - technology, water Determination of total chromium re-established value of the degree of chemiluminescence detecting the complex formed by flow injection chemiluminescence the method has on-site, rapid, simple and sensitive features, it can not be resolved on-site work in the prior art, long-duration analysis, complex analysis, harsh conditions, energy consumption, especially in secondary pollution and other issues, is a very effective means of rapid analysis, environmental analysis is an ideal detection method, is the green environmental protection methods. 本方法所具有的优势可以使本方法在环境分析等领域得到发展和推广。 This method has the advantage of this method can be developed and promoted in the field of environmental analysis.

附图说明 BRIEF DESCRIPTION

[0044] 下面结合附图和实施例对本发明的方法进行详细描述。 Drawings and embodiments of the method of the present invention will be described in detail [0044] below in conjunction.

[0045] 图1是本发明方法工作原理流程图; [0045] FIG. 1 is a flowchart showing the working principle of the method according to the present invention;

[0046] 图2是本发明方法所采用的检测装置结构示意图。 [0046] FIG. 2 is a schematic view of the structure of the detection apparatus employed in the method of the present invention.

[0047] 1、富集液收集器;2、富集液栗;3、氧化剂;4、氧化剂栗;5、缓冲液;6、缓冲液栗; [0047] 1, the collector-enriched liquid; 2, Li enriched liquid; 3, oxidant; 4, Li oxidant; 5, buffer; 6, Li buffer;

7、水样;8、空白溶液-蒸馏水;9、水样栗;10、富集-洗脱室;11、洗脱液栗;12、洗脱液;13、络合剂栗;14、络合剂;15、发光剂栗;16、发光剂;17、检测室;18、控制装置;19、数据处理装置;20、废液收集器;21、光电探测装置;22、洗脱后水样栗;23、氮气瓶。 7, watery; 8, blank solution - distilled water; 9, watery Li; 10, enriched - the elution chamber; 11, Li eluent; 12, eluent; 13, complexing agents Li; 14, network cements; 15, luminescent agent Li; 16, luminescent agents; 17, the detection chamber; 18, control means; 19, a data processing apparatus; 20, waste liquid collector; 21, photoelectric detection means; 22, after elution watery Li; 23, nitrogen bottle.

[0048] 图3是本发明方法所采用的富集-洗脱室结构示意图。 [0048] FIG. 3 is a enrichment procedure of the present invention employed - a schematic view of the elution chamber structure.

[0049] 10、富集-洗脱室;10-1、水样入口; 10-2、氮气排出阀;10_3、筛板;10_4、颗粒状磁性纳米材料;10-5、富集-洗脱腔室;10-6、洗脱液排出口;10-7、富集液排出口;10-8、微孔电磁铁;10-9、气室;10-10、氮气入口; 10-11、洗脱液入口。 [0049] 10, enriched - the elution chamber; 10-1, inlet water sample; 10-2, nitrogen discharge valve; 10_3, sieve; 10_4, magnetic nano particulate material; 10-5, enriched - Elution a chamber; 10-6, eluent outlet; 10-7, enriched fluid outlet; 10-8, microporous electromagnet; 10-9, plenum; 10-10, a nitrogen gas inlet; 10-11, eluent entrance.

[0050] 图4是本发明方法所采用的检测室结构示意图。 [0050] FIG. 4 is a schematic view of the detection chamber structure of the present invention employed in the method.

[0051] 17、检测室;17-1、光电倍增管;17-2、絮状玻璃棉;17_3、入口;17_4、出口。 [0051] 17, the detection chamber; 17-1, photomultiplier tube; 17-2, wool floc; 17_3, inlet; 17_4 outlet.

具体实施方式 detailed description

[0052] 参见图3,富集-洗脱室10包括上部的富集-洗脱腔室10-5和下部的气室10_9,上部的富集-洗脱腔室10-5为圆筒形,下部的气室为10-9为圆锥形。 [0052] Referring to Figure 3, the enrichment - the elution chamber 10 includes an upper enriched - eluting plenum chamber 10-5 and a lower 10_9, the upper enrichment - elution cylindrical chamber 10-5 , the lower portion of the gas chamber 10-9 is conical. 富集-洗脱腔室10-5上部设有水样入口10-1和洗脱液入口10-11,富集-洗脱腔室10-5下部设有洗脱液排出口10-6和富集液排出口10-7,富集-洗脱腔室10-5中间隔设有5道筛板10_3,筛板10_3是由聚四氟乙烯材料制成。 Enrichment - elution chamber 10-5 is provided with an upper inlet water sample inlet 10-1 and 10-11 eluent enriched - elution chamber 10-5 is provided with a lower discharge port 10-6 and the eluate enriched liquid discharge port 10-7, enriched - elution chamber 10-5 is provided with five sieve interval 10_3, 10_3 sieve is made of polytetrafluoroethylene material. 除最上层的筛板10-3外,其余的筛板10-3上装填有颗粒状磁性纳米材料10-4,所述颗粒状磁性纳米材料10-4是以四氧化三铁为载体包裹聚二甲基硅氧烷涂层,利用腐植酸钠负载修饰聚二甲基硅氧烷涂层的磁性纳米材料。 In addition to the uppermost sieve 10-3, packed with the particulate magnetic nano material remaining on the sieve 10-4 10-3, 10-4 of the particulate material is magnetic nano triiron tetroxide is surrounded by a carrier poly dimethyl silicone coating using magnetic nano-modified sodium humate material load polydimethylsiloxane coating. 在富集-洗脱腔室10-5和气室10-9之间设有微孔电磁铁10-8,所述气室10-9设有氮气入口10-10。 Enriched - the elution chamber is provided with micropores between the electromagnet 10-8 10-910-5 air chamber, said air chamber 10-9 is provided with a nitrogen inlet 10-10.

[0053] 参见图4,检测室17侧壁从上至下设有絮状玻璃棉17-2,溶液通过浸润的方式,从上部流下,絮状玻璃棉为絮状结构,微孔多、表面积大,具有很强的吸附能力,增强了化学反光效率,浸润方式提供光电探测装置中的光电倍增管检测溶液中的化学发光信号的效率。 [0053] Referring to Figure 4, the detection chamber 17 from top to bottom with the side walls of glass wool batt 17-2, by way of infiltration of solution, from the upper stream, glass wool floc floc structure, microporous, surface area large, has a strong adsorption capacity enhanced chemical reflective efficiency, the efficiency of invasion provide chemiluminescent signal in the photoelectric detection device photomultiplier detector solution.

[0054] 参见图1和图2,本发明方法包括以下几个步骤: [0054] Referring to FIGS. 1 and 2, the method of the present invention comprises the following steps:

[0055] (1)化学发光试剂-过氧化草酸酯16在发光试剂栗15作用下作为载流; [0055] (1) chemiluminescence - 16 oxalate peroxide at 15 bioluminescent reagent Li as a carrier;

[0056] (2)水样在水样栗9的作用下与缓冲溶液5-醋酸-醋酸铵管路中的醋酸-醋酸铵溶液混合; [0056] (2) water sample with a buffer solution of acetic acid 5- under the action of the water sample 9 Li - a mixed solution of ammonium acetate - ammonium acetate in acetic acid line;

[0057] (3)混合后继续在管路中流动,再与氧化剂3-过硫酸钾管路中的过硫酸钾溶液混合,在醋酸-醋酸铵缓冲溶液提供的pH4.5〜5.5条件下,在流动过程中,过硫酸钾氧化水中三价铬为六价铬。 [0057] (3) After mixing continues to flow in the pipeline, and then a mixed solution of potassium persulfate, potassium persulfate oxidant 3- line and, in acetic acid - ammonium acetate buffer under conditions pH4.5~5.5 provided in solution, in the flow process, persulfate oxidation of trivalent chromium to hexavalent chromium in water.

[0058] (4)氧化反应后,混合溶液一同流入富集-洗脱室10,流入时间为10-15S,而后停止流入。 After [0058] (4) the oxidation reaction, a mixed solution enriched with flows - the elution chamber 10, inflow time of 10 -15 S, then stop the inflow. 富集-洗脱腔室10-5主要完成富集-洗脱工作,设有聚四氟乙烯筛板10-3,筛板10-3上装填有颗粒状磁性纳米材料10-4,富集室下部设有气室10-9,气室10-9与富集洗脱腔室10-5之间安装有微孔电磁铁10-8,气室10-9设有氮气入口10-10处设有氮气进气阀,通入氮气鼓泡30-50s后停止通入氮气,使得颗粒状磁性纳米材料10-4与水体混均,完成富集过程。 Enrichment - mainly to complete the elution chamber 10-5 Enrichment - work eluting with PTFE sieve 10-3, 10-4 granular magnetic nano material filling the sieve 10-3, enriched lower chamber air chamber 10-9, 10-5 mounting between the plenum chamber 10-9 and the elution enriched microporous electromagnet 10-8, 10-9 provided at a nitrogen gas inlet chamber 10-10 with nitrogen inlet valve, bubbled with nitrogen 30-50s after stopping the flow of nitrogen gas, so that the particulate material 10-4 and the magnetic nanoparticles are mixed with water to complete the enrichment process.

[0059] (5)气室10-9与富集-洗脱腔室10-5之间的微孔电磁铁10_8加电,使得微孔电磁铁10-8产生磁性,微孔电磁铁10-8吸引磁性纳米材料沉降到每层筛板10-3上,富集液栗开启20-30s后停止,吸走富集液。 [0059] (5) and the enriched gas chamber 10-9 - elution chamber 10-5 10_8 pores between the electromagnet energized, the electromagnet 10-8 such that generated magnetic micropores, pores electromagnet 10- 8 stops after nanomaterials magnetically attracted to each deck 10-3 settle, the liquor Li open 20-30s, the liquor aspirated.

[0060] (6)开启洗脱液-高氯酸钾栗10-15S后停止11s,微孔电磁铁10_8断电,使得电磁铁失去磁性,通入氮气使得颗粒状磁性纳米材料10-4与水体混均,鼓泡30-50S后停止通入氮气。 [0060] (6) opening eluent - Li perchlorate stopped 11S 10-15S, microporous off solenoid 10_8, so that the electromagnet loses its magnetism, nitrogen gas such that the particulate magnetic nanomaterials 10-4 mixed with water It is, after stopping the flow of nitrogen gas was bubbled 30-50S.

[0061] (7)微孔电磁铁加电10-8,使得微孔电磁铁10-8产生磁性,微孔电磁铁10_8吸引磁性纳米材料沉降到每层筛板10-3上,洗脱后水样栗22开启,吸走洗脱液。 [0061] (7) an electromagnet powered microporous 10-8, 10-8 so that the electromagnets generate a magnetic pore, microporous 10_8 electromagnet magnetically attracted to each nanomaterial settle deck 10-3, after elution 22 Li turned watery, sucked eluent.

[0062] (8)洗脱液在洗脱后水样栗22的作用下与络合剂14-二甲基二甲氧基硅烷管路中的二甲基二甲氧基硅烷溶液混合,二甲基二甲氧基硅烷与洗脱液中总铬形成络合物; Mixing [0062] (8) under the action of the eluent after elution of the water sample and the complexing agent Li 14- 22 dimethyl dimethoxy silane line dimethyl dimethoxy silane solution, di- methyldimethoxysilane and total chromium in the eluate to form a complex;

[0063] (9)络合物溶液与载流混合后一起流入检测室17,检测室17侧壁设有絮状玻璃棉17-2,溶液通过浸润的方式,从上部流下,絮状玻璃棉17-2为絮状结构,微孔多、表面积大,具有很强的吸附能力,增强了化学反光效率,浸润方式提供光电探测装置21中的光电倍增管检测溶液中的化学发光信号的效率; [0063] (9) into the complex solution is mixed with the carrier 17 together with the detection chamber, the detection chamber 17 is provided with side walls 17-2 wool fluff, by way of infiltration of the solution, from the upper stream, wool batt 17-2 flocculent structure, porous, large surface area, has a strong adsorption capacity enhanced chemical reflective efficiency, providing photo detection means 21 in the photo multiplier tube invasion pattern signal detection efficiency of the chemiluminescent solution;

[0064] (10)光电倍增管对流通过的溶液所发出的光信号进行采集放大,并转换成电信号送入微型计算机数据处理装置,数据处理装置19对得到的空白信号与样品信号进行计算,再根据信号程度差值数据和标准样品的信号程度差值数据对应关系,计算出水体中总铬的浓度,并进行显示、打印输出。 [0064] an optical signal (10) by a photomultiplier tube convection emitted was collected amplified and converted into electrical signals fed to the microcomputer data processing apparatus, a data processing device 19 samples the signal obtained with the blank signal is calculated, the signal then corresponds to the degree of difference between the signal level of difference data and data relationships standard sample calculation of the concentration of total chromium in water, and the display, printout.

[0065] 在上述实施例中: [0065] In the above-described embodiment:

[0066] 所述的水样溶液流量为5.0-10ml/min。 [0066] The flow rate of the aqueous sample solution of 5.0-10ml / min.

[0067] 所述醋酸-醋酸铵缓冲溶液流量为0.1-0.5ml/min,浓度为(1.0-1.5) X 10~ 2mol/L。 The [0067] acetic acid - ammonium acetate buffer solution flow 0.1-0.5ml / min, a concentration of (1.0-1.5) X 10 ~ 2mol / L.

[0068] 所述过硫酸钾溶液流量为0.1-0.5ml/min,浓度为(0.5-1.0) X 10~ 2 mol/L。 [0068] The flow rate of solution of potassium persulfate 0.1-0.5ml / min, a concentration of (0.5-1.0) X 10 ~ 2 mol / L.

[0069] 所述颗粒状磁性纳米材料是以四氧化三铁为载体包裹聚二甲基硅氧烷涂层,利用腐植酸钠负载修饰制备的功能性磁性纳米材料。 [0069] The particulate material is magnetic nano-iron tetroxide is surrounded by a carrier polydimethylsiloxane coating, load MODIFIED functional magnetic nano materials using sodium humate.

[0070] 所述的富集-洗脱室采用聚四氟材料,结构分为上部富集-洗脱腔室10-5和下部气室10-9,上部主要完成富集-洗脱工作,设有聚四氟乙烯筛板10-3,共5层,每层筛板10-3上装填有颗粒状磁性纳米材料10-4,最上层筛板10-3不放置颗粒状磁性纳米材料10-4,主要防止颗粒混合过程中堵塞进样口。 [0070] The enrichment - PTFE material using the elution chamber, divided into an upper structure Enrichment - 10-5 elution chamber and a lower gas chamber 10-9, the upper portion of the main enrichment is completed - eluting work, with PTFE sieve 10-3, a total of five layers, each filled with a granular magnetic nano materials 10-4, 10-3 are not placed uppermost sieve granular material 10 on the deck of magnetic nano 10-3 -4, primarily prevents particles are mixed during the injection port clogging. 富集室下部设有气室10-9,气室10-9与富集-洗脱腔室之间安装有微孔电磁铁10-8,气室10-9的气室入口10-10处设有氮气通入阀。 A lower chamber enriched air chamber 10-9, 10-9 and the enriched gas chamber - 10-8 microporous solenoid mounted between the elution chamber, plenum inlet plenum at 10-10 10-9 with nitrogen through valve. 当富集-洗脱过程中,通入氮气鼓泡,保证颗粒与溶液均匀混合,当富集-洗脱过程完成后,微孔电磁铁加电,吸引磁性纳米材料沉降到每层筛板10-3上,完成富集液和洗脱液顺利排出。 When enrichment - elution, bubbled with nitrogen, to ensure uniform mixing of particles with the solution, when enriched - After elution is complete, the electromagnet power microporous, magnetically attract each deck to settle nanomaterials 10 on -3, completion fluid enriched eluate smooth discharge. 设置多层筛板10-3,保证了每层筛板10-3上颗粒状磁性纳米材料10-4与水体的均匀混合,增加了富集和洗脱效率。 Set 10-3 multilayer sieve to ensure uniform mixing on each deck nanomaterials 10-4 10-3 particulate magnetic body of water, increased enrichment and elution efficiency.

[0071] 所述鼓泡进入富集室的氮气流量为20-50ml/min。 The [0071] nitrogen flow bubbled into the enrichment chamber is 20-50ml / min.

[0072] 所述洗脱液-高氯酸钾流量为0.5-1.0ml/min。 [0072] The eluate - perchlorate flow 0.5-1.0ml / min.

[0073] 所述络合剂在栗作用下流量为0.5-1.0ml/min,浓度为0.1-0.3mol/L。 [0073] Li action of the complexing agent at a flow rate of 0.5-1.0ml / min, the concentration of 0.1-0.3mol / L.

[0074] 所述过氧化草酸酯在栗作用下作为载流,流量为0.1-0.3ml/min,浓度为 [0074] The oxalate peroxide as a carrier under the action of Li, flow 0.1-0.3ml / min, the concentration of

0.01-0.03mol/Lo 0.01-0.03mol / Lo

[0075] 所述检测室采用不锈钢材料,室侧壁设有絮状玻璃棉,溶液通过浸润的方式,从上部流下,絮状玻璃棉为絮状结构,微孔多、表面积大,具有很强的吸附能力,增强了化学反光效率,浸润方式提供光电探测装置中光电倍增管检测溶液中的化学发光信号的效率。 [0075] The detection chamber made of stainless steel, the chamber side wall is provided with glass wool fluff, by way of infiltration of solution, from the upper stream, glass wool floc floc structure, porous, large surface area, has a strong adsorption capacity, enhanced chemical reflective efficiency, the efficiency of invasion providing a chemiluminescent signal in the photoelectric detection device photomultiplier detector solution.

[0076] 所述的光电倍增管米用日本滨松Photosensor Modules H5784 Series。 Said photovoltaic [0076] m with a Hamamatsu photomultiplier Photosensor Modules H5784 Series.

[0077] 所述栗均为蠕动栗,所述管路采用聚四氟乙烯材料制成。 [0077] The peristaltic Li Li are the line made of Teflon material.

[0078] 利用微型计算机数据处理装置,通过软件编程实现对所述数据处理装置控制、信号处理和水体中总铬浓度的计算。 [0078] The data processing apparatus using a microcomputer to realize the data processing means calculates a control, signal processing and total chromium concentration of water through software programming.

[0079] 反应所发出的光信号为微弱的化学发光信号,微弱光信号经光学镜头聚能,导入光电倍增管,光信号经光电倍增管处理转换为电信号输出,输出电信号经微弱信号放大电路进行转换,放大到一定电压幅度送数据处理装置的A/D转换通道进行量化处理。 Optical signal [0079] Reaction emitted chemiluminescent signal is weak, weak optical signal is shaped by the optical lens, introducing a photomultiplier tube, a photomultiplier tube via an optical signal into an electrical signal output process, the output electrical signal is amplified by the weak signal conversion circuit, amplifies the voltage amplitude of transmission data to a certain processing apparatus a / D converter quantizes the channel.

[0080] 以上所述,仅是本发明的较佳实施例,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。 [0080] The above, only the preferred embodiment of the present invention, the present invention will not limit other forms, any skilled skilled in the art may use the technical contents disclosed in the above-described change or be modified to change the equivalent equally effective embodiments. 凡未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。 Who have not departing from the technical contents of the present invention, any simple modification based on the technical essence of the present invention is made to the above embodiment embodiment, the equivalent changes and modifications still fall within the scope of the technical solutions of the present invention.

Claims (10)

  1. 1.一种富集洗脱流动注射化学发光法测量水体总铬的装置,所述装置包括富集-洗脱室、检测室、光电探测装置、控制装置、数据处理装置,水样栗、缓冲液栗、氧化剂栗、富集液栗、洗脱液栗、洗脱后水样栗、络合剂栗、发光试剂栗,所述富集-洗脱室通过管路与水样管路、缓冲液管路、氧化剂管路、富集液管路、洗脱液管路连接,检测室通过管路与发光试剂管路、络合剂管路、洗脱液管路连接;在所述富集-洗脱腔室的上部设有水样入口和洗脱液入口,下部设有洗脱液排出口和富集液排出口;上述管路的连接方式为:所述缓冲液管路、氧化剂管路顺次连接到液体从水样管路流向水样入口的管路中;所述络合剂管路、发光试剂管路顺次连接到液体从所述洗脱液排出口流向检测室的管路中;所述富集液管路与所述富集液排出口相连,所述洗脱液管路与所 An enrichment device of total chromium elution water flow injection chemiluminescence measurement, the apparatus comprising enriching - the elution chamber, the detection chamber, photo detection means, control means, data processing apparatus, water chestnut sample buffer Li solution, the oxidant Li, Li enriched liquid eluent chestnut, water samples after elution chestnut, chestnut complexing agents, luminescent agents Li, said enriched - eluting the sample chamber via a line with the water conduit, the buffer fluid conduit, the oxidizer conduit, enriched fluid conduit, pipe connections eluent, detection chamber via a line with chemiluminescence reagent conduit, conduit complexing agent, the eluate conduit connector; enriched in the - the upper chamber is provided with the elution water sample inlet and eluent inlet, an outlet and a lower discharge with the eluent enriched liquid outlet; connection to the pipe line: the line buffer, the oxidizer tube Road turn connected to the line flow of liquid water from the water sample inlet conduit samples; the complexing agent conduit, in turn connected to the light emitting tube reagent liquid conduit of the eluate from the discharge port toward the testing chamber path; said enriched liquid line and the liquid-rich outlet connected to said conduit and the eluate 洗脱液入口相连,所述洗脱后水样栗与所述洗脱液排出口相连;其特征在于,所述富集-洗脱室包括上部的富集-洗脱腔室和下部的气室,所述富集-洗脱腔室中间隔设有多道筛板,至少部分筛板上装填有颗粒状磁性纳米材料,在所述富集-洗脱腔室和所述气室之间设有微孔电磁铁,所述气室设有氮气入口。 Eluent inlet connected to the water sample Li connected to the discharge port after the elution the eluate; wherein said enriched - elution chamber includes an upper enriched - the elution chamber and a lower gas chamber, said enriched - the elution chamber is provided with multi-channel spacing sieve, the sieve is at least partially filled with a nano-particulate magnetic material, said enriched in - between the elution chamber and the plenum with microporous electromagnet, said air chamber is provided with a nitrogen inlet.
  2. 2.根据权利要求1所述的一种富集洗脱流动注射化学发光法测量水体总铬的装置,其特征在于,所述颗粒状磁性纳米材料是以四氧化三铁为载体包裹聚二甲基硅氧烷涂层,利用腐植酸钠负载修饰聚二甲基硅氧烷涂层的磁性纳米材料。 The enriching of claim 1 elution flow injection apparatus chemiluminescence measurement of total chromium in water, wherein the particulate material is magnetic nano triiron tetroxide is surrounded by a carrier as claimed in claim polydimethyl siloxane coating, magnetic nano-modified material load polydimethylsiloxane coating using sodium humate.
  3. 3.根据权利要求1所述的一种富集洗脱流动注射化学发光法测量水体总铬的装置,其特征在于,所述的筛板是由聚四氟乙烯材料制成,除最上层筛板外,其余筛板上装填有所述颗粒状磁性纳米材料。 The enriching of claim 1 elution flow injection apparatus chemiluminescence measurement of total chromium in the water, characterized in that the sieve is made of polytetrafluoroethylene material according to claim, in addition to the uppermost sieve an outer plate, the remaining deck loaded with the particulate magnetic nanomaterials.
  4. 4.根据权利要求1所述的一种富集洗脱流动注射化学发光法测量水体总铬的装置,其特征在于,所述检测室侧壁上设有絮状玻璃棉。 4. The apparatus of total chromium water injection chemiluminescence measurement flow, characterized in that, provided on said glass wool batt detection chamber side wall according to one of claims 1 to enriching the elution.
  5. 5.一种利用权利要求1或2或3或4所述装置测量水体总铬的方法,其特征在于,所述方法通过所述装置按下述步骤进行: (1)、化学发光试剂-过氧化草酸酯在发光试剂栗作用下作为载流; (2)、水样和缓冲溶液分别在水样栗和缓冲液栗的作用下,使水样与缓冲溶液-醋酸-醋酸铵管路中的醋酸-醋酸铵溶液混合; (3)、混合后继续在管路中流动,再与氧化剂-过硫酸钾管路中的过硫酸钾溶液混合,在醋酸-醋酸铵缓冲溶液提供的pH4.5〜5.5条件下,在流动过程中,过硫酸钾氧化水中三价铬为六价铬; (4)、氧化反应后,混合溶液一同流入富集-洗脱室,流入时间为10-15S,而后停止流入,富集-洗脱室的气室通入氮气鼓泡30-50S后停止通入氮气,使得颗粒状磁性纳米材料与水体混均,完成富集过程; (5)、对微孔电磁铁加电,使得电磁铁产生磁性,电磁铁吸引磁性纳米材料沉降 The method or claim 1 or 2 or 34 of the total chromium in the water measuring means 5. A use as claimed in claim, wherein said method proceeds by the following steps by means of the: (1) chemiluminescence - through oxide luminescent reagent in oxalate Li acting as a carrier; (2), the water sample and a buffer solution under the effect of water samples are Li and Li of the buffer, buffer solution and the water sample - acetic acid - ammonium acetate conduit acetic acid - ammonium acetate solution mixture; (3), after mixing in the pipeline continues to flow, then with an oxidizing agent - a mixed solution of potassium persulfate, potassium persulfate line in acetic acid - ammonium acetate buffer solution of pH 4.5 provided under ~5.5 conditions, during flow, persulfate oxidation of trivalent chromium to hexavalent chromium in water; (4) after oxidation reaction, a mixed solution enriched with flows - the elution chamber, inflow time of 10 -15 S, then stops flowing into the enrichment - after elution plenum chamber bubbled with nitrogen 30-50S nitrogen was stopped, so that the particulate material with magnetic nanoparticles are mixed with water to complete the enrichment process; (5), microporous electromagnetic iron power, such that the electromagnet generates a magnetic, an electromagnet attracts the magnetic sedimentation nanomaterials 到每层筛板上,富集液栗开启20-30s后停止,吸走富集液; (6)、开启洗脱液-高氯酸钾栗10-15S后停止,微孔电磁铁断电,使得电磁铁失去磁性,通入氮气使得颗粒状磁性纳米材料与水体混均,鼓泡30-50S后停止通入氮气; (7)、微孔电磁铁加电,使得电磁铁产生磁性,电磁铁吸引磁性纳米材料沉降到每层筛板上,洗脱后水样栗开启,吸走洗脱液; (8)、洗脱液在洗脱后水样栗的作用下与络合剂-二甲基二甲氧基硅烷管路中的二甲基二甲氧基硅烷溶液混合,二甲基二甲氧基硅烷与洗脱液中总铬形成络合物; (9)、络合物溶液与载流混合后一起流入检测室,检测室侧壁设有絮状玻璃棉,溶液通过浸润的方式,从絮状玻璃棉的上部向下流; (10)、光电倍增管对流通过的溶液所发出的光信号进行采集放大,并转换成电信号送入微型计算机数据处理装置,数据处理装置 On each deck, the liquor after opening Li 20-30s stopped, sucked enriched liquid; (6), opening eluent - stopped after 10 -15 S Li perchlorate, microporous electromagnet de-energized, so that electromagnet loses its magnetism, nitrogen gas such that the particulate magnetic nano material are mixed with water, stopping the flow of nitrogen gas was bubbled 30-50S; (7), an electromagnet power micropores, such that the electromagnet generates a magnetic, an electromagnet to attract magnetic nano-materials on each deck to settle, after elution Li turned watery, sucked eluent; (8), under the effect of eluent water chestnut samples after elution with a complexing agent - dimethyl a mixed solution of dimethyl silane, dimethoxy dimethyl silane in the pipeline, dimethyl dimethoxy silane and total chromium in the eluate to form a complex; (9), with a carrier complex solution together flows into the detection flow mixing chamber, a detection chamber side wall is provided with glass wool fluff, by way of infiltration of the solution from the top of the glass wool fluff downwardly; (10), a photomultiplier tube through a solution of the convection of light emitted signal acquisition amplified and converted into electrical signals fed to the microcomputer data processing apparatus, data processing apparatus 得到的空白信号与样品信号进行计算,再根据信号程度差值数据和标准样品的信号程度差值数据对应关系,计算出水体中总铬的浓度,并进行显示、打印输出。 Blank signal obtained sample signal is calculated, and then the degree of correspondence relationship in accordance with a signal level of the differential data signal and difference data of the standard sample, to calculate the concentration of total chromium in water, and the display, printout.
  6. 6.根据权利要求5所述的方法,其特征在于,所述的水样溶液流量为5.0-10ml/min ;所述醋酸-醋酸铵缓冲溶液流量为0.1-0.5ml/min,浓度为(1.0-1.5) X 1(Γ 2 mol/L ;所述过硫酸钾溶液流量为0.1-0.5ml/min,浓度为(0.5-1.0) X 10~ 2 mol/L。 6. The method according to claim 5, characterized in that the flow rate of the aqueous sample solution is 5.0-10ml / min; the acetic acid - ammonium acetate buffer solution flow 0.1-0.5ml / min, a concentration of (1.0 -1.5) X 1 (Γ 2 mol / L; the flow rate of solution of potassium persulfate 0.1-0.5ml / min, a concentration of (0.5-1.0) X 10 ~ 2 mol / L.
  7. 7.根据权利要求5所述的方法,其特征在于,所述鼓泡进入富集-洗脱室的氮气流量为20-50ml/mino 7. The method according to claim 5, wherein said enriched bubbled into - a nitrogen flow rate of the elution chamber is 20-50ml / mino
  8. 8.根据权利要求5所述的方法,其特征在于,所述洗脱液-高氯酸钾流量为0.5-1.0ml/mino The method according to claim 5, wherein said eluent - perchlorate flow 0.5-1.0ml / mino
  9. 9.根据权利要求5所述的方法,其特征在于,所述络合剂在栗作用下流量为0.5-1.0ml/min,浓度为0.1-0.3mol/L。 9. The method as claimed in claim 5, wherein said complexing agent at a flow rate of Li action 0.5-1.0ml / min, the concentration of 0.1-0.3mol / L.
  10. 10.根据权利要求5所述的方法,其特征在于,所述过氧化草酸酯在栗作用下作为载流,流量为0.1-0.3ml/min,浓度为0.01-0.03mol/L。 10. The method according to claim 5, wherein said peroxide oxalate Li as a carrier under the action of a flow rate of 0.1-0.3ml / min, the concentration of 0.01-0.03mol / L.
CN 201410082137 2014-03-07 2014-03-07 Enrichment total chromium elution apparatus and method of measuring flow injection chemiluminescence Water CN103837525B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201410082137 CN103837525B (en) 2014-03-07 2014-03-07 Enrichment total chromium elution apparatus and method of measuring flow injection chemiluminescence Water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201410082137 CN103837525B (en) 2014-03-07 2014-03-07 Enrichment total chromium elution apparatus and method of measuring flow injection chemiluminescence Water

Publications (2)

Publication Number Publication Date
CN103837525A true CN103837525A (en) 2014-06-04
CN103837525B true CN103837525B (en) 2016-01-20

Family

ID=50801241

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201410082137 CN103837525B (en) 2014-03-07 2014-03-07 Enrichment total chromium elution apparatus and method of measuring flow injection chemiluminescence Water

Country Status (1)

Country Link
CN (1) CN103837525B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105301265B (en) * 2015-10-10 2017-06-30 山西师范大学 Automated online solid-phase microextraction magnetic - desorption - detection apparatus and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102788782A (en) * 2012-08-15 2012-11-21 山东省科学院海洋仪器仪表研究所 Method for measuring dissolved oxygen of water body by flow-injection chemiluminiscence mode
CN102809558A (en) * 2012-08-15 2012-12-05 山东省科学院海洋仪器仪表研究所 Method for measuring polycyclic aromatic hydrocarbons (PAHs) of sea water in flow injection chemiluminescence way
CN102841062A (en) * 2012-08-24 2012-12-26 渤海大学 Method for selectively and quantitatively collecting and measuring chromium (VI) in aquatic environment
CN102967574A (en) * 2012-12-11 2013-03-13 天津工业大学 Method for fast enriching and detecting trace amount of As (V) and Cr (VI) contained in water by filling microcolumn by utilizing fiber
CN103499570A (en) * 2013-10-14 2014-01-08 山东省科学院海洋仪器仪表研究所 Detecting device and method for detecting flow injection chemiluminescence water inorganic mercury

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6867688B2 (en) * 1999-06-11 2005-03-15 Safety Through Cellular, Inc. Apparatus and method for providing weather and other alerts
WO2004057312A1 (en) * 2002-12-20 2004-07-08 Research Institute Of Industrial Science & Technology Method and apparatus for analysing oxidation number 3 and 6 of chromium simultaneously

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102788782A (en) * 2012-08-15 2012-11-21 山东省科学院海洋仪器仪表研究所 Method for measuring dissolved oxygen of water body by flow-injection chemiluminiscence mode
CN102809558A (en) * 2012-08-15 2012-12-05 山东省科学院海洋仪器仪表研究所 Method for measuring polycyclic aromatic hydrocarbons (PAHs) of sea water in flow injection chemiluminescence way
CN102841062A (en) * 2012-08-24 2012-12-26 渤海大学 Method for selectively and quantitatively collecting and measuring chromium (VI) in aquatic environment
CN102967574A (en) * 2012-12-11 2013-03-13 天津工业大学 Method for fast enriching and detecting trace amount of As (V) and Cr (VI) contained in water by filling microcolumn by utilizing fiber
CN103499570A (en) * 2013-10-14 2014-01-08 山东省科学院海洋仪器仪表研究所 Detecting device and method for detecting flow injection chemiluminescence water inorganic mercury

Also Published As

Publication number Publication date Type
CN103837525A (en) 2014-06-04 application

Similar Documents

Publication Publication Date Title
Achterberg et al. Stripping voltammetry for the determination of trace metal speciation and in-situ measurements of trace metal distributions in marine waters
Sperling et al. Differential determination of chromium (VI) and total chromium in natural waters using flow injection on-line separation and preconcentration electrothermal atomic absorption spectrometry
Morford et al. Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin
Landers et al. Analysis of organic and inorganic sulfur constituents in sediments, soils and water
Clevenger et al. Trace determination of mercury: a review
Arnold et al. Fiber optic ammonia gas sensing probe
US3659100A (en) System and method of air pollution monitoring utilizing chemiluminescence reactions
Miró et al. Application of flowing stream techniques to water analysis: part III. Metal ions: alkaline and alkaline-earth metals, elemental and harmful transition metals, and multielemental analysis
Wang et al. Coupling sequential injection on-line preconcentration by means of a renewable microcolumn with ion-exchange beads with detection by electrothermal atomic absorption spectrometry: Comparing the performance of eluting the loaded beads with transporting them directly into the graphite tube, as demonstrated for the determination of nickel in environmental and biological samples
CN101710076A (en) Lead ion colorimetric detection probes and application method thereof
Wang et al. Development of an automated sequential injection on-line solvent extraction-back extraction procedure as demonstrated for the determination of cadmium with detection by electrothermal atomic absorption spectrometry
Santelli et al. Atomic absorption determination of copper in silicate rocks by continuous precipitation preconcentration
Hu et al. A simple chemiluminescence method for determination of chemical oxygen demand values in water
Ma et al. Flow–injection chemiluminescence determination of ascorbic acid by use of the cerium (IV)–Rhodamine B system
Frankovich et al. A rapid, precise and sensitive method for the determination of total nitrogen in natural waters
Miró et al. Sequential injection spectrophotometric analysis of nitrite in natural waters using an on-line solid-phase extraction and preconcentration method
BáStockwell et al. Automated technique for mercury determination at sub-nanogram per litre levels in natural waters
Liu et al. Automatic on-line preconcentration system for graphite furnace atomic absorption spectrometry for the determination of trace metals in sea water
Wang et al. Sequential injection on-line matrix removal and trace metal preconcentration using a PTFE beads packed column as demonstrated for the determination of cadmium by electrothermal atomic absorption spectrometry
Imasaka et al. Fluorimetric determination of gallium with lumogallion by flow injection analysis based on solvent extraction
Lagerström et al. Automated on-line flow-injection ICP-MS determination of trace metals (Mn, Fe, Co, Ni, Cu and Zn) in open ocean seawater: Application to the GEOTRACES program
Wang et al. Coupling sequential injection on-line preconcentration using a PTFE beads packed column to direct injection nebulization inductively coupled plasma mass spectrometry
Grudpan Some recent developments on cost-effective flow-based analysis
Li et al. Pulsed excitation source multiplexed fluorometry for the simultaneous measurement of multiple analytes. Continuous measurement of atmospheric hydrogen peroxide and methyl hydroperoxide
de Souza et al. A simple method for methylmercury, inorganic mercury and ethylmercury determination in plasma samples by high performance liquid chromatography–cold-vapor-inductively coupled plasma mass spectrometry

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model